1
|
Sood A, Ray P, Angrup A. Anaerobic Gram-Negative Bacteria: Role as a Reservoir of Antibiotic Resistance. Antibiotics (Basel) 2023; 12:antibiotics12050942. [PMID: 37237845 DOI: 10.3390/antibiotics12050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Anaerobic Gram-negative bacteria (AGNB) play a significant role as both pathogens and essential members of the human microbiota. Despite their clinical importance, there remains limited understanding regarding their antimicrobial resistance (AMR) patterns. This knowledge gap poses challenges in effectively managing AGNB-associated infections, as empirical treatment approaches may not adequately address the evolving resistance landscape. To bridge this research gap, we conducted a comprehensive study aimed at exploring the role of human AGNB as a reservoir of AMR. This can provide valuable insights for the prevention and management of anaerobic infections. METHODS We studied the prevalence of AMR and AMR determinants conferring resistance to metronidazole (nimE), imipenem (cfiA), piperacillin-tazobactam (cepA), cefoxitin (cfxA), clindamycin (ermF), chloramphenicol (cat) and mobile genetic elements (MGEs) such as cfiAIS and IS1186 associated with the cfiA and nim gene expression. These parameters were studied in Bacteroides spp., Fusobacterium spp., Prevotella spp., Veillonella spp., Sutterella spp., and other clinical AGNB. RESULTS Resistance to metronidazole, clindamycin, imipenem, piperacillin-tazobactam, cefoxitin and chloramphenicol was 29%, 33.5%, 0.5%, 27.5%, 26.5% and 0%, respectively. The presence of resistance genes, viz., nim, ermF, cfiA, cepA, cfxA, was detected in 24%, 33.5%, 10%, 9.5%, 21.5% isolates, respectively. None of the tested isolates showed the presence of a cat gene and MGEs, viz., cfiAIS and IS1186. The highest resistance to all antimicrobial agents was exhibited by Bacteroides spp. The association between resistant phenotypes and genotypes was complete in clindamycin, as all clindamycin-resistant isolates showed the presence of ermF gene, and none of the susceptible strains harbored this gene; similarly, all isolates were chloramphenicol-susceptible and also lacked the cat gene, whereas the association was low among imipenem and piperacillin-tazobactam. Metronidazole and imipenem resistance was seen to be dependent on insertion sequences for the expression of AMR genes. A constrained co-existence of cepA and cfiA gene in B. fragilis species was seen. Based on the absence and presence of the cfiA gene, we divided B. fragilis into two categories, Division I (72.6%) and Division II (27.3%), respectively. CONCLUSION AGNB acts as a reservoir of specific AMR genes, which may pose a threat to other anaerobes due to functional compatibility and acquisition of these genes. Thus, AST-complying standard guidelines must be performed periodically to monitor the local and institutional susceptibility trends, and rational therapeutic strategies must be adopted to direct empirical management.
Collapse
Affiliation(s)
- Anshul Sood
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Pallab Ray
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Archana Angrup
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
2
|
Jubyda FT, Nahar KS, Barman I, Johura FT, Islam MT, Sultana M, Ullah W, Tasnim J, Biswas SR, Monir MM, George CM, Camilli A, Ahmed N, Ross AG, Clemens JD, Alam M. Vibrio cholerae O1 associated with recent endemic cholera shows temporal changes in serotype, genotype, and drug-resistance patterns in Bangladesh. Gut Pathog 2023; 15:17. [PMID: 37046358 PMCID: PMC10090749 DOI: 10.1186/s13099-023-00537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/23/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Despite the advancement in our understanding of cholera and its etiological agent, Vibrio cholerae, the prevention and treatment of the disease are often hindered due to rapid changes in drug response pattern, serotype, and the major genomic islands namely, the CTX-prophage, and related genetic characteristics. In the present study, V. cholerae (n = 172) associated with endemic cholera in Dhaka during the years 2015-2021 were analyzed for major phenotypic and genetic characteristics, including drug resistance patterns. RESULTS Results revealed that the V. cholerae strains belonged to serogroup O1 biotype El Tor carrying El Tor -specific genes rtxC, tcpA El Tor, and hlyA El Tor, but possessed classical-biotype cholera toxin. Serotypes of V. cholerae strains differed temporally in predominance with Inaba during 2015-2017, and again in 2020-2021, while Ogawa was the predominant serotype in 2018-2019. Also, ctxB1 was predominant in V. cholerae associated with cholera during 2015-2017, while ctxB7 was predominant in 2018, and in the subsequent years, as observed until 2021. V. cholerae strains differed in their antibiotic resistance pattern with a majority (97%) being multi-drug resistant (MDR) and belonging to six sub-groups. Notably, one of these MDR strains was resistant to eleven of the eighteen antibiotics tested, with resistance to fourth-generation cephalosporin (cefepime), and aztreonam. This extreme drug resistant (XDR) strain carried resistance-related genes namely, extended-spectrum β-lactamases (ESBL), blaOXA-1 and blaPER-3. CONCLUSION The observed temporal switching of serotypes, as well as the ctxB genotype, and the emergence of MDR/XDR V. cholerae and their association with endemic cholera in Dhaka underscore the need for routine monitoring of the pathogen for proper patient management.
Collapse
Affiliation(s)
- Fatema Tuz Jubyda
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Kazi Sumaita Nahar
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Indrajeet Barman
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Fatema-Tuz Johura
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Mohammad Tarequl Islam
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Marzia Sultana
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Wali Ullah
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Jarin Tasnim
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Sahitya Ranjan Biswas
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Md Mamun Monir
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | | | | | - Niyaz Ahmed
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana State, India
| | - Allen G Ross
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
- Charles Sturt University, Orange, NSW, Australia
| | - John D Clemens
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Munirul Alam
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
3
|
Ibrahim DR, Dodd CER, Stekel DJ, Meshioye RT, Diggle M, Lister M, Hobman JL. Multidrug-Resistant ESBL-Producing E. coli in Clinical Samples from the UK. Antibiotics (Basel) 2023; 12:169. [PMID: 36671370 PMCID: PMC9854697 DOI: 10.3390/antibiotics12010169] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Globally, cephalosporin therapy failure is a serious problem for infection control. One causative agent of cephalosporin-resistant infections is multidrug-resistant (MDR) E. coli producing extended-spectrum β-lactamases (ESBLs) and/or plasmid-encoded AmpC (pAmpC) β-lactamases. We evaluated the occurrence of ESBL/pAmpC genetic determinants in phenotypically MDR E. coli isolated from clinical samples of blood, faeces, ear effusion, urine and sputum from a UK hospital. Phenotypic resistance profiling for 18 antibiotics (from seven classes) showed that 32/35 isolates were MDR, with resistance to 4-16 of the tested antibiotics. Of the isolates, 97.1% showed resistance to ampicillin, 71.4% showed resistance to co-amoxiclav, cefotaxime, ceftazidime and ceftiofur, and 68.5% showed resistance to cefquinome. blaCTX-M, blaTEM and blaOXA-1 genes were detected in 23, 13 and 12 strains, respectively, and Intl1 was detected in 17 isolates. The most common subtypes among the definite sequence types were CTX-M-15 (40%) and TEM-1 (75%). No E. coli isolates carried pAmpC genes. Significant correlations were seen between CTX-M carriage and cefotaxime, ceftiofur, aztreonam, ceftazidime and cefquinome resistance; between blaCTX-M, blaTEM and blaOXA-1 carriage and ciprofloxacin resistance; and between Intl1 carriage and trimethoprim/sulfamethoxazole resistance. Thus, MDR phenotypes may be conferred by a relatively small number of genes. The level and pattern of antibiotic resistance highlight the need for better antibiotic therapy guidelines, including reduced use and improved surveillance.
Collapse
Affiliation(s)
- Delveen R. Ibrahim
- Department of Biology, School of Science, The University of Duhok, Duhok 42001, Iraq
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
| | - Christine E. R. Dodd
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
| | - Dov J. Stekel
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
- Department of Mathematics and Applied Mathematics, University of Johannesburg, Rossmore 2029, South Africa
| | - Remilekun T. Meshioye
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
- Fidson Healthcare Plc, 268 Ikorodu-Ososun Rd, Obanikoro, Lagos 100232, Nigeria
| | - Mathew Diggle
- Alberta Health Services, Edmonton, AB T6G 2J2, Canada
- Department of Microbiology, Nottingham University Hospitals NHS Trust, Derby Road, Nottingham NG7 2UH, UK
| | - Michelle Lister
- Department of Microbiology, Nottingham University Hospitals NHS Trust, Derby Road, Nottingham NG7 2UH, UK
| | - Jon L. Hobman
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
| |
Collapse
|
4
|
Yang Y, Zhang AN, Che Y, Liu L, Deng Y, Zhang T. Underrepresented high diversity of class 1 integrons in the environment uncovered by PacBio sequencing using a new primer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147611. [PMID: 34000537 DOI: 10.1016/j.scitotenv.2021.147611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Class 1 integrons (CL1s) are one of the major contributors to the horizontal transfer of antibiotic resistance genes (ARGs). However, our knowledge of CL1 in the environment is still very limited due to the limitations of the current PCR primers and the sequencing methods adopted. This study developed a new primer coupled with PacBio sequencing to investigate the underrepresented diversity of CL1s in a mixed environmental sample (i.e. activated sludge from wastewater treatment plant and pig feces from animal farm). The new primer successfully uncovered 20 extra ARGs subtypes and 57% (422/739) more unique integron array structures than the previous primers. Compared to the whole genome database, CL1s revealed in the environment in this study were of much greater diversity, having 93% (900/967) novel array structures. Antibiotic resistance is the predominant function (78.3% genes) carried by CL1, and a vast majority (98.6% genes) of them confer resistance to aminoglycoside, beta-lactam, trimethoprim, or chloramphenicol. Additionally, 78.5% unique CL1 arrays carried more than one ARGs, and 25.9% of them carried ARGs of clinical relevance with high transferability potential posing threat to the general public. Our results indicated the importance of CL1s in the spread of ARGs. Overall, combining PacBio sequencing with the new primer designed in this study largely broadened our knowledge of CL1s in the environment and their significance in the environmental proliferation of ARGs.
