1
|
Zakharova IO, Bayunova LV, Avrova DK, Tretyakova AD, Shpakov AO, Avrova NF. The Autophagic and Apoptotic Death of Forebrain Neurons of Rats with Global Brain Ischemia Is Diminished by the Intranasal Administration of Insulin: Possible Mechanism of Its Action. Curr Issues Mol Biol 2024; 46:6580-6599. [PMID: 39057034 PMCID: PMC11276328 DOI: 10.3390/cimb46070392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Insulin is a promising neuroprotector. To better understand the mechanism of insulin action, it was important to show its ability to diminish autophagic neuronal death in animals with brain ischemic and reperfusion injury. In forebrain ischemia and reperfusion, the number of live neurons in the hippocampal CA1 region and frontal cortex of rats decreased to a large extent. Intracerebroventricular administration of the autophagy and apoptosis inhibitors to ischemic rats significantly increased the number of live neurons and showed that the main part of neurons died from autophagy and apoptosis. Intranasal administration of 0.5 IU of insulin per rat (before ischemia and daily during reperfusion) increased the number of live neurons in the hippocampal CA1 region and frontal brain cortex. In addition, insulin significantly diminished the level of autophagic marker LC3B-II in these forebrain regions, which markedly increased during ischemia and reperfusion. Our studies demonstrated for the first time the ability of insulin to decrease autophagic neuronal death, caused by brain ischemia and reperfusion. Insulin administered intranasally activated the Akt-kinase (activating the mTORC1 complex, which inhibits autophagy) and inhibited the AMP-activated protein kinase (which activates autophagy) in the hippocampus and frontal cortex of rats with brain ischemia and reperfusion.
Collapse
Affiliation(s)
| | | | | | | | | | - Natalia F. Avrova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez Av. 44, St. Petersburg 194223, Russia; (I.O.Z.); (L.V.B.); (D.K.A.); (A.D.T.); (A.O.S.)
| |
Collapse
|
2
|
Yang C, Wang Y, Li Y, Wang X, Hua W, Yang Z, Wang H. Sub-dose anesthetics combined with chloride regulators protect the brain against chronic ischemia-hypoxia injury. CNS Neurosci Ther 2024; 30:e14379. [PMID: 37545014 PMCID: PMC10848060 DOI: 10.1111/cns.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Cerebral ischemia-hypoxia leads to excitotoxicity-mediated neuronal damage and cognitive dysfunction, especially in the elderly. Excessive intracellular [Cl- ]i accumulation weakens γ-aminobutyric acid (GABA) compensatory effects. Sub-anesthetic dose of propofol protected the brain against ischemia-hypoxia, which was abolished by blocking Cl- efflux transporter K+ /Cl- cotransporter 2 (KCC2). We aimed to determine whether low-dose anesthetic combined with [Cl- ]i regulators could restore the compensatory GABAergic system and improve cognitive function. METHODS Chronic cerebral hypoxia (CCH) model was established by bilateral carotid artery ligation in aged rats. Sub-dose of anesthetics (propofol and sevoflurane) with or without KCC2 agonist N-ethylmaleimide (NEM) or Na+ /K+ /Cl- cotransporter 1 (NKCC1) antagonist bumetanide (BTN) was administered systemically 30 days post-surgery. Primary rat hippocampal neuronal cultures were subjected to hypoxic injury with or without drug treatment. Memory function, hippocampal neuronal survival, GABAergic system functioning, and brain-derived neurotrophic factor (BDNF) expressions were evaluated. RESULTS Sub-anesthetic dose of combined propofol (1.2 μg mL-1 ) and sevoflurane [0.7 MAC (minimum alveolar concentration)] did not aggravate the hypoxic brain injury in rats or cell damage in neuronal cultures. Adding either BTN or NEM protected against hypoxic injury, associated with improved cognitive function in vivo, less intracellular accumulation of [Cl- ]i , reduced cell death, restored GABAergic compensation, and increased BDNF expression both in vivo and in vitro. CONCLUSION Sub-anesthetic dose of propofol and sevoflurane is a recommended anesthesia regimen in at-risk patients. Restoration of [Cl- ]i homeostasis and GABAergic could further reduce the brain damage caused by ischemia-hypoxia.
Collapse
Affiliation(s)
- Chenyi Yang
- Nankai UniversityTianjinChina
- Nankai University Affinity the Third Central HospitalTianjinChina
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
- Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Ye Wang
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
| | - Yun Li
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
| | - Xinyi Wang
- Nankai University Affinity the Third Central HospitalTianjinChina
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
- Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Wei Hua
- Nankai University Affinity the Third Central HospitalTianjinChina
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
- Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | | | - Haiyun Wang
- Nankai UniversityTianjinChina
- Nankai University Affinity the Third Central HospitalTianjinChina
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
- Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| |
Collapse
|
3
|
Kawalec M, Wojtyniak P, Bielska E, Lewczuk A, Boratyńska-Jasińska A, Beręsewicz-Haller M, Frontczak-Baniewicz M, Gewartowska M, Zabłocka B. Mitochondrial dynamics, elimination and biogenesis during post-ischemic recovery in ischemia-resistant and ischemia-vulnerable gerbil hippocampal regions. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166633. [PMID: 36566873 DOI: 10.1016/j.bbadis.2022.166633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Transient ischemic attacks (TIA) result from a temporary blockage in blood circulation in the brain. As TIAs cause disabilities and often precede full-scale strokes, the effects of TIA are investigated to develop neuroprotective therapies. We analyzed changes in mitochondrial network dynamics, mitophagy and biogenesis in sections of gerbil hippocampus characterized by a different neuronal survival rate after 5-minute ischemia-reperfusion (I/R) insult. Our research revealed a significantly greater mtDNA/nDNA ratio in CA2-3, DG hippocampal regions (5.8 ± 1.4 vs 3.6 ± 0.8 in CA1) that corresponded to a neuronal resistance to I/R. During reperfusion, an increase of pro-fission (phospho-Ser616-Drp1/Drp1) and pro-fusion proteins (1.6 ± 0.5 and 1.4 ± 0.3 for Mfn2 and Opa1, respectively) was observed in CA2-3, DG. Selective autophagy markers, PINK1 and SQSTM1/p62, were elevated 24-96 h after I/R and accompanied by significant elevation of transcription factors proteins PGC-1α and Nrf1 (1.2 ± 0.4, 1.78 ± 0.6, respectively) and increased respiratory chain proteins (e.g., 1.5 ± 0.3 for complex IV at I/R 96 h). Contrastingly, decreased enzymatic activity of citrate synthase, reduced Hsp60 protein level and electron transport chain subunits (0.88 ± 0.03, 0.74 ± 0.1 and 0.71 ± 0.1 for complex IV at I/R 96 h, respectively) were observed in I/R-vulnerable CA1. The phospho-Ser616-Drp1/Drp1 was increased while Mfn2 and total Opa1 reduced to 0.88 ± 0.1 and 0.77 ± 0.17, respectively. General autophagy, measured as LC3-II/I ratio, was activated 3 h after reperfusion reaching 2.37 ± 0.9 of control. This study demonstrated that enhanced mitochondrial fusion, followed by late and selective mitophagy and mitochondrial biogenesis might together contribute to reduced susceptibility to TIA.
Collapse
Affiliation(s)
- Maria Kawalec
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| | - Piotr Wojtyniak
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Ewelina Bielska
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anita Lewczuk
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Boratyńska-Jasińska
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Magdalena Gewartowska
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Zabłocka
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Yan P, Liu J, Ma H, Feng Y, Cui J, Bai Y, Huang X, Zhu Y, Wei S, Lai J. Effects of glycogen synthase kinase-3β activity inhibition on cognitive, behavioral, and hippocampal ultrastructural deficits in adulthood associated with adolescent methamphetamine exposure. Front Mol Neurosci 2023; 16:1129553. [PMID: 36949769 PMCID: PMC10025487 DOI: 10.3389/fnmol.2023.1129553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Objective Glycogen synthase kinase-3β (GSK3β) has been implicated in the maintenance of synaptic plasticity, memory process, and psychostimulant-induced behavioral effects. Hyperactive GSK3β in the Cornu Ammonis 1 (CA1) subregion of the dorsal hippocampus (DHP) was associated with adolescent methamphetamine (METH) exposure-induced behavioral and cognitive deficits in adulthood. This study aimed to evaluate the possible therapeutic effects of GSK3β inhibition in adulthood on adolescent METH exposure-induced long-term neurobiological deficits. Methods Adolescent male mice were treated with METH from postnatal day (PND) 45-51. In adulthood, three intervention protocols (acute lithium chloride systemic administration, chronic lithium chloride systemic administration, and chronic SB216763 administration within CA1) were used for GSK3β activity inhibition. The effect of GSK3β intervention on cognition, behavior, and GSK3β activity and synaptic ultrastructure in the DHP CA1 subregion were detected in adulthood. Results In adulthood, all three interventions reduced adolescent METH exposure-induced hyperactivity (PND97), while only chronic systemic and chronic within CA1 administration ameliorated the induced impairments in spatial (PND99), social (PND101) and object (PND103) recognition memory. In addition, although three interventions reversed the aberrant GSK3β activity in the DHP CA1 subregion (PND104), only chronic systemic and chronic within CA1 administration rescued adolescent METH exposure-induced synaptic ultrastructure changes in the DHP CA1 subregion (PND104) in adulthood. Conclusion Rescuing synaptic ultrastructural abnormalities in the dHIP CA1 subregion by chronic administration of a GSK3β inhibitor may be a suitable therapeutic strategy for the treatment of behavioral and cognitive deficits in adulthood associated with adolescent METH abuse.
