1
|
Guillaume C, Sáez M, Parnet P, Reig R, Paillé V. Cholecystokinin Modulates Corticostriatal Transmission and Plasticity in Rodents. eNeuro 2025; 12:ENEURO.0251-24.2025. [PMID: 39952675 PMCID: PMC11897783 DOI: 10.1523/eneuro.0251-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Recent findings have shifted the view of cholecystokinin (CCK) from being a cellular neuronal marker to being recognized as a crucial neuropeptide pivotal in synaptic plasticity and memory processes. Despite its now appreciated importance in various brain regions and abundance in the basal ganglia, its role in the striatum, which is vital for motor control, remains unclear. This study sought to fill this gap by performing a comprehensive investigation of the role of CCK in modulating striatal medium spiny neuron (MSN) membrane properties, as well as the secondary somatosensory cortex S2 to MSN synaptic transmission and plasticity in rodents. Using in vivo optopatch-clamp recording in mice on identified MSNs, we showed that the application of CCK receptor Type 2 (CCK2R) antagonists decreases corticostriatal transmission in both direct and indirect pathway MSNs. Moving to an ex vivo rat preparation to maximize experimental access, we showed that CCK2R inhibition impacts MSN membrane properties by reducing spike threshold and rheobase, suggesting an excitability increase. Moreover, CCK modulates corticostriatal transmission mainly via CCK2R, and CCK2R blockage shifted spike-timing-dependent plasticity from long-term potentiation to long-term depression. Our study advances the understanding of CCK's importance in modulating corticostriatal transmission. By showing how CCK2R blockade influences synaptic function and plasticity, we provide new insights into the mechanisms underlying striatal functions, opening new paths for exploring its potential relevance to neurological disorders involving basal ganglia-related behaviors.
Collapse
Affiliation(s)
- Chloé Guillaume
- Nantes Université, INRAe, UMR 1280 PhAN, IMAD, Nantes F-44000, France
| | - María Sáez
- Instituto de Neurociencias UMH-CSIC, San Juan de Alicante 03550, Spain
| | - Patricia Parnet
- Nantes Université, INRAe, UMR 1280 PhAN, IMAD, Nantes F-44000, France
| | - Ramón Reig
- Instituto de Neurociencias UMH-CSIC, San Juan de Alicante 03550, Spain
| | - Vincent Paillé
- Nantes Université, INRAe, UMR 1280 PhAN, IMAD, Nantes F-44000, France
| |
Collapse
|
2
|
Zhang Z, Yang W, Wang L, Zhu C, Cui S, Wang T, Gu X, Liu Y, Qiu P. Unraveling the role and mechanism of mitochondria in postoperative cognitive dysfunction: a narrative review. J Neuroinflammation 2024; 21:293. [PMID: 39533332 PMCID: PMC11559051 DOI: 10.1186/s12974-024-03285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a frequent neurological complication encountered during the perioperative period with unclear mechanisms and no effective treatments. Recent research into the pathogenesis of POCD has primarily focused on neuroinflammation, oxidative stress, changes in neural synaptic plasticity and neurotransmitter imbalances. Given the high-energy metabolism of neurons and their critical dependency on mitochondria, mitochondrial dysfunction directly affects neuronal function. Additionally, as the primary organelles generating reactive oxygen species, mitochondria are closely linked to the pathological processes of neuroinflammation. Surgery and anesthesia can induce mitochondrial dysfunction, increase mitochondrial oxidative stress, and disrupt mitochondrial quality-control mechanisms via various pathways, hence serving as key initiators of the POCD pathological process. We conducted a review on the role and potential mechanisms of mitochondria in postoperative cognitive dysfunction by consulting relevant literature from the PubMed and EMBASE databases spanning the past 25 years. Our findings indicate that surgery and anesthesia can inhibit mitochondrial respiration, thereby reducing ATP production, decreasing mitochondrial membrane potential, promoting mitochondrial fission, inducing mitochondrial calcium buffering abnormalities and iron accumulation, inhibiting mitophagy, and increasing mitochondrial oxidative stress. Mitochondrial dysfunction and damage can ultimately lead to impaired neuronal function, abnormal synaptic transmission, impaired synthesis and release of neurotransmitters, and even neuronal death, resulting in cognitive dysfunction. Targeted mitochondrial therapies have shown positive outcomes, holding promise as a novel treatment for POCD.
Collapse
Affiliation(s)
- Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chengyao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Shuyan Cui
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Tian Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
3
|
Nikolaus S, Fazari B, Chao OY, Almeida FR, Abdel-Hafiz L, Beu M, Henke J, Antke C, Hautzel H, Mamlins E, Müller HW, Huston JP, von Gall C, Giesel FL. 2,5-Dimethoxy-4-iodoamphetamine and altanserin induce region-specific shifts in dopamine and serotonin metabolization pathways in the rat brain. Pharmacol Biochem Behav 2024; 242:173823. [PMID: 39002804 DOI: 10.1016/j.pbb.2024.173823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE For understanding the neurochemical mechanism of neuropsychiatric conditions associated with cognitive deficits it is of major relevance to elucidate the influence of serotonin (5-HT) agonists and antagonists on memory function as well dopamine (DA) and 5-HT release and metabolism. In the present study, we assessed the effects of the 5-HT2A receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) and the 5-HT2A receptor altanserin (ALT) on object and place recognition memory and cerebral neurotransmitters and metabolites in the rat. METHODS Rats underwent a 5-min exploration trial in an open field with two identical objects. After systemic injection of a single dose of either DOI (0.1 mg/kg), ALT (1 mg/kg) or the respectice vehicle (0.9 % NaCl, 50 % DMSO), rats underwent a 5-min test trial with one of the objects replaced by a novel one and the other object transferred to a novel place. Upon the assessment of object exploration and motor/exploratory behaviors, rats were sacrificed. DA, 5-HT and metabolite levels were analyzed in cingulate (CING), caudateputamen (CP), nucleus accumbens (NAC), thalamus (THAL), dorsal (dHIPP) and ventral hippocampus (vHIPP), brainstem and cerebellum with high performance liquid chromatography. RESULTS DOI decreased rearing but increased head-shoulder motility relative to vehicle. Memory for object and place after both DOI and ALT was not different from vehicle. Network analyses indicated that DOI inhibited DA metabolization in CING, CP, NAC, and THAL, but facilitated it in dHIPP. Likewise, DOI inhibited 5-HT metabolization in CING, NAC, and THAL. ALT facilitated DA metabolization in the CING, NAC, dHIPP, vHIPP, and CER, but inhibited it in the THAL. Additionally, ALT facilitated 5-HT metabolization in NAC and dHIPP. CONCLUSIONS DOI and ALT differentially altered the quantitative relations between the neurotransmitter/metabolite levels in the individual brain regions, by inducing region-specific shifts in the metabolization pathways. Findings are relevant for understanding the neurochemistry underlying DAergic and/or 5-HTergic dysfunction in neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany.
| | - Benedetta Fazari
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Filipe Rodrigues Almeida
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Laila Abdel-Hafiz
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Markus Beu
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Jan Henke
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Christina Antke
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Hubertus Hautzel
- Clinic for Nuclear Medicine, University Hospital Essen, Hufelandstraße 55, D-45122 Essen, Germany
| | - Eduards Mamlins
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Frederik L Giesel
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Maximiliano JE, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Anadón A, Martínez MA. Dopaminergic and serotoninergic systems as preferential targets of the pyrethroid tefluthrin exposure in the rat brain. ENVIRONMENTAL RESEARCH 2024; 247:118239. [PMID: 38244974 DOI: 10.1016/j.envres.2024.118239] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
The monoaminergic systems dopamine (DA) and serotonin (5-HT) play important roles in neuromodulation, such as motor control, cognitive, affective, and neuroendocrine functions. In the present research study, we addressed the hypothesis that exposure to Type I pyrethroid tefluthrin may specifically target the dopaminergic and serotoninergic systems. Tefluthrin could modify brain monoamine neurotransmitters, DA and 5-HT levels as well as dopaminergic and serotoninergic signaling pathways. Adult male Wistar rats were treated with tefluthrin [2.2, 4.4 and 5.5 mg/kg bw, equivalent to 1/10, 1/5 and 1/4 of the acute oral rat lethal dose 50 (LD50) value] by oral gavage, six days. After last dose of tefluthrin, DA and 5-HT and metabolites levels were determined in brain regions (striatum, hippocampus, prefrontal cortex and hypothalamus). Tefluthrin induced a decrease of DA, 5-HT and metabolites contents, in a brain regional- and dose-related manner. The major decreases in DA and 5-HT contents were observed in prefrontal cortex tissue. Here, we studied that in vivo exposure to tefluthrin may alter DA and 5-HT neurotransmission in prefrontal cortex. Transcripts related to (i) dopaminergic [dopamine transporter 1 (Dat1), tyrosine hydroxylase (TH), dopamine receptors (Drd1, Drd2)], (ii) serotoninergic [serotonin transporter (SERT), tryptophan hydroxylase 2 (TPH2), serotonin receptors (5-HT1A, 5-HT2A)] and (iii) DA and 5-HT degradation [monoamine oxidases (MAOA, MAOB)] signaling pathways were investigated. Results showed that tefluthrin induced down-regulation of transcripts responsible for the synthesis and action of DA (TH, Drd1, Drd2) and 5-HT (SERT, TPH2). In contrast, tefluthrin treatment induced up-regulation of genes involved in DA transporter (Dat1), 5-HT receptors (5-HT1A, 5-HT2A) and monoamine oxidases (MAOA, MAOB). Given the integral roles of mitochondrial dysfunction and dopaminergic and serotoninergic alterations as hallmarks of neurodegenerative diseases, our data suggest that tefluthrin may be a candidate for pesticides contributing to neurodegenerative disorders pathogenesis by causing damage to the DA and 5-HT systems.
Collapse
Affiliation(s)
- Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
5
|
Mao LM, Thallapureddy K, Wang JQ. Effects of propofol on presynaptic synapsin phosphorylation in the mouse brain in vivo. Brain Res 2024; 1823:148671. [PMID: 37952872 PMCID: PMC10806815 DOI: 10.1016/j.brainres.2023.148671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The commonly used general anesthetic propofol can enhance the γ-aminobutyric acid-mediated inhibitory synaptic transmission and depress the glutamatergic excitatory synaptic transmission to achieve general anesthesia and other outcomes. In addition to the actions at postsynaptic sites, the modulation of presynaptic activity by propofol is thought to contribute to neurophysiological effects of the anesthetic, although potential targets of propofol within presynaptic nerve terminals are incompletely studied at present. In this study, we explored the possible linkage of propofol to synapsins, a family of neuron-specific phosphoproteins which are the most abundant proteins on presynaptic vesicles, in the adult mouse brain in vivo. We found that an intraperitoneal injection of propofol at a dose that caused loss of righting reflex increased basal levels of synapsin phosphorylation at the major representative phosphorylation sites (serine 9, serine 62/67, and serine 603) in the prefrontal cortex (PFC) of male and female mice. Propofol also elevated synapsin phosphorylation at these sites in the striatum and S9 and S62/67 phosphorylation in the hippocampus, while propofol had no effect on tyrosine hydroxylase phosphorylation in striatal nerve terminals. Total synapsin protein expression in the PFC, hippocampus, and striatum was not altered by propofol. These results reveal that synapsin could be a novel substrate of propofol in the presynaptic neurotransmitter release machinery. Propofol possesses the ability to upregulate synapsin phosphorylation in broad mouse brain regions.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Khyathi Thallapureddy
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
6
|
Mousavi S, Qiu H, Heinis FI, Bredahl EC, Ridwan Abid MS, Clifton AD, Andrews MT, Checco JW. Effects of Anesthetic Administration on Rat Hypothalamus and Cerebral Cortex Peptidome. ACS Chem Neurosci 2023; 14:3986-3992. [PMID: 37879091 PMCID: PMC10872895 DOI: 10.1021/acschemneuro.3c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Prohormone-derived neuropeptides act as cell-cell signaling molecules to mediate a wide variety of biological processes in the animal brain. Mass spectrometry-based peptidomic experiments are valuable approaches to gain insight into the dynamics of individual peptides under different physiological conditions or experimental treatments. However, the use of anesthetics during animal procedures may confound experimental peptide measurements, especially in the brain, where anesthetics act. Here, we investigated the effects of the commonly used anesthetics isoflurane and sodium pentobarbital on the peptide profile in the rodent hypothalamus and cerebral cortex, as assessed by label-free quantitative peptidomics. Our results showed that neither anesthetic dramatically alters peptide levels, although extended isoflurane exposure did cause changes in a small number of prohormone-derived peptides in the cerebral cortex. Overall, our results demonstrate that acute anesthetic administration can be utilized in peptidomic experiments of the hypothalamus and cerebral cortex without greatly affecting the measured peptide profiles.
