1
|
Hose L, Langenhagen AK, Kefalakes E, Schweitzer T, Kubinski S, Barak S, Pich A, Grothe C. A dual-omics approach on the effects of fibroblast growth factor-2 (FGF-2) on ventral tegmental area dopaminergic neurons in response to alcohol consumption in mice. Eur J Neurosci 2024; 59:1519-1535. [PMID: 38185886 DOI: 10.1111/ejn.16234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
Harmful alcohol consumption is a major socioeconomic burden to the health system, as it can be the cause of mortality of heavy alcohol drinkers. The dopaminergic (DAergic) system is thought to play an important role in the pathogenesis of alcohol drinking behaviour; however, its exact role remains elusive. Fibroblast growth factor 2 (FGF-2), a neurotrophic factor, associated with both the DAergic system and alcohol consumption, may play an important role in DAergic neuroadaptations during alcohol abuse. Within this study, we aimed to clarify the role of endogenous FGF-2 on the DAergic system and whether there is a possible link to alcohol consumption. We found that lack of FGF-2 reduces the alcohol intake of mice. Transcriptome analysis of DAergic neurons revealed that FGF-2 knockout (FGF-2 KO) shifts the molecular fingerprint of midbrain dopaminergic (mDA) neurons to DA subtypes of the ventral tegmental area (VTA). In line with this, proteomic changes predominantly appear also in the VTA. Interestingly, these changes led to an altered regulation of the FGF-2 signalling cascades and DAergic pathways in a region-specific manner, which was only marginally affected by voluntary alcohol consumption. Thus, lack of FGF-2 not only affects the gene expression but also the proteome of specific brain regions of mDA neurons. Our study provides new insights into the neuroadaptations of the DAergic system during alcohol abuse and, therefore, comprises novel targets for future pharmacological interventions.
Collapse
Affiliation(s)
- Leonie Hose
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Alina Katharina Langenhagen
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover, Germany
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Ekaterini Kefalakes
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover, Germany
| | - Theresa Schweitzer
- Institute of Toxicology, Hannover, Germany
- Core Facility Proteomics, Institute of Toxicology, Hannover, Germany
| | - Sabrina Kubinski
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover, Germany
| | - Segev Barak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Andreas Pich
- Institute of Toxicology, Hannover, Germany
- Core Facility Proteomics, Institute of Toxicology, Hannover, Germany
| | - Claudia Grothe
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
2
|
Grinchii D, Levin-Greenwald M, Lezmy N, Gordon T, Paliokha R, Khoury T, Racicky M, Herburg L, Grothe C, Dremencov E, Barak S. FGF2 activity regulates operant alcohol self-administration and mesolimbic dopamine transmission. Drug Alcohol Depend 2023; 248:109920. [PMID: 37224676 DOI: 10.1016/j.drugalcdep.2023.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Fibroblast growth factor 2 (FGF2) is involved in the development and maintenance of the brain dopamine system. We previously showed that alcohol exposure alters the expression of FGF2 and its receptor, FGF receptor 1 (FGFR1) in mesolimbic and nigrostriatal brain regions, and that FGF2 is a positive regulator of alcohol drinking. Here, we determined the effects of FGF2 and of FGFR1 inhibition on alcohol consumption, seeking and relapse, using a rat operant self-administration paradigm. In addition, we characterized the effects of FGF2-FGFR1 activation and inhibition on mesolimbic and nigrostriatal dopamine neuron activation using in vivo electrophysiology. We found that recombinant FGF2 (rFGF2) increased the firing rate and burst firing activity of dopaminergic neurons in the mesolimbic and nigrostriatal systems and led to increased operant alcohol self-administration. In contrast, the FGFR1 inhibitor PD173074 suppressed the firing rate of these dopaminergic neurons, and reduced operant alcohol self-administration. Alcohol seeking behavior was not affected by PD173074, but this FGFR1 inhibitor reduced post-abstinence relapse to alcohol consumption, albeit only in male rats. The latter was paralleled by the increased potency and efficacy of PD173074 in inhibiting dopamine neuron firing. Together, our findings suggest that targeting the FGF2-FGFR1 pathway can reduce alcohol consumption, possibly via altering mesolimbic and nigrostriatal neuronal activity.
Collapse
Affiliation(s)
- Daniil Grinchii
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Noa Lezmy
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel
| | - Tamar Gordon
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel
| | - Ruslan Paliokha
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Talah Khoury
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Matej Racicky
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Leonie Herburg
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, Hanover30625, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, Hanover30625, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Eliyahu Dremencov
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Segev Barak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv69978, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel.
