1
|
Sun Y, Dinenno FA, Tang P, Kontaridis MI. Protein tyrosine phosphatase 1B in metabolic and cardiovascular diseases: from mechanisms to therapeutics. Front Cardiovasc Med 2024; 11:1445739. [PMID: 39238503 PMCID: PMC11374623 DOI: 10.3389/fcvm.2024.1445739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Protein Tyrosine Phosphatase 1B (PTP1B) has emerged as a significant regulator of metabolic and cardiovascular disease. It is a non-transmembrane protein tyrosine phosphatase that negatively regulates multiple signaling pathways integral to the regulation of growth, survival, and differentiation of cells, including leptin and insulin signaling, which are critical for development of obesity, insulin resistance, type 2 diabetes, and cardiovascular disease. Given PTP1B's central role in glucose homeostasis, energy balance, and vascular function, targeted inhibition of PTP1B represents a promising strategy for treating these diseases. However, challenges, such as off-target effects, necessitate a focus on tissue-specific approaches, to maximize therapeutic benefits while minimizing adverse outcomes. In this review, we discuss molecular mechanisms by which PTP1B influences metabolic and cardiovascular functions, summarize the latest research on tissue-specific roles of PTP1B, and discuss the potential for PTP1B inhibitors as future therapeutic agents.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Frank A Dinenno
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Peiyang Tang
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Maria I Kontaridis
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Pei Z, Xiong Y, Jiang S, Guo R, Jin W, Tao J, Zhang Z, Zhang Y, Zou Y, Gong Y, Ren J. Heavy Metal Scavenger Metallothionein Rescues Against Cold Stress-Evoked Myocardial Contractile Anomalies Through Regulation of Mitophagy. Cardiovasc Toxicol 2024; 24:85-101. [PMID: 38356081 DOI: 10.1007/s12012-023-09823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/24/2023] [Indexed: 02/16/2024]
Abstract
Cold stress prompts an increased prevalence of cardiovascular morbidity yet the underneath machinery remains unclear. Oxidative stress and autophagy appear to contribute to cold stress-induced cardiac anomalies. Our present study evaluated the effect of heavy metal antioxidant metallothionein on cold stress (4 °C)-induced in cardiac remodeling and contractile anomalies and cell signaling involved including regulation of autophagy and mitophagy. Cold stress (3 weeks) prompted interstitial fibrosis, mitochondrial damage (mitochondrial membrane potential and TEM ultrastructure), oxidative stress (glutathione, reactive oxygen species and superoxide), lipid peroxidation, protein injury, elevated left ventricular (LV) end systolic and diastolic diameters, decreased fractional shortening, ejection fraction, Langendorff heart function, cardiomyocyte shortening, maximal velocities of shortening/relengthening, and electrically stimulated intracellular Ca2+ rise along with elongated relaxation duration and intracellular Ca2+ clearance, the responses of which were overtly attenuated or mitigated by metallothionein. Levels of apoptosis, cell death (Bax and loss of Bcl2, IL-18), and autophagy (LC3BII-to-LC3BI ratio, Atg7 and Beclin-1) were overtly upregulated with comparable p62 under cold stress. Cold stress also evoked elevated mitophagy (decreased TOM20, increased Parkin and FUNDC1 with unaltered BNIP3). Cold stress overtly dampened phosphorylation of autophagy/mitophagy inhibitory molecules Akt and mTOR, stimulated and suppressed phosphorylation of ULK1 and eNOS, respectively, in the absence of altered pan protein levels. Cold stress-evoked responses in cell death, autophagy, mitophagy and their regulatory domains were overtly attenuated or ablated by metallothionein. Suppression of autophagy and mitophagy with 3-methyladenine, bafilomycin A1, cyclosporine A, and liensinine rescued hypothermia-instigated cardiomyocyte LC3B puncta formation and mechanical anomalies. Our findings support a protective nature for metallothionein in deep hypothermia-evoked cardiac abnormalities associated with regulation of autophagy and mitophagy.
Collapse
Affiliation(s)
- Zhaohui Pei
- The Second Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, 3330009, China.
| | - Yayuan Xiong
- The First Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, 3330009, China
| | - Shasha Jiang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China
| | - Wei Jin
- The Second Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, 3330009, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Zhenzhong Zhang
- Shanghai Institute for Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yingmei Zhang
- Shanghai Institute for Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yunzeng Zou
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Institute for Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yan Gong
- The Second Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, 3330009, China
| | - Jun Ren
- Shanghai Institute for Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Yang Q, Zou Y, Wei X, Ye P, Wu Y, Ai H, Zhang Z, Tan J, Zhou J, Yang Y, Dai Q, Dou C, Luo F. PTP1B knockdown alleviates BMSCs senescence via activating AMPK-mediated mitophagy and promotes osteogenesis in senile osteoporosis. Biochim Biophys Acta Mol Basis Dis 2023:166795. [PMID: 37385514 DOI: 10.1016/j.bbadis.2023.166795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
The senescence of bone marrow mesenchymal stem cells (BMSCs) is the basis of senile osteoporosis (SOP). Targeting BMSCs senescence is of paramount importance for developing anti-osteoporotic strategy. In this study, we found that protein tyrosine phosphatase 1B (PTP1B), an enzyme responsible for tyrosine dephosphorylation, was significantly upregulated in BMSCs and femurs with advancing chronological age. Therefore, the potential role of PTP1B in BMSCs senescence and senile osteoporosis was studied. Firstly, significantly upregulated PTP1B expression along with impaired osteogenic differentiation capacity was observed in D-galactose (D-gal)-induced BMSCs and naturally-aged BMSCs. Furthermore, PTP1B silencing could effectively alleviate senescence, improve mitochondrial dysfunction, and restore osteogenic differentiation in aged BMSCs, which was attributable to enhanced mitophagy mediated by PKM2/AMPK pathway. In addition, hydroxychloroquine (HCQ), an autophagy inhibitor, significantly reversed the protective effects from PTP1B knockdown. In SOP animal model, transplantation of LVsh-PTP1B-transfected D-gal-induced BMSCs harvested double protective effects, including increased bone formation and reduced osteoclastogenesis. Similarly, HCQ treatment remarkably suppressed osteogenesis of LVsh-PTP1B-transfected D-gal-induced BMSCs in vivo. Taken together, our data demonstrated that PTP1B silencing protects against BMSCs senescence and mitigates SOP via activating AMPK-mediated mitophagy. Targeting PTP1B may represent a promising interventional strategy to attenuate SOP.
Collapse
Affiliation(s)
- QianKun Yang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - YuChi Zou
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - XiaoYu Wei
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peng Ye
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - YuTong Wu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - HongBo Ai
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhao Zhang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Orthopedics Department, The General Hospital of Western Theater Command PLA, Chengdu 610083, Sichuan Province, China
| | - JiuLin Tan
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiangling Zhou
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - YuSheng Yang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - QiJie Dai
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ce Dou
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Fei Luo
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
4
|
Friend or foe? Unraveling the complex roles of protein tyrosine phosphatases in cardiac disease and development. Cell Signal 2022; 93:110297. [PMID: 35259455 PMCID: PMC9038168 DOI: 10.1016/j.cellsig.2022.110297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022]
Abstract
Regulation of protein tyrosine phosphorylation is critical for most, if not all, fundamental cellular processes. However, we still do not fully understand the complex and tissue-specific roles of protein tyrosine phosphatases in the normal heart or in cardiac pathology. This review compares and contrasts the various roles of protein tyrosine phosphatases known to date in the context of cardiac disease and development. In particular, it will be considered how specific protein tyrosine phosphatases control cardiac hypertrophy and cardiomyocyte contractility, how protein tyrosine phosphatases contribute to or ameliorate injury induced by ischaemia / reperfusion or hypoxia / reoxygenation, and how protein tyrosine phosphatases are involved in normal heart development and congenital heart disease. This review delves into the newest developments and current challenges in the field, and highlights knowledge gaps and emerging opportunities for future research.
