1
|
Nheu D, Petratos S. How does Nogo-A signalling influence mitochondrial function during multiple sclerosis pathogenesis? Neurosci Biobehav Rev 2024; 163:105767. [PMID: 38885889 DOI: 10.1016/j.neubiorev.2024.105767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Multiple sclerosis (MS) is a severe neurological disorder that involves inflammation in the brain, spinal cord and optic nerve with key disabling neuropathological outcomes being axonal damage and demyelination. When degeneration of the axo-glial union occurs, a consequence of inflammatory damage to central nervous system (CNS) myelin, dystrophy and death can lead to large membranous structures from dead oligodendrocytes and degenerative myelin deposited in the extracellular milieu. For the first time, this review covers mitochondrial mechanisms that may be operative during MS-related neurodegenerative changes directly activated during accumulating extracellular deposits of myelin associated inhibitory factors (MAIFs), that include the potent inhibitor of neurite outgrowth, Nogo-A. Axonal damage may occur when Nogo-A binds to and signals through its cognate receptor, NgR1, a multimeric complex, to initially stall axonal transport and limit the delivery of important growth-dependent cargo and subcellular organelles such as mitochondria for metabolic efficiency at sites of axo-glial disintegration as a consequence of inflammation. Metabolic efficiency in axons fails during active demyelination and progressive neurodegeneration, preceded by stalled transport of functional mitochondria to fuel axo-glial integrity.
Collapse
Affiliation(s)
- Danica Nheu
- Department of Neuroscience, School of Translational Medicine, Monash University, Prahran, VIC 3004, Australia
| | - Steven Petratos
- Department of Neuroscience, School of Translational Medicine, Monash University, Prahran, VIC 3004, Australia.
| |
Collapse
|
2
|
Dupree JL, Paez PM, Tiwari-Woodruff SK, Denton TT, Hensley K, Angeliu CG, Boullerne AI, Kalinin S, Egge S, Cheli VT, Denaroso G, Atkinson KC, Feri M, Feinstein DL. Lanthionine Ketimine Ethyl Ester Accelerates Remyelination in a Mouse Model of Multiple Sclerosis. ASN Neuro 2022; 14:17590914221112352. [PMID: 35791633 PMCID: PMC9272172 DOI: 10.1177/17590914221112352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although over 20 disease modifying therapies are approved to treat Multiple Sclerosis (MS), these do not increase remyelination of demyelinated axons or mitigate axon damage. Previous studies showed that lanthionine ketenamine ethyl ester (LKE) reduces clinical signs in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS and increased maturation of oligodendrocyte (OL) progenitor cells (OPCs) in vitro. In the current study, we used the cuprizone (CPZ) demyelination model of MS to test if LKE could increase remyelination. The corpus callosum (CC) and somatosensory cortex was examined by immunohistochemistry (IHC), electron microscopy and for mRNA expression changes in mice provided 5 weeks of CPZ diet followed by 2 weeks of normal diet in the presence of LKE or vehicle. A significant increase in the number of myelinated axons, and increased myelin thickness was observed in the CC of LKE-treated groups compared to vehicle-treated groups. LKE also increased myelin basic protein and proteolipid protein expression in the CC and cortex, and increased the number of mature OLs in the cortex. In contrast, LKE did not increase the percentage of proliferating OPCs suggesting effects on OPC survival and differentiation but not proliferation. The effects of LKE on OL maturation and remyelination were supported by similar changes in their relative mRNA levels. Interestingly, LKE did not have significant effects on GFAP or Iba1 immunostaining or mRNA levels. These findings suggest that remyelinating actions of LKE can potentially be formulated to induce remyelination in neurological diseases associated with demyelination including MS.
Collapse
Affiliation(s)
- Jeffrey L. Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA,Research Service, HH McGuire VA Medical Center, Richmond, VA, USA
| | - Pablo M. Paez
- Institute for Myelin and Glia Exploration, Department of Pharmacology and
Toxicology, University at Buffalo, NY, USA
| | - Seema K. Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine at the University of California
Riverside, Riverside, CA, USA
| | - Travis T. Denton
- Department of Pharmaceutical Sciences, College of Pharmacy &
Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA,
USA,Department of Translational Medicine and Physiology, Elson S. Floyd College
of Medicine, Washington State University Health Sciences Spokane, Spokane, WA, USA,Steve Gleason Institute for Neuroscience, Washington State University Health Sciences
Spokane, Spokane, WA, USA
| | - Kenneth Hensley
- Arkansas College of Osteopathic
Medicine, Fort Smith, AR, USA
| | - Christina G. Angeliu
- Institute for Myelin and Glia Exploration, Department of Pharmacology and
Toxicology, University at Buffalo, NY, USA
| | | | - Sergey Kalinin
- Department Anesthesiology, University of Illinois, Chicago, IL, USA
| | - Sophia Egge
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Veronica T. Cheli
- Institute for Myelin and Glia Exploration, Department of Pharmacology and
Toxicology, University at Buffalo, NY, USA
| | - Giancarlo Denaroso
- Institute for Myelin and Glia Exploration, Department of Pharmacology and
Toxicology, University at Buffalo, NY, USA
| | - Kelley C. Atkinson
- Division of Biomedical Sciences, School of Medicine at the University of California
Riverside, Riverside, CA, USA
| | - Micah Feri
- Division of Biomedical Sciences, School of Medicine at the University of California
Riverside, Riverside, CA, USA
| | - Douglas L. Feinstein
- Department Anesthesiology, University of Illinois, Chicago, IL, USA,Jesse Brown VA Medical Center, Chicago, IL, USA,Douglas L. Feinstein, Department of Anesthesiology,
University of Illinois, 835 South Wolcott Avenue, MC 513, Chicago IL, 60612, USA.