| |
Collapse
|
3
|
Villadiego J, García-Swinburn R, García-González D, Lebrón-Galán R, Murcia-Belmonte V, García-Roldán E, Suárez-Luna N, Nombela C, Marchena M, de Castro F, Toledo-Aral JJ. Extracellular matrix protein anosmin-1 overexpression alters dopaminergic phenotype in the CNS and the PNS with no pathogenic consequences in a MPTP model of Parkinson's disease. Brain Struct Funct 2023; 228:907-920. [PMID: 36995433 PMCID: PMC10147818 DOI: 10.1007/s00429-023-02631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
The development and survival of dopaminergic neurons are influenced by the fibroblast growth factor (FGF) pathway. Anosmin-1 (A1) is an extracellular matrix protein that acts as a major regulator of this signaling pathway, controlling FGF diffusion, and receptor interaction and shuttling. In particular, previous work showed that A1 overexpression results in more dopaminergic neurons in the olfactory bulb. Prompted by those intriguing results, in this study, we investigated the effects of A1 overexpression on different populations of catecholaminergic neurons in the central (CNS) and the peripheral nervous systems (PNS). We found that A1 overexpression increases the number of dopaminergic substantia nigra pars compacta (SNpc) neurons and alters the striosome/matrix organization of the striatum. Interestingly, these numerical and morphological changes in the nigrostriatal pathway of A1-mice did not confer an altered susceptibility to experimental MPTP-parkinsonism with respect to wild-type controls. Moreover, the study of the effects of A1 overexpression was extended to different dopaminergic tissues associated with the PNS, detecting a significant reduction in the number of dopaminergic chemosensitive carotid body glomus cells in A1-mice. Overall, our work shows that A1 regulates the development and survival of dopaminergic neurons in different nuclei of the mammalian nervous system.
Collapse
Affiliation(s)
- Javier Villadiego
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009, Sevilla, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Roberto García-Swinburn
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009, Sevilla, Spain
| | - Diego García-González
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, 45071, Toledo, Spain
| | - Rafael Lebrón-Galán
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, 45071, Toledo, Spain
| | - Verónica Murcia-Belmonte
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, 45071, Toledo, Spain
- Instituto de Neurociencias, UMH-CSIC, Sant Joan d´Alacant, 03550, Alicante, Spain
| | - Ernesto García-Roldán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009, Sevilla, Spain
- Servicio de Neurología y Neurofisiología Clínica, Hospital Universitario Virgen del Rocío, 41013, Sevilla, Spain
| | - Nela Suárez-Luna
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009, Sevilla, Spain
| | - Cristina Nombela
- Departamento de Psicología Biológica y de la Salud, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Miguel Marchena
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Avenida Doctor Arce 37, 28002, Madrid, Spain
- Departamento de Medicina, Universidad Europea de Madrid-UEM, Villaviciosa de Odón, 28670, Madrid, Spain
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, 45071, Toledo, Spain.
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Avenida Doctor Arce 37, 28002, Madrid, Spain.
| | - Juan José Toledo-Aral
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013, Seville, Spain.
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009, Sevilla, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
4
|
Chronic Voluntary Alcohol Consumption Alters Promoter Methylation and Expression of Fgf-2 and Fgfr1. Int J Mol Sci 2023; 24:ijms24043336. [PMID: 36834747 PMCID: PMC9963845 DOI: 10.3390/ijms24043336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Alcohol abuse accounts for 3.3 million deaths annually, rendering it a global health issue. Recently, fibroblast growth factor 2 (FGF-2) and its target, fibroblast growth factor receptor 1 (FGFR1), were discovered to positively regulate alcohol-drinking behaviors in mice. We tested whether alcohol intake and withdrawal alter DNA methylation of Fgf-2 and Fgfr1 and if there is a correlation regarding mRNA expression of these genes. Blood and brain tissues of mice receiving alcohol intermittently over a six-week period were analyzed using direct bisulfite sequencing and qRT-PCR analysis. Assessment of Fgf-2 and Fgfr1 promoter methylation revealed changes in the methylation of cytosines in the alcohol group compared with the control group. Moreover, we showed that the altered cytosines coincided with binding motives of several transcription factors. We also found that Fgf-2 and Fgfr1 gene expression was significantly decreased in alcohol-receiving mice compared with control littermates, and that this effect was specifically detected in the dorsomedial striatum, a brain region involved in the circuitry of the reward system. Overall, our data showed alcohol-induced alterations in both mRNA expression and methylation pattern of Fgf-2 and Fgfr1. Furthermore, these alterations showed a reward system regional specificity, therefore, resembling potential targets for future pharmacological interventions.
Collapse
|
5
|
Even‐Chen O, Herburg L, Kefalakes E, Urshansky N, Grothe C, Barak S. FGF2 is an endogenous regulator of alcohol reward and consumption. Addict Biol 2022; 27:e13115. [PMID: 34796591 DOI: 10.1111/adb.13115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing disorder, characterized by escalating alcohol drinking and loss of control, with very limited available treatments. We recently reported that the expression of fibroblast growth factor 2 (Fgf2) is increased in the striatum of rodents following long-term excessive alcohol drinking and that the systemic or intra-striatal administration of recombinant FGF2 increases alcohol consumption. Here, we set out to determine whether the endogenous FGF2 plays a role in alcohol drinking and reward, by testing the behavioural phenotype of Fgf2 knockout mice. We found that Fgf2 deficiency resulted in decreased alcohol consumption when tested in two-bottle choice procedures with various alcohol concentrations. Importantly, these effects were specific for alcohol, as a natural reward (sucrose) or water consumption was not affected by Fgf2 deficiency. In addition, Fgf2 knockout mice failed to show alcohol-conditioned place preference (CPP) but showed normal fear conditioning, suggesting that deletion of the growth factor reduces alcohol's rewarding properties. Finally, Fgf2 knockout mice took longer to recover from the loss of righting reflex and showed higher blood alcohol concentrations when challenged with an intoxicating alcohol dose, suggesting that their ethanol metabolism might be affected. Together, our results show that the endogenous FGF2 plays a critical role in alcohol drinking and reward and indicate that FGF2 is a positive regulator of alcohol-drinking behaviours. Our findings suggest that FGF2 is a potential biomarker for problem alcohol drinking and is a potential target for pharmacotherapy development for AUD.