Collapse
|
5
|
Budiono BP, See Hoe LE, Peart JN, Vider J, Ashton KJ, Jacques A, Haseler LJ, Headrick JP. Effects of voluntary exercise duration on myocardial ischaemic tolerance, kinase signaling and gene expression. Life Sci 2021; 274:119253. [PMID: 33647270 DOI: 10.1016/j.lfs.2021.119253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
AIM Exercise is cardioprotective, though optimal interventions are unclear. We assessed duration dependent effects of exercise on myocardial ischemia-reperfusion (I-R) injury, kinase signaling and gene expression. METHODS Responses to brief (2 day; 2EX), intermediate (7 and 14 day; 7EX and 14EX) and extended (28 day; 28EX) voluntary wheel running (VWR) were studied in male C57Bl/6 mice. Cardiac function, I-R tolerance and survival kinase signaling were assessed in perfused hearts. KEY FINDINGS Mice progressively increased running distances and intensity, from 2.4 ± 0.2 km/day (0.55 ± 0.04 m/s) at 2-days to 10.6 ± 0.4 km/day (0.72 ± 0.06 m/s) after 28-days. Myocardial mass and contractility were modified at 14-28 days VWR. Cardioprotection was not 'dose-dependent', with I-R tolerance enhanced within 7 days and not further improved with greater VWR duration, volume or intensity. Protection was associated with AKT, ERK1/2 and GSK3β phosphorylation, with phospho-AMPK selectively enhanced with brief VWR. Gene expression was duration-dependent: 7 day VWR up-regulated glycolytic (Pfkm) and down-regulated maladaptive remodeling (Mmp2) genes; 28 day VWR up-regulated caveolar (Cav3), mitochondrial biogenesis (Ppargc1a, Sirt3) and titin (Ttn) genes. Interestingly, I-R tolerance in 2EX/2SED groups improved vs. groups subjected to longer sedentariness, suggesting transient protection on transition to housing with running wheels. SIGNIFICANCE Cardioprotection is induced with as little as 7 days VWR, yet not enhanced with further or faster running. This protection is linked to survival kinase phospho-regulation (particularly AKT and ERK1/2), with glycolytic, mitochondrial, caveolar and myofibrillar gene changes potentially contributing. Intriguingly, environmental enrichment may also protect via similar kinase regulation.
Collapse
Affiliation(s)
- Boris P Budiono
- Charles Sturt University, School of Community Health, Port Macquarie, NSW, Australia
| | - Louise E See Hoe
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia
| | - Jason N Peart
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia
| | - Jelena Vider
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia
| | - Kevin J Ashton
- Bond University, Faculty of Health and Medicine, Robina, QLD, Australia
| | - Angela Jacques
- Curtin University, School of Physiotherapy and Exercise Science, Bentley, WA, Australia
| | - Luke J Haseler
- Curtin University, School of Physiotherapy and Exercise Science, Bentley, WA, Australia
| | - John P Headrick
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia.
| |
Collapse
|
6
|
Abstract
More than any other organ, the heart is particularly sensitive to gene expression deregulation, often leading in the long run to impaired contractile performances and excessive fibrosis deposition progressing to heart failure. Recent investigations provide evidences that the protein phosphatases (PPs), as their counterpart protein kinases, are important regulators of cardiac physiology and development. Two main groups, the protein serine/threonine phosphatases and the protein tyrosine phosphatases (PTPs), constitute the PPs family. Here, we provide an overview of the role of PTP subfamily in the development of the heart and in cardiac pathophysiology. Based on recent in silico studies, we highlight the importance of PTPs as therapeutic targets for the development of new drugs to restore PTPs signaling in the early and late events of heart failure.
Collapse
Affiliation(s)
- Fallou Wade
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Karim Belhaj
- College of Medicine and Health Sciences, Al-Faisal University, Riyadh, 11211, Saudi Arabia
| | - Coralie Poizat
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia. .,Biology Department, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
7
|
Ceylan AF, Wang S, Kandadi MR, Chen J, Hua Y, Pei Z, Nair S, Ren J. Cardiomyocyte-specific knockout of endothelin receptor a attenuates obesity cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3339-3352. [DOI: 10.1016/j.bbadis.2018.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
|
8
|
Besnier M, Coquerel D, Favre J, Dumesnil A, Guerrot D, Remy-Jouet I, Mulder P, Djerada Z, Tamion F, Richard V, Ouvrard-Pascaud A. Protein tyrosine phosphatase 1B inactivation limits aging-associated heart failure in mice. Am J Physiol Heart Circ Physiol 2018; 314:H1279-H1288. [DOI: 10.1152/ajpheart.00049.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that protein tyrosine phosphatase 1B (PTP1B) inactivation in mice [PTP1B-deficient (PTP1B−/−) mice] improves left ventricular (LV) angiogenesis, perfusion, remodeling, and function and limits endothelial dysfunction after myocardial infarction. However, whether PTP1B inactivation slows aging-associated cardiovascular dysfunction remains unknown. Wild-type (WT) and PTP1B−/− mice were allowed to age until 18 mo. Compared with old WT mice, in which aging increased the LV mRNA expression of PTP1B, old PTP1B−/− mice had 1) reduced cardiac hypertrophy with decreased LV mRNA levels of hypertrophic markers and atrial and brain natriuretic peptides, 2) lower LV fibrosis (collagen: 16 ± 3% in WT mice and 5 ± 3% in PTP1B−/− mice, P < 0.001) with decreased mRNA levels of transforming growth-factor-β1 and matrix metalloproteinase-2, and 3) higher LV capillary density and lower LV mRNA level of hypoxic inducible factor-1α, which was associated over time with a higher rate of proangiogenic M2 type macrophages and a stable LV mRNA level of VEGF receptor-2. Echocardiography revealed an age-dependent LV increase in end-diastolic volume in WT mice together with alterations of fractional shortening and diastole (transmitral Doppler E-to-A wave ratio). Invasive hemodynamics showed better LV systolic contractility and better diastolic compliance in old PTP1B−/− mice (LV end-systolic pressure-volume relation: 13.9 ± 0.9 in WT mice and 18.4 ± 1.6 in PTP1B−/− mice; LV end-diastolic pressure-volume relation: 5.1 ± 0.8 mmHg/relative volume unit in WT mice and 1.2 ± 0.3 mmHg/relative volume unit in PTP1B−/− mice, P < 0.05). In addition, old PTP1B−/− mice displayed a reduced amount of LV reactive oxygen species. Finally, in isolated resistance mesenteric arteries, PTP1B inactivation reduced aging-associated endothelial dysfunction (flow-mediated dilatation: −0.4 ± 2.1% in WT mice and 8.2 ± 2.8% in PTP1B−/− mice, P < 0.05). We conclude that PTP1B inactivation slows aging-associated LV remodeling and dysfunction and reduces endothelial dysfunction in mesenteric arteries. NEW & NOTEWORTHY The present study shows that protein tyrosine phosphatase 1B inactivation in aged mice improves left ventricular systolic and diastolic function associated with reduced adverse cardiac remodeling (hypertrophy, fibrosis, and capillary rarefaction) and limits vascular endothelial dysfunction. This suggests that protein tyrosine phosphatase 1B inhibition could be an interesting treatment approach in age-related cardiovascular dysfunction.