| |
Collapse
|
3
|
Zhu X, Yao Y, Yang J, Zhang C, Li X, Zhang A, Liu X, Zhang C, Gan G. ADAM10 suppresses demyelination and reduces seizure susceptibility in cuprizone-induced demyelination model. Free Radic Biol Med 2021; 171:26-41. [PMID: 33965566 DOI: 10.1016/j.freeradbiomed.2021.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/18/2021] [Accepted: 05/02/2021] [Indexed: 02/06/2023]
Abstract
The metalloproteinase ADAM10 is the most important amyloid precursor protein (APP) α-secretase, preventing the deposit of neurotoxic amyloid β (Aβ) peptide and generating a soluble APP fragment (sAPPα) with neurotrophic functions. Recent studies have suggested that ADAM10 also play a role in the pathogenesis of inflammatory CNS diseases, such as multiple sclerosis (MS). Demyelination is the hallmarks of MS but the mechanisms involved remain unclear. Here in this study, we examined the role that ADAM10 might play in the cuprizone-induced demyelination model. Our results demonstrated that ADAM10 expression and sAPPα production were significantly reduced in the corpus callosum in response to cuprizone treatment. Overexpression of ADAM10 increased sAPPα production and suppressed demyelination as well as neuroinflammation and oxidative stress in cuprizone-induced demyelination model. Pharmacological inhibition of ADAM10 activity, however, abrogates the protective effect of ADAM10 against demyelination, neuroinflammation and oxidative stress. It has been reported that CNS demyelination may induce seizure activity. Here, we found that overexpression of ADAM10 reduced seizure susceptibility in cuprizone-induced demyelination model, suggesting that ADAM10-derived sAPPα suppresses demyelination and reduces seizure susceptibility via ameliorating neuroinflammation and oxidative stress in cuprizone-induced demyelination model.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| | - Yuanyuan Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Jiurong Yang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Canyu Zhang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Xinyan Li
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Xiufang Liu
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Chenchen Zhang
- Transmission Electron Microscopy Center, Medical School of Southeast University, Nanjing, China
| | - Guangming Gan
- Transmission Electron Microscopy Center, Medical School of Southeast University, Nanjing, China; Department of Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
4
|
Thomason EJ, Escalante M, Osterhout DJ, Fuss B. The oligodendrocyte growth cone and its actin cytoskeleton: A fundamental element for progenitor cell migration and CNS myelination. Glia 2019; 68:1329-1346. [PMID: 31696982 DOI: 10.1002/glia.23735] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023]
Abstract
Cells of the oligodendrocyte (OLG) lineage engage in highly motile behaviors that are crucial for effective central nervous system (CNS) myelination. These behaviors include the guided migration of OLG progenitor cells (OPCs), the surveying of local environments by cellular processes extending from differentiating and pre-myelinating OLGs, and during the process of active myelin wrapping, the forward movement of the leading edge of the myelin sheath's inner tongue along the axon. Almost all of these motile behaviors are driven by actin cytoskeletal dynamics initiated within a lamellipodial structure that is located at the tip of cellular OLG/OPC processes and is structurally as well as functionally similar to the neuronal growth cone. Accordingly, coordinated stoichiometries of actin filament (F-actin) assembly and disassembly at these OLG/OPC growth cones have been implicated in directing process outgrowth and guidance, and the initiation of myelination. Nonetheless, the functional importance of the OLG/OPC growth cone still remains to be fully understood, and, as a unique aspect of actin cytoskeletal dynamics, F-actin depolymerization and disassembly start to predominate at the transition from myelination initiation to myelin wrapping. This review provides an overview of the current knowledge about OLG/OPC growth cones, and it proposes a model in which actin cytoskeletal dynamics in OLG/OPC growth cones are a main driver for morphological transformations and motile behaviors. Remarkably, these activities, at least at the later stages of OLG maturation, may be regulated independently from the transcriptional gene expression changes typically associated with CNS myelination.