Collapse
Affiliation(s)
- Oren Even‐Chen
- School of Psychological Sciences Tel Aviv University Tel Aviv 69978 Israel
| | - Leonie Herburg
- Institute of Neuroanatomy and Cell Biology Hannover Medical School Carl‐Neuberg‐Straße 1 Hanover 30625 Germany
- Center for Systems Neuroscience (ZSN) Hannover Germany
| | - Ekaterini Kefalakes
- Institute of Neuroanatomy and Cell Biology Hannover Medical School Carl‐Neuberg‐Straße 1 Hanover 30625 Germany
- Center for Systems Neuroscience (ZSN) Hannover Germany
| | - Nataly Urshansky
- School of Psychological Sciences Tel Aviv University Tel Aviv 69978 Israel
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology Hannover Medical School Carl‐Neuberg‐Straße 1 Hanover 30625 Germany
- Center for Systems Neuroscience (ZSN) Hannover Germany
| | - Segev Barak
- School of Psychological Sciences Tel Aviv University Tel Aviv 69978 Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv 69978 Israel
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|
6
|
De Risi M, Tufano M, Alvino FG, Ferraro MG, Torromino G, Gigante Y, Monfregola J, Marrocco E, Pulcrano S, Tunisi L, Lubrano C, Papy-Garcia D, Tuchman Y, Salleo A, Santoro F, Bellenchi GC, Cristino L, Ballabio A, Fraldi A, De Leonibus E. Altered heparan sulfate metabolism during development triggers dopamine-dependent autistic-behaviours in models of lysosomal storage disorders. Nat Commun 2021; 12:3495. [PMID: 34108486 PMCID: PMC8190083 DOI: 10.1038/s41467-021-23903-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/19/2021] [Indexed: 01/18/2023] Open
Abstract
Lysosomal storage disorders characterized by altered metabolism of heparan sulfate, including Mucopolysaccharidosis (MPS) III and MPS-II, exhibit lysosomal dysfunctions leading to neurodegeneration and dementia in children. In lysosomal storage disorders, dementia is preceded by severe and therapy-resistant autistic-like symptoms of unknown cause. Using mouse and cellular models of MPS-IIIA, we discovered that autistic-like behaviours are due to increased proliferation of mesencephalic dopamine neurons originating during embryogenesis, which is not due to lysosomal dysfunction, but to altered HS function. Hyperdopaminergia and autistic-like behaviours are corrected by the dopamine D1-like receptor antagonist SCH-23390, providing a potential alternative strategy to the D2-like antagonist haloperidol that has only minimal therapeutic effects in MPS-IIIA. These findings identify embryonic dopaminergic neurodevelopmental defects due to altered function of HS leading to autistic-like behaviours in MPS-II and MPS-IIIA and support evidence showing that altered HS-related gene function is causative of autism.
Collapse
Affiliation(s)
- Maria De Risi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo Scalo, Rome, Italy
| | - Michele Tufano
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | | | | | - Giulia Torromino
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo Scalo, Rome, Italy
| | - Ylenia Gigante
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Jlenia Monfregola
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | | | - Lea Tunisi
- Institute of Biomolecular Chemistry, CNR, Pozzuoli, Naples, Italy
| | - Claudia Lubrano
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | | | - Yaakov Tuchman
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | | | - Luigia Cristino
- Institute of Biomolecular Chemistry, CNR, Pozzuoli, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Alessandro Fraldi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo Scalo, Rome, Italy.
| |
Collapse
|
7
|
Freiin von Hövel F, Kefalakes E, Grothe C. What Can We Learn from FGF-2 Isoform-Specific Mouse Mutants? Differential Insights into FGF-2 Physiology In Vivo. Int J Mol Sci 2020; 22:ijms22010390. [PMID: 33396566 PMCID: PMC7795026 DOI: 10.3390/ijms22010390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Fibroblast growth factor 2 (FGF-2), ubiquitously expressed in humans and mice, is functionally involved in cell growth, migration and maturation in vitro and in vivo. Based on the same mRNA, an 18-kilo Dalton (kDa) FGF-2 isoform named FGF-2 low molecular weight (FGF-2LMW) isoform is translated in humans and rodents. Additionally, two larger isoforms weighing 21 and 22 kDa also exist, summarized as the FGF-2 high molecular weight (FGF-2HMW) isoform. Meanwhile, the human FGF-2HMW comprises a 22, 23, 24 and 34 kDa protein. Independent studies verified a specific intracellular localization, mode of action and tissue-specific spatiotemporal expression of the FGF-2 isoforms, increasing the complexity of their physiological and pathophysiological roles. In order to analyze their spectrum of effects, FGF-2LMW knock out (ko) and FGF-2HMWko mice have been generated, as well as mice specifically overexpressing either FGF-2LMW or FGF-2HMW. So far, the development and functionality of the cardiovascular system, bone formation and regeneration as well as their impact on the central nervous system including disease models of neurodegeneration, have been examined. This review provides a summary of the studies characterizing the in vivo effects modulated by the FGF-2 isoforms and, thus, offers a comprehensive overview of its actions in the aforementioned organ systems.