Collapse
Affiliation(s)
- Marie Besnier
- Normandie University UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1096, Rouen, France
| | - David Coquerel
- Normandie University UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1096, Rouen, France
| | - Julie Favre
- Normandie University UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1096, Rouen, France
| | - Anais Dumesnil
- Normandie University UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1096, Rouen, France
| | - Domique Guerrot
- Normandie University UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1096, Rouen, France
| | - Isabelle Remy-Jouet
- Normandie University UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1096, Rouen, France
| | - Paul Mulder
- Normandie University UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1096, Rouen, France
| | - Zoubir Djerada
- Normandie University UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1096, Rouen, France
- Medical Pharmacology, University Reims Hospital, Reims, France
| | - Fabienne Tamion
- Normandie University UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1096, Rouen, France
| | - Vincent Richard
- Normandie University UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1096, Rouen, France
| | - Antoine Ouvrard-Pascaud
- Normandie University UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1096, Rouen, France
| |
Collapse
|
9
|
Broughton KM, Wang BJ, Firouzi F, Khalafalla F, Dimmeler S, Fernandez-Aviles F, Sussman MA. Mechanisms of Cardiac Repair and Regeneration. Circ Res 2018; 122:1151-1163. [PMID: 29650632 PMCID: PMC6191043 DOI: 10.1161/circresaha.117.312586] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular regenerative therapies are pursued on both basic and translational levels. Although efficacy and value of cell therapy for myocardial regeneration can be debated, there is a consensus that profound deficits in mechanistic understanding limit advances, optimization, and implementation. In collaboration with the TACTICS (Transnational Alliance for Regenerative Therapies in Cardiovascular Syndromes), this review overviews several pivotal aspects of biological processes impinging on cardiac maintenance, repair, and regeneration. The goal of summarizing current mechanistic understanding is to prompt innovative directions for fundamental studies delineating cellular reparative and regenerative processes. Empowering myocardial regenerative interventions, whether dependent on endogenous processes or exogenously delivered repair agents, ultimately depends on mastering mechanisms and novel strategies that take advantage of rather than being limited by inherent myocardial biology.
Collapse
Affiliation(s)
- Kathleen M Broughton
- From the Department of Biology, San Diego State University Heart Institute and the Integrated Regenerative Research Institute, CA (K.M.B., B.J.W., F.F., F.K., M.A.S.); Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Frankfurt, Germany (S.D.); and Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERCV and Universidad Complutense de Madrid, Spain (F.F.-A.)
| | - Bingyan J Wang
- From the Department of Biology, San Diego State University Heart Institute and the Integrated Regenerative Research Institute, CA (K.M.B., B.J.W., F.F., F.K., M.A.S.); Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Frankfurt, Germany (S.D.); and Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERCV and Universidad Complutense de Madrid, Spain (F.F.-A.)
| | - Fareheh Firouzi
- From the Department of Biology, San Diego State University Heart Institute and the Integrated Regenerative Research Institute, CA (K.M.B., B.J.W., F.F., F.K., M.A.S.); Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Frankfurt, Germany (S.D.); and Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERCV and Universidad Complutense de Madrid, Spain (F.F.-A.)
| | - Farid Khalafalla
- From the Department of Biology, San Diego State University Heart Institute and the Integrated Regenerative Research Institute, CA (K.M.B., B.J.W., F.F., F.K., M.A.S.); Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Frankfurt, Germany (S.D.); and Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERCV and Universidad Complutense de Madrid, Spain (F.F.-A.)
| | - Stefanie Dimmeler
- From the Department of Biology, San Diego State University Heart Institute and the Integrated Regenerative Research Institute, CA (K.M.B., B.J.W., F.F., F.K., M.A.S.); Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Frankfurt, Germany (S.D.); and Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERCV and Universidad Complutense de Madrid, Spain (F.F.-A.)
| | - Francisco Fernandez-Aviles
- From the Department of Biology, San Diego State University Heart Institute and the Integrated Regenerative Research Institute, CA (K.M.B., B.J.W., F.F., F.K., M.A.S.); Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Frankfurt, Germany (S.D.); and Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERCV and Universidad Complutense de Madrid, Spain (F.F.-A.)
| | - Mark A Sussman
- From the Department of Biology, San Diego State University Heart Institute and the Integrated Regenerative Research Institute, CA (K.M.B., B.J.W., F.F., F.K., M.A.S.); Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Frankfurt, Germany (S.D.); and Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERCV and Universidad Complutense de Madrid, Spain (F.F.-A.).
| |
Collapse
|
10
|
Furanoaustinol and 7-acetoxydehydroaustinol: new meroterpenoids from a marine-derived fungal strain Penicillium sp. SF-5497. J Antibiot (Tokyo) 2018; 71:557-563. [DOI: 10.1038/s41429-018-0034-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/18/2018] [Accepted: 01/25/2018] [Indexed: 11/08/2022]
|
11
|
Thiebaut PA, Besnier M, Gomez E, Richard V. Role of protein tyrosine phosphatase 1B in cardiovascular diseases. J Mol Cell Cardiol 2016; 101:50-57. [DOI: 10.1016/j.yjmcc.2016.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022]
|
12
|
Yang L, Wang J, Yang J, Schamber R, Hu N, Nair S, Xiong L, Ren J. Antioxidant metallothionein alleviates endoplasmic reticulum stress-induced myocardial apoptosis and contractile dysfunction. Free Radic Res 2016; 49:1187-98. [PMID: 25968954 DOI: 10.3109/10715762.2015.1013952] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIMS Endoplasmic reticulum (ER) stress exerts myocardial oxidative stress, apoptosis, and contractile anomalies, although the precise interplay between ER stress and apoptosis remains elusive. This study was designed to examine the impact of the cysteine-rich free radical scavenger metallothionein on ER stress-induced myocardial contractile defect and underlying mechanisms. METHODS AND RESULTS Wild-type friendly virus B and transgenic mice with cardiac-specific overexpression of metallothionein were challenged with the ER stress inducer tunicamycin (1 mg/kg, intraperitoneal, 48 h) prior to the assessment of myocardial function, oxidative stress, and apoptosis. Our results revealed that tunicamycin promoted cardiac remodeling (enlarged left ventricular end systolic/diastolic diameters with little changes in left ventricular wall thickness), suppressed fractional shortening and cardiomyocyte contractile function, elevated resting Ca(2+), decreased stimulated Ca(2+) release, prolonged intracellular Ca(2+) clearance, and downregulated sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, the effects of which were negated by metallothionein. Treatment with tunicamycin caused cardiomyocyte mitochondrial injury, as evidenced by decreased mitochondrial membrane potential (∆Ѱm, assessed by JC-1 staining), the effect of which was negated by the antioxidant. Moreover, tunicamycin challenge dramatically facilitated myocardial apoptosis as manifested by increased Bax, caspase 9, and caspase 12 protein levels, as well as elevated caspase 3 activity. Interestingly, metallothionein transgene significantly alleviated tunicamycin-induced myocardial apoptosis. CONCLUSION Taken together, our data favor a beneficial effect of metallothionein against ER stress-induced cardiac dysfunction possibly associated with attenuation of myocardial apoptosis.