Collapse
Affiliation(s)
- Yu Yang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong
| | - An-Ni Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong
| | - You Che
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong.
| |
Collapse
|
5
|
Singh NS, Singhal N, Kumar M, Virdi JS. High Prevalence of Drug Resistance and Class 1 Integrons in Escherichia coli Isolated From River Yamuna, India: A Serious Public Health Risk. Front Microbiol 2021; 12:621564. [PMID: 33633708 PMCID: PMC7899961 DOI: 10.3389/fmicb.2021.621564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/05/2021] [Indexed: 11/16/2022] Open
Abstract
Globally, urban water bodies have emerged as an environmental reservoir of antimicrobial resistance (AMR) genes because resistant bacteria residing here might easily disseminate these traits to other waterborne pathogens. In the present study, we have investigated the AMR phenotypes, prevalent plasmid-mediated AMR genes, and integrons in commensal strains of Escherichia coli, the predominant fecal indicator bacteria isolated from a major urban river of northern India Yamuna. The genetic environment of blaCTX–M–15 was also investigated. Our results indicated that 57.5% of the E. coli strains were resistant to at least two antibiotic classes and 20% strains were multidrug resistant, i.e., resistant to three or more antibiotic classes. The multiple antibiotic resistance index of about one-third of the E. coli strains was quite high (>0.2), reflecting high contamination of river Yamuna with antibiotics. With regard to plasmid-mediated AMR genes, blaTEM–1 was present in 95% of the strains, followed by qnrS1 and armA (17% each), blaCTX–M–15 (15%), strA-strB (12%), and tetA (7%). Contrary to the earlier reports where blaCTX–M–15 was mostly associated with pathogenic phylogroup B2, our study revealed that the CTX-M-15 type extended-spectrum β-lactamases (ESBLs) were present in the commensal phylogroups A and B1, also. The genetic organization of blaCTX–M–15 was similar to that reported for E. coli, isolated from other parts of the world; and ISEcp1 was present upstream of blaCTX–M–15. The integrons of classes 2 and 3 were absent, but class 1 integron gene intI1 was present in 75% of the isolates, denoting its high prevalence in E. coli of river Yamuna. These evidences indicate that due to high prevalence of plasmid-mediated AMR genes and intI1, commensal E. coli can become vehicles for widespread dissemination of AMR in the environment. Thus, regular surveillance and management of urban rivers is necessary to curtail the spread of AMR and associated health risks.
Collapse
Affiliation(s)
- Nambram Somendro Singh
- Department of Microbiology, University of Delhi South Campus, New Delhi, India.,Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Neelja Singhal
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
6
|
In Vitro Assessment of Antimicrobial Resistance Dissemination Dynamics during Multidrug-Resistant-Bacterium Invasion Events by Using a Continuous-Culture Device. Appl Environ Microbiol 2021; 87:AEM.02659-20. [PMID: 33361364 DOI: 10.1128/aem.02659-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/11/2020] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial-resistant pathogens display significant public health threats by causing difficulties in clinical treatment of bacterial infection. Antimicrobial resistance (AMR) is transmissible between bacteria, significantly increasing the appearance of antimicrobial-resistant pathogens and aggravating the AMR problem. In this work, the dissemination dynamics of AMR from invading multidrug-resistant (MDR) Escherichia coli to a community of pathogenic Salmonella enterica was investigated using a continuous-culture device, and the behaviors of dissemination dynamics under different levels of antibiotic stress were investigated. Three MDR E. coli invasion events were analyzed in this work: MDR E. coli-S. enterica cocolonization, MDR E. coli invasion after antibiotic treatment of S. enterica, and MDR E. coli invasion before antibiotic treatment of S. enterica It was found that both horizontal gene transfer (HGT) and vertical gene transfer (VGT) play significant roles in AMR dissemination, although different processes contribute differently under different circumstances, that environmental levels of antibiotics promote AMR dissemination by enhancing HGT rather than leading to selective advantage for resistant bacteria, and that early invasion of MDR E. coli completely and quickly sabotages the effectiveness of antibiotic treatment. These findings contribute to understanding the drivers of AMR dissemination under different antibiotic stresses, the detrimental impact of environmental tetracycline contamination, and the danger of nosocomial presence and dissemination of MDR nonpathogens.IMPORTANCE Antimicrobial resistance poses a grave threat to public health and reduces the effectiveness of antimicrobial drugs in treating bacterial infections. Antimicrobial resistance is transmissible, either by horizontal gene transfer between bacteria or by vertical gene transfer following inheritance of genetic traits. The dissemination dynamics and behaviors of this threat, however, have not been rigorously investigated. In this work, with a continuous-culture device, we studied antimicrobial resistance dissemination processes by simulating antimicrobial-resistant Escherichia coli invasion to a pathogenic Salmonella enterica community. Using this novel tool, we provide evidence on the drivers of antimicrobial resistance dissemination, on the detrimental impact of environmental antibiotic contamination, and on the danger of antimicrobial resistance in hospitals, even if what harbors the antimicrobial resistance is not a pathogen. This work furthers our understanding of antimicrobial resistance and its dissemination between bacteria and of antibiotic therapy, our most powerful tool against bacterial infection.
Collapse
|
7
|
Antibiotic Resistance in Pseudomonas spp. Through the Urban Water Cycle. Curr Microbiol 2021; 78:1227-1237. [PMID: 33625570 DOI: 10.1007/s00284-021-02389-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
Selection and dissemination of resistant bacteria and antibiotic resistance genes (ARGs) require a deeper understanding since antibiotics are permanently released to the environment. The objective of this paper was to evaluate the phenotypic resistance of 499 isolates of Pseudomonas spp. from urban water sources, and the prevalence of 20 ARGs within those isolates. Resistance to penicillins, cephalosporins, carbapenems, quinolones, macrolides, and tetracyclines was mainly observed in the hospital effluent, municipal wastewater and river water downstream the city. Resistant strains were frequently identified as P. aeruginosa and P. putida. P. aeruginosa isolates were mostly resistant to cefepime, ceftazidime, imipenem, and gentamycin, while P. putida strains were especially resistant to piperacillin-tazobactam. ARGs such as blaTEM-1, blaSHV-1, blaPER-1, blaAmpC, blaVIM-1, PstS, qnrA, qnrB, ermB, tetA, tetB and tetC have been detected. The blaAmpC gene was found in P. aeruginosa, while blaTEM-1 and blaPER-1 genes were found in P. putida. Class 1 integron integrase gene was found in 6.81% of the Pseudomonas isolates.
Collapse
|
8
|
Dong D, Li M, Liu Z, Feng J, Jia N, Zhao H, Zhao B, Zhou T, Zhang X, Tong Y, Zhu Y. Characterization of a NDM-1- Encoding Plasmid pHFK418-NDM From a Clinical Proteus mirabilis Isolate Harboring Two Novel Transposons, Tn 6624 and Tn 6625. Front Microbiol 2019; 10:2030. [PMID: 31551967 PMCID: PMC6737455 DOI: 10.3389/fmicb.2019.02030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Acquisition of the blaNDM–1 gene by Proteus mirabilis is a concern because it already has intrinsic resistance to polymyxin E and tigecycline antibiotics. Here, we describe a P. mirabilis isolate that carries a pPrY2001-like plasmid (pHFK418-NDM) containing a blaNDM–1 gene. The pPrY2001-like plasmid, pHFK418-NDM, was first reported in China. The pHFK418-NDM plasmid was sequenced using a hybrid approach based on Illumina and MinION platforms. The sequence of pHFK418-NDM was compared with those of the six other pPrY2001-like plasmids deposited in GenBank. We found that the multidrug-resistance encoding region of pHFK418-NDM contains ΔTn10 and a novel transposon Tn6625. Tn6625 consists of ΔTn1696, Tn6260, In251, ΔTn125 (carrying blaNDM–1), ΔTn2670, and a novel mph(E)-harboring transposon Tn6624. In251 was first identified in a clinical isolate, suggesting that it has been transferred efficiently from environmental organisms to clinical isolates. Genomic comparisons of all these pPrY2001-like plasmids showed that their relatively conserved backbones could integrate the numerous and various accessory modules carrying multifarious antibiotic resistance genes. Our results provide a greater depth of insight into the horizontal transfer of resistance genes and add interpretive value to the genomic diversity and evolution of pPrY2001-like plasmids.