Collapse
Affiliation(s)
- Friederike Freiin von Hövel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany;
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Bünteweg 2, D-30559 Hannover, Germany;
| | - Ekaterini Kefalakes
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Bünteweg 2, D-30559 Hannover, Germany;
| | - Claudia Grothe
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Bünteweg 2, D-30559 Hannover, Germany;
- Correspondence: ; Tel.: +49-511-532-2897; Fax: +49-511-532-2880
| |
Collapse
|
8
|
Qin H, Zhao AD, Sun ML, Ma K, Fu XB. Direct conversion of human fibroblasts into dopaminergic neuron-like cells using small molecules and protein factors. Mil Med Res 2020; 7:52. [PMID: 33129359 PMCID: PMC7603706 DOI: 10.1186/s40779-020-00284-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Generation of neurons is essential in cell replacement therapy for neurodegenerative disorders like Parkinson's disease. Several studies have reported the generation of dopaminergic (DA) neurons from mouse and human fibroblasts by ectopic expression of transcription factors, in which genetic manipulation is associated with potential risks. METHODS The small molecules and protein factors were selected based on their function to directly induce human fetal lung IMR-90 fibroblasts into DA neuron-like cells. Microscopical, immunocytochemical, and RT-qPCR analyses were used to characterize the morphology, phenotype, and gene expression features of the induced cells. The whole-cell patch-clamp recordings were exploited to measure the electrophysiological properties. RESULTS Human IMR-90 fibroblasts were rapidly converted into DA neuron-like cells after the chemical induction using small molecules and protein factors, with a yield of approximately 95% positive TUJ1-positive cells. The induced DA neuron-like cells were immunopositive for pan-neuronal markers MAP2, NEUN, and Synapsin 1 and DA markers TH, DDC, DAT, and NURR1. The chemical induction process did not involve a neural progenitor/stem cell intermediate stage. The induced neurons could fire single action potentials, which reflected partially the electrophysiological properties of neurons. CONCLUSION We developed a chemical cocktail of small molecules and protein factors to convert human fibroblasts into DA neuron-like cells without passing through a neural progenitor/stem cell intermediate stage. The induced DA neuron-like cells from human fibroblasts might provide a cellular source for cell-based therapy of Parkinson's disease in the future.
Collapse
Affiliation(s)
- Hua Qin
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing, 100853, China
| | - An-Dong Zhao
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing, 100853, China.,Tianjin Medical University, Tianjin, 300070, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
| | - Meng-Li Sun
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing, 100853, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing, 100853, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Haidian District, Beijing, 100853, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
9
|
Eura N, Matsui TK, Luginbühl J, Matsubayashi M, Nanaura H, Shiota T, Kinugawa K, Iguchi N, Kiriyama T, Zheng C, Kouno T, Lan YJ, Kongpracha P, Wiriyasermkul P, Sakaguchi YM, Nagata R, Komeda T, Morikawa N, Kitayoshi F, Jong M, Kobashigawa S, Nakanishi M, Hasegawa M, Saito Y, Shiromizu T, Nishimura Y, Kasai T, Takeda M, Kobayashi H, Inagaki Y, Tanaka Y, Makinodan M, Kishimoto T, Kuniyasu H, Nagamori S, Muotri AR, Shin JW, Sugie K, Mori E. Brainstem Organoids From Human Pluripotent Stem Cells. Front Neurosci 2020; 14:538. [PMID: 32670003 PMCID: PMC7332712 DOI: 10.3389/fnins.2020.00538] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/01/2020] [Indexed: 01/10/2023] Open
Abstract
The brainstem is a posterior region of the brain, composed of three parts, midbrain, pons, and medulla oblongata. It is critical in controlling heartbeat, blood pressure, and respiration, all of which are life-sustaining functions, and therefore, damages to or disorders of the brainstem can be lethal. Brain organoids derived from human pluripotent stem cells (hPSCs) recapitulate the course of human brain development and are expected to be useful for medical research on central nervous system disorders. However, existing organoid models are limited in the extent hPSCs recapitulate human brain development and hence are not able to fully elucidate the diseases affecting various components of the brain such as brainstem. Here, we developed a method to generate human brainstem organoids (hBSOs), containing midbrain/hindbrain progenitors, noradrenergic and cholinergic neurons, dopaminergic neurons, and neural crest lineage cells. Single-cell RNA sequence (scRNA-seq) analysis, together with evidence from proteomics and electrophysiology, revealed that the cellular population in these organoids was similar to that of the human brainstem, which raises the possibility of making use of hBSOs in investigating central nervous system disorders affecting brainstem and in efficient drug screenings.
