1
|
Yadav SS, Srinivasan K, Sharma SS, Datusalia AK. Decoding the Nectin Interactome: Implications for Brain Development, Plasticity, and Neurological Disorders. ACS Chem Neurosci 2025; 16:1000-1020. [PMID: 40025835 DOI: 10.1021/acschemneuro.5c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025] Open
Abstract
The nectin family of cell adhesion molecules (CAMs) comprising nectins and nectin-like molecules has emerged as a key regulator of various pivotal neural processes, including neuronal development, migration, synapse formation, and plasticity. Nectins engage in homophilic and heterophilic interactions to mediate cell-cell adhesion, contributing to the establishment and maintenance of neural circuits. Their extracellular domains facilitate trans-synaptic interactions, while intracellular domains participate in signaling cascades influencing cytoskeletal dynamics and synaptic function. The exhibition of distinct localization patterns in neurons, astrocytes, and the blood-brain barrier underscores their diverse roles in the brain. The dysregulation of nectins has been implicated in several neurological disorders, such as neurodevelopmental disorders, depression, schizophrenia, and Alzheimer's disease. This review examines the structural and functional characteristics of nectins and their distribution and molecular mechanisms governing neural connectivity and cognition. It further discusses experimental studies unraveling nectin-mediated pathophysiology and potential therapeutic interventions targeting nectin-related pathways. Collectively, this comprehensive analysis highlights the significance of nectins in brain development, function, and disorders, paving the way for future research directions and clinical implications.
Collapse
Affiliation(s)
- Shreyash Santosh Yadav
- Molecular NeuroTherapeutics Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh 226002, India
| | - Krishnamoorthy Srinivasan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Ashok Kumar Datusalia
- Molecular NeuroTherapeutics Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh 226002, India
| |
Collapse
|
2
|
Ardalan M, Chumak T, Quist A, Hermans E, Hoseinpoor Rafati A, Gravina G, Jabbari Shiadeh SM, Svedin P, Alabaf S, Hansen B, Wegener G, Westberg L, Mallard C. Reelin cells and sex-dependent synaptopathology in autism following postnatal immune activation. Br J Pharmacol 2022; 179:4400-4422. [PMID: 35474185 PMCID: PMC9545289 DOI: 10.1111/bph.15859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Autism spectrum disorders (ASD) are heterogeneous neurodevelopmental disorders with considerably increased risk in male infants born preterm and with neonatal infection. Here, we investigated the role of postnatal immune activation on hippocampal synaptopathology by targeting Reelin+ cells in mice with ASD-like behaviours. EXPERIMENTAL APPROACH C57/Bl6 mouse pups of both sexes received lipopolysaccharide (LPS, 1 mg·kg-1 ) on postnatal day (P) 5. At P45, animal behaviour was examined by marble burying and sociability test, followed by ex vivo brain MRI diffusion kurtosis imaging (DKI). Hippocampal synaptogenesis, number and morphology of Reelin+ cells, and mRNA expression of trans-synaptic genes, including neurexin-3, neuroligin-1, and cell-adhesion molecule nectin-1, were analysed at P12 and P45. KEY RESULTS Social withdrawal and increased stereotypic activities in males were related to increased mean diffusivity on MRI-DKI and overgrowth in hippocampus together with retention of long-thin immature synapses on apical dendrites, decreased volume and number of Reelin+ cells as well as reduced expression of trans-synaptic and cell-adhesion molecules. CONCLUSION AND IMPLICATIONS The study provides new insights into sex-dependent mechanisms that may underlie ASD-like behaviour in males following postnatal immune activation. We identify GABAergic interneurons as core components of dysmaturation of excitatory synapses in the hippocampus following postnatal infection and provide cellular and molecular substrates for the MRI findings with translational value.