Collapse
Affiliation(s)
- Dandan Dong
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Manli Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Zhenzhen Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China
| | - Jiantao Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China
| | - Nan Jia
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Zhao
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Tingting Zhou
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yuanqi Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Zhang Y, Lei CW, Wang HN. Identification of a novel conjugative plasmid carrying the multiresistance gene cfr in Proteus vulgaris isolated from swine origin in China. Plasmid 2019; 105:102440. [DOI: 10.1016/j.plasmid.2019.102440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
|
10
|
The Relationship of Class I Integron Gene Cassettes and the Multidrug-Resistance in Extended -Spectrum β-Lactamase Producing Isolates of Escherichia coli. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2019. [DOI: 10.5812/pedinfect.87961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Almakki A, Jumas-Bilak E, Marchandin H, Licznar-Fajardo P. Antibiotic resistance in urban runoff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:64-76. [PMID: 30826682 DOI: 10.1016/j.scitotenv.2019.02.183] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 05/24/2023]
Abstract
Aquatic ecosystems subjected to anthropogenic pressures are places of rapid evolution of microbial communities and likely hotspots for selection and emergence of antibiotic resistant bacteria. In urban settings, water quality and the risk of infection are generally assessed in sewers and in effluents of wastewater treatment plants. Physical and chemical parameters as well as the presence of antibiotics, antibiotic-resistant bacteria and genes of resistance are driven by urban activities, with adverse effects on aquatic ecosystems. In this paper we review the environmental pressures exerted on bacterial communities in urban runoff waters and discuss the impact of these settings on antibiotic resistance. Considering the worrisome epidemiology of infectious diseases and estimated mortality due to antimicrobial resistance in the coming decades, there is an urgent need to identify all environmental reservoirs of resistant bacteria and resistance genes to complete our knowledge of the epidemiological cycle and of the dynamics of urban antibiotic resistance.
Collapse
Affiliation(s)
- Ayad Almakki
- HSM, Univ Montpellier, IRD, CNRS, Montpellier, France; Department of Clinical Laboratory Science, College of Pharmacy, University of Basrah, Iraq
| | - Estelle Jumas-Bilak
- HSM, Univ Montpellier, IRD, CNRS, Département d'Hygiène Hospitalière, CHU de Montpellier, Montpellier, France
| | - Hélène Marchandin
- HSM, Univ Montpellier, IRD, CNRS, Montpellier, France, Département de Microbiologie, CHU Nîmes, Nîmes, France
| | - Patricia Licznar-Fajardo
- HSM, Univ Montpellier, IRD, CNRS, Département d'Hygiène Hospitalière, CHU de Montpellier, Montpellier, France.
| |
Collapse
|
12
|
Cheng H, Jiang H, Fang J, Zhu C. Antibiotic Resistance and Characteristics of Integrons in Escherichia coli Isolated from Penaeus vannamei at a Freshwater Shrimp Farm in Zhejiang Province, China. J Food Prot 2019; 82:470-478. [PMID: 30806555 DOI: 10.4315/0362-028x.jfp-18-444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Our study was conducted to investigate the antibiotic susceptibility profiles, integrons and their associated gene cassettes (GCs), and insertion sequence common regions of Escherichia coli isolates from Penaeus vannamei collected at a large-scale freshwater shrimp farm in Zhejiang Province, People's Republic of China. A total of 182 E. coli isolates were identified from 200 samples. With the exception of imipenem, isolates were most commonly resistant to β-lactams, followed by tetracylines and sulfonamides. Fifty-two (28.6%) E. coli isolates were classified as multidrug resistant, and the patterns were highly diverse, with 29 types represented. The multiple-antibiotic resistance indices of the isolates were 0.17 to 0.56; 9.3% (17) of the 182 isolates were positive for class 1 integrons, 0.5% (1 isolate) was positive for class 2 integrons, and an insertion sequence common region 1 element was found upstream of the intI1 (integrase) gene in one of the intI1-positive isolates. Four GC arrays were detected in class 1 integrons, and one GC array was detected in class 2 integrons. Although the overall prevalence of antimicrobial-resistant bacteria in P. vannamei was lower than that previously reported for poultry and livestock farms in China, concerns about the inappropriate use of antibiotics and the transmission of antimicrobial-resistant bacteria in aquaculture were raised. Alternative approaches to reducing or replacing the use of antibiotics should be further studied.
Collapse
Affiliation(s)
- Hui Cheng
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Han Jiang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Jiehong Fang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| |
Collapse
|
13
|
Yousfi K, Touati A, Lefebvre B, Garneau P, Brahmi S, Gharout-Sait A, Harel J, Bekal S. Characterization of multidrug-resistant Gram-negative bacilli isolated from hospitals effluents: first report of a bla OXA-48-like in Klebsiella oxytoca, Algeria. Braz J Microbiol 2018; 50:175-183. [PMID: 30637660 DOI: 10.1007/s42770-018-0010-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/02/2018] [Indexed: 12/17/2022] Open
Abstract
The antibiotic susceptibility profile and antimicrobial resistance determinants were characterized on Gram-negative bacilli (GNB) isolated from Algerian hospital effluents. Among the 94 isolates, Enterobacteriaceae was the predominant family, with Escherichia coli and Klebsiella pneumoniae being the most isolated species. In non-Enterobacteriaceae, Acinetobacter and Aeromonas were the predominant species followed by Pseudomonas, Comamonas, Pasteurella, and Shewanella spp. The majority of the isolates were multidrug-resistant (MDR) and carried different antimicrobial resistance genes including blaCTX-M, blaTEM, blaSHV, blaOXA-48-like, blaOXA-23, blaOXA-51, qnrB, qnrS, tet(A), tet(B), tet(C), dfrA1, aac(3)-IIc (aacC2), aac(6')-1b, sul1, and sul2. The qacEΔ1-sul1 and intI2 signatures of class 1 and class 2 integrons, respectively, were also detected. Microarray hybridization on MDR E. coli revealed additional resistance genes (aadA1 and aph3strA, tet30, mphA, dfrA12, blacmy2, blaROB1, and cmlA1) and classified the tested strains as commensals, thus highlighting the potential role of humans in antibiotic resistance dissemination. This study is the first report of blaOXA-48-like in Klebsiella oxytoca in Algeria and blaOXA-23 in A. baumannii in Algerian hospital effluents. The presence of these bacteria and resistance genes in hospital effluents represents a serious public health concern since they can be disseminated in the environment and can colonize other hosts.
Collapse
Affiliation(s)
- Khadidja Yousfi
- Laboratoire d'Écologie Microbienne, FSNV, Université de Béjaia, 06000, Béjaia, Algeria.,Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, QC, H9X 3R5, Canada
| | - Abdelaziz Touati
- Laboratoire d'Écologie Microbienne, FSNV, Université de Béjaia, 06000, Béjaia, Algeria
| | - Brigitte Lefebvre
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, QC, H9X 3R5, Canada
| | - Philippe Garneau
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Soumia Brahmi
- Laboratoire d'Écologie Microbienne, FSNV, Université de Béjaia, 06000, Béjaia, Algeria
| | - Alima Gharout-Sait
- Laboratoire d'Écologie Microbienne, FSNV, Université de Béjaia, 06000, Béjaia, Algeria
| | - Josée Harel
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Sadjia Bekal
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, QC, H9X 3R5, Canada. .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
14
|
Adelowo OO, Helbig T, Knecht C, Reincke F, Mäusezahl I, Müller JA. High abundances of class 1 integrase and sulfonamide resistance genes, and characterisation of class 1 integron gene cassettes in four urban wetlands in Nigeria. PLoS One 2018; 13:e0208269. [PMID: 30496274 PMCID: PMC6264143 DOI: 10.1371/journal.pone.0208269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022] Open
Abstract
There is little information about environmental contamination with antibiotic resistance genes (ARG) in Sub-Saharan Africa, home to about 1 billion people. In this study we measured the abundance of three genes (sul1, sul2, and intI1) used as indicators of environmental contamination with ARGs in the sediments of four urban wetlands in southwestern Nigeria by qPCR. In addition, we characterised the variable regions of class 1 integrons in sulfamethoxazole/trimethoprim (SMX/TRI)-resistant bacteria isolated from the wetlands by PCR and DNA sequencing. The indicator ARGs were present in all wetlands with mean absolute copy numbers/gram of sediment ranging between 4.7x106 and 1.2x108 for sul1, 1.1x107 and 1x108 for sul2, and 5.3x105 and 1.9x107 for intI1. The relative abundances (ARG/16S rRNA copy number) ranged from about 10-3 to 10-1. These levels of ARG contamination were similar to those previously reported for polluted environments in other parts of the world. The integrase genes intI1 and intI2 were detected in 72% and 11.4% SMX/TRI-resistant isolates, respectively. Five different cassette array types (dfrA7; aadA2; aadA1|dfrA1; acc(6')lb-cr|arr3|dfrA27; arr3|acc(6')lb-cr|dfrA27) were detected among 34 (59.6%) intI1-positive isolates. No gene cassettes were found in the nine intI2-positive isolates. These results show that African urban ecosystems impacted by anthropogenic activities are reservoirs of bacteria harbouring transferable ARG.