Collapse
Affiliation(s)
- Nobuyuki Eura
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Takeshi K. Matsui
- Department of Neurology, Nara Medical University, Kashihara, Japan
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Joachim Luginbühl
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Masaya Matsubayashi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Hitoki Nanaura
- Department of Neurology, Nara Medical University, Kashihara, Japan
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Tomo Shiota
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Kaoru Kinugawa
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Naohiko Iguchi
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Takao Kiriyama
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Canbin Zheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Tsukasa Kouno
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Yan Jun Lan
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Pornparn Kongpracha
- Laboratory of Biomolecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara, Japan
| | - Pattama Wiriyasermkul
- Laboratory of Biomolecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara, Japan
| | | | - Riko Nagata
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Tomoya Komeda
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Naritaka Morikawa
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Fumika Kitayoshi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Miyong Jong
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Shinko Kobashigawa
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Mari Nakanishi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Masatoshi Hasegawa
- Department of Radiation Oncology, Nara Medical University, Kashihara, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara, Japan
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Takahiko Kasai
- Department of Laboratory Medicine and Pathology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Japan
| | - Maiko Takeda
- Department of Laboratory Medicine and Pathology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Yusuke Inagaki
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Yasuhito Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | | | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Shushi Nagamori
- Laboratory of Biomolecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara, Japan
| | - Alysson R. Muotri
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jay W. Shin
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
10
|
Hövel FFV, Leiter I, Rumpel R, Langenhagen A, Wedekind D, Häger C, Bleich A, Palme R, Grothe C. FGF-2 isoforms influence the development of dopaminergic neurons in the murine substantia nigra, but not anxiety-like behavior, stress susceptibility, or locomotor behavior. Behav Brain Res 2019; 374:112113. [PMID: 31381976 DOI: 10.1016/j.bbr.2019.112113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Loss of fibroblast growth factor 2 (FGF-2) is responsible for the development of an increased number of dopaminergic (DA) neurons in the murine substantia nigra pars compacta (SNpc). Furthermore, dysregulation of its expression patterns within the central nervous system (CNS) is associated with behavioral abnormalities in mice. Until now, the contributions of the individual FGF-2 isoforms (one low (LMW) and two high molecular weight (HMW) isoforms) in the CNS are elusive. METHODS To unravel the specific effects of FGF-2 isoforms, we compared three knockout mouse lines, one only deficient for LMW, one deficient for HMW and another lacking both isoforms, regarding DA neuronal development. With this regard, three time points of ontogenic development of the SNpc were stereologically investigated. Furthermore, behavioral aspects were analyzed in young adult mice, supplemented by corticosterone measurements. RESULTS Juvenile mice lacking either LMW or HMW develop equal supernumerary DA neuron numbers in the SNpc. Compensatory increased LMW expression is observed in animals lacking HMW. Meanwhile, no knockout mouse line demonstrated changes in anxiety-like behavior, stress susceptibility, or locomotor behavior. CONCLUSIONS Both FGF-2 isoforms crucially influence DA neuronal development in the murine SNpc. However, absence of LMW or HMW alone alters neither anxiety-like nor locomotor behavior, or stress susceptibility. Therefore, FGF-2 is not a determinant and causative factor for behavioral alterations alone, but probably in combination with appropriate conditions, like environmental or genetic factors.
Collapse
Affiliation(s)
- Friederike Freiin von Hövel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Ina Leiter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Regina Rumpel
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany
| | - Alina Langenhagen
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Dirk Wedekind
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany.
| |
Collapse
|
11
|
Di Santo S, Seiler S, Ducray AD, Widmer HR. Conditioned medium from Endothelial Progenitor Cells promotes number of dopaminergic neurons and exerts neuroprotection in cultured ventral mesencephalic neuronal progenitor cells. Brain Res 2019; 1720:146330. [PMID: 31299185 DOI: 10.1016/j.brainres.2019.146330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022]
Abstract
Transplantation of stem and progenitor cells offers a promising tool for brain repair in the context of neuropathological disorders including Parkinson's disease. There is growing proof that the capacity of adult stem and progenitor cells for tissue regeneration relies rather on the release of paracrine factors than on their cell replacement properties. In line with this notion, we have previously reported that conditioned medium (CM) collected from cultured Endothelial Progenitor Cells (EPC) stimulated survival of striatal neurons. In the present study we investigated whether EPC-CM promotes survival of cultured midbrain progenitor cells. For that purpose primary cultures from fetal rat embryonic ventral mesencephalon (VM) were prepared and grown for 7 days in vitro (DIV). EPC-CM was administered from DIV5-7. First, we found that EPC-CM treatment resulted in significantly increased cell densities of TH-ir neurons. Interestingly, this effect was no longer seen after proteolytic digestion of the EPC-CM. EPC-CM also significantly increased densities of beta-III-tubulin positive neurons and lba-1-ir microglial cells. The effect on dopaminergic neurons was not due to higher cell proliferation as no incorporation of EdU was observed in TH-ir cells. Importantly, EPC-CM exerted neuroprotection against MPP+ induced toxicity as in vitro model of Parkinson's disease. Taken together, our findings identified EPC-CM as a powerful tool to promote survival of cultured VM neurons and further support the importance of paracrine factors in the actions of stem and progenitor cells for brain repair.