Collapse
Affiliation(s)
- Elizabeth J Thomason
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Miguel Escalante
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Donna J Osterhout
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
5
|
Moutal A, White KA, Chefdeville A, Laufmann RN, Vitiello PF, Feinstein D, Weimer JM, Khanna R. Dysregulation of CRMP2 Post-Translational Modifications Drive Its Pathological Functions. Mol Neurobiol 2019; 56:6736-6755. [PMID: 30915713 PMCID: PMC6728212 DOI: 10.1007/s12035-019-1568-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/15/2019] [Indexed: 12/13/2022]
Abstract
Collapsin response mediator proteins (CRMPs) are a family of ubiquitously expressed, homologous phosphoproteins best known for coordinating cytoskeletal formation and regulating cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. These functions are tightly regulated by post-translational modifications including phosphorylation, SUMOylation, oxidation, and O-GlcNAcylation. While CRMP2's physiological functions rely mostly on its non-phosphorylated state, dysregulation of CRMP2 phosphorylation and SUMOylation has been reported to be involved in the pathophysiology of multiple diseases including cancer, chronic pain, spinal cord injury, neurofibromatosis type 1, and others. Here, we provide a consolidated update on what is known about CRMP2 signaling and function, first focusing on axonal growth and neuronal polarity, then illustrating the link between dysregulated CRMP2 post-translational modifications and diseases. We additionally discuss the roles of CRMP2 in non-neuronal cells, both in the CNS and regions of the periphery. Finally, we offer thoughts on the therapeutic implications of modulating CRMP2 function in a variety of diseases.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Rachel N Laufmann
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Peter F Vitiello
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Douglas Feinstein
- Department of Veterans Affairs, Jesse Brown VA Medical Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Jill M Weimer
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA.
- Department of Anesthesiology, University of Arizona, Tucson, AZ, USA.
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
6
|
Savchenko V, Kalinin S, Boullerne AI, Kowal K, Lin SX, Feinstein DL. Effects of the CRMP2 activator lanthionine ketimine ethyl ester on oligodendrocyte progenitor cells. J Neuroimmunol 2019; 334:576977. [PMID: 31177034 DOI: 10.1016/j.jneuroim.2019.576977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/15/2019] [Accepted: 05/30/2019] [Indexed: 01/24/2023]
Abstract
We previously showed LKE (lanthionine ketimine ester) reduces disease in the EAE model of multiple sclerosis, however whether LKE affects oligodendrocytes (OLGs) was not tested. In OLG progenitor cells (OPCs), LKE increased process number and area, but not PDGF-receptor-alpha expressing cells. In contrast, PDGF increased OPC numbers, but reduced process number and area. LKE increased collapsin response mediator protein-2 (CRMP2) expression, an LKE target, and CRMP2-expressing OLGs expressed myelin basic protein. LKE increased markers of OPC maturation, while PDGF, but not LKE, increased Sox2 expression. Our findings suggest that effects on OPCs may contribute to LKE beneficial actions in EAE.
Collapse
Affiliation(s)
| | - Sergey Kalinin
- University of Illinois, Chicago, IL 60612, United States of America
| | - Anne I Boullerne
- University of Illinois, Chicago, IL 60612, United States of America
| | - Kathy Kowal
- University of Illinois, Chicago, IL 60612, United States of America
| | - Shao Xia Lin
- University of Illinois, Chicago, IL 60612, United States of America
| | - Douglas L Feinstein
- University of Illinois, Chicago, IL 60612, United States of America; Jesse Brown VA Medical Center, Chicago, IL 60612, United States of America.
| |
Collapse
|
7
|
Kondo S, Takahashi K, Kinoshita Y, Nagai J, Wakatsuki S, Araki T, Goshima Y, Ohshima T. Genetic inhibition of CRMP2 phosphorylation at serine 522 promotes axonal regeneration after optic nerve injury. Sci Rep 2019; 9:7188. [PMID: 31076621 PMCID: PMC6510754 DOI: 10.1038/s41598-019-43658-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/26/2019] [Indexed: 11/17/2022] Open
Abstract
Axonal degeneration occurs in various neurological diseases and traumatic nerve injury, and axonal regeneration is restricted by inhibitory factors in the central nervous system. Cyclin-dependent kinase 5 and glycogen synthase kinase 3β (GSK3β) are activated by one of those inhibitors, and collapsin response mediator protein 2 (CRMP2) is phosphorylated by both kinases. We previously developed a CRMP2 knock-in (CRMP2 KI) mouse line, in which CRMP2 phosphorylation at Ser 522 is inhibited. Because CRMP2 KI mice showed promotion of axonal regeneration after spinal cord injury, we hypothesized that CRMP2 KI mice would show higher axonal regeneration after optic nerve injury. In this study, we first show that depolymerization of microtubules after optic nerve crush (ONC) injury was suppressed in CRMP2 KI mice. Loss of retinal ganglia cells was also reduced after ONC. We found that protein level of GAP43, a marker of regenerative axons, was higher in the optic nerve from CRMP2KI than that from wild type 4 weeks after of ONC. We further observed increased numbers of axons labeled by tracer in the optic nerve after ONC in CRMP2 KI mice. These results suggest that inhibition of phosphorylation of CRMP2 suppresses axonal degeneration and promotes axonal regeneration after optic nerve injury.