Collapse
Affiliation(s)
- Maryam Ardalan
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Tetyana Chumak
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Alexandra Quist
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Eva Hermans
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Developmental Origins of Disease, Utrecht Brain Center and Wilhelmina Children's HospitalUtrecht UniversityUtrechtNetherlands
| | - Ali Hoseinpoor Rafati
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Giacomo Gravina
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Seyedeh Marziyeh Jabbari Shiadeh
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Pernilla Svedin
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Setareh Alabaf
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Brian Hansen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience‐SKSAarhus UniversityAarhusDenmark
| | - Gregers Wegener
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
3
|
Martín-de-Saavedra MD, Santos MD, Penzes P. Intercellular signaling by ectodomain shedding at the synapse. Trends Neurosci 2022; 45:483-498. [DOI: 10.1016/j.tins.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 12/21/2022]
|
4
|
Martín-de-Saavedra MD, Dos Santos M, Culotta L, Varea O, Spielman BP, Parnell E, Forrest MP, Gao R, Yoon S, McCoig E, Jalloul HA, Myczek K, Khalatyan N, Hall EA, Turk LS, Sanz-Clemente A, Comoletti D, Lichtenthaler SF, Burgdorf JS, Barbolina MV, Savas JN, Penzes P. Shed CNTNAP2 ectodomain is detectable in CSF and regulates Ca 2+ homeostasis and network synchrony via PMCA2/ATP2B2. Neuron 2022; 110:627-643.e9. [PMID: 34921780 PMCID: PMC8857041 DOI: 10.1016/j.neuron.2021.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022]
Abstract
Although many neuronal membrane proteins undergo proteolytic cleavage, little is known about the biological significance of neuronal ectodomain shedding (ES). Here, we show that the neuronal sheddome is detectable in human cerebrospinal fluid (hCSF) and is enriched in neurodevelopmental disorder (NDD) risk factors. Among shed synaptic proteins is the ectodomain of CNTNAP2 (CNTNAP2-ecto), a prominent NDD risk factor. CNTNAP2 undergoes activity-dependent ES via MMP9 (matrix metalloprotease 9), and CNTNAP2-ecto levels are reduced in the hCSF of individuals with autism spectrum disorder. Using mass spectrometry, we identified the plasma membrane Ca2+ ATPase (PMCA) extrusion pumps as novel CNTNAP2-ecto binding partners. CNTNAP2-ecto enhances the activity of PMCA2 and regulates neuronal network dynamics in a PMCA2-dependent manner. Our data underscore the promise of sheddome analysis in discovering neurobiological mechanisms, provide insight into the biology of ES and its relationship with the CSF, and reveal a mechanism of regulation of Ca2+ homeostasis and neuronal network synchrony by a shed ectodomain.
Collapse
Affiliation(s)
| | - Marc Dos Santos
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lorenza Culotta
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Olga Varea
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin P Spielman
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Euan Parnell
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marc P Forrest
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ruoqi Gao
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sehyoun Yoon
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Emmarose McCoig
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hiba A Jalloul
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kristoffer Myczek
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Natalia Khalatyan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth A Hall
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Liam S Turk
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Antonio Sanz-Clemente
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Davide Comoletti
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA; Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA; School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Department of Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Study, Technical University of Munich, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Jeffrey S Burgdorf
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL 60611, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Maria V Barbolina
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL 60611, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Cervero P, Vrenken K, Klose M, Rehm K, Linder S. Nectin stabilization at adherens junctions is counteracted by Rab5a-dependent endocytosis. Eur J Cell Biol 2021; 100:151184. [PMID: 34826799 DOI: 10.1016/j.ejcb.2021.151184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
Cell-cell junctions undergo constant remodeling, which is crucial for the control of vascular integrity. Indeed, transport of junctional components such as cadherins is understood in increasing depth. However, little is known about the respective pathways regulating localization of nectin at cell-cell junctions. Here, we performed an siRNA-based screen of vesicle regulators of the RabGTPase family, leading to the identification of a novel role for Rab5a in the endocytosis nectin-2 at adherens junctions of primary human endothelial cells (HUVEC). Confocal microscopy experiments revealed disordered nectin-2 localization at adherens junctions upon Rab5a depletion. In addition, internalized nectin-2 was shown to prominently localize to Rab5a-positive vesicles in both fixed and living cells. As shown previously, nectin-2 stabilization at junctions is achieved via drebrin-dependent coupling to the subcortical actin cytoskeleton. Consistently, depletion of drebrin in this study leads to enhanced internalization of nectin-2 from junctions. Strikingly, simultaneous silencing of Rab5a and drebrin restored the junctional localization of nectin-2, pointing to Rab5a as counteracting the drebrin-dependent stabilization of nectin-2 at adherens junctions. This mechanism could be further validated by transendothelial resistance measurements. Collectively, our results identify Rab5a as a key player in the endocytosis of nectin-2 and thus in the regulation of adherens junction integrity in primary human endothelial cells.