Collapse
Affiliation(s)
- L Yang
- a Department of Anesthesiology , Xijing Hospital, the Fourth Military Medical University , Xi'an , P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Sun W, Miao X, Zhou S, Zhang L, Epstein PN, Mellen N, Zheng Y, Fu Y, Wang Y, Cai L. Zinc rescue of Akt2 gene deletion-linked murine cardiac dysfunction and pathological changes is metallothionein-dependent. J Mol Cell Cardiol 2014; 74:88-97. [PMID: 24819347 DOI: 10.1016/j.yjmcc.2014.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 04/23/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
We have demonstrated that zinc supplementation provides cardiac protection from diabetes in mice, but its underlying mechanism remains unclear. Since zinc mimics the function of insulin, it may provide benefit to the heart via stimulating Akt-mediated glucose metabolism. Akt2 plays an important role in cardiac glucose metabolism and mice with Akt2 gene deletion (Akt2-KO) exhibit a type 2 diabetes phenotype; therefore, we assumed that no cardiac protection by zinc supplementation from diabetes would be observed in Akt2-KO mice. Surprisingly, despite Akt2 gene deletion, zinc supplementation provided protection against cardiac dysfunction and other pathological changes in Akt2-KO mice, which were accompanied by significant decreases in Akt and GSK-3β phosphorylation. Correspondingly, glycogen synthase phosphorylation and hexokinase II and PGC-1α expression, all involved in the regulation of glucose metabolism, were significantly altered in diabetic hearts, along with a significantly increased expression of Akt negative regulators: PTEN, PTP1B, and TRB3. All these molecular, pathological, and functional changes were significantly prevented by 3-month zinc supplementation. Furthermore, the stimulation of Akt-mediated glucose metabolic kinases or enzymes by zinc treatment was metallothionein-dependent since it could not be observed in metallothionein-knockout mice. These results suggest that zinc preserves cardiac function and structure in Akt2-KO mice presumably due to its insulin mimetic effect on cardiac glucose-metabolism. The cardioprotective effects of zinc are metallothionein-dependent. This is very important since zinc supplementation may be required for patients with Akt2 gene deficiency or insulin resistance.
Collapse
Affiliation(s)
- Weixia Sun
- The First Hospital of Jilin University, Jilin 130021, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA
| | - Xiao Miao
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; The Second Hospital of Jilin University, Jilin 130041, China
| | - Shanshan Zhou
- The First Hospital of Jilin University, Jilin 130021, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA
| | - Li Zhang
- The First Hospital of Jilin University, Jilin 130021, China
| | - Paul N Epstein
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, KY 40202, USA
| | - Nicholas Mellen
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA
| | - Yang Zheng
- The First Hospital of Jilin University, Jilin 130021, China
| | - Yaowen Fu
- The First Hospital of Jilin University, Jilin 130021, China
| | - Yuehui Wang
- The First Hospital of Jilin University, Jilin 130021, China.
| | - Lu Cai
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, KY 40202, USA.
| |
Collapse
|
14
|
Sun W, Wang Y, Miao X, Wang Y, Zhang L, Xin Y, Zheng S, Epstein PN, Fu Y, Cai L. Renal improvement by zinc in diabetic mice is associated with glucose metabolism signaling mediated by metallothionein and Akt, but not Akt2. Free Radic Biol Med 2014; 68:22-34. [PMID: 24296248 PMCID: PMC5288838 DOI: 10.1016/j.freeradbiomed.2013.11.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 11/07/2013] [Accepted: 11/15/2013] [Indexed: 01/11/2023]
Abstract
Human epidemiological and animal studies have shown the beneficial effect of zinc supplementation on mitigating diabetic nephropathy. However, the mechanism by which zinc protects the kidney from diabetes remains unknown. Here we demonstrate the therapeutic effects of zinc on diabetes-induced renal pathological and functional changes. These abnormalities were found in both transgenic OVE26 and Akt2-KO diabetic mouse models, accompanied by significant changes in glucose-metabolism-related regulators. The changes included significantly decreased phosphorylation of Akt and GSK-3β, increased phosphorylation of renal glycogen synthase, decreased expression of hexokinase II and PGC-1α, and increased expression of the Akt negative regulators PTEN, PTP1B, and TRB3. All of these were significantly prevented by zinc treatment for 3 months. Furthermore, zinc-stimulated changes in glucose metabolism mediated by Akt were actually found to be metallothionein dependent, but not Akt2 dependent. These results suggest that the therapeutic effects of zinc in diabetic nephropathy are mediated, in part, by the preservation of glucose-metabolism-related pathways via the prevention of diabetes-induced upregulation of Akt negative regulators. Given that zinc deficiency is very common in diabetics, this finding implies that regularly monitoring zinc levels in diabetic patients, as well as supplementing if low, is important in mitigating the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Weixia Sun
- First Hospital, Jilin University, Jilin 130021, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA
| | - Yuehui Wang
- Second Hospital, Jilin University, Jilin 130041, China
| | - Xiao Miao
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; Second Hospital, Jilin University, Jilin 130041, China
| | - Yonggang Wang
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; China-Japan Union Hospital, Jilin University, Jilin 130031, China
| | - Li Zhang
- First Hospital, Jilin University, Jilin 130021, China
| | - Ying Xin
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; Norman Bethune Medical College, Jilin University, Jilin 130021, China
| | - Shirong Zheng
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA
| | - Paul N Epstein
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, KY 40202, USA
| | - Yaowen Fu
- First Hospital, Jilin University, Jilin 130021, China.
| | - Lu Cai
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, KY 40202, USA.
| |
Collapse
|
15
|
Taheripak G, Bakhtiyari S, Rajabibazl M, Pasalar P, Meshkani R. Protein tyrosine phosphatase 1B inhibition ameliorates palmitate-induced mitochondrial dysfunction and apoptosis in skeletal muscle cells. Free Radic Biol Med 2013; 65:1435-1446. [PMID: 24120971 DOI: 10.1016/j.freeradbiomed.2013.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/16/2013] [Accepted: 09/23/2013] [Indexed: 01/09/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin signaling pathway and is considered a promising therapeutic target in the treatment of diabetes. However, the role of PTP1B in palmitate-induced mitochondrial dysfunction and apoptosis in skeletal muscle cells has not been studied. Here we investigate the effects of PTP1B modulation on mitochondrial function and apoptosis and elucidate the underlying mechanisms in skeletal muscle cells. PTP1B inhibition significantly reduced palmitate-induced mitochondrial dysfunction and apoptosis in C2C12 cells, as these cells had increased expression levels of PGC-1α, Tfam, and NRF-1; enhanced ATP level and cellular viability; decreased TUNEL-positive cells; and decreased caspase-3 and -9 activity. Alternatively, overexpression of PTP1B resulted in mitochondrial dysfunction and apoptosis in these cells. PTP1B silencing improved mitochondrial dysfunction by an increase in the expression of SIRT1 and a reduction in the phosphorylation of p65 NF-κB. The protection from palmitate-induced apoptosis by PTP1B inhibition was also accompanied by a decrease in protein level of serine palmitoyl transferase, thus resulting in lower ceramide content in muscle cells. Exogenous addition of C2-ceramide to PTP1B-knockdown cells led to a reduced generation of reactive oxygen species (ROS), whereas PTP1B overexpression demonstrated an elevated ROS production in myotubes. In addition, PTP1B inhibition was accompanied by decreased JNK phosphorylation and increased insulin-stimulated Akt (Ser473) phosphorylation, whereas overexpression of PTP1B had the opposite effect. The overexpression of PTP1B also induced the nuclear localization of FOXO-1, but in contrast, suppression of PTP1B reduced palmitate-induced nuclear localization of FOXO-1. In summary, our results indicate that PTP1B modulation results in (1) alterations in mitochondrial function by changes in the activity of SIRT1/NF-κB/PGC-1α pathways and (2) changes in apoptosis that result from either a direct effect of PTP1B on the insulin signaling pathway or an indirect influence on ceramide content, ROS generation, JNK activation, and FOXO-1 nuclear translocation.