Collapse
Affiliation(s)
- Shunsuke Kondo
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kazuya Takahashi
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yuki Kinoshita
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Jun Nagai
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan.,Research Fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Shuji Wakatsuki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-11 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-11 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan. .,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
8
|
Moutal A, Kalinin S, Kowal K, Marangoni N, Dupree J, Lin SX, Lis K, Lisi L, Hensley K, Khanna R, Feinstein DL. Neuronal Conditional Knockout of Collapsin Response Mediator Protein 2 Ameliorates Disease Severity in a Mouse Model of Multiple Sclerosis. ASN Neuro 2019; 11:1759091419892090. [PMID: 31795726 PMCID: PMC6893573 DOI: 10.1177/1759091419892090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 01/17/2023] Open
Abstract
We previously showed that treatment with lanthionine ketimine ethyl ester (LKE) reduced disease severity and axonal damage in an experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis and increased neuronal maturation and survival in vitro . A major target of LKE is collapsin response mediator protein 2 (CRMP2), suggesting this protein may mediate LKE actions. We now show that conditional knockout of CRMP2 from neurons using a CamK2a promoter to drive Cre recombinase expression reduces disease severity in the myelin oligodendrocyte glycoprotein (MOG)35–55 EAE model, associated with decreased spinal cord axonal damage, and less glial activation in the cerebellum, but not the spinal cord. Immunohistochemical staining and quantitative polymerase chain reaction show CRMP2 depletion from descending motor neurons in the motor cortex, but not from spinal cord neurons, suggesting that the benefits of CRMP2 depletion on EAE may stem from effects on upper motor neurons. In addition, mice in which CRMP2 S522 phosphorylation was prevented by substitution for an alanine residue also showed reduced EAE severity. These results show that modification of CRMP2 expression and phosphorylation can influence the course of EAE and suggests that treatment with CRMP2 modulators such as LKE act in part by reducing CRMP2 S522 phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kinga Lis
- University of Illinois, Chicago, IL, USA
| | - Lucia Lisi
- Universita Cattolica del Sacro Cuore, Rome,
Italy
| | - Kenneth Hensley
- Arkansas College of Osteopathic Medicine, Fort Smith,
AR, USA
| | | | - Douglas L. Feinstein
- University of Illinois, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
9
|
Abstract
SIGNIFICANCE Numerous studies have demonstrated the actions of reactive oxygen species (ROS) as regulators of several physiological processes. In this study, we discuss how redox signaling mechanisms operate to control different processes such as neuronal differentiation, oligodendrocyte differentiation, dendritic growth, and axonal growth. Recent Advances: Redox homeostasis regulates the physiology of neural stem cells (NSCs). Notably, the neuronal differentiation process of NSCs is determined by a change toward oxidative metabolism, increased levels of mitochondrial ROS, increased activity of NADPH oxidase (NOX) enzymes, decreased levels of Nrf2, and differential regulation of different redoxins. Furthermore, during the neuronal maturation processes, NOX and MICAL produce ROS to regulate cytoskeletal dynamics, which control the dendritic and axonal growth, as well as the axonal guidance. CRITICAL ISSUES The redox homeostasis changes are, in part, attributed to cell metabolism and compartmentalized production of ROS, which is regulated, sensed, and transduced by different molecules such as thioredoxins, glutaredoxins, peroxiredoxins, and nucleoredoxin to control different signaling pathways in different subcellular regions. The study of how these elements cooperatively act is essential for the understanding of nervous system development, as well as the application of regenerative therapies that recapitulate these processes. FUTURE DIRECTIONS The information about these topics in the last two decades leads us to the conclusion that the role of ROS signaling in development of the nervous system is more important than it was previously believed and makes clear the importance of exploring in more detail the mechanisms of redox signaling. Antioxid. Redox Signal. 28, 1603-1625.
Collapse
Affiliation(s)
- Mauricio Olguín-Albuerne
- División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
10
|
O'Sullivan SA, Dev KK. The chemokine fractalkine (CX3CL1) attenuates H 2O 2-induced demyelination in cerebellar slices. J Neuroinflammation 2017; 14:159. [PMID: 28810923 PMCID: PMC5558650 DOI: 10.1186/s12974-017-0932-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023] Open
Abstract
Background Fractalkine/CX3CR1 signalling has been implicated in many neurodegenerative and neurological diseases of the central nervous system (CNS). This signalling pathway plays an important role in regulating reactive oxygen species (ROS), as well as itself being altered in conditions of oxidative stress. Here, we investigated the effects of recombinant fractalkine (rCX3CL1) in models of hydrogen peroxide (H2O2)-induced demyelination and astrocyte toxicity, within organotypic cerebellar slice cultures. Methods Organotypic cerebellar slice cultures were generated from postnatal day 10 C57BL/6J mice to assess myelination. Immunohistochemistry was used to measure the degree of myelination. Fluorescent images were obtained using a leica SP8 confocal microscope and data analysed using ImageJ software. Results We show here, for the first time, that rCX3CL1 significantly attenuated bolus H2O2-induced demyelination as measured by expression of myelin basic protein (MBP) and attenuated reduced vimentin expression. Using the GOX-CAT system to continuously generate low levels of H2O2 and induce demyelination, we observed similar protective effects of rCX3CL1 on MBP and MOG fluorescence, although in this model, the decrease in vimentin expression was not altered. Conclusions This data indicates possible protective effects of fractalkine signalling in oxidative stress-induced demyelination in the central nervous system. This opens up the possibility of fractalkine receptor (CX3CR1) modulation as a potential new target for protecting against oxidative stress-induced demyelination in both inflammatory and non-inflammatory nervous system disorders.