Collapse
Affiliation(s)
- Olawale Olufemi Adelowo
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Therese Helbig
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
- Institute of Biology/Microbiology Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Camila Knecht
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
- Institute of Instrumental & Environmental Technology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Franziska Reincke
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Ines Mäusezahl
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Jochen A. Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| |
Collapse
|
15
|
Moosavian M, Khoshkholgh Sima M, Haddadzadeh Shoushtari M, Fazeli Naserabad MA. Detection of Class 1 Integrons among Gram-negative Bacilli Isolated from Sputum Cultures of Patients with Lower Respiratory Tract Infections in Ahvaz, Iran. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2018. [DOI: 10.29252/jommid.6.4.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
16
|
Singh NS, Singhal N, Virdi JS. Genetic Environment of blaTEM-1, blaCTX-M-15, blaCMY-42 and Characterization of Integrons of Escherichia coli Isolated From an Indian Urban Aquatic Environment. Front Microbiol 2018; 9:382. [PMID: 29563901 PMCID: PMC5845874 DOI: 10.3389/fmicb.2018.00382] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/20/2018] [Indexed: 12/02/2022] Open
Abstract
The presence of antibiotic resistance genes (ARGs) including those expressing ESBLs and AmpC-β-lactamases in Escherichia coli inhabiting the aquatic environments is a serious health problem. The situation is further complicated by the fact that ARGs can be easily transferred among bacterial species with the help of mobile genetic elements – plasmids, integrons, insertion sequences (IS), and transposons. Therefore, the analysis of genetic environment and mobile genetic elements associated with ARGs is important as these provide useful information about the epidemiology of these genes. In our previous study, we had reported presence of various β-lactam resistance genes present in E. coli strains inhabiting the river Yamuna traversing the National Capital Territory of Delhi (India). In the present study, we have analyzed the genetic environment of three ARGs blaTEM-1, blaCTX-M-15, and blaCMY -42 of those E. coli strains. The structure of class 1 integrons and their gene cassettes was also analyzed. Insertion sequence IS26 was present upstream of blaTEM-1, ISEcp1 was present upstream of blaCTXM-15 gene and orf477 was present downstream of blaCTXM-15. ISEcp1 was also present upstream of blaCMY -42 and, blc and sugE genes were present in the downstream region of this gene. Thus, the overall genetic environment surrounding these genes was similar to that reported from E. coli strains isolated globally. Conjugation assays, isolation and analysis of plasmid DNA of the transconjugants indicated that blaTEM-1, blaCTX-M-15, blaCMY -42 and class 1 integron were plasmid-mediated and possibly transmit between genera through horizontal gene transfer (HGT). This might lead to dissemination of antimicrobial resistance genes in aquatic environment. The work embodied in this paper is the first describing the genetic environment of bla and integrons in aquatic E. coli isolated from India.
Collapse
Affiliation(s)
- Nambram S Singh
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi, New Delhi, India
| | - Neelja Singhal
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi, New Delhi, India
| | - Jugsharan S Virdi
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi, New Delhi, India
| |
Collapse
|
17
|
Burch TR, Sadowsky MJ, LaPara TM. Effect of Different Treatment Technologies on the Fate of Antibiotic Resistance Genes and Class 1 Integrons when Residual Municipal Wastewater Solids are Applied to Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:14225-14232. [PMID: 29148730 DOI: 10.1021/acs.est.7b04760] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Residual wastewater solids are a significant reservoir of antibiotic resistance genes (ARGs). While treatment technologies can reduce ARG levels in residual wastewater solids, the effects of these technologies on ARGs in soil during subsequent land-application are unknown. In this study we investigated the use of numerous treatment technologies (air drying, aerobic digestion, mesophilic anaerobic digestion, thermophilic anaerobic digestion, pasteurization, and alkaline stabilization) on the fate of ARGs and class 1 integrons in wastewater solids-amended soil microcosms. Six ARGs [erm(B), qnrA, sul1, tet(A), tet(W), and tet(X)], the integrase gene of class 1 integrons (intI1), and 16S rRNA genes were quantified using quantitative polymerase chain reaction. The quantities of ARGs and intI1 decreased in all microcosms, but thermophilic anaerobic digestion, alkaline stabilization, and pasteurization led to the most extensive decay of ARGs and intI1, often to levels similar to that of the control microcosms to which no wastewater solids had been applied. In contrast, the rates by which ARGs and intI1 declined using the other treatment technologies were generally similar, typically varying by less than 2 fold. These results demonstrate that wastewater solids treatment technologies can be used to decrease the persistence of ARGs and intI1 during their subsequent application to soil.
Collapse
Affiliation(s)
- Tucker R Burch
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Michael J Sadowsky
- Biotechnology Institute, University of Minnesota , St. Paul, Minnesota 55108, United States
- Department of Soil, Water, and Climate, University of Minnesota , St. Paul, Minnesota 55108, United States
- Department of Plant and Microbial Biology, University of Minnesota , St. Paul, Minnesota 55108, United States
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States
- Biotechnology Institute, University of Minnesota , St. Paul, Minnesota 55108, United States
| |
Collapse
|
18
|
Gatica J, Tripathi V, Green S, Manaia CM, Berendonk T, Cacace D, Merlin C, Kreuzinger N, Schwartz T, Fatta-Kassinos D, Rizzo L, Schwermer CU, Garelick H, Jurkevitch E, Cytryn E. High Throughput Analysis of Integron Gene Cassettes in Wastewater Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11825-11836. [PMID: 27689892 DOI: 10.1021/acs.est.6b03188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Integrons are extensively targeted as a proxy for anthropogenic impact in the environment. We developed a novel high-throughput amplicon sequencing pipeline that enables characterization of thousands of integron gene cassette-associated reads, and applied it to acquire a comprehensive overview of gene cassette composition in effluents from wastewater treatment facilities across Europe. Between 38 100 and 172 995 reads per-sample were generated and functionally characterized by screening against nr, SEED, ARDB and β-lactamase databases. Over 75% of the reads were characterized as hypothetical, but thousands were associated with toxin-antitoxin systems, DNA repair, cell membrane function, detoxification and aminoglycoside and β-lactam resistance. Among the reads characterized as β-lactamases, the carbapenemase blaOXA was dominant in most of the effluents, except for Cyprus and Israel where blaGES was also abundant. Quantitative PCR assessment of blaOXA and blaGES genes in the European effluents revealed similar trends to those displayed in the integron amplicon sequencing pipeline described above, corroborating the robustness of this method and suggesting that these integron-associated genes may be excellent targets for source tracking of effluents in downstream environments. Further application of the above analyses revealed several order-of-magnitude reductions in effluent-associated β-lactamase genes in effluent-saturated soils, suggesting marginal persistence in the soil microbiome.
Collapse
Affiliation(s)
- Joao Gatica
- The Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan, Israel
- The Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem , Rehovot, Israel
| | - Vijay Tripathi
- The Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem , Rehovot, Israel
| | - Stefan Green
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago , Chicago, Illinois 60612, United States
| | - Celia M Manaia
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa , Lisboa, Portugal
| | - Thomas Berendonk
- Faculty of Environmental Sciences, Technische Universität Dresden , Dresden, Germany
| | - Damiano Cacace
- Faculty of Environmental Sciences, Technische Universität Dresden , Dresden, Germany
| | - Christophe Merlin
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, Institut Jean Barriol , 15 Avenue du Charmois, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, LCPME , UMR 7564, 15 Avenue du Charmois, 54500 Vandoeuvre-lès-Nancy, France
| | - Norbert Kreuzinger
- Institute for Water Quality, Resources and Waste Managment, Technische Universität Wien , Wien, Austria
| | - Thomas Schwartz
- Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen, Germany
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas, International Water Research Center, University of Cyprus , P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Luigi Rizzo
- Department of Civil Engineering, University of Salerno , Salerno, Italy
| | | | - Hemda Garelick
- School of Science and Technology, Middlesex University , London, U.K
| | - Edouard Jurkevitch
- The Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem , Rehovot, Israel
| | - Eddie Cytryn
- The Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan, Israel
| |
Collapse
|
19
|
Farkas A, Crăciunaş C, Chiriac C, Szekeres E, Coman C, Butiuc-Keul A. Exploring the Role of Coliform Bacteria in Class 1 Integron Carriage and Biofilm Formation During Drinking Water Treatment. MICROBIAL ECOLOGY 2016; 72:773-782. [PMID: 27079455 DOI: 10.1007/s00248-016-0758-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
This study investigates the role of coliforms in the carriage of class 1 integron and biocide resistance genes in a drinking water treatment plant and explores the relationship between the carriage of such genes and the biofouling abilities of the strain. The high incidence of class 1 integron and biocide resistance genes (33.3 % of the isolates) highlights the inherent risk of genetic contamination posed by coliform populations during drinking water treatment. The association between the presence of intI1 gene and qac gene cassettes, especially qacH, was greater in biofilm cells. In coliforms recovered from biofilms, a higher frequency of class 1 integron elements and higher diversity of genetic patterns occurred, compared to planktonic cells. The coliform isolates under the study proved to mostly carry non-classical class 1 integrons lacking the typical qacEΔ1/sul1 genes or a complete tni module, but bearing the qacH gene. No link was found between the carriage of integron genes and the biofouling degree of the strain, neither in aerobic or in anaerobic conditions. Coliform bacteria isolated from established biofilms rather adhere in oxygen depleted environments, while the colonization ability of planktonic cells is not significantly affected by oxygen availability.