Collapse
Affiliation(s)
- Pasquale Cervero
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Kirsten Vrenken
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, P.O.Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Matthias Klose
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Kerstin Rehm
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
6
|
Abstract
Nectins are immunoglobulin-like cell adhesion molecules constituting a family with four members, nectin-1, nectin-2, nectin-3, and nectin-4. In the brain, nectin-2 as well as nectin-1 and nectin-3 are expressed whereas nectin-4 is hardly expressed. In the nervous system, physiological functions of nectin-1 and nectin-3, such as synapse formation, mossy fiber trajectory regulation, interneurite affinity, contextual fear memory formation, and stress-related mental disorders, have been revealed. Nectin-2 is ubiquitously expressed in non-neuronal tissues and various nectin-2 functions in non-nervous systems have been extensively investigated, but nectin-2 functions in the brain have not been revealed until recently. Recent findings have revealed that nectin-2 is expressed in the specific areas of the brain and plays important roles, such as homeostasis of astrocytes and neurons and the formation of synapses. Moreover, a single nucleotide polymorphism in the human NECTIN2 gene is associated with Alzheimer's disease. We here summarize recent progress in our understanding of nectin-2 functions in the brain.
Collapse
|
7
|
MT3-MMP Promotes Excitatory Synapse Formation by Promoting Nogo-66 Receptor Ectodomain Shedding. J Neurosci 2017; 38:518-529. [PMID: 29196321 DOI: 10.1523/jneurosci.0962-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/23/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022] Open
Abstract
Cell-surface molecules are dynamically regulated at the synapse to assemble and disassemble adhesive contacts that are important for synaptogenesis and for tuning synaptic transmission. Metalloproteinases dynamically regulate cellular behaviors through the processing of cell surface molecules. In the present study, we evaluated the role of membrane-type metalloproteinases (MT-MMPs) in excitatory synaptogenesis. We find that MT3-MMP and MT5-MMP are broadly expressed in the mouse cerebral cortex and that MT3-MMP loss-of-function interferes with excitatory synapse development in dissociated cortical neurons and in vivo We identify Nogo-66 receptor (NgR1) as an MT3-MMP substrate that is required for MT3-MMP-dependent synapse formation. Introduction of the shed ectodomain of NgR1 is sufficient to accelerate excitatory synapse formation in dissociated cortical neurons and in vivo Together, our findings support a role for MT3-MMP-dependent shedding of NgR1 in regulating excitatory synapse development.SIGNIFICANCE STATEMENT In this study, we identify MT3-MMP, a membrane-bound zinc protease, to be necessary for the development of excitatory synapses in cortical neurons. We identify Nogo-66 receptors (NgR1) as a downstream target of MT3-MMP proteolytic activity. Furthermore, processing of surface NgR1 by MT3-MMP generates a soluble ectodomain fragment that accelerates the formation of excitatory synapses. We propose that MT3-MMP activity and NgR1 shedding could stimulate circuitry remodeling in the adult brain and enhance functional connectivity after brain injury.
Collapse
|
8
|
Tien WS, Chen JH, Wu KP. SheddomeDB: the ectodomain shedding database for membrane-bound shed markers. BMC Bioinformatics 2017; 18:42. [PMID: 28361715 PMCID: PMC5374707 DOI: 10.1186/s12859-017-1465-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A number of membrane-anchored proteins are known to be released from cell surface via ectodomain shedding. The cleavage and release of membrane proteins has been shown to modulate various cellular processes and disease pathologies. Numerous studies revealed that cell membrane molecules of diverse functional groups are subjected to proteolytic cleavage, and the released soluble form of proteins may modulate various signaling processes. Therefore, in addition to the secreted protein markers that undergo secretion through the secretory pathway, the shed membrane proteins may comprise an additional resource of noninvasive and accessible biomarkers. In this context, identifying the membrane-bound proteins that will be shed has become important in the discovery of clinically noninvasive biomarkers. Nevertheless, a data repository for biological and clinical researchers to review the shedding information, which is experimentally validated, for membrane-bound protein shed markers is still lacking. RESULTS In this study, the database SheddomeDB was developed to integrate publicly available data of the shed membrane proteins. A comprehensive literature survey was performed to collect the membrane proteins that were verified to be cleaved or released in the supernatant by immunological-based validation experiments. From 436 studies on shedding, 401 validated shed membrane proteins were included, among which 199 shed membrane proteins have not been annotated or validated yet by existing cleavage databases. SheddomeDB attempted to provide a comprehensive shedding report, including the regulation of shedding machinery and the related function or diseases involved in the shedding events. In addition, our published tool ShedP was embedded into SheddomeDB to support researchers for predicting the shedding event on unknown or unrecorded membrane proteins. CONCLUSIONS To the best of our knowledge, SheddomeDB is the first database for the identification of experimentally validated shed membrane proteins and currently may provide the most number of membrane proteins for reviewing the shedding information. The database included membrane-bound shed markers associated with numerous cellular processes and diseases, and some of these markers are potential novel markers because they are not annotated or validated yet in other databases. SheddomeDB may provide a useful resource for discovering membrane-bound shed markers. The interactive web of SheddomeDB is publicly available at http://bal.ym.edu.tw/SheddomeDB/ .