Collapse
Affiliation(s)
- Peng Yan
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jincen Liu
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Haotian Ma
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Yue Feng
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jingjing Cui
- Forensic Identification Institute, The Fourth People’s Hospital of Yancheng, Yancheng, China
| | - Yuying Bai
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Xin Huang
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Yongsheng Zhu
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Shuguang Wei
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Shuguang Wei,
| | - Jianghua Lai
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
- Jianghua Lai,
| |
Collapse
|
5
|
Fokina EA, Zakharova IO, Bayunova LV, Avrova DK, Ilyasov IO, Avrova NF. Intranasal Insulin Decreases Autophagic and Apoptotic Death of Neurons in the Rat Hippocampal C1 Region and Frontal Cortex under Forebrain Ischemia–Reperfusion. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s0022093023010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
6
|
Li T, Sun Y, Zhang S, Xu Y, Li K, Xie C, Wang Y, Wang Y, Cao J, Wang X, Penninger JM, Kroemer G, Blomgren K, Zhu C. AIF Overexpression Aggravates Oxidative Stress in Neonatal Male Mice After Hypoxia-Ischemia Injury. Mol Neurobiol 2022; 59:6613-6631. [PMID: 35974295 PMCID: PMC9525408 DOI: 10.1007/s12035-022-02987-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
There are sex differences in the severity, mechanisms, and outcomes of neonatal hypoxia-ischemia (HI) brain injury, and apoptosis-inducing factor (AIF) may play a critical role in this discrepancy. Based on previous findings that AIF overexpression aggravates neonatal HI brain injury, we further investigated potential sex differences in the severity and molecular mechanisms underlying the injury using mice that overexpress AIF from homozygous transgenes. We found that the male sex significantly aggravated AIF-driven brain damage, as indicated by the injury volume in the gray matter (2.25 times greater in males) and by the lost volume of subcortical white matter (1.71 greater in males) after HI. As compared to females, male mice exhibited more severe brain injury, correlating with reduced antioxidant capacities, more pronounced protein carbonylation and nitration, and increased neuronal cell death. Under physiological conditions (without HI), the doublecortin-positive area in the dentate gyrus of females was 1.15 times larger than in males, indicating that AIF upregulation effectively promoted neurogenesis in females in the long term. We also found that AIF stimulated carbohydrate metabolism in young males. Altogether, these findings corroborate earlier studies and further demonstrate that AIF is involved in oxidative stress, which contributes to the sex-specific differences observed in neonatal HI brain injury.
Collapse
Affiliation(s)
- Tao Li
- Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.,Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Yanyan Sun
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Department of Human Anatomy, School of Basic Medicine and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Kenan Li
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Cuicui Xie
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Yong Wang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Yafeng Wang
- Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.,Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medicine and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Centre of Perinatal Medicine and Health, Institute of Clinical Science, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Josef M Penninger
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030, Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Guido Kroemer
- Centre de Recherche Des Cordeliers, Equipe Labellisée Par La Ligue Contre Le Cancer, Inserm U1138, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Klas Blomgren
- Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China. .,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden. .,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Lee CH, Lee TK, Kim DW, Lim SS, Kang IJ, Ahn JH, Park JH, Lee JC, Kim CH, Park Y, Won MH, Choi SY. Relationship between Neuronal Damage/Death and Astrogliosis in the Cerebral Motor Cortex of Gerbil Models of Mild and Severe Ischemia and Reperfusion Injury. Int J Mol Sci 2022; 23:ijms23095096. [PMID: 35563487 PMCID: PMC9100252 DOI: 10.3390/ijms23095096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
Abstract
Neuronal loss (death) occurs selectively in vulnerable brain regions after ischemic insults. Astrogliosis is accompanied by neuronal death. It can change the molecular expression and morphology of astrocytes following ischemic insults. However, little is known about cerebral ischemia and reperfusion injury that can variously lead to damage of astrocytes according to the degree of ischemic injury, which is related to neuronal damage/death. Thus, the purpose of this study was to examine the relationship between damage to cortical neurons and astrocytes using gerbil models of mild and severe transient forebrain ischemia induced by blocking the blood supply to the forebrain for five or 15 min. Significant ischemia tFI-induced neuronal death occurred in the deep layers (layers V and VI) of the motor cortex: neuronal death occurred earlier and more severely in gerbils with severe ischemia than in gerbils with mild ischemia. Distinct astrogliosis was detected in layers V and VI. It gradually increased with time after both ischemiae. The astrogliosis was significantly higher in severe ischemia than in mild ischemia. The ischemia-induced increase of glial fibrillary acidic protein (GFAP; a maker of astrocyte) expression in severe ischemia was significantly higher than that in mild ischemia. However, GFAP-immunoreactive astrocytes were apparently damaged two days after both ischemiae. At five days after ischemiae, astrocyte endfeet around capillary endothelial cells were severely ruptured. They were more severely ruptured by severe ischemia than by mild ischemia. However, the number of astrocytes stained with S100 was significantly higher in severe ischemia than in mild ischemia. These results indicate that the degree of astrogliosis, including the disruption (loss) of astrocyte endfeet following ischemia and reperfusion in the forebrain, might depend on the severity of ischemia and that the degree of ischemia-induced neuronal damage may be associated with the degree of astrogliosis.
Collapse
Affiliation(s)
- Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea;
| | - Tae-Kyeong Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea; (T.-K.L.); (S.S.L.); (I.J.K.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung 25457, Korea;
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea; (T.-K.L.); (S.S.L.); (I.J.K.)
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea; (T.-K.L.); (S.S.L.); (I.J.K.)
| | - Ji Hyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Korea;
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju 38066, Korea;
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Choong-Hyo Kim
- Department of Neurosurgery, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Korea;
| | - Yoonsoo Park
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Korea;
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (M.-H.W.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
- Correspondence: (M.-H.W.); (S.Y.C.)
| |
Collapse
|
8
|
Leung IHK, Broadhouse KM, Mowszowski L, LaMonica HM, Palmer JR, Hickie IB, Naismith SL, Duffy SL. Association between lifetime depression history, hippocampal volume and memory in non-amnestic mild cognitive impairment. Eur J Neurosci 2021; 54:4953-4970. [PMID: 33765347 DOI: 10.1111/ejn.15207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/01/2021] [Accepted: 03/14/2021] [Indexed: 11/28/2022]
Abstract
Hippocampal subfield volume loss in older adults with amnestic mild cognitive impairment (aMCI) and depression history are associated with amyloid beta and tau pathology, thereby increasing the risk for Alzheimer's disease (AD). However, no studies have exclusively examined distinct alterations in hippocampal subfields in non-amnestic MCI (naMCI) in relation to depression history. Here, we used both longitudinal and transverse hippocampal segmentation methods using the automated FreeSurfer software to examine whether a lifetime depression history is associated with differences in hippocampal head/body/tail (H/B/T) and key subfield volumes (CA1, subiculum, dentate gyrus) in older adults with naMCI. Further, we explored whether differences in hippocampal H/B/T and subfield volumes were associated with structured and unstructured verbal encoding and retention, comparing those with and without a depression history. The naMCI with a depression history group demonstrated larger or relatively preserved right CA1 volumes, which were associated with better unstructured verbal encoding and as well as structured verbal memory retention. This association between memory encoding and hippocampal CA1 and total head volume was significantly different to those with no depression history. The relationship between right CA1 volume and memory retention was also moderated by depression history status F (5,143) = 7.84, p < 0.001, R2 = 0.22. Those participants taking antidepressants had significantly larger hippocampal subiculum (p = 0.008), and right hippocampal body (p = 0.004) and better performance on structured encoding (p = 0.011) and unstructured memory retention (p = 0.009). These findings highlight the importance of lifetime depression history and antidepressant use on the hippocampus and encoding and memory retention in naMCI.