Collapse
Affiliation(s)
- Sinead A O'Sullivan
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
O'Sullivan SA, Velasco-Estevez M, Dev KK. Demyelination induced by oxidative stress is regulated by sphingosine 1-phosphate receptors. Glia 2017; 65:1119-1136. [PMID: 28375547 DOI: 10.1002/glia.23148] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 03/02/2017] [Accepted: 03/20/2017] [Indexed: 01/14/2023]
Abstract
Oxidative stress is a pathological condition defined as an imbalance between production and removal of reactive oxygen species. This process causes structural cell damage, disrupts DNA repair and induces mitochondrial dysfunction. Many in vitro studies have used direct bolus application of H2 O2 to investigate the role of oxidative stress in cell culture. In this study, using mouse organotypic cerebellar slice cultures, the effects of H2 O2 -induced oxidative stress on myelination state were examined, using bolus concentrations of H2 O2 (0.1-1 mM) and low-continuous H2 O2 (∼20 μM) generated from glucose oxidase and catalase (GOX-CAT). Using these models, the potential therapeutic effects of pFTY720, an oral therapy used in multiple sclerosis, was also examined. We found bolus treatment of H2 O2 (0.5 mM) and, for the first time, low-continuous H2 O2 (GOX-CAT) to induce demyelination in organotypic slices. Both bolus H2 O2 and GOX-CAT treatments significantly decreased vimentin expression in these slice cultures as well as increased cell death in isolated astrocyte cultures. Importantly, pre-treatment with pFTY720 significantly attenuated both bolus H2 O2 and GOX-CAT-induced demyelination and the GOX-CAT-induced decrease in vimentin in cerebellar slices, without altering levels of the proinflammatory cytokines such as IL-6 and CX3CL1. We also observed increased SMI-32 immunoreactivity in the white matter tract induced by GOX-CAT indicating axonal damage, which was remarkably attenuated by pFTY720. Taken together, this data establishes a novel GOX-CAT model of demyelination and demonstrates that pFTY720 can act independently of inflammatory cytokines to attenuate decreases in vimentin, as well as axonal damage and demyelination induced by oxidative stress.
Collapse
Affiliation(s)
- Sinead A O'Sullivan
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Kumlesh K Dev
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Li SW, Chen YC, Sheen JM, Hsu MH, Tain YL, Chang KA, Huang LT. Minocycline restores cognitive-relative altered proteins in young bile duct-ligated rat prefrontal cortex. Life Sci 2017; 180:75-82. [PMID: 28366719 DOI: 10.1016/j.lfs.2017.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 01/06/2023]
Abstract
AIMS Bile duct ligation (BDL) model is used to study hepatic encephalopathy accompanied by cognitive impairment. We employed the proteomic analysis approach to evaluate cognition-related proteins in the prefrontal cortex of young BDL rats and analyzed the effect of minocycline on these proteins and spatial memory. MAIN METHODS BDL was induced in young rats at postnatal day 17. Minocycline as a slow-release pellet was implanted into the peritoneum. Morris water maze test and two-dimensional liquid chromatography-tandem mass spectrometry were used to evaluate spatial memory and prefrontal cortex protein expression, respectively. We used 2D/LC-MS/MS to analyze for affected proteins in the prefrontal cortex of young BDL rats. Results were verified with Western blotting, immunohistochemistry, and quantitative real-time PCR. The effect of minocycline in BDL rats was assessed. KEY FINDINGS BDL induced spatial deficits, while minocycline rescued it. Collapsin response mediator protein 2 (CRMP2) and manganese-dependent superoxide dismutase (MnSOD) were upregulated and nucleoside diphosphate kinase B (NME2) was downregulated in young BDL rats. BDL rats exhibited decreased levels of brain-derived neurotrophic factor (BDNF) mRNA as compared with those by the control. However, minocycline treatment restored CRMP2 and NME2 protein expression, BDNF mRNA level, and MnSOD activity to control levels. SIGNIFICANCE We demonstrated that BDL altered the expression of CRMP2, NME2, MnSOD, and BDNF in the prefrontal cortex of young BDL rats. However, minocycline treatment restored the expression of the affected mediators that are implicated in cognition.