Collapse
Affiliation(s)
- Somayeh Mousavi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Haowen Qiu
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Frazer I. Heinis
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Eric C. Bredahl
- Department of Exercise Science and Pre-Health Professions, Creighton University, Omaha, NE 68178, United States
| | - Md Shadman Ridwan Abid
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Ashley D. Clifton
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Matthew T. Andrews
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - James W. Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| |
Collapse
|
7
|
Theriault JE, Shaffer C, Dienel GA, Sander CY, Hooker JM, Dickerson BC, Barrett LF, Quigley KS. A functional account of stimulation-based aerobic glycolysis and its role in interpreting BOLD signal intensity increases in neuroimaging experiments. Neurosci Biobehav Rev 2023; 153:105373. [PMID: 37634556 PMCID: PMC10591873 DOI: 10.1016/j.neubiorev.2023.105373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
In aerobic glycolysis, oxygen is abundant, and yet cells metabolize glucose without using it, decreasing their ATP per glucose yield by 15-fold. During task-based stimulation, aerobic glycolysis occurs in localized brain regions, presenting a puzzle: why produce ATP inefficiently when, all else being equal, evolution should favor the efficient use of metabolic resources? The answer is that all else is not equal. We propose that a tradeoff exists between efficient ATP production and the efficiency with which ATP is spent to transmit information. Aerobic glycolysis, despite yielding little ATP per glucose, may support neuronal signaling in thin (< 0.5 µm), information-efficient axons. We call this the efficiency tradeoff hypothesis. This tradeoff has potential implications for interpretations of task-related BOLD "activation" observed in fMRI. We hypothesize that BOLD "activation" may index local increases in aerobic glycolysis, which support signaling in thin axons carrying "bottom-up" information, or "prediction error"-i.e., the BIAPEM (BOLD increases approximate prediction error metabolism) hypothesis. Finally, we explore implications of our hypotheses for human brain evolution, social behavior, and mental disorders.
Collapse
Affiliation(s)
- Jordan E Theriault
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Clare Shaffer
- Northeastern University, Department of Psychology, Boston, MA, USA
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| | - Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lisa Feldman Barrett
- Northeastern University, Department of Psychology, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Northeastern University, Department of Psychology, Boston, MA, USA; VA Bedford Healthcare System, Bedford, MA, USA
| |
Collapse
|
8
|
Mukai A, Irifune M, Shimizu Y, Doi M, Kikuchi Y, Katayama S, Oue K, Yoshida M, Ago Y, Okada Y, Morioka N, Nakata Y, Sakai N. N-methyl-d-aspartate receptors and glycinergic transmission, respectively, mediate muscle relaxation and immobility of pentobarbital in mice. Neurosci Lett 2023; 802:137175. [PMID: 36907265 DOI: 10.1016/j.neulet.2023.137175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Pentobarbital-induced anesthesia is believed to be mediated by enhancement of the inhibitory action of γ-aminobutyric acid (GABA)ergic neurons in the central nervous system. However, it is unclear whether all components of anesthesia induced by pentobarbital, such as muscle relaxation, unconsciousness, and immobility in response to noxious stimuli, are mediated only through GABAergic neurons. Thus, we examined whether the indirect GABA and glycine receptor agonists gabaculine and sarcosine, respectively, the neuronal nicotinic acetylcholine receptor antagonist mecamylamine, or the N-methyl-d-aspartate receptor channel blocker MK-801 could enhance pentobarbital-induced components of anesthesia. Muscle relaxation, unconsciousness, and immobility were evaluated by grip strength, the righting reflex, and loss of movement in response to nociceptive tail clamping, respectively, in mice. Pentobarbital reduced grip strength, impaired the righting reflex, and induced immobility in a dose-dependent manner. The change in each behavior induced by pentobarbital was roughly consistent with that in electroencephalographic power. A low dose of gabaculine, which significantly increased endogenous GABA levels in the central nervous system but had no effect on behaviors alone, potentiated muscle relaxation, unconsciousness, and immobility induced by low pentobarbital doses. A low dose of MK-801 augmented only the masked muscle-relaxing effects of pentobarbital among these components. Sarcosine enhanced only pentobarbital-induced immobility. Conversely, mecamylamine had no effect on any behavior. These findings suggest that each component of anesthesia induced by pentobarbital is mediated through GABAergic neurons and that pentobarbital-induced muscle relaxation and immobility may partially be associated with N-methyl-d-aspartate receptor antagonism and glycinergic neuron activation, respectively.
Collapse
Affiliation(s)
- Akari Mukai
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Masahiro Irifune
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Yoshitaka Shimizu
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Mitsuru Doi
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Yuka Kikuchi
- Section of Dental Anesthesiology, Department of Oral & Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Sotaro Katayama
- Section of Dental Anesthesiology, Department of Oral & Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan.
| | - Kana Oue
- Section of Dental Anesthesiology, Department of Oral & Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan.
| | - Mitsuhiro Yoshida
- Section of Dental Anesthesiology, Department of Oral & Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima, Japan.
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Yoshiyuki Okada
- Department of Special Care Dentistry, Hiroshima University Hospital, Hiroshima, Japan.
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
9
|
Peng Y, Yuan C, Zhang Y. The role of the basal forebrain in general anesthesia. IBRAIN 2022; 9:102-110. [PMID: 37786520 PMCID: PMC10529324 DOI: 10.1002/ibra.12082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 10/04/2023]
Abstract
The basal forebrain is a group of nerve nuclei on the ventral side of the ventral ganglion, composed of γ-aminobutyric acid neurons, glutamatergic neurons, cholinergic neurons, and orexigenic neurons. Previous studies have focused on the involvement of the basal forebrain in regulating reward, learning, movement, sleep-awakening, and other neurobiological behaviors, but its role in the regulation of general anesthesia has not been systematically elucidated. Therefore, the different neuronal subtypes in the basal forebrain and projection pathways in general anesthesia will be discussed in this paper. In this paper, we aim to determine and elaborate on the role of the basal forebrain in general anesthesia and the development of theoretical research and provide a new theory.
Collapse
Affiliation(s)
- Yi‐Ting Peng
- Department of AnethesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Cheng‐Dong Yuan
- Department of AnethesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Yi Zhang
- Department of AnethesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
10
|
Mousavi S, Qiu H, Heinis FI, Abid MSR, Andrews MT, Checco JW. Short-Term Administration of Common Anesthetics Does Not Dramatically Change the Endogenous Peptide Profile in the Rat Pituitary. ACS Chem Neurosci 2022; 13:2888-2896. [PMID: 36126283 PMCID: PMC9547841 DOI: 10.1021/acschemneuro.2c00359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cell-cell signaling peptides (e.g., peptide hormones, neuropeptides) are among the largest class of cellular transmitters and regulate a variety of physiological processes. To identify and quantify the relative abundances of cell-cell signaling peptides in different physiological states, liquid chromatography-mass spectrometry-based peptidomics workflows are commonly utilized on freshly dissected tissues. In such animal experiments, the administration of general anesthetics is an important step for many research projects. However, acute anesthetic administration may rapidly change the measured abundance of transmitter molecules and metabolites, especially in the brain and endocrine system, which would confound experimental results. The aim of this study was to evaluate the effect of short-term (<5 min) anesthetic administration on the measured abundance of cell-cell signaling peptides, as evaluated by a typical peptidomics workflow. To accomplish this goal, we compared endogenous peptide abundances in the rat pituitary following administration of 5% isoflurane, 200 mg/kg sodium pentobarbital, or no anesthetic administration. Label-free peptidomics analysis demonstrated that acute use of isoflurane changed the levels of a small number of peptides, primarily degradation products of the hormone somatotropin, but did not influence the levels of most other peptide hormones. Acute use of sodium pentobarbital had negligible impact on the relative abundance of all measured peptides. Overall, our results suggest that anesthetics used in pituitary peptidomics studies do not dramatically confound observed results.
Collapse
Affiliation(s)
- Somayeh Mousavi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Haowen Qiu
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Frazer I. Heinis
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Md Shadman Ridwan Abid
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Matthew T. Andrews
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - James W. Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| |
Collapse
|
11
|
A fluorescent sensor for real-time measurement of extracellular oxytocin dynamics in the brain. Nat Methods 2022; 19:1286-1294. [PMID: 36138174 PMCID: PMC9550624 DOI: 10.1038/s41592-022-01597-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/01/2022] [Indexed: 12/21/2022]
Abstract
Oxytocin (OT), a hypothalamic neuropeptide that acts as a neuromodulator in the brain, orchestrates a variety of animal behaviors. However, the relationship between brain OT dynamics and complex animal behaviors remains largely elusive, partly because of the lack of a suitable technique for its real-time recording in vivo. Here, we describe MTRIAOT, a G-protein-coupled receptor-based green fluorescent OT sensor that has a large dynamic range, suitable affinity, ligand specificity for OT orthologs, minimal effects on downstream signaling and long-term fluorescence stability. By combining viral gene delivery and fiber photometry-mediated fluorescence measurements, we demonstrate the utility of MTRIAOT for real-time detection of brain OT dynamics in living mice. MTRIAOT-mediated measurements indicate variability of OT dynamics depending on the behavioral context and physical condition of an animal. MTRIAOT will likely enable the analysis of OT dynamics in a variety of physiological and pathological processes.
Collapse
|
12
|
RUBLENKO S, RUBLENKO M, YAREMCHUK A, BAKHUR T. Clinical-haemostasis assessment of anaesthesia regimens in dogs with visceral and somatic types of pain response. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2022. [DOI: 10.33988/auvfd.979508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The article investigates the influence of visceral (surgical treatment of abdominal pathologies) and somatic pain syndrome (osteosynthesis) on dogs’ clinical parameters and haemostasis. It was found, that the best variant for abdominal operations in dogs is acepromazine-ketamine-propofol anaesthesia and for osteosynthesis – acepromazine-butorphanol-ketamine. The use of neuroleptics (acepromazine, xylazine) with general anaesthetics (ketamine, propofol, sodium thiopental) in abdominal operations ensured rapid entry into anaesthesia (< 2 min) and duration 19–23 min. The use of acepromazine-ketamine-propofol provided well-managed anaesthesia during 11.1 ± 0.5 min, rapid recovery (17.3 ± 2.4 min), without significant changes in heart rate (HR), respiratory rate (RR), blood pressure (BP), haemoglobin saturation (SpO2). Unbalanced anaesthesia and insufficient analgesia under xylazine-ketamine caused a sharp decrease in HR, BP, RR with their increase due to visceral pain, led to hypoxia (SpO2 < 92%). During the osteosynthesis, acepromazine-butorphanol-propofol-ketamine anaesthesia provided complete analgesia with twice the rapid recovery of dogs without significant changes in HR, RR, BP, SpO2 during surgery. Acepromazine-ketamine-thiopental anaesthesia accompanied by pronounced analgesia with a decrease in HR and BP. Xylazine-ketamine-thiopental anaesthesia, under apparent analgesia, led to hypotension (decreased HR, BP) and hypoxia (decreased RR, SpO2). The data obtained will optimize the selection of drugs' combinations for dogs' anaesthesia, taking into account the type of pain response.