Collapse
Affiliation(s)
- Isabella Hoi Kei Leung
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Kathryn Mary Broadhouse
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Science and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Loren Mowszowski
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Faculty of Science, School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - Haley M LaMonica
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Jake Robert Palmer
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Department of Psychology, Macquarie University, Sydney, NSW, Australia
| | - Ian B Hickie
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Sharon L Naismith
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Faculty of Science, School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - Shantel Leigh Duffy
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Xiang Z, Jiang X, Ji R, Yuan H. Enhanced expression of P2X4 purinoceptors in pyramidal neurons of the rat hippocampal CA1 region may be involved ischemia-reperfusion injury. Purinergic Signal 2021; 17:425-438. [PMID: 33966147 DOI: 10.1007/s11302-021-09780-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke is the most serious disease that harms human beings. In principle, its treatment is to restore blood flow supply as soon as possible. However, after the blood flow is restored, it will lead to secondary brain injury, that is, ischemia-reperfusion injury. The mechanism of ischemia-reperfusion injury is very complicated. This study showed that P2X4 receptors in the pyramidal neurons of rat hippocampus were significantly upregulated in the early stage of ischemia-reperfusion injury. Neurons with high expression of P2X4 receptors are neurons that are undergoing apoptosis. Intraventricular injection of the P2X4 receptor antagonist 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) and PSB-12062 can partially block neuronal apoptosis, to promote the survival of neurons, indicating that ATP through P2X4 receptors is involved in the process of cerebral ischemia-reperfusion injury. Therefore, identifying the mechanism of neuronal degeneration induced by extracellular ATP via P2X4 receptors after ischemia-reperfusion will likely find new targets for the treatment of ischemia-reperfusion injury, and will provide a useful theoretical basis for the treatment of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhenghua Xiang
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Rihui Ji
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| |
Collapse
|
10
|
Sieben A, Van Langenhove T, Vermeiren Y, Gossye H, Praet M, Vanhauwaert D, Cousaert C, Engelborghs S, Raedt R, Boon P, Santens P, De Deyn PP, Bracke KR, De Meulemeester K, Van Broeckhoven C, Martin JJ, Bjerke M. Hippocampal Sclerosis in Frontotemporal Dementia: When Vascular Pathology Meets Neurodegeneration. J Neuropathol Exp Neurol 2021; 80:313-324. [PMID: 33638350 DOI: 10.1093/jnen/nlab010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hippocampal sclerosis (HS) is a common neuropathological finding and has been associated with advanced age, TDP-43 proteinopathy, and cerebrovascular pathology. We analyzed neuropathological data of an autopsy cohort of early-onset frontotemporal dementia patients. The study aimed to determine whether in this cohort HS was related to TDP-43 proteinopathy and whether additional factors could be identified. We examined the relationship between HS, proteinopathies in frontotemporal cortices and hippocampus, Alzheimer disease, cerebrovascular changes, and age. We confirmed a strong association between HS and hippocampal TDP-43, whereas there was a weaker association between HS and frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). Nearly all of the FTLD-TDP cases had TDP-43 pathology in the hippocampus. HS was present in all FTLD-TDP type D cases, in 50% of the FTLD-TDP A cohort and in 6% of the FTLD-TDP B cohort. Our data also showed a significant association between HS and vascular changes. We reviewed the literature on HS and discuss possible pathophysiological mechanisms between TDP-43 pathology, cerebrovascular disease, and HS. Additionally, we introduced a quantitative neuronal cell count in CA1 to objectify the semiquantitative visual appreciation of HS.
Collapse
Affiliation(s)
- Anne Sieben
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Ghent University Hospital, Ghent, Belgium.,Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Neurology, AZ Jan Palfijn, Ghent, Belgium
| | - Tim Van Langenhove
- Department of Neurology, Ghent University Hospital, Ghent, Belgium.,Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Yannick Vermeiren
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Helena Gossye
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Edegem, Belgium.,Institute Born-Bunge, Laboratory of Neurogenetics, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences (C4N), UZ Brussel and Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Marleen Praet
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | | | | | - Sebastiaan Engelborghs
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences (C4N), UZ Brussel and Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Robrecht Raedt
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Paul Boon
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Peter Paul De Deyn
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Ken R Bracke
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Jacques Martin
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium
| | - Maria Bjerke
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Neurochemistry Laboratory, Department of Clinical Biology and Center for Neurosciences, University hospital Brussels and Free University of Brussels, Brussels, Belgium
| |
Collapse
|
11
|
Alu A, Han X, Ma X, Wu M, Wei Y, Wei X. The role of lysosome in regulated necrosis. Acta Pharm Sin B 2020; 10:1880-1903. [PMID: 33163342 PMCID: PMC7606114 DOI: 10.1016/j.apsb.2020.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/29/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Lysosome is a ubiquitous acidic organelle fundamental for the turnover of unwanted cellular molecules, particles, and organelles. Currently, the pivotal role of lysosome in regulating cell death is drawing great attention. Over the past decades, we largely focused on how lysosome influences apoptosis and autophagic cell death. However, extensive studies showed that lysosome is also prerequisite for the execution of regulated necrosis (RN). Different types of RN have been uncovered, among which, necroptosis, ferroptosis, and pyroptosis are under the most intensive investigation. It becomes a hot topic nowadays to target RN as a therapeutic intervention, since it is important in many patho/physiological settings and contributing to numerous diseases. It is promising to target lysosome to control the occurrence of RN thus altering the outcomes of diseases. Therefore, we aim to give an introduction about the common factors influencing lysosomal stability and then summarize the current knowledge on the role of lysosome in the execution of RN, especially in that of necroptosis, ferroptosis, and pyroptosis.
Collapse
Affiliation(s)
- Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Gamdzyk M, Doycheva DM, Araujo C, Ocak U, Luo Y, Tang J, Zhang JH. cGAS/STING Pathway Activation Contributes to Delayed Neurodegeneration in Neonatal Hypoxia-Ischemia Rat Model: Possible Involvement of LINE-1. Mol Neurobiol 2020; 57:2600-2619. [PMID: 32253733 PMCID: PMC7260114 DOI: 10.1007/s12035-020-01904-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022]
Abstract
cGAS is a sensor of cytosolic DNA and responds equally to exogenous and endogenous DNA. After recognition of cytosolic dsDNA or ssDNA, cGAS synthesizes the second messenger 2'3'-cGAMP, which then binds to and activates stimulator of interferon genes (STING). STING plays an essential role in responding to pathogenic DNA and self-DNA in the context of autoimmunity. In pathologic conditions, such as stroke or hypoxia-ischemia (HI), DNA can gain access into the cytoplasm of the cell and leak from the dying cells into the extracellular environment, which potentially activates cGAS/STING. Recent in vivo studies of myocardial ischemia, traumatic brain injury, and liver damage models suggest that activation of cGAS/STING is not only a side-effect of the injury, but it can also actively contribute to cell death and apoptosis. We found, for the first time, that cGAS/STING pathway becomes activated between 24 and 48 h after HI in a 10-day-old rat model. Silencing STING with siRNA resulted in decreased infarction area, reduced cortical neurodegeneration, and improved neurobehavior at 48 h, suggesting that STING can contribute to injury progression after HI. STING colocalized with lysosomal marker LAMP-1 and blocking STING reduced the expression of cathepsin B and decreased the expression of Bax and caspase 3 cleavage. We observed similar protective effects after intranasal treatment with cGAS inhibitor RU.521, which were reversed by administration of STING agonist 2'3'-cGAMP. Additionally, we showed that long interspersed element 1 (LINE-1) retrotransposon, a potential upstream activator of cGAS/STING pathway was induced at 48 h after HI, which was evidenced by increased expression of ORF1p and ORF2p proteins and increased LINE-1 DNA content in the cytosol. Blocking LINE-1 with the nucleoside analog reverse-transcriptase inhibitor (NRTI) stavudine reduced infarction area, neuronal degeneration in the cerebral cortex, and reduced the expression of Bax and cleaved caspase 3. Thus, our results identify the cGAS/STING pathway as a potential therapeutic target to inhibit delayed neuronal death after HI.
Collapse
Affiliation(s)
- Marcin Gamdzyk
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92354, USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92354, USA
| | - Camila Araujo
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92354, USA
| | - Umut Ocak
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92354, USA
- Department of Emergency Medicine, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, 16310, Bursa, Turkey
| | - Yujie Luo
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92354, USA.
- Department of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92354, USA.
| |
Collapse
|
13
|
Jicha GA, Nelson PT. Hippocampal Sclerosis, Argyrophilic Grain Disease, and Primary Age-Related Tauopathy. Continuum (Minneap Minn) 2020; 25:208-233. [PMID: 30707194 DOI: 10.1212/con.0000000000000697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Hippocampal sclerosis, argyrophilic grain disease, and primary age-related tauopathy are common Alzheimer disease mimics that currently lack clinical diagnostic criteria. Increased understanding of these pathologic entities is important for the neurologist who may encounter patients with an unusually slowly progressive degenerative dementia that may appear to meet criteria for Alzheimer disease but who progress to develop symptoms that are unusual for classic Alzheimer disease RECENT FINDINGS: Hippocampal sclerosis has traditionally been associated with hypoxic/ischemic injury and poorly controlled epilepsy, but it is now recognized that hippocampal sclerosis may also be associated with a unique degenerative disease of aging or may be an associated pathologic finding in many cases of frontotemporal lobar degeneration. Argyrophilic grain disease has been recognized as an enigma in the field of pathology for over 30 years, but recent discoveries suggest that it may overlap with other tau-related disorders within the spectrum of frontotemporal lobar degeneration. Primary age-related tauopathy has long been recognized as a distinct clinical entity that lies on the Alzheimer pathologic spectrum, with the presence of neurofibrillary tangles that lack the coexistent Alzheimer plaque development; thus, it is thought to represent a distinct pathologic entity. SUMMARY Despite advances in dementia diagnosis that suggest that we have identified and unlocked the mysteries of the major degenerative disease states responsible for cognitive decline and dementia in the elderly, diseases such as hippocampal sclerosis, argyrophilic grain disease, and primary age-related tauopathy demonstrate that we remain on the frontier of discovery and that our diagnostic repertoire of diseases responsible for such clinical symptoms remains in its infancy. Understanding such diagnostic confounds is important for the neurologist in assigning appropriate diagnoses and selecting appropriate therapeutic management strategies for patients with mild cognitive impairment and dementia.