Collapse
Affiliation(s)
- Gholamreza Taheripak
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Pasalar
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran.
| |
Collapse
|
16
|
Bachschmid MM, Schildknecht S, Matsui R, Zee R, Haeussler D, Cohen RA, Pimental D, Loo BVD. Vascular aging: chronic oxidative stress and impairment of redox signaling-consequences for vascular homeostasis and disease. Ann Med 2013; 45:17-36. [PMID: 22380696 PMCID: PMC3717565 DOI: 10.3109/07853890.2011.645498] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Characteristic morphological and molecular alterations such as vessel wall thickening and reduction of nitric oxide occur in the aging vasculature leading to the gradual loss of vascular homeostasis. Consequently, the risk of developing acute and chronic cardiovascular diseases increases with age. Current research of the underlying molecular mechanisms of endothelial function demonstrates a duality of reactive oxygen and nitrogen species in contributing to vascular homeostasis or leading to detrimental effects when formed in excess. Furthermore, changes in function and redox status of vascular smooth muscle cells contribute to age-related vascular remodeling. The age-dependent increase in free radical formation causes deterioration of the nitric oxide signaling cascade, alters and activates prostaglandin metabolism, and promotes novel oxidative posttranslational protein modifications that interfere with vascular and cell signaling pathways. As a result, vascular dysfunction manifests. Compensatory mechanisms are initially activated to cope with age-induced oxidative stress, but become futile, which results in irreversible oxidative modifications of biological macromolecules. These findings support the 'free radical theory of aging' but also show that reactive oxygen and nitrogen species are essential signaling molecules, regulating vascular homeostasis.
Collapse
Affiliation(s)
- Markus M Bachschmid
- Vascular Biology Unit, Whitaker Cardiovascular Institute, Boston University Medical Center, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Jiang S, Guo R, Zhang Y, Zou Y, Ren J. Heavy metal scavenger metallothionein mitigates deep hypothermia-induced myocardial contractile anomalies: role of autophagy. Am J Physiol Endocrinol Metab 2013; 304:E74-86. [PMID: 23132296 PMCID: PMC3543534 DOI: 10.1152/ajpendo.00176.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Low-ambient temperature environment exposure increased the risk of cardiovascular morbidity and mortality, although the underlying mechanism remains unclear. This study was designed to examine the impact of cardiac overexpression of metallothionein, a cysteine-rich heavy metal scavenger, on low temperature (4°C)-induced changes in myocardial function and the underlying mechanism involved, with a focus on autophagy. Cold exposure (4°C for 3 wk) promoted oxidative stress and protein damage, increased left ventricular end-systolic and -diastolic diameter, and suppressed fractional shortening and whole heart contractility, the effects of which were significantly attenuated or ablated by metallothionein. Levels of the autophagy markers LC3B-II, beclin-1, and Atg7 were significantly upregulated with unchanged autophagy adaptor protein p62. Fluorescent immunohistochemistry revealed abundant LC3B puncta in cold temperature-exposed mouse hearts. Coimmunoprecipitation revealed increased dissociation between Bcl2 and Beclin-1. Cold exposure reduced phosphorylation of the autophagy inhibitory signaling molecules Akt and mTOR, increased ULK1 phosphorylation, and dampened eNOS phosphorylation (without changes in their total protein expression). These cold exposure-induced changes in myocardial function, autophagy, and autophagy signaling cascades were significantly alleviated or mitigated by metallothionein. Inhibition of autophagy using 3-methyladenine in vivo reversed cold exposure-induced cardiomyocyte contractile defects. Cold exposure-induced cardiomyocyte dysfunction was attenuated by the antioxidant N-acetylcysteine and the lysosomal inhibitor bafilomycin A1. Collectively, these findings suggest that metallothionein protects against cold exposure-induced cardiac anomalies possibly through attenuation of cardiac autophagy.
Collapse
Affiliation(s)
- Shasha Jiang
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
18
|
Zhang Y, Hu N, Hua Y, Richmond KL, Dong F, Ren J. Cardiac overexpression of metallothionein rescues cold exposure-induced myocardial contractile dysfunction through attenuation of cardiac fibrosis despite cardiomyocyte mechanical anomalies. Free Radic Biol Med 2012; 53:194-207. [PMID: 22565031 PMCID: PMC3392511 DOI: 10.1016/j.freeradbiomed.2012.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 11/20/2022]
Abstract
Cold exposure is associated with an increased prevalence of cardiovascular disease although the mechanism is unknown. Metallothionein, a heavy-metal-scavenging antioxidant, protects against cardiac anomalies. This study was designed to examine the impact of metallothionein on cold exposure-induced myocardial dysfunction, intracellular Ca(2+) derangement, fibrosis, endoplasmic reticulum (ER) stress, and apoptosis. Echocardiography, cardiomyocyte function, and Masson trichrome staining were evaluated in Friend virus B (FVB) and cardiac-specific metallothionein transgenic mice after cold exposure (3 months, 4 °C). Cold exposure increased plasma levels of norepinephrine, endothelin-1, and TGF-β; reduced plasma NO levels and cardiac antioxidant capacity; enlarged ventricular end-systolic diameter; compromised fractional shortening; promoted reactive oxygen species (ROS) production and apoptosis; and suppressed the ER stress markers Bip, calregulin, and phospho-eIF2α, accompanied by cardiac fibrosis and elevated levels of matrix metalloproteinases and Smad-2/3 in FVB mice. Cold exposure-induced echocardiographic, histological, ER stress, ROS, apoptotic, and fibrotic signaling changes (but not plasma markers) were greatly improved by metallothionein. In vitro metallothionein induction by zinc chloride ablated H(2)O(2)- but not TGF-β-induced cell proliferation in fibroblasts. In summary, our data suggest that metallothionein protects against cold exposure-induced cardiac anomalies possibly through attenuation of myocardial fibrosis.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China 710032
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Nan Hu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Yinan Hua
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Kacy L. Richmond
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Feng Dong
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| |
Collapse
|
19
|
Nair S, Ren J. Autophagy and cardiovascular aging: lesson learned from rapamycin. Cell Cycle 2012; 11:2092-9. [PMID: 22580468 DOI: 10.4161/cc.20317] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The biological aging process is commonly associated with increased risk of cardiovascular diseases. Several theories have been put forward for aging-associated deterioration in ventricular function, including attenuation of growth hormone (insulin-like growth factors and insulin) signaling, loss of DNA replication and repair, histone acetylation and accumulation of reactive oxygen species. Recent evidence has depicted a rather unique role of autophagy as another important pathway in the regulation of longevity and senescence. Autophagy is a predominant cytoprotective (rather than self-destructive) process. It carries a prominent role in determination of lifespan. Reduced autophagy has been associated with aging, leading to accumulation of dysfunctional or damaged proteins and organelles. To the contrary, measures such as caloric restriction and exercise may promote autophagy to delay aging and associated comorbidities. Stimulation of autophagy using rapamycin may represent a novel strategy to prolong lifespan and combat aging-associated diseases. Rapamycin regulates autophagy through inhibition of the nutrient-sensing molecule mammalian target of rapamycin (mTOR). Inhibition of mTOR through rapamycin and caloric restriction promotes longevity. The purpose of this review is to recapitulate some of the recent advances in an effort to better understand the interplay between rapamycin-induced autophagy and decelerating cardiovascular aging.
Collapse
Affiliation(s)
- Sreejayan Nair
- Division of Pharmaceutical Sciences and Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY USA.
| | | |
Collapse
|
20
|
Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M. Myocardial AKT: the omnipresent nexus. Physiol Rev 2011; 91:1023-70. [PMID: 21742795 PMCID: PMC3674828 DOI: 10.1152/physrev.00024.2010] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.