Collapse
Affiliation(s)
- Stefano Di Santo
- Dept. of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
| | - Stefanie Seiler
- Dept. of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Angélique D Ducray
- Dept. of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; Division of Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - Hans Rudolf Widmer
- Dept. of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
| |
Collapse
|
12
|
Even-Chen O, Barak S. The role of fibroblast growth factor 2 in drug addiction. Eur J Neurosci 2018; 50:2552-2561. [PMID: 30144335 DOI: 10.1111/ejn.14133] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is a member of the FGF-family, which consists of 22 members, with four known FGF receptors (five in humans). Over the last 30 years, FGF2 has been extensively studied for its role in cell proliferation, differentiation, growth, survival and angiogenesis during development, as well as for its role in adult neurogenesis and regenerative plasticity. Over the past decade, FGF2 has been implicated in learning and memory, as well as in several neuropsychiatric disorders, including anxiety, stress, depression and drug addiction. In this review, we present accumulating evidence indicating the involvement of FGF2 in neuroadaptations caused by drugs of abuse, namely, amphetamine, cocaine, nicotine and alcohol. Moreover, evidence suggests that FGF2 is a positive regulator of alcohol and drug-related behaviors. Thus, although additional studies are yet required, we suggest that reducing FGF2 activity may provide a novel therapeutic approach for substance use disorders.
Collapse
Affiliation(s)
- Oren Even-Chen
- School of Psychological Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Segev Barak
- School of Psychological Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Increased innervation of forebrain targets by midbrain dopaminergic neurons in the absence of FGF-2. Neuroscience 2016; 314:134-44. [DOI: 10.1016/j.neuroscience.2015.11.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 11/21/2022]
|
14
|
NMR-Based Metabolomics Reveal a Recovery from Metabolic Changes in the Striatum of 6-OHDA-Induced Rats Treated with Basic Fibroblast Growth Factor. Mol Neurobiol 2015; 53:6690-6697. [DOI: 10.1007/s12035-015-9579-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/29/2015] [Indexed: 12/28/2022]
|
15
|
Förthmann B, Aletta JM, Lee YW, Terranova C, Birkaya B, Stachowiak EK, Stachowiak MK, Claus P. Coalition of Nuclear Receptors in the Nervous System. J Cell Physiol 2015; 230:2875-80. [PMID: 25966815 DOI: 10.1002/jcp.25036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/05/2015] [Indexed: 02/02/2023]
Abstract
A universal signaling module has been described which utilizes the nuclear form of Fibroblast growth Factor Receptor 1 (FGFR1) in a central role directing the post-mitotic development of neural cells through coordinated gene expression. In this review, we discuss in detail the current knowledge of FGFR1 nuclear interaction partners in three scenarios: (i) Engagement of FGFR1 in neuronal stem cells and regulation of neuronal differentiation; (ii) interaction with the orphan receptor Nurr1 in development of mesencephalic dopaminergic neurons; (iii) modulation of nuclear FGFR1 interactions downstream of nerve growth factor (NGF) signaling. These coalitions demonstrate the versatility of non-canonical, nuclear tyrosine kinase signaling in diverse cellular differentiation programs of neurons.
Collapse
Affiliation(s)
| | - John M Aletta
- CH3 BioSystems LLC, New York State Center for Bioinformatics & Life Sciences, Buffalo, New York, USA
| | - Yu-Wei Lee
- Department of Pathology and Anatomical Sciences, Western New York Stem Cells Culture and Analysis Center, State University of New York, Buffalo, New York, USA
| | - Chris Terranova
- Department of Pathology and Anatomical Sciences, Western New York Stem Cells Culture and Analysis Center, State University of New York, Buffalo, New York, USA
| | - Barbara Birkaya
- Department of Pathology and Anatomical Sciences, Western New York Stem Cells Culture and Analysis Center, State University of New York, Buffalo, New York, USA
| | - Ewa K Stachowiak
- Department of Pathology and Anatomical Sciences, Western New York Stem Cells Culture and Analysis Center, State University of New York, Buffalo, New York, USA
| | - Michal K Stachowiak
- Department of Pathology and Anatomical Sciences, Western New York Stem Cells Culture and Analysis Center, State University of New York, Buffalo, New York, USA
| | - Peter Claus
- Hannover Medical School, Department of Neuroanatomy, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
16
|
Veenvliet JV, Smidt MP. Molecular mechanisms of dopaminergic subset specification: fundamental aspects and clinical perspectives. Cell Mol Life Sci 2014; 71:4703-27. [PMID: 25064061 PMCID: PMC11113784 DOI: 10.1007/s00018-014-1681-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/04/2014] [Accepted: 07/10/2014] [Indexed: 12/22/2022]
Abstract
Dopaminergic (DA) neurons in the ventral mesodiencephalon control locomotion and emotion and are affected in psychiatric and neurodegenerative diseases, such as Parkinson's disease (PD). A clinical hallmark of PD is the specific degeneration of DA neurons located within the substantia nigra (SNc), whereas neurons in the ventral tegmental area remain unaffected. Recent advances have highlighted that the selective vulnerability of the SNc may originate in subset-specific molecular programming during DA neuron development, and significantly increased our understanding of the molecular code that drives specific SNc development. We here present an up-to-date overview of molecular mechanisms that direct DA subset specification, integrating our current knowledge about subset-specific roles of transcription factors, signaling pathways and morphogenes. We discuss strategies to further unravel subset-specific gene-regulatory networks, and the clinical promise of fundamental knowledge about subset specification of DA neurons, with regards to cell replacement therapy and cell-type-specific vulnerability in PD.