Collapse
|
14
|
The effect of chronic cerebral hypoperfusion on the pathology of Alzheimer's disease: A positron emission tomography study in rats. Sci Rep 2019; 9:14102. [PMID: 31575996 PMCID: PMC6773854 DOI: 10.1038/s41598-019-50681-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/16/2019] [Indexed: 01/13/2023] Open
Abstract
Cerebrovascular disease is a potential risk factor for Alzheimer's disease (AD). Although acute cerebral hypoperfusion causes neuronal necrosis and infarction, chronic cerebral hypoperfusion induces apoptosis in neurons, but its effects on the cognitive impairment are not clear. The purpose of this study was to evaluate the effects of chronic cerebral hypoperfusion on AD pathology and cerebral glucose metabolism. A model of chronic cerebral hypoperfusion was established by ligating the common carotid arteries bilaterally in adult male rats (CAL group). Sham-operated rats underwent the same procedures without artery ligation (control group). At 12 weeks after ligation, expression levels of amyloid-β (Aβ) and hyperphosphorylated tau (p-tau), as well as the regional cerebral glucose metabolism, were evaluated using Western blots and positron emission tomography with fluorine-18 fluorodeoxyglucose, respectively. The expression levels of Aβ in the frontal cortex and hippocampus and of p-tau in the temporal cortex were significantly higher in the CAL group than those in the control group. The cerebral glucose metabolism of the amygdala, entorhinal cortex, and hippocampus was significantly decreased in the CAL group compared to that in the control. These results suggest that chronic cerebral hypoperfusion can induce AD pathology and may play a significant role in AD development.
Collapse
|
15
|
Yan P, Xu D, Ji Y, Yin F, Cui J, Su R, Wang Y, Zhu Y, Wei S, Lai J. LiCl Pretreatment Ameliorates Adolescent Methamphetamine Exposure-Induced Long-Term Alterations in Behavior and Hippocampal Ultrastructure in Adulthood in Mice. Int J Neuropsychopharmacol 2019; 22:303-316. [PMID: 30649326 PMCID: PMC6441133 DOI: 10.1093/ijnp/pyz001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/30/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Adolescent methamphetamine exposure causes a broad range of neurobiological deficits in adulthood. Glycogen synthase kinase-3β is involved in various cognitive and behavioral processes associated with methamphetamine exposure. This study aims to investigate the protective effects of the glycogen synthase kinase-3β inhibitor lithium chloride on adolescent methamphetamine exposure-induced long-term alterations in emotion, cognition, behavior, and molecule and hippocampal ultrastructure in adulthood. METHODS A behavioral test battery was used to investigate the protective effects of lithium chloride on adolescent methamphetamine exposure-induced long-term emotional, cognitive, and behavioral impairments in mice. Western blotting and immunohistochemistry were used to detect glycogen synthase kinase-3β activity levels in the medial prefrontal cortex and dorsal hippocampus. Electron microscopy was used to analyze changes in synaptic ultrastructure in the dorsal hippocampus. Locomotor sensitization with a methamphetamine (1 mg/kg) challenge was examined 80 days after adolescent methamphetamine exposure. RESULTS Adolescent methamphetamine exposure induced long-term alterations in locomotor activity, novel spatial exploration, and social recognition memory; increases in glycogen synthase kinase-3β activity in dorsal hippocampus; and decreases in excitatory synapse density and postsynaptic density thickness in CA1. These changes were ameliorated by lithium chloride pretreatment. Adolescent methamphetamine exposure-induced working memory deficits in Y-maze spontaneous alternation test and anxiety-like behavior in elevated-plus maze test spontaneously recovered after long-term methamphetamine abstinence. No significant locomotor sensitization was observed after long-term methamphetamine abstinence. CONCLUSIONS Hyperactive glycogen synthase kinase-3β contributes to adolescent chronic methamphetamine exposure-induced behavioral and hippocampal impairments in adulthood. Our results suggest glycogen synthase kinase-3β may be a potential target for the treatment of deficits in adulthood associated with adolescent methamphetamine abuse.
Collapse
Affiliation(s)
- Peng Yan
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Dan Xu
- Traditional Chinese Medicine Department, Shenyang Pharmaceutical University, Shenyang, Liaoning, People’s Republic of China
| | - Yuanyuan Ji
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Fangyuan Yin
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jingjing Cui
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Rui Su
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yunpeng Wang
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yongsheng Zhu
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shuguang Wei
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China,Key Laboratory of Forensic Science, National Health and Family Planning Commission, Xi’an, Shaanxi, People’s Republic of China,Correspondence: Shuguang Wei, PhD, College of Forensic Science, Xi’an Jiaotong University, 76 Yanta West Road, Xi’an 710061, People’s Republic of China (); and Jianghua Lai, PhD, College of Forensic Science, Xi’an Jiaotong University, 76 Yanta West Road, Xi’an 710061, People’s Republic of China ()
| | - Jianghua Lai
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China,Key Laboratory of Forensic Science, National Health and Family Planning Commission, Xi’an, Shaanxi, People’s Republic of China,Correspondence: Shuguang Wei, PhD, College of Forensic Science, Xi’an Jiaotong University, 76 Yanta West Road, Xi’an 710061, People’s Republic of China (); and Jianghua Lai, PhD, College of Forensic Science, Xi’an Jiaotong University, 76 Yanta West Road, Xi’an 710061, People’s Republic of China ()
| |
Collapse
|
16
|
Johnson S, Wozniak DF, Imai S. CA1 Nampt knockdown recapitulates hippocampal cognitive phenotypes in old mice which nicotinamide mononucleotide improves. NPJ Aging Mech Dis 2018; 4:10. [PMID: 30416740 PMCID: PMC6224504 DOI: 10.1038/s41514-018-0029-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Cognitive dysfunction is one of the most concerning outcomes in global population aging. However, the mechanisms by which cognitive functions are impaired during aging remain elusive. It has been established that NAD+ levels are reduced in multiple tissues and organs, including the brain. We found that NAD+ levels declined in the hippocampus of mice during the course of aging, and whereas we observed minimal age-related effects on spatial learning/memory capabilities in old mice, we discovered that they developed cognitive hypersensitivity in response to aversive stimulation during contextual fear conditioning tests. This cognitive hypersensitivity appears to be associated with alterations in emotionality (fear/anxiety) and sensory processing (shock sensitivity), rather than reflect genuine conditioning/retention effects, during aging. Supplementation of nicotinamide mononucleotide (NMN) improved the sensory processing aspect of the hypersensitivity and possibly other related behaviors. Specific knockdown of nicotinamide phosphoribosyltransferase (Nampt) in the CA1 region, but not in the dentate gyrus, recapitulates this cognitive hypersensitivity observed in old mice. We identified calcium/calmodulin-dependent serine protein kinase (Cask) as a potential downstream effector in response to age-associated NAD+ reduction in the hippocampus. Cask expression is responsive to NAD+ changes and also reduced in the hippocampus during aging. Short-term NMN supplementation can enhance Cask expression in the hippocampus of old mice. Its promoter activity is regulated in a Sirt1-dependent manner. Taken together, NAD+ reduction in the CA1 region contributes to development of age-associated cognitive dysfunction, aspects of which may be prevented or treated by enhancing NAD+ availability through supplementation of NAD+ intermediates, such as NMN. Cognitive dysfunction is one of the most concerning outcomes in global population aging. However, the mechanisms of cognitive impairment during aging remain elusive. We found that in old mice, levels of nicotinamide adenine dinucleotide (NAD+), an essential chemical for all living organisms, declined in the hippocampus, a critical part of the brain for memory and learning. We also found that age-associated hypersensitivity in cognitive and behavioral functions (cognitive hypersensitivity) was induced by reduced NAD+ availability in the hippocampus. Supplementation of nicotinamide mononucleotide (NMN), a critical chemical that is converted to NAD+, is able to mitigate the cognitive hypersensitivity observed in old mice. Our findings provide new insights into how NAD+ decline affects age-associated anxiety/depression and how such impairments can be prevented or treated by enhancing NAD+.
Collapse
Affiliation(s)
- Sean Johnson
- 1Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110 USA.,3Present Address: Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - David F Wozniak
- 2Department of Psychiatry, The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - S Imai
- 1Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
17
|
Huang K, Wang Z, Gu Y, Ji Z, Lin Z, Wang S, Pan S, Wu Y. Glibenclamide Prevents Water Diffusion Abnormality in the Brain After Cardiac Arrest in Rats. Neurocrit Care 2018; 29:128-135. [PMID: 29492757 DOI: 10.1007/s12028-018-0505-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Glibenclamide (GBC) improves neurological outcome after cardiac arrest (CA) in rats. In this study, we sought to elucidate the mechanism responsible for the neuroprotective effects of GBC by using a high-field MRI system. METHODS Male Sprague-Dawley rats were subjected to 10-min asphyxial CA followed by cardiopulmonary resuscitation (CPR). Diffusion-weighted imaging (DWI) as well as conventional T2-weighted imaging was conducted prior to CA and at 24, 48, and 72 h after resuscitation. Afterward, histological examination was performed. RESULTS Twelve rats were randomized to receive GBC (n = 6) or vehicle (n = 6) at 15 min after return of spontaneous circulation, while four rats were set as sham control. Rats that underwent CA/CPR and received vehicle exhibited distinct neurological deficit, which was alleviated by GBC treatment. Marked water diffusion abnormality as demonstrated by hyperintense DWI in vulnerable regions of the brain was detected after CA/CPR, with the most prominent hyperintense DWI observed in the hippocampal CA1 region at 72 h. Consistently, histological examination revealed neuronal swelling, dendritic injury, and activation of astrocytes and microglia in the hippocampal CA1 region in vehicle-treated rats. Correlation analysis revealed that the ADC values in the hippocampus were significantly correlated with the histological findings (all p < 0.05). CONCLUSION These results suggest that the neuroprotective effects of GBC after CA was exerted, as least in part, through prevention of water diffusion abnormality, namely brain edema.