Collapse
Affiliation(s)
- Mark A Sussman
- Department of Biology, San Diego State University, SDSU Heart Institute, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Maruyama Y. Aging and arterial-cardiac interactions in the elderly. Int J Cardiol 2011; 155:14-9. [PMID: 21316775 DOI: 10.1016/j.ijcard.2011.01.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 01/01/2011] [Indexed: 10/18/2022]
Abstract
Cardiovascular system changes with aging, and these changes are modified by arteriosclerosis-risk factors, i.e., hypertension and diabetes, as well as arterial-cardiac interactions. Regarding age-related changes in the cardiovascular system, Lakatta et al. reported morphological and functional changes that are specific to the cardiovascular aging and are distinct from arteriosclerotic changes. After then, various studies on the mechanism of aging of the cardiovascular system have been performed from the viewpoint of cellular aging, endothelial or endocardial function, and fibroblast. Aging-related changes in the cardiovascular system include death and dysfunction of cell, and matrix fibrosis, but these can also be induced by various causes other than aging. To elucidate the relationship between aging and remodeling of the cardiovascular system, firstly, it is necessary to clarify the phenomena of cellular aging. Changes also differ between the heart and arteries, and there are time lags between aging and aging-associated morphological and functional changes in the cardiovascular system: some changes appear early (early type) or later (delayed type) and some changes occur at the same speed with aging (linear type). In this report, the latest findings concerning aging-associated functional and morphological changes in the arteries and the heart are reviewed and the studies are summarized. Arteries and the heart change with aging while interacting with each other. These arterial-cardiac interactions are also described.
Collapse
Affiliation(s)
- Yoshiaki Maruyama
- Department of Health Promotion, Saitama Medical Center, Saitama Medical, University, Kawagoe, Japan.
| |
Collapse
|
22
|
Altered oxidative stress responses and increased type I collagen expression in bicuspid aortic valve patients. Ann Thorac Surg 2011; 90:1893-8. [PMID: 21095332 DOI: 10.1016/j.athoracsur.2010.07.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/23/2022]
Abstract
BACKGROUND The mechanisms governing extracellular matrix degradation and smooth muscle cell (SMC) loss in the ascending aorta of bicuspid aortic valve (BAV) patients are unknown. We recently reported that expression and induction of metallothionein, a reactive oxygen species scavenger, is reduced in BAV ascending aortic aneurysms relative to nonaneurysmal patients. METHODS Tissue and primary SMCs from patients with and without thoracic aortic aneurysms and metallothionein-null and wild-type mice were analyzed for cell viability, vascular endothelial growth factor (VEGF), and type I collagen gene expression during exposure to reactive oxygen species. RESULTS The BAV SMCs and metallothionein -/- mice failed to induce VEGF under conditions of oxidative stress in vitro. Exogenous VEGF restored resistance to oxidative stress in BAV SMCs to normal. Type I collagen gene induction was increased in BAV aorta. CONCLUSIONS Lack of VEGF induction during exposure to reactive oxygen species suggest that the oxidative stress response is faulty upstream of metallothionein and VEGF in BAV SMCs. Improvement of cell viability with VEGF treatment suggests that the deficient pathway can be rescued by VEGF. Increased type I collagen in BAV suggests that lack of metallothionein/VEGF activation in response to reactive oxygen species may play a role in extracellular matrix homeostasis of the ascending aorta. These data continue to support our hypothesis that BAV SMCs lack sufficient resistance to reactive oxygen species to maintain extracellular matrix homeostasis, which imparts a predisposition to thoracic aortic aneurysms.
Collapse
|
23
|
Cardiac-specific overexpression of metallothionein rescues nicotine-induced cardiac contractile dysfunction and interstitial fibrosis. Toxicol Lett 2011; 202:8-14. [PMID: 21238558 DOI: 10.1016/j.toxlet.2011.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/07/2011] [Accepted: 01/07/2011] [Indexed: 11/22/2022]
Abstract
Cigarette smoking is a devastating risk factor for cardiovascular diseases and nicotine is believed the main toxin component responsible for the toxic myocardial effects of smoking. Nonetheless, neither the precise mechanism of nicotine-induced cardiac dysfunction nor effective treatment is elucidated. The aim of this study was to evaluate the impact of cardiac-specific overexpression of heavy metal scavenger metallothionein on myocardial geometry and mechanical function following nicotine exposure. Adult male friend virus B (FVB) wild-type and metallothionein mice were injected with nicotine (2 mg/kg/d) intraperitoneally for 10 days. Mechanical and intracellular Ca²+ properties were examined. Myocardial histology (cross-sectional area and fibrosis) was evaluated by hematoxylin and eosin (H&E) and Masson trichrome staining, respectively. Oxidative stress and apoptosis were measured by fluoroprobe 5-(6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H₂DCFDA) fluorescence and caspase-3 activity, respectively. Nicotine exposure failed to affect the protein abundance of metallothionein. Our data revealed reduced echocardiographic contractile capacity (fractional shortening), altered cardiomyocyte contractile and intracellular Ca²+ properties including depressed peak shortening amplitude, maximal velocity of shortening/relengthening, resting and electrically-stimulated rise in intracellular Ca²+, as well as prolonged duration of relengthening and intracellular Ca²+ clearance in hearts from nicotine-treated FVB mice, the effect of which was ameliorated by metallothionein. Biochemical and histological findings depicted overt accumulation of reactive oxygen species (ROS), apoptosis and myocardial fibrosis without any change in myocardial cross-sectional area following nicotine treatment, which was mitigated by metallothionein. Taken together, our findings suggest the antioxidant metallothionein may reconcile short-term nicotine exposure-induced myocardial contractile dysfunction and fibrosis possibly through inhibition of ROS accumulation and apoptosis.
Collapse
|
24
|
Biomechanics and Pathobiology of Aortic Aneurysms. STUDIES IN MECHANOBIOLOGY, TISSUE ENGINEERING AND BIOMATERIALS 2011. [DOI: 10.1007/8415_2011_84] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Turdi S, Fan X, Li J, Zhao J, Huff AF, Du M, Ren J. AMP-activated protein kinase deficiency exacerbates aging-induced myocardial contractile dysfunction. Aging Cell 2010; 9:592-606. [PMID: 20477759 DOI: 10.1111/j.1474-9726.2010.00586.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aging is associated with myocardial dysfunction although the underlying mechanism is unclear. AMPK, a key cellular fuel sensor for energy metabolism, is compromised with aging. This study examined the role of AMPK deficiency in aging-associated myocardial dysfunction. Young or old wild-type (WT) and transgenic mice with overexpression of a mutant AMPK alpha(2) subunit (kinase dead, KD) were used. AMPK alpha isoform activity, myocardial function and morphology were examined. DCF and JC-1 fluorescence probes were employed to quantify reactive oxygen species (ROS) and mitochondrial membrane potential (DeltaPsim), respectively. KD mice displayed significantly reduced alpha(2) but not alpha(1) AMPK isoform activity at both ages with a greater effect at old age. Aging itself decreased alpha(1) isoform activity. Cardiomyocyte contractile function, intracellular Ca(2+) handling, and SERCA2a levels were compromised with aging, the effects of which were exacerbated by AMPK deficiency. H&E staining revealed cardiomyocyte hypertrophy with aging, which was more pronounced in KD mice. TEM micrographs displayed severe disruption of mitochondrial ultrastructure characterized by swollen, irregular shape and disrupted cristae in aged KD compared with WT mice. Aging enhanced ROS production and reduced DeltaPsim, the effects of which were accentuated by AMPK deficiency. Immunoblotting data depicted unchanged Akt phosphorylation and a significant decrease in mitochondrial biogenesis cofactor PGC-1alpha in aged groups. AMPK deficiency but not aging decreased the phosphorylation of ACC and eNOS. Expression of membrane Glut4 and HSP90 was decreased in aged KD mice. Moreover, treatment of the AMPK activator metformin attenuated aging-induced cardiomyocyte contractile defects. Collectively, our data suggest a role for AMPK deficiency in aging-induced cardiac dysfunction possibly through disrupted mitochondrial function and ROS production.