Collapse
Affiliation(s)
- Jesse V. Veenvliet
- Department of Molecular Neuroscience, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Marten P. Smidt
- Department of Molecular Neuroscience, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
17
|
Ballaz SJ, Perez J, Waselus M, Akil H, Watson SJ. Interaction between cholecystokinin and the fibroblast growth factor system in the ventral tegmental area of selectively bred high- and low-responder rats. Neuroscience 2013; 255:68-75. [PMID: 24121132 DOI: 10.1016/j.neuroscience.2013.09.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 11/26/2022]
Abstract
Individual differences in the locomotor response to novelty have been linked to basal differences in dopaminergic neurotransmission. Mesolimbic dopaminergic outputs are regulated by cholecystokinin (CCK), a neuropeptide implicated in anxiety. In turn, CCK expression is regulated by fibroblast growth factor-2 (FGF2), which has recently been identified as an endogenous regulator of anxiety. FGF2 binds to the high-affinity fibroblast growth factor receptor-1 (FGF-R1) to regulate the development and maintenance of dopamine neurons in the ventral tegmental area (VTA). However, the relationship between the FGF and CCK systems in the VTA is not well understood. Therefore, we utilized the selectively-bred low-responder (bLR; high-anxiety) and high-responder (bHR; low-anxiety) rats to examine the effects of repeated (21-day) FGF2 treatment on CCK and FGF-R1 mRNA in the rostral VTA (VTAr). In vehicle-treated controls, both CCK and FGF-R1 mRNA levels were increased in the VTAr of bLR rats relative to bHR rats. Following FGF2 treatment, however, bHR-bLR differences in CCK and FGF-R1 mRNA expression were eliminated, due to decreased CCK mRNA levels in the VTAr of bLR rats and increased FGF-R1 expression in bHR rats. Differences after FGF2 treatment may denote distinct interactions between the CCK and FGF systems in the VTAr of bHR vs. bLR rats. Indeed, significant correlations between CCK and FGF-R1 mRNA expression were found in bHR, but not bLR rats. Colocalization studies suggest that CCK and FGF-R1 are coexpressed in some VTAr neurons. Taken together, our findings suggest that the FGF system is poised to modulate both CCK and FGF-R1 expression in the VTAr, which may be associated with individual differences in mesolimbic pathways associated with anxiety-like behavior.
Collapse
Affiliation(s)
- S J Ballaz
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI 48109-0720, USA.
| | | | | | | | | |
Collapse
|
18
|
Directed neuronal differentiation of mouse embryonic and induced pluripotent stem cells and their gene expression profiles. Int J Mol Med 2013; 32:25-34. [PMID: 23652807 DOI: 10.3892/ijmm.2013.1372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/08/2013] [Indexed: 11/05/2022] Open
Abstract
Embryonic stem cells (ESCs) may be useful as a therapeutic source of cells for the production of healthy tissue; however, they are associated with certain challenges including immunorejection as well as ethical issues. Induced pluripotent stem cells (iPSCs) are a promising substitute since a patient's own adult cells would serve as tissue precursors. Ethical concerns prevent a full evaluation of the developmental potency of human ESCs and iPSCs, therefore, mouse iPSC models are required for protocol development and safety assessments. We used a modified culturing protocol to differentiate pluripotent cells from a mouse iPS cell line and two mouse ES cell lines into neurons. Our results indicated that all three pluripotent stem cell lines underwent nearly the same differentiation process when induced to form neurons in vitro. Genomic expression microarray profiling and single-cell RT-qPCR were used to analyze the neural lineage differentiation process, and more than one thousand differentially expressed genes involved in multiple molecular processes relevant to neural development were identified.
Collapse
|
19
|
Baron O, Ratzka A, Grothe C. Fibroblast growth factor 2 regulates adequate nigrostriatal pathway formation in mice. J Comp Neurol 2013; 520:3949-61. [PMID: 22592787 DOI: 10.1002/cne.23138] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fibroblast growth factor 2 (FGF-2) is an important neurotrophic factor that promotes survival of adult mesencephalic dopaminergic (mDA) neurons and regulates their adequate development. Since mDA neurons degenerate in Parkinson's disease, a comprehensive understanding of their development and maintenance might contribute to the development of causative therapeutic approaches. The current analysis addressed the role of FGF-2 in mDA axonal outgrowth, pathway formation, and innervation of respective forebrain targets using organotypic explant cocultures of ventral midbrain (VM) and forebrain (FB). An enhanced green fluorescent protein (EGFP) transgenic mouse strain was used for the VM explants, which allowed combining and distinguishing of individual VM and FB tissue from wildtype and FGF-2-deficient embryonic day (E)14.5 embryos, respectively. These cocultures provided a suitable model to study the role of target-derived FB and intrinsic VM-derived FGF-2. In fact, we show that loss of FGF-2 in both FB and VM results in significantly increased mDA fiber outgrowth compared to wildtype cocultures, proving a regulatory role of FGF-2 during nigrostriatal wiring. Further, we found in heterogeneous cocultures deficient for FGF-2 in FB and VM, respectively, similar phenotypes with wider fiber tracts compared to wildtype cocultures and shorter fiber outgrowth distance than cocultures completely deficient for FGF-2. Additionally, the loss of target-derived FGF-2 in FB explants resulted in decreased caudorostral glial migration. Together these findings imply an intricate interplay of target-derived and VM-derived FGF signaling, which assures an adequate nigrostriatal pathway formation and target innervation.