Collapse
Affiliation(s)
- Wei-Sheng Tien
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
| | - Jun-Hong Chen
- Department of Computer Science, National Taipei University of Education, Taipei, 106, Taiwan
| | - Kun-Pin Wu
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
9
|
Nagappan-Chettiar S, Johnson-Venkatesh EM, Umemori H. Activity-dependent proteolytic cleavage of cell adhesion molecules regulates excitatory synaptic development and function. Neurosci Res 2017; 116:60-69. [PMID: 27965136 PMCID: PMC5376514 DOI: 10.1016/j.neures.2016.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 01/21/2023]
Abstract
Activity-dependent remodeling of neuronal connections is critical to nervous system development and function. These processes rely on the ability of synapses to detect neuronal activity and translate it into the appropriate molecular signals. One way to convert neuronal activity into downstream signaling is the proteolytic cleavage of cell adhesion molecules (CAMs). Here we review studies demonstrating the mechanisms by which proteolytic processing of CAMs direct the structural and functional remodeling of excitatory glutamatergic synapses during development and plasticity. Specifically, we examine how extracellular proteolytic cleavage of CAMs switches on or off molecular signals to 1) permit, drive, or restrict synaptic maturation during development and 2) strengthen or weaken synapses during adult plasticity. We will also examine emerging studies linking improper activity-dependent proteolytic processing of CAMs to neurological disorders such as schizophrenia, brain tumors, and Alzheimer's disease. Together these findings suggest that the regulation of activity-dependent proteolytic cleavage of CAMs is vital to proper brain development and lifelong function.
Collapse
Affiliation(s)
- Sivapratha Nagappan-Chettiar
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Erin M Johnson-Venkatesh
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Boylan KL, Buchanan PC, Manion RD, Shukla DM, Braumberger K, Bruggemeyer C, Skubitz AP. The expression of Nectin-4 on the surface of ovarian cancer cells alters their ability to adhere, migrate, aggregate, and proliferate. Oncotarget 2017; 8:9717-9738. [PMID: 28038455 PMCID: PMC5354766 DOI: 10.18632/oncotarget.14206] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022] Open
Abstract
The cell adhesion molecule Nectin-4 is overexpressed in epithelial cancers, including ovarian cancer. The objective of this study was to determine the biological significance of Nectin-4 in the adhesion, aggregation, migration, and proliferation of ovarian cancer cells. Nectin-4 and its binding partner Nectin-1 were detected in patients' primary tumors, omental metastases, and ascites cells. The human cell lines NIH:OVCAR5 and CAOV3 were genetically modified to alter Nectin-4 expression. Cells that overexpressed Nectin-4 adhered to Nectin-1 in a concentration and time-dependent manner, and adhesion was inhibited by antibodies to Nectin-4 and Nectin-1, as well as synthetic Nectin peptides. In functional assays, CAOV3 cells with Nectin-4 knock-down were unable to form spheroids and migrated more slowly than CAOV3 parental cells expressing Nectin-4. NIH:OVCAR5 parental cells proliferated more rapidly, migrated faster, and formed larger spheroids than either the Nectin-4 knock-down or over-expressing cells. Parental cell lines expressed higher levels of epithelial markers and lower levels of mesenchymal markers compared to Nectin-4 knock-down cells, suggesting a role for Nectin-4 in epithelial-mesenchymal transition. Our results demonstrate that Nectin-4 promotes cell-cell adhesion, migration, and proliferation. Understanding the biology of Nectin-4 in ovarian cancer progression is critical to facilitate its development as a novel therapeutic target.