Collapse
|
13
|
Meikle SJ, Hagan MA, Price NSC, Wong YT. Intracortical current steering shifts the location of evoked neural activity. J Neural Eng 2022; 19. [PMID: 35688125 DOI: 10.1088/1741-2552/ac77bf] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022]
Abstract
Objective.Intracortical visual prostheses are being developed to restore sight in people who are blind. The resolution of artificial vision is dictated by the location, proximity and number of electrodes implanted in the brain. However, increasing electrode count and proximity is traded off against tissue damage. Hence, new stimulation methods are needed that can improve the resolution of artificial vision without increasing the number of electrodes. We investigated whether a technique known as current steering can improve the resolution of artificial vision provided by intracortical prostheses without increasing the number of physical electrodes in the brain.Approach.We explored how the locus of neuronal activation could be steered when low amplitude microstimulation was applied simultaneously to two intracortical electrodes. A 64-channel, four-shank electrode array was implanted into the visual cortex of rats (n= 7). The distribution of charge ranged from single-electrode stimulation (100%:0%) to an equal distribution between the two electrodes (50%:50%), thereby steering the current between the physical electrodes. The stimulating electrode separation varied between 300 and 500μm. The peak of the evoked activity was defined as the 'virtual electrode' location.Main results.Current steering systematically shifted the virtual electrode on average between the stimulating electrodes as the distribution of charge was moved from one stimulating electrode to another. This effect was unclear in single trials due to the limited sampling of neurons. A model that scales the cortical response to each physical electrode when stimulated in isolation predicts the evoked virtual electrode response. Virtual electrodes were found to elicit a neural response as effectively and predictably as physical electrodes within cortical tissue on average.Significance.Current steering could be used to increase the resolution of intracortical electrode arrays without altering the number of physical electrodes which will reduce neural tissue damage, power consumption and potential heat dispersion issues.
Collapse
Affiliation(s)
- Sabrina J Meikle
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic 3800, Australia.,ARC Centre of Excellence for Integrative Brain Function, Clayton, Vic, 3800, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Vic, 3800, Australia.,Monash Vision Group, Monash University, Clayton, Vic 3800, Australia
| | - Maureen A Hagan
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic 3800, Australia.,ARC Centre of Excellence for Integrative Brain Function, Clayton, Vic, 3800, Australia
| | - Nicholas S C Price
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic 3800, Australia.,ARC Centre of Excellence for Integrative Brain Function, Clayton, Vic, 3800, Australia
| | - Yan T Wong
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic 3800, Australia.,ARC Centre of Excellence for Integrative Brain Function, Clayton, Vic, 3800, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Vic, 3800, Australia.,Monash Vision Group, Monash University, Clayton, Vic 3800, Australia
| |
Collapse
|
14
|
Müller CP. Serotonin and Consciousness-A Reappraisal. Behav Brain Res 2022; 432:113970. [PMID: 35716774 DOI: 10.1016/j.bbr.2022.113970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/02/2022]
Abstract
The serotonergic system of the brain is a major modulator of behaviour. Here we describe a re-appraisal of its function for consciousness based on anatomical, functional and pharmacological data. For a better understanding, the current model of consciousness is expanded. Two parallel streams of conscious flow are distinguished. A flow of conscious content and an affective consciousness flow. While conscious content flow has its functional equivalent in the activity of higher cortico-cortical and cortico-thalamic networks, affective conscious flow originates in segregated deeper brain structures for single emotions. It is hypothesized that single emotional networks converge on serotonergic and other modulatory transmitter neurons in the brainstem where a bound percept of an affective conscious flow is formed. This is then dispersed to cortical and thalamic networks, where it is time locked with conscious content flow at the level of these networks. Serotonin acts in concert with other modulatory systems of the brain stem with some possible specialization on single emotions. Together, these systems signal a bound percept of affective conscious flow. Dysfunctions in the serotonergic system may not only give rise to behavioural and somatic symptoms, but also essentially affect the coupling of conscious affective flow with conscious content flow, leading to the affect-stained subjective side of mental disorders like anxiety, depression, or schizophrenia. The present model is an attempt to integrate the growing insights into serotonergic system function. However, it is acknowledged, that several key claims are still at a heuristic level that need further empirical support.
Collapse
Affiliation(s)
- Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany; Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
15
|
Nikolaus S, Wittsack HJ, Beu M, Hautzel H, Antke C, Mamlins E, Cardinale J, Decheva C, Huston JP, Antoch G, Giesel FL, Müller HW. The 5-HT1A receptor antagonist WAY-100635 decreases motor/exploratory behaviors and nigrostriatal and mesolimbocortical dopamine D2/3 receptor binding in adult rats. Pharmacol Biochem Behav 2022; 215:173363. [DOI: 10.1016/j.pbb.2022.173363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
|
16
|
Increasing Inhibition of the Rat Brain 2-Oxoglutarate Dehydrogenase Decreases Glutathione Redox State, Elevating Anxiety and Perturbing Stress Adaptation. Pharmaceuticals (Basel) 2022; 15:ph15020182. [PMID: 35215295 PMCID: PMC8875720 DOI: 10.3390/ph15020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
Specific inhibitors of mitochondrial 2-oxoglutarate dehydrogenase (OGDH) are administered to animals to model the downregulation of the enzyme as observed in neurodegenerative diseases. Comparison of the effects of succinyl phosphonate (SP, 0.02 mmol/kg) and its uncharged precursor, triethyl succinyl phosphonate (TESP, 0.02 and 0.1 mmol/kg) reveals a biphasic response of the rat brain metabolism and physiology to increasing perturbation of OGDH function. At the low (TE)SP dose, glutamate, NAD+, and the activities of dehydrogenases of 2-oxoglutarate and malate increase, followed by their decreases at the high TESP dose. The complementary changes, i.e., an initial decrease followed by growth, are demonstrated by activities of pyruvate dehydrogenase and glutamine synthetase, and levels of oxidized glutathione and citrulline. While most of these indicators return to control levels at the high TESP dose, OGDH activity decreases and oxidized glutathione increases, compared to their control values. The first phase of metabolic perturbations does not cause significant physiological changes, but in the second phase, the ECG parameters and behavior reveal decreased adaptability and increased anxiety. Thus, lower levels of OGDH inhibition are compensated by the rearranged metabolic network, while the increased levels induce a metabolic switch to a lower redox state of the brain, associated with elevated stress of the animals.
Collapse
|
17
|
Wang Y, Zhang Y, Wang K, Zhu Z, Wang D, Yang Q, Dong H. Esketamine Increases Neurotransmitter Releases but Simplifies Neurotransmitter Networks in Mouse Prefrontal Cortex. J Neurophysiol 2022; 127:586-595. [PMID: 35080449 DOI: 10.1152/jn.00462.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
General anesthesia induces a profound but reversible unconscious state, which is accompanied by changes in various neurotransmitters in the cortex. Unlike the "brain silencing" effect of γ-aminobutyric acid (GABA) receptor potentiator anesthesia, ketamine anesthesia leads the brain to a paradoxical active state with higher cortical activity, which is manifested as dissociative anesthesia. However, how the overall neurotransmitter network evolves across conscious states after ketamine administration remains unclear. Using in vivo microdialysis, high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis, and electroencephalogram (EEG) recording technique, we continuously measured the concentrations of six neurotransmitters and the EEG signals during anesthesia with esketamine, an S-enantiomer of ketamine racemate. We found that there was an increase in the release of five cortical neurotransmitters after the administration of esketamine. The correlation of cortical neurotransmitters was dynamically simplified along with behavioral changes until full recovery after anesthesia. The esketamine-increased gamma oscillation power was positively correlated only with the concentration of 5-hydroxytryptamine (5-HT) in the medial prefrontal cortex. This study suggests that the transformation of the neurotransmitter network rather than the concentrations of neurotransmitters could be more indicative of the consciousness shift during esketamine anesthesia.
Collapse
Affiliation(s)
- Ye Wang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yunyun Zhang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kai Wang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhenghua Zhu
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dan Wang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Qianzi Yang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hailong Dong
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Bunik V, Aleshin V, Nogues I, Kähne T, Parroni A, Contestabile R, Salvo ML, Graf A, Tramonti A. Thiamine‐dependent regulation of mammalian brain pyridoxal kinase
in vitro
and
in vivo. J Neurochem 2022; 161:20-39. [DOI: 10.1111/jnc.15576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Victoria Bunik
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University 19991 Moscow Russia
- Faculty of Bioengineering and Bioinformatics Lomonosov Moscow State University Moscow 119991 Russia
- Sechenov University 119048 Moscow Russia
| | - Vasily Aleshin
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University 19991 Moscow Russia
- Sechenov University 119048 Moscow Russia
| | - Isabel Nogues
- Research Institute of Terrestrial Ecosystems Italian National Research Council Via Salaria Km. 29 300–00015 Monterotondo Scalo
| | - Thilo Kähne
- Institute of Exptl. Internal Medicine Otto‐von‐Guericke‐Universität Magdeburg 39120 Magdeburg Germany
| | - Alessia Parroni
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
| | - Roberto Contestabile
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
| | - Martino Luigi Salvo
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
| | - Anastasia Graf
- Moscow Institute of Physics and Technology 123098 Moscow Russia
- Faculty of Biology Lomonosov Moscow State University 19991 Moscow Russia
| | - Angela Tramonti
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
- Istitute of Molecular Biology and Pathology Italian National Research Council P.le A. Moro 5 ‐ 00185 Rome Italy
| |
Collapse
|
19
|
Zou H, Li J, Zhou J, Yi X, Cao S. Effects of norepinephrine on microglial neuroinflammation and neuropathic pain. IBRAIN 2021; 7:309-317. [PMID: 37786561 PMCID: PMC10528971 DOI: 10.1002/ibra.12001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 10/04/2023]
Abstract
Norepinephrine (NE) is an important neurotransmitter in the central nervous system. NE is released from locus coeruleus neurons and is involved in a variety of physiological and pathological processes. Neuroinflammation is a common manifestation of many kinds of neurological diseases. The activation of microglia directly affects the status of neuroinflammation. Several kinds of adrenergic receptors, which anchor on microglia and can be regulated by NE, affect the activation of microglia and neuroinflammation. NE influences chronic pain, anxiety, and depression by regulating the activation of microglia.