Collapse
Affiliation(s)
- Anca Farkas
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 1 Kogălniceanu Street, 400084, Cluj-Napoca, Romania.
| | - Cornelia Crăciunaş
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 1 Kogălniceanu Street, 400084, Cluj-Napoca, Romania
| | - Cecilia Chiriac
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 1 Kogălniceanu Street, 400084, Cluj-Napoca, Romania
- Institute of Biological Research, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Edina Szekeres
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 1 Kogălniceanu Street, 400084, Cluj-Napoca, Romania
- Institute of Biological Research, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Cristian Coman
- Institute of Biological Research, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Anca Butiuc-Keul
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 1 Kogălniceanu Street, 400084, Cluj-Napoca, Romania
| |
Collapse
|
20
|
Ferdous M, Kooistra-Smid AMD, Zhou K, Rossen JWA, Friedrich AW. Virulence, Antimicrobial Resistance Properties and Phylogenetic Background of Non-H7 Enteropathogenic Escherichia coli O157. Front Microbiol 2016; 7:1540. [PMID: 27733849 PMCID: PMC5039186 DOI: 10.3389/fmicb.2016.01540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/14/2016] [Indexed: 02/02/2023] Open
Abstract
Escherichia coli (E.coli) O157 that do not produce Shiga toxin and do not possess flagellar antigen H7 are of diverse H serotypes. In this study, the antibiotic resistance properties, genotype of a set of virulence associated genes and the phylogenetic background of E. coli O157:non-H7 groups were compared. Whole genome sequencing was performed on fourteen O157:non-H7 isolates collected in the STEC-ID-net study. The genomes were compared with E. coli O157 genomes and a typical Enteropathogenic E. coli (tEPEC) genome downloaded from NCBI. Twenty-six (86%) of the analyzed genomes had the intimin encoding gene eae but of different types mostly correlating with their H types, e.g., H16, H26, H39, and H45 carried intimin type ε, β, κ, and α, respectively. They belonged to several E. coli phylogenetic groups, i.e., to phylogenetic group A, B1, B2, and D. Seven (50%) of our collected O157:non-H7 isolates were resistant to two or more antibiotics. Several mobile genetic elements, such as plasmids, insertion elements, and pathogenicity islands, carrying a set of virulence and resistance genes were found in the E. coli O157:non-H7 isolates. Core genome phylogenetic analysis showed that O157:non-H7 isolates probably evolved from different phylogenetic lineages and were distantly related to the E. coli O157:H7 lineage. We hypothesize that independent acquisition of mobile genetic elements by isolates of different lineages have contributed to the different molecular features of the O157:non-H7 strains. Although distantly related to the STEC O157, E. coli O157:non-H7 isolates from multiple genetic background could be considered as pathogen of concern for their diverse virulence and antibiotic resistance properties.
Collapse
Affiliation(s)
- Mithila Ferdous
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Anna M D Kooistra-Smid
- Department of Medical Microbiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands; Department of Medical Microbiology, Certe Laboratory for Infectious DiseasesGroningen, Netherlands
| | - Kai Zhou
- Department of Medical Microbiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - John W A Rossen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| |
Collapse
|
21
|
Data on the phylogenetic typing, integron gene cassette array analysis, multi-drug resistance analysis and correlation between antimicrobial resistance determinants in Klebsiella strains. Data Brief 2016; 8:1289-94. [PMID: 27570806 PMCID: PMC4990640 DOI: 10.1016/j.dib.2016.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/04/2016] [Accepted: 07/11/2016] [Indexed: 11/22/2022] Open
Abstract
The antimicrobial resistance of Klebsiella species in the poultry industry is becoming a public concern. In support our recent publication "Characterization of antimicrobial resistance in Klebsiella species isolated from chicken broilers" (Wu et al., 2016) [1], multilocus sequence typing (MLST) and gyrA PCR-RFLP assays were conducted to identify the genetic relationships between and phylogenetic groups of the 90 antimicrobial resistant Klebsiella species isolated from a commercial broiler slaughter plant in Shandong, China. In addition, PCR-RFLP was performed to identify different gene cassette arrays in class 1 and 2 integrons, and the correlations between different antimicrobial resistance determinants were analyzed.
Collapse
|
22
|
Characterization of antimicrobial resistance in Klebsiella species isolated from chicken broilers. Int J Food Microbiol 2016; 232:95-102. [PMID: 27289192 DOI: 10.1016/j.ijfoodmicro.2016.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 01/16/2023]
Abstract
The prevalence of antimicrobial resistant Klebsiella pneumoniae in poultry products has been a public concern, as it severely endangers food safety and human health. In this study, we investigated 90 antimicrobial resistant Klebsiella strains that were isolated from a commercial broiler slaughter plant in Shandong province of China. Nearly all (89/90) of the isolates were identified as infectious phylogenetic group KpI-type K. pneumoniae. Out of these 90 strains, 87 (96.7%) were multidrug-resistant isolates, and 87 (96.7%) were extended-spectrum beta-lactamase (ESBL)-producing isolates. An analysis of the prevalence of quinolone resistance genes showed that 7.8%, 77.8%, 26.7%, and 2.2% of the strains carried the qnrA, qnrB, qnrS, and qepA genes, respectively. An analysis of beta-lactam resistance genes showed that a high percentage of the strains contain the blaTEM (76.7%), blaSHV (88.9%), and blaCTX-M (75.6%) genes, among which three blaSHV subtypes (blaSHV-1, n=30; blaSHV-11, n=38; blaSHV-12, n=12) and three blaCTX-M subtypes (blaCTX-M-14, n=14; blaCTX-M-15, n=35; blaCTX-M-55, n=19) were found. A further investigation of mobile genetic elements involved in horizontal multidrug resistance gene transfer showed the presence of class 1 and 2 integrons in 77 (85.6%) and five (5.6%) isolates, respectively, while no class 3 integrons were detected. Four types of class 1 integrons containing specific gene cassette arrays (dfrA12-orfF-aadA2, dfrA17-aadA5, dfrA1-aadA1, and empty) were identified. Only one gene cassette array (dfrA1-sat2-aadA1) was detected in the class 2 integrons. Furthermore, four different types of insertion sequence common region 1 (ISCR1)-mediated downstream structures were successfully identified in 46 class 1 integron-positive isolates, among which ISCR1-sapA-like-qnrB2-qacEΔ1 was the most commonly observed structure. Chi-square tests revealed a significant association between ESBL genes, plasmid-mediated quinolone resistance (PMQR) genes, and class 1 integrons (p<0.01). Additional conjugation experiments confirmed this relationship (p<0.01) in transconjugants by finding that a high percentage of PMQR genes (74.0%) and class 1 integrons (73.7%) were co-transferred with ESBL genes. Finally, multilocus sequence typing (MLST) was performed, and it revealed that the isolates from chickens are widely distributed in humans, and that antimicrobial resistance is not only disseminated by clonal spreading, but largely by horizontal gene transfer. These results suggest that horizontal transfer of antimicrobial resistance genes by mobile genetic elements, such as integrons, plays a major role in the spread of antimicrobial resistance. Therefore, elucidating the structures of drug resistance integrons is of great importance to the commercial broiler slaughter plant in Shandong, China.
Collapse
|
23
|
Cao J, Li M, Xu C, Zhou T, Du J, Sun Y, Qin L, Xu J. Characterization of Integrons and qnr Genes in Proteeae from a Teaching Hospital in China. Chemotherapy 2016; 62:12-18. [PMID: 27220322 DOI: 10.1159/000445426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/12/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Proteeae isolates displaying multidrug-resistance (MDR) are the second most common causes of hospital-associated infections. The aim of this study was to screen class 1-3 integrons and plasmid-mediated quinolone resistance (PMQR) genes in Proteeae isolates from the First Affiliated Hospital of the Wenzhou Medical University. MATERIALS AND METHODS 176 Proteeae isolates were collected from clinical specimens of inpatients between January 2011 and December 2013. Susceptibility testing was determined by the agar dilution method. Class 1-3 integrons and PMQR genes were amplified by polymerase chain reaction, and the variable regions of integrons were determined by restriction fragment length polymorphisms. RESULTS 68.2% Proteeae isolates exhibited MDR phenotypes: 46.6 and 10.8% Proteeae isolates were positive for intI1 and intI2, respectively. The resistance rate of integron-positive isolates to aminoglycosides, fluoroquinolones, and trimethoprim/sulfamethoxazole was significantly higher than integron-negative isolates. Sequence analysis revealed that dfrA1-sat2-aadA1, dfrA1-catB2-sat2-aadA1, and sat2-aadA1 were first detected in Morganella morganii strains isolated from China. PMQR was determined by qnrD in 40 strains (22.7%). CONCLUSION Our results indicate that class 1 and 2 integrons are common among Proteeae isolates. Meanwhile, qnrD are highly prevalent in Proteeae isolated from our hospital.