Collapse
Affiliation(s)
- Subat Turdi
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Shim YH. Cardioprotection and ageing. Korean J Anesthesiol 2010; 58:223-30. [PMID: 20498769 PMCID: PMC2872846 DOI: 10.4097/kjae.2010.58.3.223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 03/08/2010] [Accepted: 03/08/2010] [Indexed: 11/10/2022] Open
Abstract
With an increase in the elderly population and an increase in the prevalence of age-related cardiovascular disease, anesthesiologists are increasingly being faced with elderly patients with known or suspected ischemic heart disease in the perioperative period. Although early reperfusion remains the best strategy to reduce ischemic injury, reperfusion may damage the myocardium. Adjuvant therapy to revascularization is therefore necessary. To develop better strategies to prevent ischemia-reperfusion injury in older patients, we need to understand the aged myocardium, which has undergone structural and functional changes relative to the normal myocardium, resulting in reduced functional capacity and vulnerability to ischemia-reperfusion injury. In addition, innate or acquired cardioprotection deteriorates with aging. These changes in the aged myocardium might explain why there is poor translation of basic research findings from young animals to older patients. In this review, I discuss changes in intracellular signaling associated with myocardial ageing that have an effect on ischemia-reperfusion injury, and I discuss the efficacy of cardioprotection afforded by ischemic and pharmacologic pre-and post-conditioning in the aged myocardium. Finally, I outline strategies to restore protection in the aged myocardium.
Collapse
Affiliation(s)
- Yon Hee Shim
- Department of Anesthesiology and Pain Medicine and Anaesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Marín-García J. Basic Mechanisms Mediating Cardiomyopathy and Heart Failure in Aging. HEART FAILURE 2010. [PMCID: PMC7121883 DOI: 10.1007/978-1-60761-147-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Biological aging represents the major risk factor for the development of heart failure (HF), malignancies, and neurodegenerative diseases. While risk factors such as lifestyle patterns, genetic traits, blood lipid levels, and diabetes can contribute to its development, advancing age remains the most determinant predictor of cardiac disease. Several parameters of left ventricular function may be affected with aging, including increased duration of systole, decreased sympathetic stimulation, and increased left ventricle ejection time, while compliance decreases. In addition, changes in cardiac phenotype with diastolic dysfunction, reduced contractility, left ventricular hypertrophy, and HF, all increase in incidence with age. Given the limited capacity that the heart has for regeneration, reversing or slowing the progression of these abnormalities poses a major challenge. In this chapter, we present a discussion on the molecular and cellular mechanisms involved in the pathogenesis of cardiomyopathies and HF in aging and the potential involvement of specific genes identified as primary mediators of these diseases.
Collapse
|
28
|
Yin Z, Gao H, Wang H, Li L, Di C, Luan R, Tao L. ISCHAEMIC POST-CONDITIONING PROTECTS BOTH ADULT AND AGED SPRAGUE-DAWLEY RAT HEART FROM ISCHAEMIA-REPERFUSION INJURY THROUGH THE PHOSPHATIDYLINOSITOL 3-KINASE-AKT AND GLYCOGEN SYNTHASE KINASE-3β PATHWAYS. Clin Exp Pharmacol Physiol 2009; 36:756-63. [DOI: 10.1111/j.1440-1681.2009.05148.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Huang Y, Su Z, Li Y, Zhang Q, Cui L, Su Y, Ding C, Zhang M, Feng C, Tan Y, Feng W, Li X, Cai L. Expression and Purification of glutathione transferase-small ubiquitin-related modifier-metallothionein fusion protein and its neuronal and hepatic protection against D-galactose-induced oxidative damage in mouse model. J Pharmacol Exp Ther 2009; 329:469-478. [PMID: 19208897 DOI: 10.1124/jpet.108.149401] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The present study aimed to produce and pathophysiologically evaluate the metallothionein (MT) fusion protein. A recombinant plasmid containing DNA segment coding the pET-glutathione transferase (GST)-small ubiquitin-related modifier (SUMO)-MT fusion protein was inserted into Escherichia coli for expression. The expression level of the fusion protein was very high, reaching to 38.4% of the total supernatant proteins from the organism. Subsequent filtration through glutathione Sepharose 4B gel and Sephadex G-25 yielded an MT fusion protein with purity more than 95%. When exposed to metals, E. coli containing the GST-SUMO-MT fusion protein showed an increased accumulation of Cd(2+), Zn(2+), or Cu(2+) at approximately 4.2, 4.0, or 1.6 times higher, respectively, than those containing the control protein. Administration of GST-SUMO-MT to mice that were also treated with D-galactose to induce neuronal and hepatic damage showed a significant improvement of animal learning and memory capacity, which was depressed in mice treated by D-galactose alone. Administration of MT fusion protein also prevented D-galactose-increased malondialdehyde contents and histopathological changes in the brain and liver. Furthermore, supplement of the fusion protein significantly prevented D-galactose-increased nitric oxide contents and -decreased superoxide dismutase activity in the brain, liver, and serum. The fusion protein was also able to prevent ionizing radiation-induced DNA damage of the mouse thymus. The present study indicates that GST-SUMO-MT has a normal metal binding feature and also significantly protects the multiple tissues against oxidative damage in vivo caused by chronic exposure to D-galactose and by ionizing radiation. Therefore, GST-SUMO-MT may be a potential candidate to be developed for the clinical application.
Collapse
Affiliation(s)
- Yadong Huang
- Biopharmaceutical Research and Development Center, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Phillippi JA, Klyachko EA, Kenny JP, Eskay MA, Gorman RC, Gleason TG. Basal and oxidative stress-induced expression of metallothionein is decreased in ascending aortic aneurysms of bicuspid aortic valve patients. Circulation 2009; 119:2498-506. [PMID: 19398671 DOI: 10.1161/circulationaha.108.770776] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Bicuspid aortic valve (BAV) is a heritable condition that has been linked by an unknown mechanism to a predisposition for ascending aortic aneurysm. Matrix metalloproteinases have been implicated in this predisposition. Metallothionein is a poorly characterized, metal-binding protein that regulates matrix metalloproteinases and is an antioxidant known to be upregulated under oxidative stress. METHODS AND RESULTS To determine putative factors involved in the pathogenesis of aortic aneurysm in BAV patients, our first goal was to identify genes that are dysregulated in ascending aortic aneurysms of BAV patients compared with tricuspid aortic valve patients and nondiseased (control) donors. By microarray analysis (22,000 probe sets), 110 dysregulated genes were identified in BAV compared with tricuspid aortic valve patients and control donors; 8 were genes of the metallothionein family. Metallothionein gene expression and protein expression were significantly lower in aortic tissue and cultured aortic smooth muscle cells from BAV patients compared with control subjects. Matrix metalloproteinase-9 expression was increased in BAV aortic samples relative to controls. BAV aorta was more susceptible to oxidative stress, and induction of metallothionein under oxidative stress was reduced in BAV patients compared with control subjects. CONCLUSIONS These results demonstrate dysregulated metallothionein expression in ascending aortic smooth muscle cells of BAV patients that may contribute to an inadequate response to oxidative stress and provoke aneurysm formation. We hypothesize that metallothionein plays a pivotal role in the response of ascending aortic smooth muscle cells to oxidative stress cues normally involved in the maintenance of the extracellular matrix, including the regulation of matrix metalloproteinase expression.