Collapse
Affiliation(s)
- Shih-Wen Li
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Mei-Hsin Hsu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kow-Aung Chang
- Department of Anesthesiolgy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Traditional Medicine, Chang Gung University, Linkow, Taiwan.
| |
Collapse
|
13
|
Shinomol GK, Ranganayaki S, Joshi AK, Gayathri N, Gowda H, Muralidhara, Srinivas Bharath MM. Characterization of age-dependent changes in the striatum: Response to the mitochondrial toxin 3-nitropropionic acid. Mech Ageing Dev 2016; 161:66-82. [PMID: 27143313 DOI: 10.1016/j.mad.2016.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/10/2016] [Accepted: 04/23/2016] [Indexed: 11/26/2022]
Abstract
Neurodegenerative phenomena are associated with mitochondrial dysfunction and this could be exacerbated by aging. Age-dependence of mitochondrial response to toxins could help understand these mechanisms and evolve novel therapeutics. 3-Nitropropionic acid (3-NPA) is a mitochondrial toxin that induces neurotoxicity in the striatum via inhibition of complex II. We investigated the age-related events that contribute to 3-NPA toxicity. 3-NPA induced neuronal death, oxidative stress and altered mitochondrial structure in neuronal cells. 3-NPA injection in vivo caused motor impairment, mitochondrial dysfunction and oxidative damage with different trend in young and adult mice. To understand the age-dependent mechanisms, we carried out proteomic analysis of the striatal protein extract from young mice (control: YC vs. 3-NPA treated: YT) and adult mice (control: AC vs. 3-NPA treated: AT). Among the 3752 identified proteins, 33 differentially expressed proteins (mitochondrial, synaptic and microsomal proteins) were unique either to YT or AT. Interestingly, comparison of the proteomic profile in AC and YC indicated that 161 proteins (linked with cytoskeletal structure, neuronal development, axogenesis, protein transport, cell adhesion and synaptic function) were down-regulated in AC compared to YC. We surmise that aging contributes to the cellular and molecular architecture in the mouse striatum with implications for neurodegeneration.
Collapse
Affiliation(s)
- G K Shinomol
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India; Neurotoxicology laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India
| | - S Ranganayaki
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India; Neurotoxicology laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India
| | - Apurva K Joshi
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India; Neurotoxicology laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India
| | - N Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India
| | - Harsha Gowda
- Institute of Bioinformatics (IOB), Discoverer, Industrial Technology Park Limited (ITPL), Whitefield, Bangalore 560066, Karnataka, India
| | - Muralidhara
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore 570020, Karnataka, India
| | - M M Srinivas Bharath
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India; Neurotoxicology laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India.
| |
Collapse
|
14
|
Dupree JL, Polak PE, Hensley K, Pelligrino D, Feinstein DL. Lanthionine ketimine ester provides benefit in a mouse model of multiple sclerosis. J Neurochem 2015; 134:302-14. [PMID: 25846048 DOI: 10.1111/jnc.13114] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 01/26/2023]
Abstract
Lanthionine ketimine (LK) is a natural sulfur amino acid metabolite which binds to collapsin response mediator protein-2 (CRMP2), an abundant brain protein that interacts with multiple partners to regulate microtubule dynamics, neurite growth and retraction, axonal transport, and neurotransmitter release. LK ethyl-ester (LKE) is a cell-permeable synthetic derivative that promotes neurogenesis, suppresses nitric oxide production from microglia, and reduces neurotoxicity of microglia-conditioned medium. These properties led us to test the effects of LKE in experimental autoimmune encephalomyelitis (EAE), a commonly used mouse model of multiple sclerosis. Female C57Bl/6 mice were immunized with myelin oligodendrocyte glycoprotein peptide 35-55 to develop a chronic disease. LKE was provided in the chow at 100 ppm, ad libitum beginning when the mice reached moderate clinical signs. Over the following 4 weeks the LKE-treated mice showed a significant reduction in clinical signs compared to vehicle-treated mice. LKE dose dependently reduced IFNγ production from splenic T cells, but had no effect on IL-17 production suggesting protective effects were mediated within the CNS. Electron microscopy revealed that, compared to sham mice, EAE mice had significant neurodegeneration in both the optic nerve and spinal cord, which was reduced in the LKE-treated mice. In contrast only minimal disruption of myelin was observed at this time point. In the optic nerve, measurements of axon caliber and myelin thickness showed little changes between sham and EAE mice, however, treatment with LKE increased the percentage of axons with thicker myelin and with larger axon calibers. In the spinal cord, only smaller effects of LKE on myelin thickness were observed. The effects of LKE were associated with a reduced relative level of phosphorylated CRMP2 to CRMP2. Together, these results demonstrate that LKE reduces neurodegeneration in a chronic EAE model of MS, which could have translation potential for treatment of progressive forms of MS.