Collapse
Affiliation(s)
- Olga Baron
- Institute of Neuroanatomy, Hannover Medical School, 30625 Hannover, Germany
| | | | | |
Collapse
|
20
|
Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development. Dev Biol 2013; 379:123-38. [PMID: 23603197 DOI: 10.1016/j.ydbio.2013.04.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/27/2013] [Accepted: 04/12/2013] [Indexed: 12/21/2022]
Abstract
Dopaminergic (DA) neurons of the ventral midbrain (VM) play vital roles in the regulation of voluntary movement, emotion and reward. They are divided into the A8, A9 and A10 subgroups. The development of the A9 group of DA neurons is an area of intense investigation to aid the generation of these neurons from stem cell sources for cell transplantation approaches to Parkinson's disease (PD). This review discusses the molecular processes that are involved in the identity, specification, maturation, target innervation and survival of VM DA neurons during development. The complex molecular interactions of a number of genetic pathways are outlined, as well as recent advances in the mechanisms that regulate subset identity within the VM DA neuronal pool. A thorough understanding of the cellular and molecular mechanisms involved in the development of VM DA neurons will greatly facilitate the use of cell replacement therapy for the treatment of PD.
Collapse
|
21
|
Terwisscha van Scheltinga AF, Bakker SC, Kahn RS, Kas MJH. Fibroblast growth factors in neurodevelopment and psychopathology. Neuroscientist 2013; 19:479-94. [PMID: 23343917 DOI: 10.1177/1073858412472399] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In psychiatric disorders, the effect of genetic and environmental factors may converge on molecular pathways and brain circuits related to growth factor functioning. In this review, we describe how disturbances in fibroblast growth factors (FGFs) and their receptors influence behavior by affecting brain development. Recently, several studies reported associations of members of the FGF family with psychiatric disorders. FGFs are key candidates to modulate the impact of environmental factors, such as stress. Mutant mice for FGF receptor 1 show schizophrenia-like behaviors that are related to general loss of neurons and postnatal glia dysfunction. Mice lacking FGF2, a FGFR1 ligand, show similar reductions in brain volume and hyperactivity, as well as increased anxiety behaviors. FGFR2 and FGF17 are involved in the development of frontal brain regions and impairments in cognitive and social behaviors, respectively. Moreover, treatment with FGF2 was beneficial for depressive and cognitive measures in several animal studies and one human study. These findings indicate the importance of the FGF system with respect to developing novel etiology-directed treatments for psychopathology.
Collapse
|
22
|
Baron O, Förthmann B, Lee YW, Terranova C, Ratzka A, Stachowiak EK, Grothe C, Claus P, Stachowiak MK. Cooperation of nuclear fibroblast growth factor receptor 1 and Nurr1 offers new interactive mechanism in postmitotic development of mesencephalic dopaminergic neurons. J Biol Chem 2012; 287:19827-40. [PMID: 22514272 DOI: 10.1074/jbc.m112.347831] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Experiments in mice deficient for Nurr1 or expressing the dominant-negative FGF receptor (FGFR) identified orphan nuclear receptor Nurr1 and FGFR1 as essential factors in development of mesencephalic dopaminergic (mDA) neurons. FGFR1 affects brain cell development by two distinct mechanisms. Activation of cell surface FGFR1 by secreted FGFs stimulates proliferation of neural progenitor cells, whereas direct integrative nuclear FGFR1 signaling (INFS) is associated with an exit from the cell cycle and neuronal differentiation. Both Nurr1 and INFS activate expression of neuronal genes, such as tyrosine hydroxylase (TH), which is the rate-limiting enzyme in dopamine synthesis. Here, we show that nuclear FGFR1 and Nurr1 are expressed in the nuclei of developing TH-positive cells in the embryonic ventral midbrain. Both nuclear receptors were effectively co-immunoprecipitated from the ventral midbrain of FGF-2-deficient embryonic mice, which previously showed an increase of mDA neurons and enhanced nuclear FGFR1 accumulation. Immunoprecipitation and co-localization experiments showed the presence of Nurr1 and FGFR1 in common nuclear protein complexes. Fluorescence recovery after photobleaching and chromatin immunoprecipitation experiments demonstrated the Nurr1-mediated shift of nuclear FGFR1-EGFP mobility toward a transcriptionally active population and that both Nurr1 and FGFR1 bind to a common region in the TH gene promoter. Furthermore, nuclear FGFR1 or its 23-kDa FGF-2 ligand (FGF-2(23)) enhances Nurr1-dependent activation of the TH gene promoter. Transcriptional cooperation of FGFR1 with Nurr1 was confirmed on isolated Nurr1-binding elements. The proposed INFS/Nurr1 nuclear partnership provides a novel mechanism for TH gene regulation in mDA neurons and a potential therapeutic target in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Olga Baron
- Institute of Neuroanatomy, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|