Collapse
Affiliation(s)
- Kristin L.M. Boylan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Petra C. Buchanan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Rory D. Manion
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Dip M. Shukla
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kelly Braumberger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Cody Bruggemeyer
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Amy P.N. Skubitz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Nectins and nectin-like molecules (Necls): Recent findings and their role and regulation in spermatogenesis. Semin Cell Dev Biol 2016; 59:54-61. [DOI: 10.1016/j.semcdb.2016.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 12/29/2022]
|
12
|
Conant K, Allen M, Lim ST. Activity dependent CAM cleavage and neurotransmission. Front Cell Neurosci 2015; 9:305. [PMID: 26321910 PMCID: PMC4531370 DOI: 10.3389/fncel.2015.00305] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/27/2015] [Indexed: 12/13/2022] Open
Abstract
Spatially localized proteolysis represents an elegant means by which neuronal activity dependent changes in synaptic structure, and thus experience dependent learning and memory, can be achieved. In vitro and in vivo studies suggest that matrix metalloproteinase and adamalysin activity is concentrated at the cell surface, and emerging evidence suggests that increased peri-synaptic expression, release and/or activation of these proteinases occurs with enhanced excitatory neurotransmission. Synaptically expressed cell adhesion molecules (CAMs) could therefore represent important targets for neuronal activity-dependent proteolysis. Several CAM subtypes are expressed at the synapse, and their cleavage can influence the efficacy of synaptic transmission through a variety of non-mutually exclusive mechanisms. In the following review, we discuss mechanisms that regulate neuronal activity-dependent synaptic CAM shedding, including those that may be calcium dependent. We also highlight CAM targets of activity-dependent proteolysis including neuroligin and intercellular adhesion molecule-5 (ICAM-5). We include discussion focused on potential consequences of synaptic CAM shedding, with an emphasis on interactions between soluble CAM cleavage products and specific pre- and post-synaptic receptors.
Collapse
Affiliation(s)
- Katherine Conant
- Department of Neuroscience and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| | - Megan Allen
- Department of Neuroscience and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| | - Seung T Lim
- Department of Neuroscience and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| |
Collapse
|
13
|
Wójtowicz T, Brzdąk P, Mozrzymas JW. Diverse impact of acute and long-term extracellular proteolytic activity on plasticity of neuronal excitability. Front Cell Neurosci 2015; 9:313. [PMID: 26321914 PMCID: PMC4530619 DOI: 10.3389/fncel.2015.00313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022] Open
Abstract
Learning and memory require alteration in number and strength of existing synaptic connections. Extracellular proteolysis within the synapses has been shown to play a pivotal role in synaptic plasticity by determining synapse structure, function, and number. Although synaptic plasticity of excitatory synapses is generally acknowledged to play a crucial role in formation of memory traces, some components of neural plasticity are reflected by nonsynaptic changes. Since information in neural networks is ultimately conveyed with action potentials, scaling of neuronal excitability could significantly enhance or dampen the outcome of dendritic integration, boost neuronal information storage capacity and ultimately learning. However, the underlying mechanism is poorly understood. With this regard, several lines of evidence and our most recent study support a view that activity of extracellular proteases might affect information processing in neuronal networks by affecting targets beyond synapses. Here, we review the most recent studies addressing the impact of extracellular proteolysis on plasticity of neuronal excitability and discuss how enzymatic activity may alter input-output/transfer function of neurons, supporting cognitive processes. Interestingly, extracellular proteolysis may alter intrinsic neuronal excitability and excitation/inhibition balance both rapidly (time of minutes to hours) and in long-term window. Moreover, it appears that by cleavage of extracellular matrix (ECM) constituents, proteases may modulate function of ion channels or alter inhibitory drive and hence facilitate active participation of dendrites and axon initial segments (AISs) in adjusting neuronal input/output function. Altogether, a picture emerges whereby both rapid and long-term extracellular proteolysis may influence some aspects of information processing in neurons, such as initiation of action potential, spike frequency adaptation, properties of action potential and dendritic backpropagation.