Collapse
Affiliation(s)
- Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Paul E Polak
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kenneth Hensley
- Department of Pathology, University of Toledo, College of Medicine, Toledo, Ohio, USA
| | - Dale Pelligrino
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
15
|
Locatelli G, Baggiolini A, Schreiner B, Palle P, Waisman A, Becher B, Buch T. Mature oligodendrocytes actively increase in vivo cytoskeletal plasticity following CNS damage. J Neuroinflammation 2015; 12:62. [PMID: 25889302 PMCID: PMC4404661 DOI: 10.1186/s12974-015-0271-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/20/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Oligodendrocytes are myelinating cells of the central nervous system which support functionally, structurally, and metabolically neurons. Mature oligodendrocytes are generally believed to be mere targets of destruction in the context of neuroinflammation and tissue damage, but their real degree of in vivo plasticity has become a matter of debate. We thus investigated the in vivo dynamic, actin-related response of these cells under different kinds of demyelinating stress. METHODS We used a novel mouse model (oLucR) expressing luciferase in myelin oligodendrocyte glycoprotein-positive oligodendrocytes under the control of a β-actin promoter. Activity of this promoter served as surrogate for dynamics of the cytoskeleton gene transcription through recording of in vivo bioluminescence following diphtheria toxin-induced oligodendrocyte death and autoimmune demyelination. Cytoskeletal gene expression was quantified from mature oligodendrocytes directly isolated from transgenic animals through cell sorting. RESULTS Experimental demyelinating setups augmented oligodendrocyte-specific in vivo bioluminescence. These changes in luciferase signal were confirmed by further ex vivo analysis of the central nervous system tissue from oLucR mice. Increase in bioluminescence upon autoimmune inflammation was parallel to an oligodendrocyte-specific increased transcription of β-tubulin. CONCLUSIONS Mature oligodendrocytes acutely increase their cytoskeletal plasticity in vivo during demyelination. They are therefore not passive players under demyelinating conditions but can rather react dynamically to external insults.
Collapse
Affiliation(s)
- Giuseppe Locatelli
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland. .,Institute of Clinical Neuroimmunology, LMU Universität München, Marchioninistrasse 17, Munich, 81377, Germany.
| | - Arianna Baggiolini
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.
| | - Bettina Schreiner
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.
| | - Pushpalatha Palle
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstrasse 30, 80675, Munich, Germany. .,Institute of Laboratory Animal Science, VetSuisse, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz, Obere Zahlbacher Str. 67, Mainz, 55131, Germany.
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.
| | - Thorsten Buch
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland. .,Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstrasse 30, 80675, Munich, Germany. .,Institute of Laboratory Animal Science, VetSuisse, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.
| |
Collapse
|
16
|
Coutts DJC, Harrison NL. Acetaldehyde, not ethanol, impairs myelin formation and viability in primary mouse oligodendrocytes. Alcohol Clin Exp Res 2015; 39:455-62. [PMID: 25703384 DOI: 10.1111/acer.12642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/24/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND Excessive ethanol (EtOH) drinking is associated with white matter loss in the brain at all stages of life. Myelin-forming oligodendrocytes (OLs) are a major component of white matter, but their involvement in EtOH-mediated white matter loss is unclear. Myelination continues throughout the life with highest rates during fetal development and adolescence. However, little is known about the effects of EtOH and its principal metabolite acetaldehyde (ACD) on OLs at the cellular level. METHODS We compared the responses to different concentrations of EtOH or ACD by primary OLs in culture. RESULTS EtOH did not cause significant cell death at concentrations lower than 120 mM, even after 24 hours. In comparison, ACD was highly lethal at doses above 50 μM. High concentrations of EtOH (120 mM) and ACD (500 μM) for 24 hours did not reduce myelin in mature OLs. Myelin production and OL differentiation were significantly impaired by 7 days exposure to 500 or 50 μM ACD but not 120 mM EtOH. CONCLUSIONS This study shows that OLs are relatively resistant to EtOH, even at a concentration more than 4 times the typical blood EtOH concentrations associated with social drinking (10 to 30 mM). In contrast, OLs are much more sensitive to ACD than EtOH, particularly with long-term exposure. This suggests that part of white matter loss in response to EtOH, especially during high rates of myelin formation, may be due in part to the effects of its principal metabolite ACD.