Collapse
Affiliation(s)
- Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ziyue Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yong Gu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhong Ji
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenzhou Lin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shengnan Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yongming Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
18
|
Association of Induced Hyperhomocysteinemia with Alzheimer's Disease-Like Neurodegeneration in Rat Cortical Neurons After Global Ischemia-Reperfusion Injury. Neurochem Res 2018; 43:1766-1778. [PMID: 30003389 DOI: 10.1007/s11064-018-2592-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder that results in massive hippocampal and neocortical neuronal loss leading to dementia and eventual death. The exact cause of Alzheimer's disease is not fully explored, although a number of risk factors have been recognized, including high plasma concentration of homocysteine (Hcy). Hyperhomocysteinemia (hHcy) is considered a strong, independent risk factor for stroke and dementia. However, the molecular background underlying these mechanisms linked with hHcy and ischemic stroke is not fully understood. Paper describes rat model of global forebrain ischemia combined with the experimentally induced hHcy. Global ischemia-reperfusion injury (IRI) was developed by 4-vessels occlusion lasting for 15 min followed by reperfusion period of 72 h. hHcy was induced by subcutaneous injection of 0.45 µmol/g of Hcy in duration of 14 days. The results showed remarkable neural cell death induced by hHcy in the brain cortex and neurodegeneration is further aggravated by global IRI. We demonstrated degeneration of cortical neurons, alterations in number and morphology of tissue astrocytes and dysregulation of oxidative balance with increased membrane protein oxidation. Complementary to, an immunohistochemical analysis of tau protein and β-amyloid peptide showed that combination of hHcy with the IRI might lead to the progression of AD-like pathological features. Conclusively, these findings suggest that combination of risk factor hHcy with IRI aggravates neurodegeneration processes and leads to development of AD-like pathology in cerebral cortex.
Collapse
|
19
|
Anuncibay-Soto B, Pérez-Rodriguez D, Santos-Galdiano M, Font-Belmonte E, Ugidos IF, Gonzalez-Rodriguez P, Regueiro-Purriños M, Fernández-López A. Salubrinal and robenacoxib treatment after global cerebral ischemia. Exploring the interactions between ER stress and inflammation. Biochem Pharmacol 2018; 151:26-37. [PMID: 29499167 DOI: 10.1016/j.bcp.2018.02.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/23/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Blood reperfusion of the ischemic tissue after stroke promotes increases in the inflammatory response as well as accumulation of unfolded/misfolded proteins in the cell, leading to endoplasmic reticulum (ER) stress. Both Inflammation and ER stress are critical processes in the delayed death of the cells damaged after ischemia. The aim of this study is to check the putative synergic neuroprotective effect by combining anti-inflammatory and anti-ER stress agents after ischemia. METHODS The study was performed on a two-vessel occlusion global cerebral ischemia model. Animals were treated with salubrinal one hour after ischemia and with robenacoxib at 8 h and 32 h after ischemia. Parameters related to the integrity of the blood-brain barrier (BBB), such as matrix metalloproteinase 9 and different cell adhesion molecules (CAMs), were analyzed by qPCR at 24 h and 48 h after ischemia. Microglia and cell components of the neurovascular unit, including neurons, endothelial cells and astrocytes, were analyzed by immunofluorescence after 48 h and seven days of reperfusion. RESULTS Pharmacologic control of ER stress by salubrinal treatment after ischemia, revealed a neuroprotective effect over neurons that reduces the transcription of molecules involved in the impairment of the BBB. Robenacoxib treatment stepped neuronal demise forward, revealing a detrimental effect of this anti-inflammatory agent. Combined treatment with robenacoxib and salubrinal after ischemia prevented neuronal loss and changes in components of the neurovascular unit and microglia observed when animals were treated only with robenacoxib. CONCLUSION Combined treatment with anti-ER stress and anti-inflammatory agents is able to provide enhanced neuroprotective effects reducing glial activation, which opens new avenues in therapies against stroke.
Collapse
Affiliation(s)
| | | | | | | | - Irene F Ugidos
- Dpt. Biología Celular, Instituto Biomedicina. Universidad de León, Spain
| | | | | | | |
Collapse
|
20
|
Smith KR, Rajgor D, Hanley JG. Differential regulation of the Rac1 GTPase-activating protein (GAP) BCR during oxygen/glucose deprivation in hippocampal and cortical neurons. J Biol Chem 2017; 292:20173-20183. [PMID: 29046349 PMCID: PMC5724004 DOI: 10.1074/jbc.m117.796292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
Brain ischemia causes oxygen and glucose deprivation (OGD) in neurons, triggering a cascade of events leading to synaptic accumulation of glutamate. Excessive activation of glutamate receptors causes excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts, but the mechanisms that underlie this difference are unclear. Signaling via Rho-family small GTPases, their upstream guanine nucleotide exchange factors, and GTPase-activating proteins (GAPs) is differentially dysregulated in response to OGD/ischemia in hippocampal and cortical neurons. Increased Rac1 activity caused by OGD/ischemia contributes to neuronal death in hippocampal neurons via diverse effects on NADPH oxidase activity and dendritic spine morphology. The Rac1 guanine nucleotide exchange factor Tiam1 mediates an OGD-induced increase in Rac1 activity in hippocampal neurons; however, the identity of an antagonistic GAP remains elusive. Here we show that the Rac1 GAP breakpoint cluster region (BCR) associates with NMDA receptors (NMDARs) along with Tiam1 and that this protein complex is more abundant in hippocampal compared with cortical neurons. Although total BCR is similar in the two neuronal types, BCR is more active in hippocampal compared with cortical neurons. OGD causes an NMDAR- and Ca2+-permeable AMPAR-dependent deactivation of BCR in hippocampal but not cortical neurons. BCR knockdown occludes OGD-induced Rac1 activation in hippocampal neurons. Furthermore, disrupting the Tiam1–NMDAR interaction with a fragment of Tiam1 blocks OGD-induced Tiam1 activation but has no effect on the deactivation of BCR. This work identifies BCR as a critical player in Rac1 regulation during OGD in hippocampal neurons.
Collapse
Affiliation(s)
- Katharine R Smith
- Centre for Synaptic Plasticity and School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom; Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, Colorado 80045.
| | - Dipen Rajgor
- Centre for Synaptic Plasticity and School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Jonathan G Hanley
- Centre for Synaptic Plasticity and School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
21
|
Shi X, Li M, Huang K, Zhou S, Hu Y, Pan S, Gu Y. HMGB1 binding heptamer peptide improves survival and ameliorates brain injury in rats after cardiac arrest and cardiopulmonary resuscitation. Neuroscience 2017; 360:128-138. [PMID: 28778700 DOI: 10.1016/j.neuroscience.2017.07.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 01/09/2023]
Abstract
Excessive inflammatory response produced after cardiac arrest and cardiopulmonary resuscitation (CA/CPR) is one of major causes of cerebral injury. High mobility group box 1 (HMGB1) is a pro-inflammatory cytokine and its role in brain injury after CA/CPR is unclear. Herein we investigated whether blocking HMGB1 signaling could ease brain injury after CA/CPR. Male Sprague-Dawley rats (n=181) were subjected to 8-min Asphyxia CA model or Sham operation. The ELISA data revealed both resuscitated patients and animals had elevated HMGB1 level in sera, compared with the healthy volunteers or Sham operative rats, respectively (P<0.01). Rats successfully resuscitated from CA were then randomly treated with either membrane permeable (TAT-fused) HMGB1 binding heptamer peptide (HBHP) or Scramble peptide. Results showed that HBHP treatment markedly improved 7-day survival rate, reduced neurological deficit scores, and prevented neuronal and dendrite loss in hippocampal CA1 region. Moreover, HBHP inhibited the activation of microglia and astrocytes and downregulated the mRNA and protein expressions of proinflammatory factors. We finally blocked toll-like receptor-4 (TLR4, one of HMGB1 receptors) with a specific antagonist TAK-242 before CA induction to confirm the detrimental effect of HMGB1 signaling and found blocking TLR4 could also attenuate the neuronal degeneration, as well as reduce NF-κB-mediated inflammatory signaling. Our findings indicate that CA/CPR can induce HMGB1 release to serum, while blocking HMGB1 signaling with peptide may improve the survival and attenuate post-resuscitation brain injury in the rat model of CA/CPR. TLR4 antagonist may also offer neuroprotective effects through weakening HMGB1-mediated proinflammatory reactions.