Collapse
Affiliation(s)
- Tomasz Wójtowicz
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland
| | - Patrycja Brzdąk
- Department of Animal Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland ; Department of Animal Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland
| |
Collapse
|
14
|
Nava P, Kamekura R, Nusrat A. Cleavage of transmembrane junction proteins and their role in regulating epithelial homeostasis. Tissue Barriers 2014; 1:e24783. [PMID: 24665393 PMCID: PMC3879235 DOI: 10.4161/tisb.24783] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 02/07/2023] Open
Abstract
Epithelial tissues form a selective barrier that separates the external environment from the internal tissue milieu. Single epithelial cells are densely packed and associate via distinct intercellular junctions. Intercellular junction proteins not only control barrier properties of the epithelium but also play an important role in regulating epithelial homeostasis that encompasses cell proliferation, migration, differentiation and regulated shedding. Recent studies have revealed that several proteases target epithelial junction proteins during physiological maturation as well as in pathologic states such as inflammation and cancer. This review discusses mechanisms and biological consequences of transmembrane junction protein cleavage. The influence of junction protein cleavage products on pathogenesis of inflammation and cancer is discussed.
Collapse
Affiliation(s)
- Porfirio Nava
- Epithelial Pathobiology and Mucosal Inflammation Research Unit; Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA ; Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV); México DF, Mexico
| | - Ryuta Kamekura
- Epithelial Pathobiology and Mucosal Inflammation Research Unit; Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Asma Nusrat
- Epithelial Pathobiology and Mucosal Inflammation Research Unit; Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| |
Collapse
|
15
|
Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions. J Neurosci 2013; 33:12915-28, 12928a. [PMID: 23926248 DOI: 10.1523/jneurosci.5910-12.2013] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The metalloproteinase ADAM10 is of importance for Notch-dependent cortical brain development. The protease is tightly linked with α-secretase activity toward the amyloid precursor protein (APP) substrate. Increasing ADAM10 activity is suggested as a therapy to prevent the production of the neurotoxic amyloid β (Aβ) peptide in Alzheimer's disease. To investigate the function of ADAM10 in postnatal brain, we generated Adam10 conditional knock-out (A10cKO) mice using a CaMKIIα-Cre deleter strain. The lack of ADAM10 protein expression was evident in the brain cortex leading to a reduced generation of sAPPα and increased levels of sAPPβ and endogenous Aβ peptides. The A10cKO mice are characterized by weight loss and increased mortality after weaning associated with seizures. Behavioral comparison of adult mice revealed that the loss of ADAM10 in the A10cKO mice resulted in decreased neuromotor abilities and reduced learning performance, which were associated with altered in vivo network activities in the hippocampal CA1 region and impaired synaptic function. Histological and ultrastructural analysis of ADAM10-depleted brain revealed astrogliosis, microglia activation, and impaired number and altered morphology of postsynaptic spine structures. A defect in spine morphology was further supported by a reduction of the expression of NMDA receptors subunit 2A and 2B. The reduced shedding of essential postsynaptic cell adhesion proteins such as N-Cadherin, Nectin-1, and APP may explain the postsynaptic defects and the impaired learning, altered network activity, and synaptic plasticity of the A10cKO mice. Our study reveals that ADAM10 is instrumental for synaptic and neuronal network function in the adult murine brain.
Collapse
|
16
|
Fantin M, van der Kooij MA, Grosse J, Krummenacher C, Sandi C. A key role for nectin-1 in the ventral hippocampus in contextual fear memory. PLoS One 2013; 8:e56897. [PMID: 23418609 PMCID: PMC3572046 DOI: 10.1371/journal.pone.0056897] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/15/2013] [Indexed: 01/25/2023] Open
Abstract
Nectins are cell adhesion molecules that are widely expressed in the brain. Nectin expression shows a dynamic spatiotemporal regulation, playing a role in neural migratory processes during development. Nectin-1 and nectin-3 and their heterophilic trans-interactions are important for the proper formation of synapses. In the hippocampus, nectin-1 and nectin-3 localize at puncta adherentia junctions and may play a role in synaptic plasticity, a mechanism essential for memory and learning. We evaluated the potential involvement of nectin-1 and nectin-3 in memory consolidation using an emotional learning paradigm. Rats trained for contextual fear conditioning showed transient nectin-1—but not nectin-3—protein upregulation in synapse-enriched hippocampal fractions at about 2 h posttraining. The upregulation of nectin-1 was found exclusively in the ventral hippocampus and was apparent in the synaptoneurosomal fraction. This upregulation was induced by contextual fear conditioning but not by exposure to context or shock alone. When an antibody against nectin-1, R165, was infused in the ventral-hippocampus immediately after training, contextual fear memory was impaired. However, treatment with the antibody in the dorsal hippocampus had no effect in contextual fear memory formation. Similarly, treatment with the antibody in the ventral hippocampus did not interfere with acoustic memory formation. Further control experiments indicated that the effects of ventral hippocampal infusion of the nectin-1 antibody in contextual fear memory cannot be ascribed to memory non-specific effects such as changes in anxiety-like behavior or locomotor behavior. Therefore, we conclude that nectin-1 recruitment to the perisynaptic environment in the ventral hippocampus plays an important role in the formation of contextual fear memories. Our results suggest that these mechanisms could be involved in the connection of emotional and contextual information processed in the amygdala and dorsal hippocampus, respectively, thus opening new venues for the development of treatments to psychopathological alterations linked to impaired contextualization of emotions.