Collapse
Affiliation(s)
- Jianming Cao
- Department of Microbiology and Immunology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang J, Mao D, Mu Q, Luo Y. Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 526:366-73. [PMID: 25991498 DOI: 10.1016/j.scitotenv.2015.05.046] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 04/14/2023]
Abstract
This study investigated the characteristics of 10 subtypes of antibiotic resistance genes (ARGs) for sulfonamide, tetracycline, β-lactam and macrolide resistance and the class 1 integrase gene (intI1). In total, these genes were monitored in 24 samples across each stage of five full-scale pharmaceutical wastewater treatment plants (PWWTPs) using qualitative and real-time quantitative polymerase chain reactions (PCRs). The levels of typical ARG subtypes in the final effluents ranged from (2.08±0.16)×10(3) to (3.68±0.27)×10(6) copies/mL. The absolute abundance of ARGs in effluents accounted for only 0.6%-59.8% of influents of the five PWWTPs, while the majority of the ARGs were transported to the dewatered sludge with concentrations from (9.38±0.73)×10(7) to (4.30±0.81)×10(10) copies/g dryweight (dw). The total loads of ARGs discharged through dewatered sludge was 7-308 folds higher than that in the raw influents and 16-638 folds higher than that in the final effluents. The proliferation of ARGs mainly occurs in the biological treatment processes, such as conventional activated sludge, cyclic activated sludge system (CASS) and membrane bio-reactor (MBR), implying that significant replication of certain subtypes of ARGs may be attributable to microbial growth. High concentrations of antibiotic residues (ranging from 0.14 to 92.2 mg/L) were detected in the influents of selected wastewater treatment systems and they still remain high residues in the effluents. Partial correlation analysis showed significant correlations between the antibiotic concentrations and the associated relative abundance of ARG subtypes in the effluent. Although correlation does not prove causation, this study demonstrates that in addition to bacterial growth, the high antibiotic residues within the pharmaceutical WWTPs may influence the proliferation and fate of the associated ARG subtypes.
Collapse
Affiliation(s)
- Jilu Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Quanhua Mu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China.
| |
Collapse
|
25
|
Lin M, Liang J, Zhang X, Wu X, Yan Q, Luo Z. Genetic diversity of three classes of integrons in antibiotic-resistant bacteria isolated from Jiulong River in southern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:11930-11939. [PMID: 25869436 DOI: 10.1007/s11356-015-4480-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
We identified antibiotic-resistant bacterial isolates from the surface waters of Jiulong River basin in southern China and determined their extent of resistance, as well as the prevalence and characterization of three classes of integrons. A phylogenetic analysis of 16S ribosomal DNA (rDNA) sequences showed that 20 genera were sampled from a total of 191 strains and the most common genus was Acinetobacter. Antimicrobial susceptibility testing revealed that the 191 isolates were all multiresistant and there were high levels of resistance to 19 antimicrobials that were tested, particularly the β-lactam, sulfonamide, amphenicol, macrolide, and rifamycin classes. Moreover, class 1 integrons were ubiquitous while only five out of 191 strains harbored class 2 integrons and no class 3 integrons were detected. The variable region of the class 1 integrons contained 30 different gene cassette arrays. Nine novel arrays were found in 65 strains, and seven strains had empty integrons. Among these 30 arrays, there were 34 different gene cassettes that included 25 resistance genes, six genes with unknown functions, two mutant transposase genes, and a new gene. The unique array dfrA1-sat2-aadA1 was detected in all five isolates carrying the class 2 integron. We found that antibiotic-resistant bacterial isolates from Jiulong River were diverse and antibiotic resistance genes associated with integrons were widespread.
Collapse
Affiliation(s)
- Mao Lin
- Jimei University, Xiamen, Fujian, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
26
|
Identification of integrons and phylogenetic groups of drug-resistant Escherichia coli from broiler carcasses in China. Int J Food Microbiol 2015; 211:51-6. [PMID: 26173199 DOI: 10.1016/j.ijfoodmicro.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/26/2015] [Accepted: 07/03/2015] [Indexed: 11/21/2022]
Abstract
The dissemination of drug-resistant Escherichia coli in poultry products is becoming a public concern, as it endangers food security and human health. It is very common for E. coli to exhibit drug resistance in the poultry industry in China due to the excessive use of antibiotics. However, few studies have examined the drug resistance endowed by integrons and integron-associated gene cassettes in different phylogenetic groups of E. coli isolated from broiler carcasses. In this study, 373 antibiotic-resistant E. coli strains were isolated from the surfaces or insides of broiler carcasses from a slaughterhouse in Shandong Province, China. According to phylogenetic assays of chuA, yjaA, and an anonymous DNA fragment, TSPE4-C2, these isolates belong to four phylogenetic groups (A, B1, B2, and D) and seven subgroups (A0, A1, B1, B21, B22, D1, and D2). Of the tested isolates, 95.71% (n=357) are multi-drug resistant, among which group B1 was predominant, accounting for 33.51% (n=125) of the tested isolates. A high percentage of the E. coli isolates were resistant to amoxicillin-clavulanic acid (99.20%, n=370), doxycycline (92.23%, n=344), sulfamethoxazole-trimethoprim (90.88%, n=339), ciprofloxacin, (64.61%, n=241), sulbactam-cefoperazone (51.21%, n=191), and amikacin (33.78%, n=126). Furthermore, among the 373 isolates, class 1 and 2 integrons were identified in 292 (78.28%) and 49 (13.14%) of the isolates, respectively, while no class 3 integrons were detected. The most prevalent gene cassette arrays were dfrA17-aadA5 and dfrA12-orfF-aadA2 in the variable region of class 1 integrons, while only one gene cassette array (dfrA1-sat2-aadA1) was detected in the variable region of class 2 integrons. Class 1 integrons were distributed in various physiological subtypes, whereas no predominant phylogenetic groups could be identified. The presence of class 2 integrons in the B21 subtype was significantly higher than in the other subtypes, and it coexisted with the class 1 integron. This study suggests that broiler products are potential sources of multi-drug resistant E. coli, and that resistance genes could be spread by lateral gene transfer.
Collapse
|
27
|
Ravi A, Avershina E, Ludvigsen J, L'Abée-Lund TM, Rudi K. Integrons in the intestinal microbiota as reservoirs for transmission of antibiotic resistance genes. Pathogens 2014; 3:238-48. [PMID: 25437798 PMCID: PMC4243444 DOI: 10.3390/pathogens3020238] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 12/13/2022] Open
Abstract
The human intestinal microbiota plays a major beneficial role in immune development and resistance to pathogens. The use of antibiotics, however, can cause the spread of antibiotic resistance genes within the resident intestinal microbiota. Important vectors for this are integrons. This review therefore focuses on the integrons in non-pathogenic bacteria as a potential source for the development and persistence of multidrug resistance. Integrons are a group of genetic elements which are assembly platforms that can capture specific gene cassettes and express them. Integrons in pathogenic bacteria have been extensively investigated, while integrons in the intestinal microbiota have not yet gained much attention. Knowledge of the integrons residing in the microbiota, however, can potentially aid in controlling the spread of antibiotic resistance genes to pathogens.
Collapse
Affiliation(s)
- Anuradha Ravi
- Norwegian University of Life Sciences, Chemistry, Biotechnology and Food science department (IKBM), Campus Ås, Ås 1432, Norway.
| | - Ekaterina Avershina
- Norwegian University of Life Sciences, Chemistry, Biotechnology and Food science department (IKBM), Campus Ås, Ås 1432, Norway.
| | - Jane Ludvigsen
- Norwegian University of Life Sciences, Chemistry, Biotechnology and Food science department (IKBM), Campus Ås, Ås 1432, Norway.
| | - Trine M L'Abée-Lund
- Norwegian University of Life Sciences, Department of Food Safety and Infection Biology, Campus Adamstuen, Oslo 0454, Norway.
| | - Knut Rudi
- Norwegian University of Life Sciences, Chemistry, Biotechnology and Food science department (IKBM), Campus Ås, Ås 1432, Norway.