Collapse
Affiliation(s)
- Xue Shi
- Department of Neurology, Nanfang Hospital, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Miaodan Li
- Department of Neurology, Nanfang Hospital, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Shiming Zhou
- Department of Neurology, Nanfang Hospital, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University Guangzhou, Guangdong 510515, China.
| | - Yong Gu
- Department of Neurology, Nanfang Hospital, Southern Medical University Guangzhou, Guangdong 510515, China.
| |
Collapse
|
22
|
Liu S, Dai Q, Hua R, Liu T, Han S, Li S, Li J. Determination of Brain-Regional Blood Perfusion and Endogenous cPKCγ Impact on Ischemic Vulnerability of Mice with Global Ischemia. Neurochem Res 2017; 42:2814-2825. [DOI: 10.1007/s11064-017-2294-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/19/2017] [Accepted: 05/06/2017] [Indexed: 01/12/2023]
|
23
|
Naderi Y, Sabetkasaei M, Parvardeh S, Zanjani TM. Neuroprotective effect of minocycline on cognitive impairments induced by transient cerebral ischemia/reperfusion through its anti-inflammatory and anti-oxidant properties in male rat. Brain Res Bull 2017; 131:207-213. [PMID: 28454931 DOI: 10.1016/j.brainresbull.2017.04.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 04/19/2017] [Indexed: 02/06/2023]
Abstract
Memory deficit is the most visible symptom of cerebral ischemia that is associated with loss of pyramidal cells in CA1 region of the hippocampus. Oxidative stress and inflammation may be involved in the pathogenesis of ischemia/reperfusion (I/R) damage. Minocycline, a semi-synthetic tetracycline derived antibiotic, has anti-inflammatory and antioxidant properties. We evaluated the neuroprotective effect of minocycline on memory deficit induced by cerebral I/R in rat. I/R was induced by occlusion of common carotid arteries for 20min. Minocycline (40mg/kg, i.p.) was administered once daily for 7days after I/R. Learning and memory were assessed using the Morris water maze test. Nissl staining was used to evaluate the viability of CA1 pyramidal cells. The effects of minocycline on the microglial activation was also investigated by Iba1 (Ionized calcium binding adapter molecule 1) immunostaining. The content of malondialdehyde (MDA) and pro-inflammatory cytokines (IL-1β and TNF-α) in the hippocampus were measured by thiobarbituric acid reaction substances method and ELISA, respectively. Minocycline reduced the increase in escape latency time and in swimming path length induced by cerebral I/R. Furthermore, the ischemia-induced reduction in time spent in the target quadrant during the probe trial was increased by treatment with minocycline. Histopathological results indicated that minocycline prevented pyramidal cells death and microglial activation induced by I/R. Minocycline also reduced the levels of MDA and pro-inflammatory cytokines in the hippocampus in rats subjected to I/R. Minocycline has neuroprotective effects on memory deficit induced by cerebral I/R in rat, probably via its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Yazdan Naderi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sabetkasaei
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taraneh Moini Zanjani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Hirayama K, Oshima H, Yamashita A, Sakatani K, Yoshino A, Katayama Y. Neuroprotective effects of silymarin on ischemia-induced delayed neuronal cell death in rat hippocampus. Brain Res 2016; 1646:297-303. [PMID: 27312091 DOI: 10.1016/j.brainres.2016.06.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/07/2016] [Accepted: 06/11/2016] [Indexed: 12/11/2022]
Abstract
We examined the effects of silymarin, which was extracted from Silybum marianum, on delayed neuronal cell death in the rat hippocampus. Rats were divided into four groups: sham-operated rats (sham group), rats which underwent ischemic surgery (control group), rats which were treated with silymarin before and after ischemic surgery (pre group), and rats which were treated with silymarin after ischemic surgery only (post group). We performed the ischemic surgery by occluding the bilateral carotid arteries for 20min and sacrificed the rats one week after the surgery. Silymarin was administered orally at 200mg/kg body weight. Smaller numbers of delayed cell deaths were noted in the rat CA1 region of the pre- and post-groups, and no significant difference was observed between these groups. There were few apoptotic cell deaths in all groups. Compared to the control group, significantly fewer cell deaths by autophagy were found in the pre- and post-group. We concluded that silymarin exerts a preservation effect on delayed neuronal cell death in the rat hippocampus and this effect has nothing to do with the timing of administering of silymarin.
Collapse
Affiliation(s)
- Koki Hirayama
- Department of Neurosurgery, Nihon University School of Medicine, 30-1, Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hideki Oshima
- Department of Neurosurgery, Nihon University School of Medicine, 30-1, Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Akiko Yamashita
- Division of Biology, Department of Liberal Education, Nihon University School of Medicine, 30-1, Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Kaoru Sakatani
- Laboratory of Integrative Biomedical Engineering, Department of Electrical and Electronics Engineering, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama-shi, Fukushima, 963-8642, Japan
| | - Atsuo Yoshino
- Department of Neurosurgery, Nihon University School of Medicine, 30-1, Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Yoichi Katayama
- Department of Neurosurgery, Nihon University School of Medicine, 30-1, Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| |
Collapse
|
25
|
Anuncibay-Soto B, Pérez-Rodríguez D, Santos-Galdiano M, Font E, Regueiro-Purriños M, Fernández-López A. Post-ischemic salubrinal treatment results in a neuroprotective role in global cerebral ischemia. J Neurochem 2016; 138:295-306. [PMID: 27123756 DOI: 10.1111/jnc.13651] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/07/2016] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
Abstract
This study describes the neuroprotective effect of treatment with salubrinal 1 and 24 h following 15 min of ischemia in a two-vessel occlusion model of global cerebral ischemia. The purpose of this study was to determine if salubrinal, an enhancer of the unfolded protein response, reduces the neural damage modulating the inflammatory response. The study was performed in CA1 and CA3 hippocampal areas as well as in the cerebral cortex whose different vulnerability to ischemic damage is widely described. Characterization of proteins was made by western blot, immunofluorescence, and ELISA, whereas mRNA levels were measured by Quantitative PCR. The salubrinal treatment decreased the cell demise in CA1 at 7 days as well as the levels of matrix metalloprotease 9 (MMP-9) in CA1 and cerebral cortex at 48 h and ICAM-1 and VCAM-1 cell adhesion molecules. However, increases in tumor necrosis factor α and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inflammatory markers were observed at 24 h. Glial fibrillary acidic protein levels were not modified by salubrinal treatment in CA1 and cerebral cortex. We describe a neuroprotective effect of the post-ischemic treatment with salubrinal, measured as a decrease both in CA1 cell demise and in the blood-brain barrier impairment. We hypothesize that the ability of salubrinal to counteract the CA1 cell demise is because of a reduced ability of this structure to elicit unfolded protein response which would account for its greater ischemic vulnerability. Data of both treated and non-treated animals suggest that the neurovascular unit present a structure-dependent response to ischemia and a different course time for CA1/cerebral cortex compared with CA3. Finally, our study reveals a high responsiveness of endothelial cells to salubrinal in contrast to the limited responsiveness of astrocytes. The alleviation of ER stress by enhancing UPR with salubrinal treatment reduces the ischemic damage. This effect varies across the different neurovascular unit cell types. The salubrinal neuroprotective effect on CA1 supports differences in neurovascular unit for different brain regions and involves the inflammatory response and its time course. Thus, UPR modulation could be a therapeutic target in cerebral ischemia.
Collapse
Affiliation(s)
| | | | | | - Enrique Font
- Área Biología Celular, Instituto Biomedicina, Universidad de León, León, Spain
| | | | | |
Collapse
|
26
|
Pérez-Rodríguez D, Anuncibay-Soto B, Llorente IL, Pérez-García CC, Fernández-López A. Hippocampus and cerebral cortex present a different autophagic response after oxygen and glucose deprivation in an ex vivo rat brain slice model. Neuropathol Appl Neurobiol 2016; 41:e68-79. [PMID: 24861158 DOI: 10.1111/nan.12152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/21/2014] [Indexed: 01/06/2023]
Abstract
AIMS To evaluate the neuroprotective role of autophagy in the cerebral cortex and hippocampus using an ex vivo animal model of stroke in brain slices. METHODS Brain slices were maintained for 30 min in oxygen and glucose deprivation (OGD) followed by 3 h in normoxic conditions to simulate the reperfusion that follows ischaemia in vivo (RL, reperfusion-like). Phagophore formation (Beclin 1 and LC3B) as well as autophagy flux (p62/SQSTM1, Atg5, Atg7 and polyubiquitin) markers were quantified by Western blot and/or qPCR. The release of lactate dehydrogenase (LDH) and glutamate in the medium was used as a measure of the mortality in the absence and in the presence of the autophagy inhibitor 3-methyladenine. RESULTS Striking differences in the autophagy markers were observed between the hippocampus and cerebral cortex in normoxic conditions. OGD/RL induced increases both in the phagophore formation and in the autophagy flux in the first three hours in the cerebral cortex that were not observed in the hippocampus. The blocking of autophagy increased the OGD/RL-induced mortality, increased the glutamate release in both the cerebral cortex and hippocampus and abolished the OGD-induced decrease in the polyubiquitinated proteins in the cerebral cortex. CONCLUSIONS We conclude that OGD induces a rapid autophagic response in the cerebral cortex that plays a neuroprotective role. Polyubiquitination levels and control of the glutamate release appear to be involved in the neuroprotective role of autophagy.