Collapse
Affiliation(s)
- He‐Lin Zou
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
| | - Juan Li
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
| | - Jun‐Li Zhou
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
| | - Xi Yi
- Department of Pain MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Song Cao
- Department of Pain MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
20
|
Nikolaus S, Wittsack HJ, Antke C, Beu M, Hautzel H, Decheva C, Mamlins E, Mori Y, Huston JP, Antoch G, Müller HW. Serotonergic Modulation of Nigrostriatal and Mesolimbic Dopamine and Motor/Exploratory Behaviors in the Rat. Front Neurosci 2021; 15:682398. [PMID: 34456668 PMCID: PMC8387951 DOI: 10.3389/fnins.2021.682398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose: The 5-HT2A receptor (R) is known to modulate dopamine (DA) release in the mammalian brain. Altanserin (ALT) and 2,5-dimethoxy-4-iodoamphetamine (DOI) act as 5-HT2AR antagonist and agonist, respectively. In the present study, we assessed the effects of ALT and DOI on motor and exploratory behaviors and on D2/3R binding in the rat brain with in vivo imaging methods. Methods: D2/3R binding was determined after systemic application of ALT (10 mg/kg) or DOI (0.5 mg/kg) and the respective vehicles [dimethyl sulfoxide (DMSO) and 0.9% saline (SAL)] with [123I]IBZM as a single-photon emission computed tomography (SPECT) radioligand. Anatomical information for the delineation of the target regions was obtained with dedicated small animal MRI. Immediately after 5-HT2AR antagonistic or agonistic treatment, motor/exploratory behaviors were assessed for 45 (ALT) or 30 min (DOI) in an open field. Additional rats underwent behavioral measurements after injection of DMSO or SAL. Results: ALT increased D2/3R binding in the ventral hippocampus relative to vehicle, while DOI augmented D2/3R binding in caudate putamen, frontal cortex, motor cortex, and ventral hippocampus. The 5-HT2AR agonist as well as antagonist decreased parameters of motor activity and active exploration. However, ALT, in contrast to DOI, decreased explorative head–shoulder motility and increased sitting. Conclusions: The regional increases of D2/3R binding after ALT and DOI (90 and 75 min post-challenge) may be conceived to reflect decreases of synaptic DA. The reductions of motor/exploratory activities (min 1–45 and min 1–30 after challenge with ALT and DOI, respectively) contrast the regional reductions of D2/3R binding, as they indicate elevated DA levels at the time of behavioral measurements. It may be concluded that ALT and DOI modulate DA in the individual regions of the nigrostriatal and mesolimbocortical pathways differentially and in a time-dependent fashion.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christina Antke
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Markus Beu
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Hubertus Hautzel
- Clinic for Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Cvetana Decheva
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, Düsseldorf, Germany
| | - Eduards Mamlins
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Yuriko Mori
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
21
|
Aleshin VA, Graf AV, Artiukhov AV, Boyko AI, Ksenofontov AL, Maslova MV, Nogués I, di Salvo ML, Bunik VI. Physiological and Biochemical Markers of the Sex-Specific Sensitivity to Epileptogenic Factors, Delayed Consequences of Seizures and Their Response to Vitamins B1 and B6 in a Rat Model. Pharmaceuticals (Basel) 2021; 14:ph14080737. [PMID: 34451834 PMCID: PMC8400147 DOI: 10.3390/ph14080737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/28/2023] Open
Abstract
The disturbed metabolism of vitamins B1 or B6, which are essential for neurotransmitters homeostasis, may cause seizures. Our study aims at revealing therapeutic potential of vitamins B1 and B6 by estimating the short- and long-term effects of their combined administration with the seizure inductor pentylenetetrazole (PTZ). The PTZ dose dependence of a seizure and its parameters according to modified Racine’s scale, along with delayed physiological and biochemical consequences the next day after the seizure are assessed regarding sexual dimorphism in epilepsy. PTZ sensitivity is stronger in the female than the male rats. The next day after a seizure, sex differences in behavior and brain biochemistry arise. The induced sex differences in anxiety and locomotor activity correspond to the disappearance of sex differences in the brain aspartate and alanine, with appearance of those in glutamate and glutamine. PTZ decreases the brain malate dehydrogenase activity and urea in the males and the phenylalanine in the females. The administration of vitamins B1 and B6 24 h before PTZ delays a seizure in female rats only. This desensitization is not observed at short intervals (0.5–2 h) between the administration of the vitamins and PTZ. With the increasing interval, the pyridoxal kinase (PLK) activity in the female brain decreases, suggesting that the PLK downregulation by vitamins contributes to the desensitization. The delayed effects of vitamins and/or PTZ are mostly sex-specific and interacting. Our findings on the sex differences in sensitivity to epileptogenic factors, action of vitamins B1/B6 and associated biochemical events have medical implications.
Collapse
Affiliation(s)
- Vasily A. Aleshin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (A.V.A.); (A.I.B.)
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
| | - Anastasia V. Graf
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Faculty of Nano-, Bio-, Informational, Cognitive and Socio-Humanistic Sciences and Technologies at Moscow Institute of Physics and Technology, 123098 Moscow, Russia
| | - Artem V. Artiukhov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (A.V.A.); (A.I.B.)
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
| | - Alexandra I. Boyko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (A.V.A.); (A.I.B.)
| | - Alexander L. Ksenofontov
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
| | - Maria V. Maslova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Isabel Nogués
- Research Institute of Terrestrial Ecosystems, National Research Council, Via Salaria km 29.300, Monterotondo, 00015 Rome, Italy;
| | - Martino L. di Salvo
- Department of Biological Sciences A. Rossi Fanelli, Sapienza University, 00185 Rome, Italy;
| | - Victoria I. Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (A.V.A.); (A.I.B.)
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
- Department of Biochemistry, Sechenov University, Trubetskaya, 8, bld. 2, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
22
|
Anesthesia and surgery induce a functional decrease in excitatory synaptic transmission in prefrontal cortex neurons, and intraoperative administration of dexmedetomidine does not elicit the synaptic dysfunction. Biochem Biophys Res Commun 2021; 572:27-34. [PMID: 34332326 DOI: 10.1016/j.bbrc.2021.07.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
Postoperative delirium (POD), a syndrome of confusion and inattention, frequently occurs after anesthesia and surgery. The prefrontal cortex (PFC) plays key roles in executive functions and cognitive controls. However, the neuropathogenesis of POD in the PFC remains largely unknown. We investigated whether anesthesia and surgery induced neurofunctional changes in the mouse PFC. After laparotomy was performed under isoflurane anesthesia, PFC neuronal activities were compared at the synaptic level using whole-cell patch-clamp recordings. A battery of behavioral tests measuring natural and learned behaviors, and effects of intraoperative dexmedetomidine were also examined. In the anesthesia/surgery group showing changes in natural and learned behaviors, the frequency of excitatory synaptic responses in PFC pyramidal neurons was decreased after the surgery without any changes in the response kinetics. On the other hand, neuronal intrinsic properties and inhibitory synaptic responses were not changed. In the anesthesia/surgery group administered intraoperative dexmedetomidine, the excitatory synaptic transmission and the behaviors were not altered. These results suggest that anesthesia and surgery induce a functional reduction selectively in the PFC excitatory synaptic transmission, and intraoperative dexmedetomidine inhibits the plastic change in the PFC excitatory synaptic input.
Collapse
|
23
|
Zhang Y, Gui H, Duan Z, Yu T, Zhang J, Liang X, Liu C. Dopamine D1 Receptor in the Nucleus Accumbens Modulates the Emergence from Propofol Anesthesia in Rat. Neurochem Res 2021; 46:1435-1446. [PMID: 33683630 DOI: 10.1007/s11064-021-03284-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/26/2021] [Accepted: 02/23/2021] [Indexed: 01/04/2023]
Abstract
It has been reported that systemic activation of D1 receptors promotes emergence from isoflurane-induced unconsciousness, suggesting that the central dopaminergic system is involved in the process of recovering from general anesthesia. The nucleus accumbens (NAc) contains abundant GABAergic medium spiny neurons (MSNs) expressing the D1 receptor (D1R), which plays a key role in sleep-wake behavior. However, the role of NAc D1 receptors in the process of emergence from general anesthesia has not been identified. Here, using real-time in vivo fiber photometry, we found that neuronal activity in the NAc was markedly disinhibited during recovery from propofol anesthesia. Subsequently, microinjection of a D1R selective agonist (chloro-APB hydrobromide) into the NAc notably reduced the time to emerge from propofol anesthesia with a decrease in δ-band power and an increase in β-band power evident in the cortical electroencephalogram. These effects were prevented by pretreatment with a D1R antagonist (SCH-23390). Whole-cell patch clamp recordings were performed to further explore the cellular mechanism underlying the modulation of D1 receptors on MSNs under propofol anesthesia. Our data primarily demonstrated that propofol increased the frequency and prolonged the decay time of spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature IPSCs (mIPSCs) of MSNs expressing D1 receptors. A D1R agonist attenuated the effect of propofol on the frequency of sIPSCs and mIPSCs, and the effects of the agonist were eliminated by preapplication of SCH-23390. Collectively, these results indicate that modulation of the D1 receptor on the activity of NAc MSNs is vital for emergence from propofol-induced unconsciousness.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Huan Gui
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zikun Duan
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tian Yu
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaoli Liang
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chengxi Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
24
|
Kur'yanova EV, Tryasuchev AV, Stupin VO, Zhukova YD. Peculiarities of Heart Rate Variability Changes in Random-Bred Male Rats during Transition into Anesthetic Sleep under Stimulation of Central Neurotransmitter Systems. Bull Exp Biol Med 2021; 170:585-589. [PMID: 33792819 DOI: 10.1007/s10517-021-05111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 10/21/2022]
Abstract
General anesthesia with Nembutal (40 mg/kg) dramatically decreased the power of all waves of HRV spectrum in rats, especially in LF and VLF frequency bands, but the HR and respiration rate were little changed. At this, individual spectral peaks in HF range were observed at the same frequencies (1.3-1.5 Hz), which are characteristic of the wakeful state. Preliminary stimulation of noradrenergic system with maprotiline (10 mg/kg) increased the power of HF waves and elevated the respiratory rate in narcotized rats in comparison with the control values, although it did not shift the spectral peak at 1.5 Hz in frequency axis. Preliminary stimulation of cholinergic system with galantamine (2 mg/kg) somewhat decreased the power of HF waves and respiratory rate in narcotized rats (in comparison with the control values); additionally, it shifted HF peak to 1.1-1.4 Hz. Activation of serotonergic system with 5-hydroxytryptophan (50 mg/kg) and fluoxetine (3 mg/kg) decreased the HR, the power of HF waves, and respiratory rate in narcotized rats. It also shifted the spectral peak of HF waves to 0.9-0.95 Hz. Preliminary stimulation of dopaminergic system with L-DOPA (20 ml/kg) and amantadine (20 ml/kg) increased the power of VLF waves in narcotized rats in comparison with the control values. Numerous peaks appeared in HF (1.1-1.2 Hz) and VLF frequency bands. Generally, preliminary stimulation of serotonergic or dopaminergic systems markedly affects the neural activity under following general anesthesia: first aggravates the effect of anesthesia on vital centers in CNS, whereas second weakens the effect of anesthesia at the suprasegmental level of neural control.