Collapse
Affiliation(s)
- Martina Fantin
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
| | - Michael A. van der Kooij
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
| | - Claude Krummenacher
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Rehm K, Panzer L, van Vliet V, Genot E, Linder S. Drebrin preserves endothelial integrity by stabilizing nectin at adherens junctions. J Cell Sci 2013; 126:3756-69. [DOI: 10.1242/jcs.129437] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulation of cell-cell contacts is essential for integrity of the vascular endothelium. Here, a critical role of the F-actin binding protein drebrin in maintaining endothelial integrity is revealed under conditions mimicking vascular flow. Drebrin knockdown leads to weakening of cell-cell contacts, characterized by loss of nectin from adherens junctions and its subsequent lysosomal degradation. Immunoprecipitation, FRAP and mitochondrial retargeting experiments show that nectin stabilization occurs through a chain of interactions: drebrin binding to F-actin, interaction of drebrin and afadin through their polyproline and PR1-2 regions, and recruitment of nectin through afadin's PDZ region. Key elements are drebrin's modules that confer binding to afadin and F-actin. Evidence is provided by constructs containing afadin's PDZ region coupled to drebrin's F-actin binding region or to lifeact, which restore junctional nectin under knockdown of drebrin or of both drebrin and afadin. Drebrin, containing binding sites for both afadin and F-actin, is thus uniquely equipped to stabilize nectin at endothelial junctions and to preserve endothelial integrity under vascular flow.
Collapse
|
18
|
Bajor M, Kaczmarek L. Proteolytic remodeling of the synaptic cell adhesion molecules (CAMs) by metzincins in synaptic plasticity. Neurochem Res 2012; 38:1113-21. [PMID: 23124395 PMCID: PMC3653053 DOI: 10.1007/s11064-012-0919-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 09/19/2012] [Accepted: 10/25/2012] [Indexed: 12/31/2022]
Abstract
Cell adhesion molecules participate in the formation, maturation, function and plasticity of synaptic connections. The growing body of evidence indicates that in the regulation of the synaptic plasticity, in which these molecules play pivotal role, also the proteolytic processes are involved. This review focuses on extracellular proteolysis of the cell adhesion molecules by specific subgroup of the matrix metalloproteinases, a disintegrin and metalloproteases and a disintegrin and metalloproteinase with thrombospondin motifs, jointly referred to as metzincins, in driving coordinated synaptic structural and functional modifications underlying synaptic plasticity in the adult brain.