Collapse
Affiliation(s)
- Diego Pérez-Rodríguez
- Área de Biología Celular, Instituto de Biomedicina, Universidad de León, Leon, Spain
| | - Berta Anuncibay-Soto
- Área de Biología Celular, Instituto de Biomedicina, Universidad de León, Leon, Spain
| | - Irene L Llorente
- Área de Biología Celular, Instituto de Biomedicina, Universidad de León, Leon, Spain
| | - Carlos C Pérez-García
- Área de Medicina y Cirugía Veterinaria, Instituto de Biomedicina, Universidad de León, Leon, Spain
| | | |
Collapse
|
27
|
Xu Y, Wang J, Song X, Wei R, He F, Peng G, Luo B. Protective mechanisms of CA074-me (other than cathepsin-B inhibition) against programmed necrosis induced by global cerebral ischemia/reperfusion injury in rats. Brain Res Bull 2016; 120:97-105. [PMID: 26562519 DOI: 10.1016/j.brainresbull.2015.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
Abstract
Many studies have demonstrated the key role of lysosomes in ischemic cell death in the brain and have led to the "lysosomocentric" hypothesis. In this hypothesis, the release of cathepsin-B due to a change of lysosomal membrane permeabilization (LMP) or rupture is critical, and this can be prevented by its inhibitors CA074 and CA074-me. However, the role of CA074-me in neuronal death and its effect on the change of lysosomal membrane integrity after global cerebral ischemia/reperfusion (I/R) injury is not clear, so we investigated this here. Rat hippocampal CA1 neuronal death was evaluated after 20-min global cerebral I/R injury. CA074-me (1 μg, 10 μg) were given intracerebroventricularly 1h before ischemia or 1h post reperfusion. The changes of heat shock protein 70 (Hsp70), cathepsin-B, lysosomal-associated membrane protein 1 (LAMP-1), receptor-interacting protein 3 (RIP3), and the change of lysosomal pH were evaluated respectively. Hippocampal CA1 neuronal programmed necrosis induced by global cerebral I/R injury was prevented by CA074-me both pre-treatment and post-treatment. Diffuse cytoplasmic cathepsin-B and LAMP-1 immunostaining synchronized with the pyknotic nuclear changes 2 days post reperfusion, and a rise of lysosomal pH with the leakage of DND-153, a dye of lysosomes, after oxygen-glucose deprivation (OGD) was detected. Both of these changes demonstrated the rupture of lysosomal membrane and the leakage of cathepsin-B, and this was strongly inhibited by CA074-me pre-treatment. The overexpression and nuclear translocation of RIP3 and the reduction of NAD(+) level after I/R injury were also inhibited, while the upregulation of Hsp70 was strengthened by CA074-me pre-treatment. Delayed fulminant leakage of cathepsin-B due to lysosomal rupture is a critical harmful factor in neuronal programmed necrosis induced by 20-min global I/R injury. In addition to being an inhibitor of cathepsin-B, CA074-me may have an indirect neuroprotective effect by maintaining lysosomal membrane integrity and protecting against lysosomal rupture.
Collapse
Affiliation(s)
- Yang Xu
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Jingye Wang
- Department of Neurology, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Xinghui Song
- Core Facilities, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ruili Wei
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Guoping Peng
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Benyan Luo
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China.
| |
Collapse
|
28
|
Serrano-Puebla A, Boya P. Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease. Ann N Y Acad Sci 2015; 1371:30-44. [DOI: 10.1111/nyas.12966] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ana Serrano-Puebla
- Department of Cellular and Molecular Biology; Centro de Investigaciones Biológicas, CSIC; Madrid Spain
| | - Patricia Boya
- Department of Cellular and Molecular Biology; Centro de Investigaciones Biológicas, CSIC; Madrid Spain
| |
Collapse
|
29
|
Yan ZQ, Chen J, Xing GX, Huang JG, Hou XH, Zhang Y. Salidroside prevents cognitive impairment induced by chronic cerebral hypoperfusion in rats. J Int Med Res 2015; 43:402-11. [PMID: 25858674 DOI: 10.1177/0300060514566648] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 12/08/2014] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the effects of salidroside on cognitive dysfunction induced by chronic cerebral hypoperfusion in rats. METHODS Male Sprague-Dawley rats (n = 36) were divided into three groups (n = 12 per group): sham operation; bilateral permanent occlusion of the common carotid arteries (2-VO); 2-VO + salidroside. Rats received 20 mg/kg per day salidroside or vehicle intraperitoneal injection beginning the day before surgery and continuing until 34 days postoperatively. Cognitive function was evaluated by Morris water maze test and hippocampal long-term potentiation (LTP) measurement. Hippocampal neuronal apoptosis was evaluated via immunofluorescence. RESULTS Chronic cerebral hypoperfusion caused marked cognitive deficit and LTP inhibition. These effects were largely ameliorated by salidroside administration. Salidroside prevented caspase-3 activation, increased the ratio of Bax/Bcl-2, and reversed hippocampal neuronal loss induced by chronic cerebral hypoperfusion. CONCLUSIONS Salidroside prevents cognitive deficits caused by chronic cerebral hypoperfusion in rats, and alleviates apoptosis in the hippocampal CA1 area.
Collapse
Affiliation(s)
- Zhi-Qiang Yan
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China Department of Neurosurgery, Urumqi General Hospital of Lanzhou Military Command, Urumqi, China
| | - Jun Chen
- Department of Encephalopathy, Traditional Chinese Medicine Hospital of Shan Xi Province, Xi'an, China
| | - Guo-Xiang Xing
- Department of Neurosurgery, Urumqi General Hospital of Lanzhou Military Command, Urumqi, China
| | - Jian-Guo Huang
- Department of Neurosurgery, Urumqi General Hospital of Lanzhou Military Command, Urumqi, China
| | - Xiang-Hong Hou
- Department of Nutrition and Food Hygiene, The Fourth Military Medical University, Xi'an, China
| | - Yong Zhang
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
30
|
Rothaug M, Stroobants S, Schweizer M, Peters J, Zunke F, Allerding M, D’Hooge R, Saftig P, Blanz J. LAMP-2 deficiency leads to hippocampal dysfunction but normal clearance of neuronal substrates of chaperone-mediated autophagy in a mouse model for Danon disease. Acta Neuropathol Commun 2015; 3:6. [PMID: 25637286 PMCID: PMC4359523 DOI: 10.1186/s40478-014-0182-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/30/2014] [Indexed: 12/30/2022] Open
Abstract
The Lysosomal Associated Membrane Protein type-2 (LAMP-2) is an abundant lysosomal membrane protein with an important role in immunity, macroautophagy (MA) and chaperone-mediated autophagy (CMA). Mutations within the Lamp2 gene cause Danon disease, an X-linked lysosomal storage disorder characterized by (cardio)myopathy and intellectual dysfunction. The pathological hallmark of this disease is an accumulation of glycogen and autophagic vacuoles in cardiac and skeletal muscle that, along with the myopathy, is also present in LAMP-2-deficient mice. Intellectual dysfunction observed in the human disease suggests a pivotal role of LAMP-2 within brain. LAMP-2A, one specific LAMP-2 isoform, was proposed to be important for the lysosomal degradation of selective proteins involved in neurodegenerative diseases such as Huntington’s and Parkinson’s disease. To elucidate the neuronal function of LAMP-2 we analyzed knockout mice for neuropathological changes, MA and steady-state levels of CMA substrates. The absence of LAMP-2 in murine brain led to inflammation and abnormal behavior, including motor deficits and impaired learning. The latter abnormality points to hippocampal dysfunction caused by altered lysosomal activity, distinct accumulation of p62-positive aggregates, autophagic vacuoles and lipid storage within hippocampal neurons and their presynaptic terminals. The absence of LAMP-2 did not apparently affect MA or steady-state levels of selected CMA substrates in brain or neuroblastoma cells under physiological and prolonged starvation conditions. Our data contribute to the understanding of intellectual dysfunction observed in Danon disease patients and highlight the role of LAMP-2 within the central nervous system, particularly the hippocampus.
Collapse
|
31
|
Differential Tiam1/Rac1 activation in hippocampal and cortical neurons mediates differential spine shrinkage in response to oxygen/glucose deprivation. J Cereb Blood Flow Metab 2014; 34:1898-906. [PMID: 25248834 PMCID: PMC4269742 DOI: 10.1038/jcbfm.2014.158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 01/09/2023]
Abstract
Distinct neuronal populations show differential sensitivity to global ischemia, with hippocampal CA1 neurons showing greater vulnerability compared to cortical neurons. The mechanisms that underlie differential vulnerability are unclear, and we hypothesize that intrinsic differences in neuronal cell biology are involved. Dendritic spine morphology changes in response to ischemic insults in vivo, but cell type-specific differences and the molecular mechanisms leading to such morphologic changes are unexplored. To directly compare changes in spine size in response to oxygen/glucose deprivation (OGD) in cortical and hippocampal neurons, we used separate and equivalent cultures of each cell type. We show that cortical neurons exhibit significantly greater spine shrinkage compared to hippocampal neurons. Rac1 is a Rho-family GTPase that regulates the actin cytoskeleton and is involved in spine dynamics. We show that Rac1 and the Rac guanine nucleotide exchange factor (GEF) Tiam1 are differentially activated by OGD in hippocampal and cortical neurons. Hippocampal neurons express more Tiam1 than cortical neurons, and reducing Tiam1 expression in hippocampal neurons by shRNA enhances OGD-induced spine shrinkage. Tiam1 knockdown also reduces hippocampal neuronal vulnerability to OGD. This work defines fundamental differences in signalling pathways that regulate spine morphology in distinct neuronal populations that may have a role in the differential vulnerability to ischemia.