Collapse
Affiliation(s)
- E V Kur'yanova
- Department of Physiology, Morphology, Genetics, and Biomedicine, Astrakhan State University, Astrakhan, Russia.
| | - A V Tryasuchev
- Department of Physiology, Morphology, Genetics, and Biomedicine, Astrakhan State University, Astrakhan, Russia
| | - V O Stupin
- Department of Physiology, Morphology, Genetics, and Biomedicine, Astrakhan State University, Astrakhan, Russia
| | - Yu D Zhukova
- Department of Physiology, Morphology, Genetics, and Biomedicine, Astrakhan State University, Astrakhan, Russia
| |
Collapse
|
25
|
Guo J, Ran M, Gao Z, Zhang X, Wang D, Li H, Zhao S, Sun W, Dong H, Hu J. Cell-type-specific imaging of neurotransmission reveals a disrupted excitatory-inhibitory cortical network in isoflurane anaesthesia. EBioMedicine 2021; 65:103272. [PMID: 33691246 PMCID: PMC7941179 DOI: 10.1016/j.ebiom.2021.103272] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/06/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Despite the fundamental clinical significance of general anaesthesia, the cortical mechanism underlying anaesthetic-induced loss of consciousness (aLOC) remains elusive. METHODS Here, we measured the dynamics of two major cortical neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate, through in vivo two-photon imaging and genetically encoded neurotransmitter sensors in a cell type-specific manner in the primary visual (V1) cortex. FINDINGS We found a general decrease in cortical GABA transmission during aLOC. However, the glutamate transmission varies among different cortical cell types, where in it is almost preserved on pyramidal cells and is significantly reduced on inhibitory interneurons. Cortical interneurons expressing vasoactive intestinal peptide (VIP) and parvalbumin (PV) specialize in disinhibitory and inhibitory effects, respectively. During aLOC, VIP neuronal activity was delayed, and PV neuronal activity was dramatically inhibited and highly synchronized. INTERPRETATION These data reveal that aLOC resembles a cortical state with a disrupted excitatory-inhibitory network and suggest that a functional inhibitory network is indispensable in the maintenance of consciousness. FUNDING This work was supported by the grants of the National Natural Science Foundation of China (grant nos. 81620108012 and 82030038 to H.D. and grant nos. 31922029, 61890951, and 61890950 to J.H.).
Collapse
Affiliation(s)
- Juan Guo
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Mingzi Ran
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Zilong Gao
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xinxin Zhang
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Dan Wang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Huiming Li
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Shiyi Zhao
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing 102206, China; School of Basic Medical Sciences, Capital Medical University, Beijing 10069, China.
| | - Hailong Dong
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai 200030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200030, China.
| |
Collapse
|
26
|
Chestnykh DA, Amato D, Kornhuber J, Müller CP. Pharmacotherapy of schizophrenia: Mechanisms of antipsychotic accumulation, therapeutic action and failure. Behav Brain Res 2021; 403:113144. [PMID: 33515642 DOI: 10.1016/j.bbr.2021.113144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a multi-dimensional disorder with a complex and mostly unknown etiology, leading to a severe decline in life quality. Antipsychotic drugs (APDs) remain beneficial interventions in the treatment of the disorder, but vary significantly in binding profile, clinical effects and adverse reactions. The present review summarizes the main principles of APD mechanisms of action with a particular focus on recent findings in APD accumulation and its role in the therapeutic efficacy and treatment failure. High and low doses of APDs were shown to be effective in different dimensions of antipsychotic-like behaviour in rodent models. Efficacy of the APDs correlates with high dopamine D2 receptor occupancy, which occurs quickly after drug administration. However, onset and peak of action are delayed up to several days or weeks. APD accumulation via acidic trapping in synaptic vesicles is considered to underlie the time course of APD action. Use-dependent exocytosis, co-release with dopamine and serotonin and inhibition of ion channels impact on the neuronal transmission and determine effects of APDs. Disruption in accumulating properties leads to diminished APD effects. In addition, long-term APD administration at therapeutic doses leads to treatment failure both in animal models and in humans. APD failure was associated with treatment induced neuroadaptations, including a decline in extracellular dopamine levels, dopamine transporter upregulation, and altered neuronal firing. However, enhanced synaptic vesicle release has also been reported. APD loss of efficacy may be reversed through inhibition of the dopamine transporter or switching the administration regimen from continuous to intermittent. Thus, manipulating the accumulation properties of APDs, changes in the administration regimen and doses, or co-administration with dopamine transporter inhibitors may be considered to yield benefits in the development of new effective strategies in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Daria A Chestnykh
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Davide Amato
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
27
|
Dincer B, Halici Z, Cadirci E. Investigation of the Role of Stimulation and Blockade of 5-HT 7 Receptors in Ketamine Anesthesia. J Mol Neurosci 2020; 71:1095-1111. [PMID: 33200380 DOI: 10.1007/s12031-020-01732-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
Although several pieces of evidence have indicated the ability of the serotonin-7 receptor (5-HTR7) to modulate N-methyl-D-aspartate receptor (NMDAR) activation, the possible impact on ketamine anesthesia has not been examined directly. The purpose of the present study is thus to investigate the possible role of the 5-HTR7 in ketamine anesthesia using a 5-HTR7 agonist and/or antagonist. The influence of a 5-HTR7 agonist/antagonist on ketamine anesthesia for behavioral impact was assessed by testing potential anesthetic parameters. Its functional impact was assessed by mRNA expression with real-time PCR and immunostaining in the hippocampus and prefrontal cortex of mice. Two different doses of ketamine-high and low-were administered to induce anesthesia. In the high-dose ketamine-applied group in particular, the administration of both the 5-HTR7 agonist and antagonist intensified the anesthetic effect of ketamine. The reflection of the change in anesthesia parameters to 5-HTR7 expression was observed as an increase in the hippocampus and a decrease in the prefrontal cortex in the anesthetized groups by stimulation of 5-HTR7. It is noteworthy that the results of NMDAR expressions are parallel to the results of the 5-HTR7 expressions of both the hippocampus and the prefrontal cortex. The 5-HTR7 may play a role in ketamine anesthesia. It may act through NMDAR in ketamine anesthesia, depending on the parallelism between both receptors.
Collapse
Affiliation(s)
- Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey
| | - Zekai Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, 25240, Turkey.,Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, 25240, Turkey
| | - Elif Cadirci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, 25240, Turkey. .,Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, 25240, Turkey.
| |
Collapse
|
28
|
Nikolaus S, Beu M, Wittsack HJ, Müller-Lutz A, Antke C, Hautzel H, Mori Y, Mamlins E, Antoch G, Müller HW. GABAergic and glutamatergic effects on nigrostriatal and mesolimbic dopamine release in the rat. Rev Neurosci 2020; 31:569-588. [PMID: 32619197 DOI: 10.1515/revneuro-2019-0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/01/2020] [Indexed: 11/15/2022]
Abstract
In this review, a series of experiments is presented, in which γ-amino butyric acid (GABA)ergic and glutamatergic effects on dopamine function in the rat nigrostriatal and mesolimbic system was systematically assessed after pharmacological challenge with GABAA receptor (R) and and N-methyl d-aspartate (NMDA)R agonists and antagonists. In these studies, [123I]iodobenzamide binding to the D2/3R was mesured in nucleus accumbens (NAC), caudateputamen (CP), substantia nigra/ventral tegmental area (SN/VTA), frontal (FC), motor (MC) and parietal cortex (PC) as well as anterior (aHIPP) and posterior hippocampus (pHIPP) with small animal SPECT in baseline and after injection of either the GABAAR agonist muscimol (1 mg/kg), the GABAAR antagonist bicuculline (1 mg/kg), the NMDAR agonist d-cycloserine (20 mg/kg) or the NMDAR antagonist amantadine (40 mg/kg). Muscimol reduced D2/3R binding in NAC, CP, SN/VTA, THAL and pHIPP, while, after amantadine, decreases were confined to NAC, CP and THAL. In contrast, d-cycloserine elevated D2/3R binding in NAC, SN/VTA, THAL, frontal cortex, motor cortex, PC, aHIPP and pHIPP, while, after bicuculline, increases were confined to CP and THAL. Taken together, similar actions on regional dopamine levels were exterted by the GABAAR agonist and the NMDAR antagonist on the one side and by the GABAAR antagonist and the NMDAR agonist on the other, with agonistic action, however, affecting more brain regions. Thereby, network analysis suggests different roles of GABAARs and NMDARs in the mediation of nigrostriatal, nigrothalamocortical and mesolimbocortical dopamine function.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Markus Beu
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Christina Antke
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Hubertus Hautzel
- Clinic for Nuclear Medicine, University Hospital Essen, Hufelandstraße 55, D-40225, Essen, Germany
| | - Yuriko Mori
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Eduards Mamlins
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany
| |
Collapse
|
29
|
Bharatiya R, Chagraoui A, De Deurwaerdere S, Argiolas A, Melis MR, Sanna F, De Deurwaerdere P. Chronic Administration of Fipronil Heterogeneously Alters the Neurochemistry of Monoaminergic Systems in the Rat Brain. Int J Mol Sci 2020; 21:ijms21165711. [PMID: 32784929 PMCID: PMC7461054 DOI: 10.3390/ijms21165711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Fipronil (FPN), a widely used pesticide for agricultural and non-agricultural pest control, is possibly neurotoxic for mammals. Brain monoaminergic systems, involved in virtually all brain functions, have been shown to be sensitive to numerous pesticides. Here, we addressed the hypothesis that chronic exposure to FPN could modify brain monoamine neurochemistry. FPN (10 mg/kg) was chronically administered for 21 days through oral gavage in rats. Thereafter, the tissue concentrations of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid; serotonin (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA); and noradrenaline (NA) were measured in 30 distinct brain regions. FPN significantly decreased DA and its metabolite levels in most striatal territories, including the nucleus accumbens and the substantia nigra (SN). FPN also diminished 5-HT levels in some striatal regions and the SN. The indirect index of the turnovers, DOPAC/DA and 5-HIAA/5-HT ratios, was increased in numerous brain regions. FPN reduced the NA content only in the nucleus accumbens core. Using the Bravais–Pearson test to study the neurochemical organization of monoamines through multiple correlative analyses across the brain, we found fewer correlations for NA, DOPAC/DA, and 5-HIAA/5-HT ratios, and an altered pattern of correlations within and between monoamine systems. We therefore conclude that the chronic administration of FPN in rats induces massive and inhomogeneous changes in the DA and 5-HT systems in the brain.
Collapse
Affiliation(s)
- Rahul Bharatiya
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09100 Cagliari, Italy; (R.B.); (A.A.); (M.R.M.)
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux CEDEX, France;
| | - Abdeslam Chagraoui
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, 76000 Rouen, France;
- Department of Medical Biochemistry, Rouen University Hospital, 76000 Rouen, France
| | - Salomé De Deurwaerdere
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux CEDEX, France;
| | - Antonio Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09100 Cagliari, Italy; (R.B.); (A.A.); (M.R.M.)
- Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, 09100 Cagliari, Italy
- Institute of Neuroscience, National Research Council, Cagliari Section, University of Cagliari, 09100 Cagliari, Italy
| | - Maria Rosaria Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09100 Cagliari, Italy; (R.B.); (A.A.); (M.R.M.)
- Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, 09100 Cagliari, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09100 Cagliari, Italy; (R.B.); (A.A.); (M.R.M.)