Collapse
Affiliation(s)
- Malgorzata Bajor
- Laboratory of Neurobiology, Nencki Institute, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | | |
Collapse
|
19
|
Bojesen KB, Clausen O, Rohde K, Christensen C, Zhang L, Li S, Køhler L, Nielbo S, Nielsen J, Gjørlund MD, Poulsen FM, Bock E, Berezin V. Nectin-1 binds and signals through the fibroblast growth factor receptor. J Biol Chem 2012; 287:37420-33. [PMID: 22955284 DOI: 10.1074/jbc.m112.345215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nectins belong to a family of immunoglobulin (Ig)-like cell-adhesion molecules comprising four members, nectin-1 through nectin-4. Nectins are involved in formation of the mechanical adhesive puncta adherentia junctions of synapses. Nectins share the same overall structural topology with an extracellular region containing three Ig modules, a transmembrane region, and a cytoplasmic region. In nectin-1, the first and second Ig module in the extracellular region are necessary for the trans-interaction with nectin-3 and formation of cis-dimers, respectively. The function of the third Ig module of nectin-1 remains unknown. We here report the structure in solution of the third, membrane-proximal Ig module of mouse nectin-1 (nectin-1 Ig3) solved by means of nuclear magnetic resonance (NMR) spectroscopy. It belongs to the C1 set of the Ig superfamily. Nectin-1 Ig3 was produced as a recombinant protein and induced neurite outgrowth in primary cultures of hippocampal and cerebellar granule neurons, an effect abolished by treatment with the fibroblast growth factor receptor (FGFR) inhibitor SU5402, or by transfection with a dominant-negative FGFR1 construct. We showed by surface plasmon resonance (SPR) analysis that nectin-1 Ig3 directly interacted with various isoforms of FGFR. Nectin-1 Ig3 induced phosphorylation of FGFR1c in the same manner as the whole nectin-1 ectodomain, and promoted survival of cerebellar granule neurons induced to undergo apoptosis. Finally, we constructed a peptide, nectide, by employing in silico modeling of various FGFR ligand-binding sites. Nectide mimicked all the effects of nectin-1 Ig3. We suggest that FGFR is a downstream signaling partner of nectin-1.
Collapse
Affiliation(s)
- Kirsten B Bojesen
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, Blegdamsvej 3C, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Niedringhaus M, Chen X, Dzakpasu R, Conant K. MMPs and soluble ICAM-5 increase neuronal excitability within in vitro networks of hippocampal neurons. PLoS One 2012; 7:e42631. [PMID: 22912716 PMCID: PMC3418258 DOI: 10.1371/journal.pone.0042631] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/09/2012] [Indexed: 12/16/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are released from neurons in an activity dependent manner. Published studies suggest their activity is important to varied forms of learning and memory. At least one MMP can stimulate an increase in the size of dendritic spines, structures which represent the post synaptic component for a large number of glutamatergic synapses. This change may be associated with increased synaptic glutamate receptor incorporation, and an increased amplitude and/or frequency of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) mini excitatory post-synaptic currents (EPSCs). An associated increase in the probability of action potential occurrence would be expected. While the mechanism(s) by which MMPs may influence synaptic structure and function are not completely understood, MMP dependent shedding of specific cell adhesion molecules (CAMs) could play an important role. CAMs are ideally positioned to be cleaved by synaptically released MMPs, and shed N terminal domains could potentially interact with previously unengaged integrins to stimulate dendritic actin polymerization with spine expansion. In the present study, we have used multielectrode arrays (MEAs) to investigate MMP and soluble CAM dependent changes in neuronal activity recorded from hippocampal cultures. We have focused on intercellular adhesion molecule-5 (ICAM-5) in particular, as this CAM is expressed on glutamatergic dendrites and shed in an MMP dependent manner. We show that chemical long-term potentiation (cLTP) evoked changes in recorded activity, and the dynamics of action potential bursts in particular, are altered by MMP inhibition. A blocking antibody to β1 integrins has a similar effect. We also show that the ectodomain of ICAM-5 can stimulate β1 integrin dependent increases in spike counts and burst number. These results support a growing body of literature suggesting that MMPs have important effects on neuronal excitability. They also support the possibility that MMP dependent shedding of specific synaptic CAMs can contribute to these effects.
Collapse
Affiliation(s)
- Mark Niedringhaus
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Xin Chen
- Department of Physics, Georgetown University, Washington, District of Columbia, United States of America
| | - Rhonda Dzakpasu
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, United States of America
- Department of Physics, Georgetown University, Washington, District of Columbia, United States of America
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, United States of America
- * E-mail: (KC); (RD)
| | - Katherine Conant
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, United States of America
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, United States of America
- * E-mail: (KC); (RD)
| |
Collapse
|
21
|
Bajor M, Michaluk P, Gulyassy P, Kekesi AK, Juhasz G, Kaczmarek L. Synaptic cell adhesion molecule-2 and collapsin response mediator protein-2 are novel members of the matrix metalloproteinase-9 degradome. J Neurochem 2012; 122:775-88. [DOI: 10.1111/j.1471-4159.2012.07829.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|