Collapse
|
32
|
Zhu H, Yoshimoto T, Yamashima T. Heat shock protein 70.1 (Hsp70.1) affects neuronal cell fate by regulating lysosomal acid sphingomyelinase. J Biol Chem 2014; 289:27432-43. [PMID: 25074941 PMCID: PMC4183783 DOI: 10.1074/jbc.m114.560334] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/18/2014] [Indexed: 12/17/2022] Open
Abstract
The inducible expression of heat shock protein 70.1 (Hsp70.1) plays cytoprotective roles in its molecular chaperone function. Binding of Hsp70 to an endolysosomal phospholipid, bis(monoacylglycero)phosphate (BMP), has been recently shown to stabilize lysosomal membranes by enhancing acid sphingomyelinase (ASM) activity in cancer cells. Using the monkey experimental paradigm, we have reported that calpain-mediated cleavage of oxidized Hsp70.1 causes neurodegeneration in the hippocampal cornu ammonis 1 (CA1), whereas expression of Hsp70.1 in the motor cortex without calpain activation contributes to neuroprotection. However, the molecular mechanisms of the lysosomal destabilization/stabilization determining neuronal cell fate have not been elucidated. To elucidate whether regulation of lysosomal ASM could affect the neuronal fate, we analyzed Hsp70.1-BMP binding and ASM activity by comparing the motor cortex and the CA1. We show that Hsp70.1 being localized at the lysosomal membrane, lysosomal lipid BMP levels, and the lipid binding domain of Hsp70.1 are crucial for Hsp70.1-BMP binding. In the postischemic motor cortex, Hsp70.1 being localized at the lysosomal membrane could bind to BMP without calpain activation and decreased BMP levels, resulting in increasing ASM activity and lysosomal stability. However, in the postischemic CA1, calpain activation and a concomitant decrease in the lysosomal membrane localization of Hsp70.1 and BMP levels may diminish Hsp70.1-BMP binding, resulting in decreased ASM activity and lysosomal rupture with leakage of cathepsin B into the cytosol. A TUNEL assay revealed the differential neuronal vulnerability between the CA1 and the motor cortex. These results suggest that regulation of ASM activation in vivo by Hsp70.1-BMP affects lysosomal stability and neuronal survival or death after ischemia/reperfusion.
Collapse
Affiliation(s)
- Hong Zhu
- From the Departments of Restorative Neurosurgery, Molecular Pharmacology, and
| | | | - Tetsumori Yamashima
- From the Departments of Restorative Neurosurgery, Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, Japan
| |
Collapse
|
33
|
Allard J, Paci P, Vander Elst L, Ris L. Regional and time-dependent neuroprotective effect of hypothermia following oxygen-glucose deprivation. Hippocampus 2014; 25:197-207. [DOI: 10.1002/hipo.22364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Justine Allard
- Department of Neurosciences; Research Institute for Health Sciences and Technology, University of Mons; Mons Belgium
| | - Paula Paci
- Department of Neurosciences; Research Institute for Health Sciences and Technology, University of Mons; Mons Belgium
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory; Research Institute for Health Sciences and Technology, University of Mons; Mons Belgium
| | - Laurence Ris
- Department of Neurosciences; Research Institute for Health Sciences and Technology, University of Mons; Mons Belgium
| |
Collapse
|
34
|
The role of microclot formation in an acute subarachnoid hemorrhage model in the rabbit. BIOMED RESEARCH INTERNATIONAL 2014; 2014:161702. [PMID: 25110658 PMCID: PMC4109416 DOI: 10.1155/2014/161702] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/02/2014] [Indexed: 12/21/2022]
Abstract
Background. Microvascular dysfunction and microthrombi formation are believed to contribute to development of early brain injury (EBI) after aneurysmal subarachnoid hemorrhage (SAH). Objective. This study aimed to determine (i) extent of microthrombus formation and neuronal apoptosis in the brain parenchyma using a blood shunt SAH model in rabbits; (ii) correlation of structural changes in microvessels with EBI characteristics. Methods. Acute SAH was induced using a rabbit shunt cisterna magna model. Extent of microthrombosis was detected 24 h post-SAH (n = 8) by fibrinogen immunostaining, compared to controls (n = 4). We assessed apoptosis by terminal deoxynucleotidyl transferase nick end labeling (TUNEL) in cortex and hippocampus. Results. Our results showed significantly more TUNEL-positive cells (SAH: 115 ± 13; controls: 58 ± 10; P = 0.016) and fibrinogen-positive microthromboemboli (SAH: 9 ± 2; controls: 2 ± 1; P = 0.03) in the hippocampus after aneurysmal SAH. Conclusions. We found clear evidence of early microclot formation in a rabbit model of acute SAH. The extent of microthrombosis did not correlate with early apoptosis or CPP depletion after SAH; however, the total number of TUNEL positive cells in the cortex and the hippocampus significantly correlated with mean CPP reduction during the phase of maximum depletion after SAH induction. Both microthrombosis and neuronal apoptosis may contribute to EBI and subsequent DCI.
Collapse
|
35
|
Luo C, Ren H, Wan JB, Yao X, Zhang X, He C, So KF, Kang JX, Pei Z, Su H. Enriched endogenous omega-3 fatty acids in mice protect against global ischemia injury. J Lipid Res 2014; 55:1288-97. [PMID: 24875538 DOI: 10.1194/jlr.m046466] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Indexed: 12/13/2022] Open
Abstract
Transient global cerebral ischemia, one of the consequences of cardiac arrest and cardiovascular surgery, usually leads to delayed death of hippocampal cornu Ammonis1 (CA1) neurons and cognitive deficits. Currently, there are no effective preventions or treatments for this condition. Omega-3 (ω-3) PUFAs have been shown to have therapeutic potential in a variety of neurological disorders. Here, we report that the transgenic mice that express the fat-1 gene encoding for ω-3 fatty acid desaturase, which leads to an increase in endogenous ω-3 PUFAs and a concomitant decrease in ω-6 PUFAs, were protected from global cerebral ischemia injury. The results of the study show that the hippocampal CA1 neuronal loss and cognitive deficits induced by global ischemia insult were significantly less severe in fat-1 mice than in WT mice controls. The protection against global cerebral ischemia injury was closely correlated with increased production of resolvin D1, suppressed nuclear factor-kappa B activation, and reduced generation of pro-inflammatory mediators in the hippocampus of fat-1 mice compared with WT mice controls. Our study demonstrates that fat-1 mice with high endogenous ω-3 PUFAs exhibit protective effects on hippocampal CA1 neurons and cognitive functions in a global ischemia injury model.
Collapse
Affiliation(s)
- Chuanming Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Huixia Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiaoli Yao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaojing Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, the Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou 510080, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
36
|
Oikawa S, Kobayashi H, Kitamura Y, Zhu H, Obata K, Minabe Y, Dazortsava M, Ohashi K, Tada-Oikawa S, Takahashi H, Yata K, Murata M, Yamashima T. Proteomic analysis of carbonylated proteins in the monkey substantia nigra after ischemia-reperfusion. Free Radic Res 2014; 48:694-705. [DOI: 10.3109/10715762.2014.901509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Yuki Kitamura
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Hong Zhu
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| | - Kumi Obata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Yoshio Minabe
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| | - Maryia Dazortsava
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| | - Kyoko Ohashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Saeko Tada-Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, University of Niigata,
Niigata, Japan
| | - Kenichiro Yata
- Department of Neurology, Mie University Graduate School of Medicine,
Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Tetsumori Yamashima
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| |
Collapse
|
37
|
Yabuki Y, Fukunaga K. Oral administration of glutathione improves memory deficits following transient brain ischemia by reducing brain oxidative stress. Neuroscience 2013; 250:394-407. [DOI: 10.1016/j.neuroscience.2013.07.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/07/2013] [Accepted: 07/09/2013] [Indexed: 11/16/2022]
|
38
|
Yamashima T. Reconsider Alzheimer's disease by the 'calpain-cathepsin hypothesis'--a perspective review. Prog Neurobiol 2013; 105:1-23. [PMID: 23499711 DOI: 10.1016/j.pneurobio.2013.02.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/08/2013] [Accepted: 02/28/2013] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is characterized by slowly progressive neuronal death, but its molecular cascade remains elusive for over 100 years. Since accumulation of autophagic vacuoles (also called granulo-vacuolar degenerations) represents one of the pathologic hallmarks of degenerating neurons in AD, a causative connection between autophagy failure and neuronal death should be present. The aim of this perspective review is at considering such underlying mechanism of AD that age-dependent oxidative stresses may affect the autophagic-lysosomal system via carbonylation and cleavage of heat-shock protein 70.1 (Hsp70.1). AD brains exhibit gradual but continual ischemic insults that cause perturbed Ca(2+) homeostasis, calpain activation, amyloid β deposition, and oxidative stresses. Membrane lipids such as linoleic and arachidonic acids are vulnerable to the cumulative oxidative stresses, generating a toxic peroxidation product 'hydroxynonenal' that can carbonylate Hsp70.1. Recent data advocate for dual roles of Hsp70.1 as a molecular chaperone for damaged proteins and a guardian of lysosomal integrity. Accordingly, impairments of lysosomal autophagy and stabilization may be driven by the calpain-mediated cleavage of carbonylated Hsp70.1, and this causes lysosomal permeabilization and/or rupture with the resultant release of the cell degradation enzyme, cathepsins (calpain-cathepsin hypothesis). Here, the author discusses three topics; (1) how age-related decrease in lysosomal and autophagic activities has a causal connection to programmed neuronal necrosis in sporadic AD, (2) how genetic factors such as apolipoprotein E and presenilin 1 can facilitate lysosomal destabilization in the sequential molecular events, and (3) whether a single cascade can simultaneously account for implications of all players previously reported. In conclusion, Alzheimer neuronal death conceivably occurs by the similar 'calpain-hydroxynonenal-Hsp70.1-cathepsin cascade' with ischemic neuronal death. Blockade of calpain and/or extra-lysosomal cathepsins as well as scavenging of hydroxynonenal would become effective AD therapeutic approaches.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Restorative Neurosurgery, Kanazawa University Graduate School of Medical Science, Takara-machi 13-1, Kanazawa 920-8641, Japan.
| |
Collapse
|
39
|
|