- Correspondence: (F.S.); (P.D.D.); Tel.: +39-070-675-4330 (F.S.); +33-557-571-290 (P.D.D.)
| | - Philippe De Deurwaerdere
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux CEDEX, France;
- Correspondence: (F.S.); (P.D.D.); Tel.: +39-070-675-4330 (F.S.); +33-557-571-290 (P.D.D.)
| |
Collapse
|
30
|
Zhang X, Baer AG, Price JM, Jones PC, Garcia BJ, Romero J, Cliff AM, Mi W, Brown JB, Jacobson DA, Lydic R, Baghdoyan HA. Neurotransmitter networks in mouse prefrontal cortex are reconfigured by isoflurane anesthesia. J Neurophysiol 2020; 123:2285-2296. [PMID: 32347157 PMCID: PMC7311717 DOI: 10.1152/jn.00092.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
This study quantified eight small-molecule neurotransmitters collected simultaneously from prefrontal cortex of C57BL/6J mice (n = 23) during wakefulness and during isoflurane anesthesia (1.3%). Using isoflurane anesthesia as an independent variable enabled evaluation of the hypothesis that isoflurane anesthesia differentially alters concentrations of multiple neurotransmitters and their interactions. Machine learning was applied to reveal higher order interactions among neurotransmitters. Using a between-subjects design, microdialysis was performed during wakefulness and during anesthesia. Concentrations (nM) of acetylcholine, adenosine, dopamine, GABA, glutamate, histamine, norepinephrine, and serotonin in the dialysis samples are reported (means ± SD). Relative to wakefulness, acetylcholine concentration was lower during isoflurane anesthesia (1.254 ± 1.118 vs. 0.401 ± 0.134, P = 0.009), and concentrations of adenosine (29.456 ± 29.756 vs. 101.321 ± 38.603, P < 0.001), dopamine (0.0578 ± 0.0384 vs. 0.113 ± 0.084, P = 0.036), and norepinephrine (0.126 ± 0.080 vs. 0.219 ± 0.066, P = 0.010) were higher during anesthesia. Isoflurane reconfigured neurotransmitter interactions in prefrontal cortex, and the state of isoflurane anesthesia was reliably predicted by prefrontal cortex concentrations of adenosine, norepinephrine, and acetylcholine. A novel finding to emerge from machine learning analyses is that neurotransmitter concentration profiles in mouse prefrontal cortex undergo functional reconfiguration during isoflurane anesthesia. Adenosine, norepinephrine, and acetylcholine showed high feature importance, supporting the interpretation that interactions among these three transmitters may play a key role in modulating levels of cortical and behavioral arousal.NEW & NOTEWORTHY This study discovered that interactions between neurotransmitters in mouse prefrontal cortex were altered during isoflurane anesthesia relative to wakefulness. Machine learning further demonstrated that, relative to wakefulness, higher order interactions among neurotransmitters were disrupted during isoflurane administration. These findings extend to the neurochemical domain the concept that anesthetic-induced loss of wakefulness results from a disruption of neural network connectivity.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of Anesthesiology, University of Tennessee Medical Center, Knoxville, Tennessee
- Department of Psychology, University of Tennessee, Knoxville, Tennessee
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Aaron G Baer
- Department of Anesthesiology, University of Tennessee Medical Center, Knoxville, Tennessee
| | - Joshua M Price
- Office of Information Technology, University of Tennessee, Knoxville, Tennessee
| | - Piet C Jones
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee
| | | | - Jonathon Romero
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee
| | - Ashley M Cliff
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee
| | - Weidong Mi
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - James B Brown
- Molecular Ecosystems Biology Department, Lawrence Berkeley National Laboratory, Berkeley, California
| | | | - Ralph Lydic
- Department of Anesthesiology, University of Tennessee Medical Center, Knoxville, Tennessee
- Department of Psychology, University of Tennessee, Knoxville, Tennessee
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Helen A Baghdoyan
- Department of Anesthesiology, University of Tennessee Medical Center, Knoxville, Tennessee
- Department of Psychology, University of Tennessee, Knoxville, Tennessee
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
| |
Collapse
|
31
|
Müller CP. Drug instrumentalization. Behav Brain Res 2020; 390:112672. [PMID: 32442549 DOI: 10.1016/j.bbr.2020.112672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
Abstract
Psychoactive drugs with addiction potential are widely used by people of virtually all cultures in a non-addictive way. In order to understand this behaviour, its population penetrance, and its persistence, drug instrumentalization was suggested as a driving force for this consumption. Drug instrumentalization theory holds that psychoactive drugs are consumed in a very systematic way in order to make other, non-drug-related behaviours more efficient. Here, we review the evolutionary origin of this behaviour and its psychological mechanisms and explore the neurobiological and neuropharmacological mechanisms underlying them. Instrumentalization goals are discussed, for which an environmentally selective and mental state-dependent consumption of psychoactive drugs can be learned and maintained in a non-addictive way. A small percentage of people who regularly instrumentalize psychoactive drugs make a transition to addiction, which often starts with qualitative and quantitative changes in the instrumentalization goals. As such, addiction is proposed to develop from previously established long-term drug instrumentalization. Thus, preventing and treating drug addiction in an individualized medicine approach may essentially require understanding and supporting personal instrumentalization goals.
Collapse
Affiliation(s)
- Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
32
|
Ahmed SH, Badiani A, Miczek KA, Müller CP. Non-pharmacological factors that determine drug use and addiction. Neurosci Biobehav Rev 2020; 110:3-27. [PMID: 30179633 PMCID: PMC6395570 DOI: 10.1016/j.neubiorev.2018.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/26/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022]
Abstract
Based on their pharmacological properties, psychoactive drugs are supposed to take control of the natural reward system to finally drive compulsory drug seeking and consumption. However, psychoactive drugs are not used in an arbitrary way as pure pharmacological reinforcement would suggest, but rather in a highly specific manner depending on non-pharmacological factors. While pharmacological effects of psychoactive drugs are well studied, neurobiological mechanisms of non-pharmacological factors are less well understood. Here we review the emerging neurobiological mechanisms beyond pharmacological reinforcement which determine drug effects and use frequency. Important progress was made on the understanding of how the character of an environment and social stress determine drug self-administration. This is expanded by new evidence on how behavioral alternatives and opportunities for drug instrumentalization generate different patterns of drug choice. Emerging evidence suggests that the neurobiology of non-pharmacological factors strongly determines pharmacological and behavioral drug action and may, thus, give rise for an expanded system's approach of psychoactive drug use and addiction.
Collapse
Affiliation(s)
- Serge H Ahmed
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France
| | - Aldo Badiani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology, University of Sussex, BN1 9RH Brighton, UK
| | - Klaus A Miczek
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA 02155, USA; Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
33
|
Affiliation(s)
- Dilek Mercan
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany. .,Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
34
|
Egenrieder L, Mitricheva E, Spanagel R, Noori HR. No basal or drug‐induced sex differences in striatal dopaminergic levels: a cluster and meta‐analysis of rat microdialysis studies. J Neurochem 2019; 152:482-492. [DOI: 10.1111/jnc.14911] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Lisamon Egenrieder
- Institute of Psychopharmacology Central Institute of Mental Health Medical Faculty Mannheim University of Heidelberg Mannheim Germany
| | | | - Rainer Spanagel
- Institute of Psychopharmacology Central Institute of Mental Health Medical Faculty Mannheim University of Heidelberg Mannheim Germany
| | - Hamid R. Noori
- Institute of Psychopharmacology Central Institute of Mental Health Medical Faculty Mannheim University of Heidelberg Mannheim Germany
- Max Planck Institute for Biological Cybernetics Tübingen Germany
| |
Collapse
|
35
|
Nikolaus S, Wittsack HJ, Wickrath F, Müller-Lutz A, Hautzel H, Beu M, Antke C, Mamlins E, De Souza Silva MA, Huston JP, Antoch G, Müller HW. Differential effects of D-cycloserine and amantadine on motor behavior and D 2/3 receptor binding in the nigrostriatal and mesolimbic system of the adult rat. Sci Rep 2019; 9:16128. [PMID: 31695055 PMCID: PMC6834679 DOI: 10.1038/s41598-019-52185-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/14/2019] [Indexed: 01/16/2023] Open
Abstract
D-cycloserine (DCS) and amantadine (AMA) act as partial NMDA receptor (R) agonist and antagonist, respectively. In the present study, we compared the effects of DCS and AMA on dopamine D2/3R binding in the brain of adult rats in relation to motor behavior. D2/3R binding was determined with small animal SPECT in baseline and after challenge with DCS (20 mg/kg) or AMA (40 mg/kg) with [123I]IBZM as radioligand. Immediately post-challenge, motor/exploratory behavior was assessed for 30 min in an open field. The regional binding potentials (ratios of the specifically bound compartments to the cerebellar reference region) were computed in baseline and post-challenge. DCS increased D2/3R binding in nucleus accumbens, substantia nigra/ventral tegmental area, thalamus, frontal, motor and parietal cortex as well as anterodorsal and posterior hippocampus, whereas AMA decreased D2/3R binding in nucleus accumbens, caudateputamen and thalamus. After DCS, ambulation and head-shoulder motility were decreased, while sitting was increased compared to vehicle and AMA. Moreover, DCS increased rearing relative to AMA. The regional elevations of D2/3R binding after DCS reflect a reduction of available dopamine throughout the mesolimbocortical system. In contrast, the reductions of D2/3R binding after AMA indicate increased dopamine in nucleus accumbens, caudateputamen and thalamus. Findings imply that, after DCS, nigrostriatal and mesolimbic dopamine levels are directly related to motor/exploratory activity, whereas an inverse relationship may be inferred for AMA.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225, Düsseldorf, Germany.
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Frithjof Wickrath
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Heinrich-Heine University, Auf´m Hennekamp 65, 40225, Düsseldorf, Germany
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Hubertus Hautzel
- Clinic for Nuclear Medicine, University Hospital Essen, Hufelandstraße 55, D-45122, Essen, Germany
| | - Markus Beu
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Christina Antke
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Eduards Mamlins
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Maria Angelica De Souza Silva
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225, Düsseldorf, Germany
| |
Collapse
|
36
|
Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat Neurosci 2019; 22:1771-1781. [PMID: 31636449 PMCID: PMC6858573 DOI: 10.1038/s41593-019-0511-3] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/11/2019] [Indexed: 01/23/2023]
Abstract
Microglia dynamically survey the brain parenchyma. Microglial processes interact with neuronal elements; however, what role neuronal network activity plays in regulating microglial dynamics is not entirely clear. Most studies of microglial dynamics use either slice preparations or in vivo imaging in anesthetized mice. Here we demonstrate that microglia in awake mice have a relatively reduced process area and surveillance territory and that reduced neuronal activity under general anesthesia increases microglial process velocity, extension and territory surveillance. Similarly, reductions in local neuronal activity through sensory deprivation or optogenetic inhibition increase microglial process surveillance. Using pharmacological and chemogenetic approaches, we demonstrate that reduced norepinephrine signaling is necessary for these increases in microglial process surveillance. These findings indicate that under basal physiological conditions, noradrenergic tone in awake mice suppresses microglial process surveillance. Our results emphasize the importance of awake imaging for studying microglia-neuron interactions and demonstrate how neuronal activity influences microglial process dynamics.
Collapse
|
37
|
Amantadine enhances nigrostriatal and mesolimbic dopamine function in the rat brain in relation to motor and exploratory activity. Pharmacol Biochem Behav 2019; 179:156-170. [DOI: 10.1016/j.pbb.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 01/01/2023]
|
38
|
Wong YC, Centanni M, de Lange ECM. Physiologically Based Modeling Approach to Predict Dopamine D2 Receptor Occupancy of Antipsychotics in Brain: Translation From Rat to Human. J Clin Pharmacol 2019; 59:731-747. [PMID: 30676661 PMCID: PMC6590357 DOI: 10.1002/jcph.1365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/24/2018] [Indexed: 12/17/2022]
Abstract
Receptor occupancy (RO) is a translational biomarker for assessing drug efficacy and safety. We aimed to apply a physiologically based pharmacokinetic (PBPK) modeling approach to predict the brain dopamine D2 RO time profiles of antipsychotics. Clozapine and risperidone were modeled together with their active metabolites, norclozapine and paliperidone, First, in PK‐Sim a rat PBPK model was developed and optimized using literature plasma PK data. Then, blood‐brain barrier parameters including the expression and efflux transport kinetics of P‐glycoprotein were optimized using literature microdialysis data on brain extracellular fluid (brainECF), which were further adapted when translating the rat PBPK model into the human PBPK model. Based on the simulated drug and metabolite concentrations in brainECF, drug‐D2 receptor binding kinetics (association and dissociation rates) were incorporated in MoBi to predict RO. From an extensive literature search, 32 plasma PK data sets (16 from rat and 16 from human studies) and 23 striatum RO data sets (13 from rat and 10 from human studies) were prepared and compared with the model predictions. The rat PBPK‐RO model adequately predicted the plasma concentrations of the parent drugs and metabolites and the RO levels. The human PBPK‐RO model also captured the plasma PK and RO levels despite the large interindividual and interstudy variability, although it tended to underestimate the plasma concentrations and RO measured at late time points after risperidone dosing. The developed human PBPK‐RO model was successfully applied to predict the plasma PK and RO changes observed after risperidone dose reduction in a clinical trial in schizophrenic patients.