| |
Collapse
|
28
|
Nguyen HNK, Van TTH, Nguyen HT, Smooker PM, Shimeta J, Coloe PJ. Molecular characterization of antibiotic resistance in Pseudomonas and Aeromonas isolates from catfish of the Mekong Delta, Vietnam. Vet Microbiol 2014; 171:397-405. [PMID: 24629778 DOI: 10.1016/j.vetmic.2014.01.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 12/01/2022]
Abstract
A collection of 116 motile Pseudomonas spp. and 92 Aeromonas spp. isolated from 15 Vietnamese intensive catfish farms was analyzed to examine the molecular antibiotic resistance characteristics and the transferability of resistance markers within and between species. High levels of resistance to ampicillin, trimethoprim/sulfamethoxazole, nalidixic acid, chloramphenicol, and nitrofurantoin were observed. The percentage of multiple drug resistance of Pseudomonas spp. and Aeromonas spp. isolates was 96.6% and 61.9%, respectively. The multiple antibiotic resistance (MAR) index mean values of 0.457 and 0.293 of Pseudomonas and Aeromonas isolates, respectively, indicated that these isolates were exposed to high risk sources of contamination where antibiotics were commonly used. Approximately 33% of Pseudomonas spp. and 28% of Aeromonas spp. isolates from catfish contained class 1 integrons, but no class 2 integrons were detected. Several common resistance genes including aadA, dfrA and catB were harbored in class 1 integrons. Large plasmids (>55 kb) were frequently detected in 50% and 71.4% of the plasmids extracted from Pseudomonas and Aeromonas isolates, respectively. Conjugation and transformation experiments demonstrated the successful transfer of all or part of the resistance phenotypes of catfish isolates to the recipient strains, including laboratory strains and strains isolated from this study. These results highlight the likely role of catfish bacteria as a reservoir of antibiotic resistant, Gram-negative bacteria harboring a pool of mobile genetic elements that can readily be transferred intra- and interspecies. To our knowledge, this is the first report on molecular characterization of antibiotic resistance of bacteria isolated from catfish in Vietnam.
Collapse
Affiliation(s)
- Hoang Nam Kha Nguyen
- Faculty of Fisheries, Nong Lam University, Thu Duc District, Ho Chi Minh City, Viet Nam; School of Applied Sciences, RMIT University, Bundoora West Campus, Bundoora, Victoria 3083, Australia
| | - Thi Thu Hao Van
- School of Applied Sciences, RMIT University, Bundoora West Campus, Bundoora, Victoria 3083, Australia
| | - Huu Thinh Nguyen
- Faculty of Fisheries, Nong Lam University, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Peter M Smooker
- School of Applied Sciences, RMIT University, Bundoora West Campus, Bundoora, Victoria 3083, Australia
| | - Jeff Shimeta
- School of Applied Sciences, RMIT University, Bundoora West Campus, Bundoora, Victoria 3083, Australia
| | - Peter J Coloe
- School of Applied Sciences, RMIT University, Bundoora West Campus, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
29
|
Sarria-Guzmán Y, López-Ramírez MP, Chávez-Romero Y, Ruiz-Romero E, Dendooven L, Bello-López JM. Identification of antibiotic resistance cassettes in class 1 integrons in Aeromonas spp. strains isolated from fresh fish (Cyprinus carpio L.). Curr Microbiol 2013; 68:581-6. [PMID: 24370627 DOI: 10.1007/s00284-013-0511-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/08/2013] [Indexed: 01/15/2023]
Abstract
Forty-six Aeromonas spp. strains were isolated from fresh fish and investigated for their antimicrobial susceptibility, detection of Class 1 integrons by PCR, and arrangement of gene cassettes. Selected isolates were further characterized by enterobacterial repetitive intergenic consensus-PCR. Twenty isolates were found to carry Class 1 integrons. Amplification of the variable regions of the integrons revealed diverse bands ranging in size from 150 to 1,958 pb. Sequence analysis of the variable regions revealed the presence of several gene cassettes, such as adenylyl transferases (aadA2 and aadA5), dihydrofolate reductases (dfrA17 and dfrA1), chloramphenicol acetyl transferase (catB3), β-lactamase (oxa2), lincosamide nucleotidil transferase (linF), aminoglycoside-modifying enzyme (apha15), and oxacillinase (bla OXA-10). Two open reading frames with an unknown function were identified as orfC and orfD. The aadA2 cassette was the most common integron found in this study. Interestingly, five integrons were detected in the plasmids that might be involved in the transfer of resistance genes to other bacteria. This is a first report of cassette encoding for lincosamides (linF) resistance in Aeromonas spp. Implications on the incidence of integrons in isolates of Aeromonas spp. from fresh fish for human consumption, and its possible consequences to human health are discussed.
Collapse
|
30
|
Novel Class 1 Integrons in Multi-drug Resistant Isolates from Eastern China. Indian J Microbiol 2013; 54:227-31. [PMID: 25320427 DOI: 10.1007/s12088-013-0441-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 11/21/2013] [Indexed: 02/01/2023] Open
Abstract
Integrons are mobile genetic elements able to capture, express and excise resistance genes, playing an important role in the spread of bacterial resistance. The present study was to investigate the occurrence and diversity of integrons in 120 clinical multi-drug resistant Gram-negative isolates from eastern China. Screening of integrons was performed by PCR and gene cassettes were further characterized by PCR-RFLP and sequencing. Class 1 integrons were detected in 70.8 % of isolates and no class 2 and class 3 integrons were detected in any isolates. A total of 19 resistant gene cassettes were identified, four representative of novel gene cassettes: an aacA3 variant (aacA3c), an aacA4 variant (aacA4'-17), a bla OXA variant (bla OXA-251 ), and a catB8 gene cassette interrupted by an insertion sequence IS10 (catB8::IS10). In addition, 14 cassette arrays were detected, including three novel integrons: gcuD1-aacA4'-17-gcu38B-catB8::IS10 (In712), aacA3c-aadA13-bla OXA-251 (In713) and dfrA1-gcu37-aadA5 (In714). The presence of novel integron structures in clinical isolates suggests hospital environments may favor the formation of novel combination of gene cassettes. Moreover, the high prevalence of integrons in multi-drug resistant isolates highlights the urgent need to employ effective means to avoid dissemination of drug-resistant bacteria.
Collapse
|
31
|
Cicek AC, Duzgun AO, Saral A, Sandalli C. Determination of a novel integron-located variant (bla
OXA
-320
) of Class D β-lactamase in Proteus mirabilis. J Basic Microbiol 2013; 54:1030-5. [DOI: 10.1002/jobm.201300264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 08/11/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Aysegul Copur Cicek
- Department of Medical Microbiology, Faculty of Medicine; Recep Tayyip Erdogan University; Rize Turkey
| | - Azer Ozad Duzgun
- Department of Biology, Faculty of Arts & Sciences; Giresun University; Giresun Turkey
| | - Aysegul Saral
- Department of Biology, Faculty of Arts & Sciences; Artvin Coruh University; Artvin Turkey
| | - Cemal Sandalli
- Department of Biology, Faculty of Arts & Sciences; Recep Tayyip Erdogan University; Rize Turkey
| |
Collapse
|
32
|
Stalder T, Alrhmoun M, Louvet JN, Casellas M, Maftah C, Carrion C, Pons MN, Pahl O, Ploy MC, Dagot C. Dynamic assessment of the floc morphology, bacterial diversity, and integron content of an activated sludge reactor processing hospital effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7909-7917. [PMID: 23789899 DOI: 10.1021/es4008646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The treatment of hospital effluents (HE) is a major concern, as they are suspected of disseminating drugs and antibiotic resistance determinants in the environment. In order to assess HE influence on wastewater treatment plant biomass, lab-scale conventional activated sludge systems (CAS) were continuously fed with real HE or urban effluent as a control. To gain insights into the main hurdles linked to HE treatment, we conducted a multiparameter study using classical physicochemical characterization, phase contrast and confocal laser scaning microscopy, and molecular biology (i.e., pyrosequencing) tools. HE caused erosion of floc structure and the production of extracellular polymeric substances attributed to the development of floc-forming bacteria. Adaptation of the sludge bacterial community to the HE characteristics, thus maintaining the purification performance of the biomass, was observed. Finally, the comparative metagenomic analysis of the CAS showed that HE treatment resulted in an increase of class 1 resistance integrons (RIs) and the introduction of Pseudomonas spp. into the bacterial community. HE treatment did not reduce the CAS process performance; nevertheless it increases the risk of dissemination into the environment of bacterial species and genetic determinants (RIs) involved in antibiotic resistance acquisition.