Collapse
Affiliation(s)
- David J C Coutts
- Department of Anesthesiology, Columbia University, New York, New York
| | | |
Collapse
|
17
|
Makinodan M, Okuda-Yamamoto A, Ikawa D, Toritsuka M, Takeda T, Kimoto S, Tatsumi K, Okuda H, Nakamura Y, Wanaka A, Kishimoto T. Oligodendrocyte plasticity with an intact cell body in vitro. PLoS One 2013; 8:e66124. [PMID: 23762472 PMCID: PMC3676349 DOI: 10.1371/journal.pone.0066124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/01/2013] [Indexed: 11/21/2022] Open
Abstract
Demyelination is generally regarded as a consequence of oligodendrocytic cell death. Oligodendrocyte processes that form myelin sheaths may, however, degenerate and regenerate independently of the cell body, in which case cell death does not necessarily occur. We provide here the first evidence of retraction and regeneration of oligodendrocyte processes with no cell death in vitro, using time-lapse imaging. When processes were severed mechanically in vitro, the cells did not undergo cell death and the processes regenerated in 36 h. In a separate experiment, moderate N-methyl-D-aspartate (NMDA) stimuli caused process retraction without apparent cell death, and the processes regained their elaborate morphology after NMDA was removed from the culture medium. These results strongly suggest that demyelination and remyelination can take place without concomitant cell death, at least in vitro. Process regeneration may therefore become a target for future therapy of demyelinating disorders.
Collapse
|
18
|
Leal MC, Magnani N, Villordo S, Buslje CM, Evelson P, Castaño EM, Morelli L. Transcriptional regulation of insulin-degrading enzyme modulates mitochondrial amyloid β (Aβ) peptide catabolism and functionality. J Biol Chem 2013; 288:12920-31. [PMID: 23525105 DOI: 10.1074/jbc.m112.424820] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Studies of post-mortem brains from Alzheimer disease patients suggest that oxidative damage induced by mitochondrial amyloid β (mitAβ) accumulation is associated with mitochondrial dysfunction. However, the regulation of mitAβ metabolism is unknown. One of the proteases involved in mitAβ catabolism is the long insulin-degrading enzyme (IDE) isoform (IDE-Met(1)). However, the mechanisms of its expression are unknown, and its presence in brain is uncertain. We detected IDE-Met(1) in brain and showed that its expression is regulated by the mitochondrial biogenesis pathway (PGC-1α/NRF-1). A strong positive correlation between PGC-1α or NRF-1 and long IDE isoform transcripts was found in non-demented brains. This correlation was weaker in Alzheimer disease. In vitro inhibition of IDE increased mitAβ and impaired mitochondrial respiration. These changes were restored by inhibition of γ-secretase or promotion of mitochondrial biogenesis. Our results suggest that IDE-Met(1) links the mitochondrial biogenesis pathway with mitAβ levels and organelle functionality.
Collapse
Affiliation(s)
- María C Leal
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)), Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina
| | | | | | | | | | | | | |
Collapse
|
19
|
Castaño EM, Maarouf CL, Wu T, Leal MC, Whiteside CM, Lue LF, Kokjohn TA, Sabbagh MN, Beach TG, Roher AE. Alzheimer disease periventricular white matter lesions exhibit specific proteomic profile alterations. Neurochem Int 2012; 62:145-56. [PMID: 23231993 DOI: 10.1016/j.neuint.2012.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/26/2012] [Accepted: 12/01/2012] [Indexed: 12/13/2022]
Abstract
The white matter (WM) represents approximately half the cerebrum volume and is profoundly affected in Alzheimer's disease (AD). However, both the WM responses to AD as well as potential influences of this compartment to dementia pathogenesis remain comparatively neglected. Neuroimaging studies have revealed WM alterations are commonly associated with AD and renewed interest in examining the pathologic basis and importance of these changes. In AD subjects, immunohistochemistry and electron microscopy revealed changes in astrocyte morphology and myelin loss as well as up to 30% axonal loss in areas of WM rarefaction when measured against non-demented control (NDC) tissue. Comparative proteomic analyses were performed on pooled samples of periventricular WM (PVWM) obtained from AD (n=4) and NDC (n=5) subjects with both groups having a mean age of death of 86 years. All subjects had an apolipoprotein E ε3/3 genotype with the exception of one NDC subject who was ε2/3. Urea-detergent homogenates were analyzed using two different separation techniques: 2-dimensional isoelectric focusing/reverse-phase chromatography and 2-dimensional difference gel electrophoresis (2D-DIGE). Proteins with different expression levels between the 2 diagnostic groups were identified using MALDI-Tof/Tof mass spectrometry. In addition, Western blots were used to quantify proteins of interest in individual AD and NDC cases. Our proteomic studies revealed that when WM protein pools were loaded at equal amounts of total protein for comparative analyses, there were quantitative differences between the 2 groups. Molecules related to cytoskeleton maintenance, calcium metabolism and cellular survival such as glial fibrillary acidic protein, vimentin, tropomyosin, collapsin response mediator protein-2, calmodulin, S100-P, annexin A1, α-internexin, α- and β-synuclein, α-B-crystalline, fascin-1, ubiquitin carboxyl-terminal esterase and thymosine were altered between AD and NDC pools. Our experiments suggest that WM activities become globally impaired during the course of AD with significant morphological, biochemical and functional consequential implications for gray matter function and cognitive deficits. These observations may endorse the hypothesis that WM dysfunction is not only a consequence of AD pathology, but that it may precipitate and/or potentiate AD dementia.
Collapse
Affiliation(s)
- Eduardo M Castaño
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|