Collapse
Affiliation(s)
- Yin Cheong Wong
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Maddalena Centanni
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
39
|
Renko JM, Bäck S, Voutilainen MH, Piepponen TP, Reenilä I, Saarma M, Tuominen RK. Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Elevates Stimulus-Evoked Release of Dopamine in Freely-Moving Rats. Mol Neurobiol 2018; 55:6755-6768. [PMID: 29349573 PMCID: PMC6061195 DOI: 10.1007/s12035-018-0872-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/07/2018] [Indexed: 01/12/2023]
Abstract
Neurotrophic factors (NTFs) hold potential as disease-modifying therapies for neurodegenerative disorders like Parkinson's disease. Glial cell line-derived neurotrophic factor (GDNF), cerebral dopamine neurotrophic factor (CDNF), and mesencephalic astrocyte-derived neurotrophic factor (MANF) have shown neuroprotective and restorative effects on nigral dopaminergic neurons in various animal models of Parkinson's disease. To date, however, their effects on brain neurochemistry have not been compared using in vivo microdialysis. We measured extracellular concentration of dopamine and activity of dopamine neurochemistry-regulating enzymes in the nigrostriatal system of rat brain. NTFs were unilaterally injected into the striatum of intact Wistar rats. Brain microdialysis experiments were performed 1 and 3 weeks later in freely-moving animals. One week after the treatment, we observed enhanced stimulus-evoked release of dopamine in the striatum of MANF-treated rats, but not in rats treated with GDNF or CDNF. MANF also increased dopamine turnover. Although GDNF did not affect the extracellular level of dopamine, we found significantly elevated tyrosine hydroxylase (TH) and catechol-O-methyltransferase (COMT) activity and decreased monoamine oxidase A (MAO-A) activity in striatal tissue samples 1 week after GDNF injection. The results show that GDNF, CDNF, and MANF have divergent effects on dopaminergic neurotransmission, as well as on dopamine synthetizing and metabolizing enzymes. Although the cellular mechanisms remain to be clarified, knowing the biological effects of exogenously administrated NTFs in intact brain is an important step towards developing novel neurotrophic treatments for degenerative brain diseases.
Collapse
Affiliation(s)
- Juho-Matti Renko
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland.
| | - Susanne Bäck
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| | - Merja H Voutilainen
- Institute of Biotechnology, Research Program in Developmental Biology, University of Helsinki, Viikinkaari 5D, P.O. Box 56, 00014, Helsinki, Finland
| | - T Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| | - Ilkka Reenilä
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, Research Program in Developmental Biology, University of Helsinki, Viikinkaari 5D, P.O. Box 56, 00014, Helsinki, Finland
| | - Raimo K Tuominen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| |
Collapse
|
40
|
Taharabaru S, Satomoto M, Tamura T, Adachi YU. Smaller effect of propofol than sevoflurane anesthesia on dopamine turnover induced by methamphetamine and nomifensine in the rat striatum: an in vivo microdialysis study. Exp Anim 2017; 67:147-153. [PMID: 29176298 PMCID: PMC5955746 DOI: 10.1538/expanim.17-0092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Volatile anesthetics accelerate dopamine turnover in the brain, especially when used in
conjunction with psychotropic agents such as methamphetamine and nomifensine. The effect
of intravenous propofol anesthesia on the extracellular dopamine concentrations is
unclear. The aim of this study was to compare the effect of two anesthetics on the
extracellular concentrations of dopamine and metabolites using an in vivo
microdialysis model. Male Sprague Dawley rats were implanted with a microdialysis probe
into the right striatum. The probe was perfused with modified Ringer’s solution, and the
dialysate was directly injected into a high-performance liquid chromatography system every
20 min. The rats were intraperitoneally administered saline, methamphetamine at 2 mg/kg,
or nomifensine at 10 mg/kg. After treatment, the rats were anesthetized with intravenous
propofol (20 mg/kg followed by 25 or 50 mg/kg/h) or inhalational sevoflurane (2.5%) for 1
h. Propofol showed no effect on the extracellular concentration of dopamine during
anesthesia; however, propofol decreased the dopamine concentration after anesthesia in the
high-dose group. Sevoflurane anesthesia increased the concentration of metabolites.
Systemic administration of methamphetamine and nomifensine increased the extracellular
concentration of dopamine. Sevoflurane anesthesia significantly enhanced the increase in
the dopamine concentration induced by both methamphetamine and nomifensine, whereas
propofol anesthesia showed no effect on the methamphetamine- and nomifensine-induced
dopamine increase during anesthesia. The enhancing effect of psychotropic agent-induced
acceleration of dopamine turnover was smaller for propofol anesthesia than for sevoflurane
anesthesia.
Collapse
Affiliation(s)
- Saori Taharabaru
- Department of Anesthesia, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Maiko Satomoto
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Takahiro Tamura
- Department of Anesthesia, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Yushi U Adachi
- Departemnt of Surgical Intensive Care Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showaku, Nagoya-shi, Aichi 466-8550, Japan
| |
Collapse
|
41
|
Wong YC, Ilkova T, van Wijk RC, Hartman R, de Lange ECM. Development of a population pharmacokinetic model to predict brain distribution and dopamine D2 receptor occupancy of raclopride in non-anesthetized rat. Eur J Pharm Sci 2017; 111:514-525. [PMID: 29106979 DOI: 10.1016/j.ejps.2017.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/13/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Raclopride is a selective antagonist of the dopamine D2 receptor. It is one of the most frequently used in vivo D2 tracers (at low doses) for assessing drug-induced receptor occupancy (RO) in animals and humans. It is also commonly used as a pharmacological blocker (at high doses) to occupy the available D2 receptors and antagonize the action of dopamine or drugs on D2 in preclinical studies. The aims of this study were to comprehensively evaluate its pharmacokinetic (PK) profiles in different brain compartments and to establish a PK-RO model that could predict the brain distribution and RO of raclopride in the freely moving rat using a LC-MS based approach. METHODS Rats (n=24) received a 10-min IV infusion of non-radiolabeled raclopride (1.61μmol/kg, i.e. 0.56mg/kg). Plasma and the brain tissues of striatum (with high density of D2 receptors) and cerebellum (with negligible amount of D2 receptors) were collected. Additional microdialysis experiments were performed in some rats (n=7) to measure the free drug concentration in the extracellular fluid of the striatum and cerebellum. Raclopride concentrations in all samples were analyzed by LC-MS. A population PK-RO model was constructed in NONMEM to describe the concentration-time profiles in the unbound plasma, brain extracellular fluid and brain tissue compartments and to estimate the RO based on raclopride-D2 receptor binding kinetics. RESULTS In plasma raclopride showed a rapid distribution phase followed by a slower elimination phase. The striatum tissue concentrations were consistently higher than that of cerebellum tissue throughout the whole experimental period (10-h) due to higher non-specific tissue binding and D2 receptor binding in the striatum. Model-based simulations accurately predicted the literature data on rat plasma PK, brain tissue PK and D2 RO at different time points after intravenous or subcutaneous administration of raclopride at tracer dose (RO <10%), sub-pharmacological dose (RO 10%-30%) and pharmacological dose (RO >30%). CONCLUSION For the first time a predictive model that could describe the quantitative in vivo relationship between dose, PK and D2 RO of raclopride in non-anesthetized rat was established. The PK-RO model could facilitate the selection of optimal dose and dosing time when raclopride is used as tracer or as pharmacological blocker in various rat studies. The LC-MS based approach, which doses and quantifies a non-radiolabeled tracer, could be useful in evaluating the systemic disposition and brain kinetics of tracers.
Collapse
Affiliation(s)
- Yin Cheong Wong
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Trayana Ilkova
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Rob C van Wijk
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robin Hartman
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
42
|
Amato D, Canneva F, Nguyen HP, Bauer P, Riess O, von Hörsten S, Müller CP. Capturing schizophrenia-like prodromal symptoms in a spinocerebellar ataxia-17 transgenic rat. J Psychopharmacol 2017; 31:461-473. [PMID: 27856682 DOI: 10.1177/0269881116675510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
RATIONALE The polyglutamine disease spinocerebellar ataxia type 17 (SCA17) is a neurodegenerative disease leading to severe neurological symptoms during development. Additionally, patients affected by SCA17 display psychosis earlier than their motor disorders. OBJECTIVE Here the putative psychotic phenotype and endophenotype of transgenic SCA17 rats was examined. METHODS The expression of schizophrenia-like symptoms was evaluated over a longitudinal period before and after the onset of neurological symptoms in SCA17. To this end, transgenic SCA17 rats' monoamine neurotransmission was investigated along with their locomotion at baseline and in response to amphetamine using in-vivo microdialysis in free moving conditions, their sensorimotor gating using pre-pulse inhibition of startle reaction, and their object memory using the novel object recognition test as an index of cognitive impairments. RESULTS Presymptomatic SCA17 rats displayed dysregulated monoamine levels at baseline and in response to amphetamine compared with control wild-type (wt) rats. At that stage, neither amphetamine-induced hyperlocomotion nor sensorimotor gating differed from that in wt rats. Symptomatic SCA17 rats developed sensorimotor gating deficits and also showed an impaired object memory, while their monoaminergic responses remained supersensitive to amphetamine. CONCLUSIONS The data of the present study demonstrate a neurochemical endophenotype in SCA17 rats resembling that of prodromal schizophrenia. These findings suggest that a sensitization of the monoamine systems arises early in adulthood in SCA17 rats and may predispose them to express schizophrenia-like symptoms later in life.
Collapse
Affiliation(s)
- Davide Amato
- 1 Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Fabio Canneva
- 2 Department of Experimental Therapy, Preclinical Experimental Center, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Huu Phuc Nguyen
- 3 Institute of Medical Genetics and Applied Genomics, Rare Disease Center Tübingen, University of Tübingen, Germany
| | - Peter Bauer
- 3 Institute of Medical Genetics and Applied Genomics, Rare Disease Center Tübingen, University of Tübingen, Germany
| | - Olaf Riess
- 3 Institute of Medical Genetics and Applied Genomics, Rare Disease Center Tübingen, University of Tübingen, Germany
| | - Stephan von Hörsten
- 2 Department of Experimental Therapy, Preclinical Experimental Center, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Christian P Müller
- 1 Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| |
Collapse
|
43
|
Hassan Z, Bosch OG, Singh D, Narayanan S, Kasinather BV, Seifritz E, Kornhuber J, Quednow BB, Müller CP. Novel Psychoactive Substances-Recent Progress on Neuropharmacological Mechanisms of Action for Selected Drugs. Front Psychiatry 2017; 8:152. [PMID: 28868040 PMCID: PMC5563308 DOI: 10.3389/fpsyt.2017.00152] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/02/2017] [Indexed: 12/15/2022] Open
Abstract
A feature of human culture is that we can learn to consume chemical compounds, derived from natural plants or synthetic fabrication, for their psychoactive effects. These drugs change the mental state and/or the behavioral performance of an individual and can be instrumentalized for various purposes. After the emergence of a novel psychoactive substance (NPS) and a period of experimental consumption, personal and medical benefits and harm potential of the NPS can be estimated on evidence base. This may lead to a legal classification of the NPS, which may range from limited medical use, controlled availability up to a complete ban of the drug form publically accepted use. With these measures, however, a drug does not disappear, but frequently continues to be used, which eventually allows an even better estimate of the drug's properties. Thus, only in rare cases, there is a final verdict that is no more questioned. Instead, the view on a drug can change from tolerable to harmful but may also involve the new establishment of a desired medical application to a previously harmful drug. Here, we provide a summary review on a number of NPS for which the neuropharmacological evaluation has made important progress in recent years. They include mitragynine ("Kratom"), synthetic cannabinoids (e.g., "Spice"), dimethyltryptamine and novel serotonergic hallucinogens, the cathinones mephedrone and methylone, ketamine and novel dissociative drugs, γ-hydroxybutyrate, γ-butyrolactone, and 1,4-butanediol. This review shows not only emerging harm potentials but also some potential medical applications.