Collapse
|
33
|
Xia R, Ren Y, Xu H. Identification of plasmid-mediated quinolone resistance qnr genes in multidrug-resistant Gram-negative bacteria from hospital wastewaters and receiving waters in the Jinan area, China. Microb Drug Resist 2013; 19:446-56. [PMID: 23844849 DOI: 10.1089/mdr.2012.0210] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the prevalence of plasmid-mediated quinolone resistance (PMQR) qnr genes by the polymerase chain reaction (PCR) in antibiotic-resistant bacteria isolates collected from aquatic environments in Jinan during 2 years (2008.3-2009.11). Genes were identified to variant level by PCR restriction fragment length polymorphism analysis or sequencing. qnrA1, qnrB2, qnrB4, qnrB6, qnrB9, qnrS1, and the new qnrB variant qnrB26 were detected in 31 strains from six genera (Klebsiella spp., Escherichia coli, Enterobacter spp., Proteus spp., Shigella spp., and Citrobacter spp.), four of which contained double qnr genes. Other PMQR genes, aac(6')-Ib-cr and qepA, were found in 12 (38.7%) and 5 (16.1%) of 31 isolates, respectively; while qepA was found in Shigella spp. for the first time. Eight types of β-lactamase genes and eight other types of resistance genes were also present in the 31 qnr-positive isolates. The detection rate for five β-lactamase genes (blaTEM, blaCTX, ampR, blaDHA, and blaSHV) was >45%. Class 1 integrons and complex class 1 integrons were prevalent in these strains, which contained 15 different gene cassette arrays and 5 different insertion sequence common region 1 (ISCR1)-mediated downstream structures. qnrA1, qnrB2, and qnrB6 were present in three ISCR1-mediated downstream structures: qnrA1-ampR, sapA-like-qnrB2, and sdr-qnrB6. We also analyzed the horizontal transferability of PMQR genes and other resistance determinants. The qnr genes and some integrons and resistance genes from 18 (58.1%) of the 31 qnr-positive strains could be transferred to E. coli J53 Azi(R) or E. coli DH5α recipient strains using conjugation or transformation methods. The results showed that a high number of qnr genes were associated with other resistance genes in aquatic environments in Jinan. This suggests that we should avoid over-using antibiotics and monitor aquatic environments to control the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Ruirui Xia
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University , Jinan, China
| | | | | |
Collapse
|
34
|
Sun J, Zheng F, Wang F, Wu K, Wang Q, Chen Q, Yu S, Rui Y. Class 1 integrons in urinary isolates of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Southern China during the past five years. Microb Drug Resist 2013; 19:289-94. [PMID: 23573964 DOI: 10.1089/mdr.2012.0130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We analyzed extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (226) and Klebsiella pneumoniae (53) collected from urine specimens during 2005-2009 for the presence of ESBL genes, class 1 integrons, and characterization of gene cassettes. TEM and CTX-M β-lactamase genes were the most prevalent. One hundred and forty-four E. coli and 35 K. pneumoniae were positive for the class 1 integrase gene; among them, 99 E. coli and 14 K. pneumoniae detected gene cassettes. Gene cassette regions were identified by restriction fragment length polymorphism and DNA sequencing analysis. Eleven distinct gene cassette arrays were found in E. coli isolates, and seven distinct gene cassette arrays were found in K. pneumoniae isolates. The cassette array aacA4-catB8-aadA1 was first found in E. coli and dfrA1-orfC was first reported in K. pneumoniae. Most of the gene cassettes found in this class 1 integrons were for aminoglycoside resistance. Enterobacterial repetitive intergenic consensus-polymerase chain reaction fingerprint patterns revealed the isolates carrying gene cassettes were genetically unrelated. In conclusion, we studied the class 1 integrons among urinary isolates of ESBL-producing E. coli and K. pneumoniae in Southern China during the past 5 years and found that class 1 integrons were widely disseminated and played a major role in antibiotic resistance.
Collapse
Affiliation(s)
- Jingjing Sun
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Xia R, Ren Y, Guo X, Xu H. Molecular diversity of class 2 integrons in antibiotic-resistant gram-negative bacteria found in wastewater environments in China. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:402-14. [PMID: 23264021 DOI: 10.1007/s10646-012-1034-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2012] [Indexed: 05/14/2023]
Abstract
The molecular architecture of class 2 integrons among gram-negative bacteria from wastewater environments was investigated in Jinan, China. Out of the 391 antibiotic-resistant bacteria found, 38 isolates harboring class 2 integrons encoding potentially transferrable genes that could confer antibiotic resistance were found. These isolates were classified into 19 REP-PCR types. These strains were identified using 16S rRNA gene sequencing and found to be as follows: Proteus mirabilis (16), Escherichia coli (7), Providencia spp. (7), Proteus spp. (2), P. vulgaris (3), Shigella sp. (1), Citrobacter freundii (1), and Acinetobacter sp. (1). Their class 2 integron cassette arrays were amplified and then either analyzed using PCR-RFLP or sequenced. The typical array dfrA1-sat2-aadA1 was detected in 27 isolates. Six atypical arrays were observed, including three kinds of novel arrangements (linF2(∆attC1)-dfrA1(∆attC2)-aadA1-orf441 or linF2(∆attC1)-dfrA1(∆attC2)-aadA1, dfrA1-catB2-sat2-aadA1, and estX(Vr)-sat2-aadA1) and a hybrid with the 3'CS of class 1 integrons (dfrA1-sat2-aadA1-qacH), and dfrA1-sat1. Twenty-four isolates were also found to carry class 1 integrons with 10 types of gene cassette arrays. Several non-integron-associated antibiotic resistance genes were found, and their transferability was investigated. Results showed that water sources in the Jinan region harbored a diverse community of both typical and atypical class 2 integrons, raising concerns about the overuse of antibiotics and their careless disposal into the environment.
Collapse
Affiliation(s)
- Ruirui Xia
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | | | | | | |
Collapse
|
36
|
Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 447:345-60. [PMID: 23396083 DOI: 10.1016/j.scitotenv.2013.01.032] [Citation(s) in RCA: 1327] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 05/20/2023]
Abstract
Urban wastewater treatment plants (UWTPs) are among the main sources of antibiotics' release into the environment. The occurrence of antibiotics may promote the selection of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB), which shade health risks to humans and animals. In this paper the fate of ARB and ARGs in UWTPs, focusing on different processes/technologies (i.e., biological processes, advanced treatment technologies and disinfection), was critically reviewed. The mechanisms by which biological processes influence the development/selection of ARB and ARGs transfer are still poorly understood. Advanced treatment technologies and disinfection process are regarded as a major tool to control the spread of ARB into the environment. In spite of intense efforts made over the last years to bring solutions to control antibiotic resistance spread in the environment, there are still important gaps to fill in. In particular, it is important to: (i) improve risk assessment studies in order to allow accurate estimates about the maximal abundance of ARB in UWTPs effluents that would not pose risks for human and environmental health; (ii) understand the factors and mechanisms that drive antibiotic resistance maintenance and selection in wastewater habitats. The final objective is to implement wastewater treatment technologies capable of assuring the production of UWTPs effluents with an acceptable level of ARB.
Collapse
Affiliation(s)
- L Rizzo
- Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Mokracka J, Koczura R, Kaznowski A. Multiresistant Enterobacteriaceae with class 1 and class 2 integrons in a municipal wastewater treatment plant. WATER RESEARCH 2012; 46:3353-63. [PMID: 22507248 DOI: 10.1016/j.watres.2012.03.037] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 03/08/2012] [Accepted: 03/20/2012] [Indexed: 05/08/2023]
Abstract
In this study, 1832 strains of the family Enterobacteriaceae were isolated from different stages of a municipal wastewater treatment plant, of which 221 (12.1%) were intI-positive. Among them 61.5% originated from raw sewage, 12.7% from aeration tank and 25.8% from the final effluent. All of the intI-positive strains were multiresistant, i.e. resistant to at least three unrelated antimicrobials. Although there were no significant differences in resistance range, defined as the number of antimicrobial classes to which an isolate was resistant, between strains isolated from different stages of wastewater treatment, for five β-lactams the percentage of resistant isolates was the highest in final effluent, which may reflect a selective pressure the bacteria are exposed to, and the possible route of dissemination of β-lactam resistant strains to the corresponding river. The sizes of the variable part of integrons ranged from 0.18 to 3.0 kbp and contained up to four incorporated gene cassettes. Sequence analysis identified over 30 different gene cassettes, including 24 conferring resistance to antibiotics. The highest number of different gene cassettes was found in bacteria isolated from the final effluent. The gene cassettes were arranged in 26 different resistance cassette arrays; the most often were dfrA1-aadA1, aadA1, dfrA17-aadA5 and dfrA12-orfF-aadA2. Regarding the diversity of resistance genes and the number of multiresistant bacteria in the final effluent, we concluded that municipal sewage may serve as a reservoir of integron-embedded antibiotic resistance genes.
Collapse
Affiliation(s)
- Joanna Mokracka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland.
| | | | | |
Collapse
|
38
|
Stalder T, Barraud O, Casellas M, Dagot C, Ploy MC. Integron involvement in environmental spread of antibiotic resistance. Front Microbiol 2012; 3:119. [PMID: 22509175 PMCID: PMC3321497 DOI: 10.3389/fmicb.2012.00119] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/13/2012] [Indexed: 11/13/2022] Open
Abstract
The spread of antibiotic-resistant bacteria is a growing problem and a public health issue. In recent decades, various genetic mechanisms involved in the spread of resistance genes among bacteria have been identified. Integrons - genetic elements that acquire, exchange, and express genes embedded within gene cassettes (GC) - are one of these mechanisms. Integrons are widely distributed, especially in Gram-negative bacteria; they are carried by mobile genetic elements, plasmids, and transposons, which promote their spread within bacterial communities. Initially studied mainly in the clinical setting for their involvement in antibiotic resistance, their role in the environment is now an increasing focus of attention. The aim of this review is to provide an in-depth analysis of recent studies of antibiotic-resistance integrons in the environment, highlighting their potential involvement in antibiotic-resistance outside the clinical context. We will focus particularly on the impact of human activities (agriculture, industries, wastewater treatment, etc.).
Collapse
|