Collapse
Affiliation(s)
- Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | - Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Darshan Singh
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | - Suresh Narayanan
- School of Social Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | | | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
44
|
Nikolaus S, Beu M, de Souza Silva MA, Huston JP, Hautzel H, Mattern C, Antke C, Müller HW. Relationship Between L-DOPA-Induced Reduction in Motor and Exploratory Activity and Striatal Dopamine D2 Receptor Binding in the Rat. Front Behav Neurosci 2016; 9:352. [PMID: 26778989 PMCID: PMC4701934 DOI: 10.3389/fnbeh.2015.00352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/04/2015] [Indexed: 11/29/2022] Open
Abstract
Purpose: The present study assessed the influence of L-DOPA administration on neostriatal dopamine (DA) D2 receptor binding in relation to motor and exploratory behaviors in the rat. Methods: D2 receptor binding was measured in baseline, after challenge with the aromatic L-amino acid decarboxylase inhibitor benserazide, and after challenge with either 5 or 10 mg/kg L-DOPA plus benserazide. Additional rats received injections of saline. For baseline and challenges, striatal equilibrium ratios (V3″) were computed as estimation of the binding potential. Motor and exploratory behaviors were assessed for 30 min in an open field prior to administration of [123I]IBZM. D2 receptor binding was measured with small animal SPECT 2 h after radioligand administration for 60 min. Results: Both L-DOPA doses significantly reduced D2 receptor binding relative to baseline and led to significantly less ambulation, less head-shoulder motility, and more sitting relative to saline. Moreover, 10 mg/kg L-DOPA induced less head-shoulder motility, more sitting, and more grooming than 5 mg/kg L-DOPA. Analysis of time-behavior curves showed that L-DOPA-treated animals relative to saline exhibited a faster rate of decrease of ambulation frequency and a slower rate of decrease of both duration and frequency of head-shoulder motility from a lower maximum level. Conclusions: The reductions of striatal D2 receptor binding after L-DOPA may be conceived to reflect elevated concentrations of synaptic DA. L-DOPA-treated animals showed less ambulation and less head-shoulder motility than saline-treated animals, indicating an association between less behavioral activity and increased availability of striatal DA. The faster rate of decrease of ambulation frequency and the lower maximum levels of both head-shoulder motility duration and frequency may be interpreted in terms of influence of increased DA availability on behavioral habituation to a novel environment.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf Düsseldorf, Germany
| | - Markus Beu
- Clinic of Nuclear Medicine, University Hospital Düsseldorf Düsseldorf, Germany
| | - Maria A de Souza Silva
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Germany
| | - Hubertus Hautzel
- Clinic of Nuclear Medicine, University Hospital Düsseldorf Düsseldorf, Germany
| | - Claudia Mattern
- M et P Pharma AGEmmetten, Switzerland; Oceanographic Center, Nova Southeastern UniversityFort Lauderdale, FL, USA
| | - Christina Antke
- Clinic of Nuclear Medicine, University Hospital Düsseldorf Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, University Hospital Düsseldorf Düsseldorf, Germany
| |
Collapse
|
45
|
Zhang QJ, Du CX, Tan HH, Zhang L, Li LB, Zhang J, Niu XL, Liu J. Activation and blockade of serotonin7 receptors in the prelimbic cortex regulate depressive-like behaviors in a 6-hydroxydopamine-induced Parkinson's disease rat model. Neuroscience 2015; 311:45-55. [PMID: 26470809 DOI: 10.1016/j.neuroscience.2015.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/16/2015] [Accepted: 10/08/2015] [Indexed: 01/27/2023]
Abstract
The role of serotonin7 (5-HT7) receptors in the regulation of depression is poorly understood, particularly in Parkinson's disease-associated depression. Here we examined whether 5-HT7 receptors in the prelimbic (PrL) sub-region of the ventral medial prefrontal cortex (mPFC) involve in the regulation of depressive-like behaviors in sham-operated rats and rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. The lesion induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. Intra-PrL injection of 5-HT7 receptor agonist AS19 (0.5, 1 and 2 μg/rat) increased sucrose consumption, and decreased immobility time in sham-operated and the lesioned rats, indicating the induction of antidepressant-like effects. Further, intra-PrL injection of 5-HT7 receptor antagonist SB269970 (1.5, 3 and 6 μg/rat) decreased sucrose consumption, and increased immobility time, indicating the induction of depressive-like responses. However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-PrL injection of AS19 (2 μg/rat) increased dopamine, 5-hydroxytryptamine (5-HT) and noradrenaline (NA) levels in the mPFC, habenula and ventral hippocampus (vHip) in sham-operated and the lesioned rats; whereas SB269970 (6 μg/rat) decreased 5-HT levels in the habenula and vHip, and the levels of NA in the mPFC, habenula and vHip in the two groups of rats. The results suggest that 5-HT7 receptors in the PrL play an important role in the regulation of these behaviors, which attribute to changes in monoamine levels in the limbic and limbic-related brain regions after activation and blockade of 5-HT7 receptors.
Collapse
Affiliation(s)
- Q J Zhang
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - C X Du
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - H H Tan
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - L Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - L B Li
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - J Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - X L Niu
- Department of Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - J Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
46
|
de Witte WEA, Wong YC, Nederpelt I, Heitman LH, Danhof M, van der Graaf PH, Gilissen RAHJ, de Lange ECM. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients. Expert Opin Drug Discov 2015; 11:45-63. [PMID: 26484747 DOI: 10.1517/17460441.2016.1100163] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target binding kinetics in drug discovery. A meaningful application of in vitro drug-target binding kinetics in drug discovery requires insight into the relation between in vivo drug effect and in vitro measured drug-target binding kinetics. AREAS COVERED In this review, the authors discuss both the relation between in vitro and in vivo measured binding kinetics and the relation between in vivo binding kinetics, target occupancy and effect profiles. EXPERT OPINION More scientific evidence is required for the rational selection and development of drug-candidates on the basis of in vitro estimates of drug-target binding kinetics. To elucidate the value of in vitro binding kinetics measurements, it is necessary to obtain information on system-specific properties which influence the kinetics of target occupancy and drug effect. Mathematical integration of this information enables the identification of drug-specific properties which lead to optimal target occupancy and drug effect in patients.
Collapse
Affiliation(s)
- Wilhelmus E A de Witte
- a Division of Pharmacology, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| | - Yin Cheong Wong
- a Division of Pharmacology, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| | - Indira Nederpelt
- b Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| | - Laura H Heitman
- b Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| | - Meindert Danhof
- a Division of Pharmacology, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| | - Piet H van der Graaf
- a Division of Pharmacology, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| | - Ron A H J Gilissen
- c A Division of Janssen Pharmaceutica N.V., Janssen Research and Development , Turnhoutseweg 30, Beerse 2340 , Belgium
| | - Elizabeth C M de Lange
- a Division of Pharmacology, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| |
Collapse
|
47
|
McCreary AC, Müller CP, Filip M. Psychostimulants: Basic and Clinical Pharmacology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 120:41-83. [PMID: 26070753 DOI: 10.1016/bs.irn.2015.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Substance use disorder, and particularly psychostimulant use disorder, has considerable socioeconomic burden globally. The psychostimulants include several chemical classes, being derivatives of benzoylecgonine, phenethylamine, phenylpropanolamine, or aminoaryloxazoline. Psychostimulant drugs activate the brain reward pathways of the mesoaccumbal system, and continued use leads to persistent neuroplastic and dysfunctional changes of a variety of structures involved in learning and memory, habit-forming learning, salience attribution, and inhibitory control. There are a variety of neurochemical and neurobehavioral changes in psychostimulant addiction, for example, dopaminergic, glutamatergic, serotonergic (5-HT-ergic), and γ-amino butyric acid (GABA) changes have all noted. In this chapter, we will review pharmacological changes associated with psychostimulant use and abuse in humans and animals, and on the basis of the best characterized and most widely abused psychostimulants (amphetamines, cocaine) discuss why use transitions into abuse and review basic science and clinical strategies that might assist in treating psychostimulant abuse.
Collapse
Affiliation(s)
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland; Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
48
|
Hui YP, Wang T, Han LN, Li LB, Sun YN, Liu J, Qiao HF, Zhang QJ. Anxiolytic effects of prelimbic 5-HT1A receptor activation in the hemiparkinsonian rat. Behav Brain Res 2015; 277:211-20. [DOI: 10.1016/j.bbr.2014.04.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/28/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
|
49
|
Nikolaus S, Beu M, De Souza Silva AM, Huston JP, Hautzel H, Chao OY, Antke C, Müller HW. Relationship between L-DOPA-induced reduction in motor and exploratory activity and degree of DAT binding in the rat. Front Behav Neurosci 2014; 8:431. [PMID: 25566000 PMCID: PMC4269131 DOI: 10.3389/fnbeh.2014.00431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/26/2014] [Indexed: 11/15/2022] Open
Abstract
Purpose: The present study assessed the influence of L-DOPA administration on neostriatal dopamine (DA) transporter (DAT) binding in relation to motor and exploratory behaviors in the rat. Methods: Rats received injections of 5 mg/kg L-DOPA, 10 mg/kg L-DOPA or vehicle. Motor and exploratory behaviors were assessed for 30 min in an open field prior to administration of [123I]FP-CIT. Dopamine transporter binding was measured with small animal single-photon emission computed tomography (SPECT) 2 h after radioligand administration for 60 min. Results: Both L-DOPA doses significantly reduced DAT binding and led to significantly less head-shoulder motility and more sitting relative to vehicle. Moreover, 10 mg/kg L-DOPA induced less distance traveled and ambulation than 5 mg/kg L-DOPA. Analysis of time-behavior (t-b) curves showed that L-DOPA-treated animals relative to vehicle exhibited (1) a faster rate of increase in duration of sitting; (2) a slower rate of increase in duration of head-shoulder motility; and (3) a slower rate of decrease in frequency of head-shoulder motility. Conclusions: The reductions of striatal DAT binding after L-DOPA challenges reflected elevated concentrations of synaptic DA. L-DOPA-treated animals showed less head-shoulder motility and more sitting than vehicle-treated animals, indicating an association between less behavioral activity and increased availability of striatal DA. The faster increase of sitting duration to a higher final level and the slower increase of head-shoulder motility to a lower final level relative to controls may be interpreted in terms on behavioral habituation to a novel environment.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf Düsseldorf, Germany
| | - Markus Beu
- Clinic of Nuclear Medicine, University Hospital Düsseldorf Düsseldorf, Germany
| | - Angelica Maria De Souza Silva
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Germany
| | - Hubertus Hautzel
- Clinic of Nuclear Medicine, University Hospital Düsseldorf Düsseldorf, Germany
| | - Owen Y Chao
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Germany
| | - Christina Antke
- Clinic of Nuclear Medicine, University Hospital Düsseldorf Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, University Hospital Düsseldorf Düsseldorf, Germany
| |
Collapse
|
50
|
|