Collapse
Affiliation(s)
- Julie A Phillippi
- Thoracic Aortic Disease Research Laboratory, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Not only the prevalence, but also the mortality due to ischaemic cardiovascular disease is higher in older than in young humans, and the demographic shift towards an ageing population will further increase the prevalence of age-related cardiovascular disease. In order to develop strategies aimed to limit reversible and irreversible myocardial damage in older patients, there is a need to better understand age-induced alterations in protein expression and cell signalling. Cardioprotective phenomena such as ischaemic and pharmacological pre and postconditioning attenuate ischaemia/reperfusion injury in young hearts. Whether or not pre and postconditioning are still effective in aged organs, animals, or patients, i.e. under conditions where such cardioprotection is most relevant, is still a matter of debate; most studies suggest a loss of protection in aged hearts. The present review discusses changes in protein expression and cell signalling important to ischaemia/reperfusion injury with myocardial ageing. The efficacy of cardioprotective manoeuvres, e.g. ischaemic pre and postconditioning in aged organs and animals will be discussed, and the development of strategies aimed to antagonize the age-induced loss of protection will be addressed.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institut für Pathophysiologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | |
Collapse
|
32
|
Small interference RNA against PTP-1B reduces hypoxia/reoxygenation induced apoptosis of rat cardiomyocytes. Apoptosis 2008; 13:383-93. [DOI: 10.1007/s10495-008-0181-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Abstract
BACKGROUND Aging per se is a risk factor for reduced cardiac function and heart diseases, even when adjusted for aging-associated cardiovascular risk factors. Accordingly, aging-related biochemical and cell-biological changes lead to pathophysiological conditions, especially reduced heart function and heart disease. OBJECTIVE In this review, we summarize the changes that occur as the heart ages from youth to old age on the basis of the cardiac myocyte. Aging phenotypes and underlying mechanisms shall be discussed that affect cardiomyocyte repair, signaling, structure, and function. METHODS Review of the literature. RESULTS The following factors play vital roles in the aging of cardiomyocytes: oxidative stress, inflammation, cellular protection and repair, telomere integrity, survival and death, metabolism, post-translational modifications, and altered gene expression. Importantly, non-cardiomyocyte-based aging processes (vascular, fibroblast, extracellular matrix, etc.) in the heart will interfere with cardiomyocyte aging and cardiac function. CONCLUSION Based on our analyses, we postulate that the physiological aging process of the heart and of the cardiomyocyte is primarily driven by intrinsic aging factors. However, extrinsic aging factors, e.g. smoking, also make an important contribution to pathologically accelerated aging of the heart.
Collapse
Affiliation(s)
- D Bernhard
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria.
| | | |
Collapse
|
34
|
Ren J, Li Q, Wu S, Li SY, Babcock SA. Cardiac overexpression of antioxidant catalase attenuates aging-induced cardiomyocyte relaxation dysfunction. Mech Ageing Dev 2006; 128:276-85. [PMID: 17250874 PMCID: PMC1847331 DOI: 10.1016/j.mad.2006.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 02/28/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
Catalase, an enzyme which detoxifies H2O2, may interfere with cardiac aging. To test this hypothesis, contractile and intracellular Ca2+ properties were evaluated in cardiomyocytes from young (3-4 months) and old (26-28 months) FVB and transgenic mice with cardiac overexpression of catalase. Contractile indices analyzed included peak shortening (PS), time-to-90% PS (TPS90), time-to-90% relengthening (TR90), half-width duration (HWD), maximal velocity of shortening/relengthening (+/-dL/dt) and intracellular Ca2+ levels or decay rate. Levels of advanced glycation endproduct (AGE), Na+/Ca2+ exchanger (NCX), sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a), phospholamban (PLB), myosin heavy chain (MHC), membrane Ca2+ and K+ channels were measured by western blot. Catalase transgene prolonged survival while did not alter myocyte function by itself. Aging depressed+/-dL/dt, prolonged HWD, TR90 and intracellular Ca2+ decay without affecting other indices in FVB myocytes. Aged FVB myocytes exhibited a stepper decline in PS in response to elevated stimulus or a dampened rise in PS in response to elevated extracellular Ca2+ levels. Interestingly, aging-induced defects were nullified or significantly attenuated by catalase. AGE level was elevated by 5-fold in aged FVB compared with young FVB mice, which was reduced by catalase. Expression of SERCA2a, NCX and Kv1.2 K+ channel was significantly reduced although levels of PLB, L-type Ca2+ channel dihydropyridine receptor and beta-MHC isozyme remained unchanged in aged FVB hearts. Catalase restored NCX and Kv1.2 K+ channel but not SERCA2a level in aged mice. In summary, our data suggested that catalase protects cardiomyocytes from aging-induced contractile defect possibly via improved intracellular Ca2+ handling.
Collapse
Affiliation(s)
- Jun Ren
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071-2000, United States.
| | | | | | | | | |
Collapse
|
35
|
Zhou X, Ji WJ, Zhu Y, He B, Li H, Huang TG, Li YM. Enhancement of endogenous defenses against ROS by supra-nutritional level of selenium is more safe and effective than antioxidant supplementation in reducing hypertensive target organ damage. Med Hypotheses 2006; 68:952-6. [PMID: 17126495 DOI: 10.1016/j.mehy.2006.09.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 09/28/2006] [Indexed: 12/14/2022]
Abstract
Hypertension-induced target organ damage (TOD), is one of the leading causes of morbidity and mortality. Reactive oxygen species (ROS) play an important role in the pathogenesis and development of hypertension. It has been suggested that hypertension-induced TOD is related to the level of oxidative stress, but is in part independent of the level of blood pressure. Therefore, in addition to anti-hypertensive drug therapy, novel strategies against ROS, will provide additional benefits to patient with hypertension. Vitamin E has long been supplemented as an effective antioxidant. However, the potential hazardous effects of vitamin E supplementation as antioxidant revealed by recent studies make its clinical and routine use prudent. Therefore, novel approaches capable of enhancing endogenous system to defend against ROS are required. Here, we propose that enhancement of intrinsic defenses against ROS by supra-nutritional level of selenium is more safe and effective than antioxidant supplementation in reducing hypertensive target organ damage, owing to its role in activating and constitution of native vital proteins and/or enzymes against oxidative stress, and the fact that scarcity of selenium can not be supplemented by normal food, and potentially extra benefits by supra-normal intake.
Collapse
Affiliation(s)
- Xin Zhou
- Graduate School of Medicine, Tianjin Medical University, Qi-Xiang-Tai Street, Tianjin, PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
Cai L. Suppression of nitrative damage by metallothionein in diabetic heart contributes to the prevention of cardiomyopathy. Free Radic Biol Med 2006; 41:851-861. [PMID: 16934665 DOI: 10.1016/j.freeradbiomed.2006.06.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 06/05/2006] [Accepted: 06/06/2006] [Indexed: 01/12/2023]
Abstract
Diabetic cardiomyopathy has become a major contributor to the increased mortality of diabetic patients. Although the development and progression of diabetic cardiomyopathy are considered to be associated with diabetes-derived oxidative stress, the precise mechanisms for and effectively preventive approaches to diabetic cardiomyopathy remain to be explored. Recent studies showed that reactive oxygen or nitrogen species (ROS/RNS) not only play a critical role in the initiation of diabetic cardiomyopathy, but also play an important role in physiological signaling. Therefore, this review will first discuss the dual roles of ROS/RNS in the physiological signaling and pathogenic remodeling leading to cardiomyopathy under diabetic conditions. The significant prevention of diabetic cardiomyopathy by metallothionein (MT) as a potent and nonspecific antioxidant will be also summarized. It is clearly revealed that although dual roles of peroxynitrite-nitrated proteins have been indicated under both physiological and pathogenic conditions, suppression of nitrative damage by MT in the diabetic heart is the major mechanism responsible for its prevention of diabetic cardiomyopathy. Finally the potential for clinical enhancement of the cardiac MT expression to prevent or delay the occurrence of cardiomyopathy in diabetic patients will also be addressed.
Collapse
Affiliation(s)
- Lu Cai
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
37
|
Guo KK, Ren J. Cardiac overexpression of alcohol dehydrogenase (ADH) alleviates aging-associated cardiomyocyte contractile dysfunction: role of intracellular Ca2+ cycling proteins. Aging Cell 2006; 5:259-65. [PMID: 16842498 DOI: 10.1111/j.1474-9726.2006.00215.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aging is a complex biological process with contributions from a wide variety of genes including insulin-like growth factor I and alcohol dehydrogenase (ADH), which decline with advanced age. The goal of this study was to examine if ADH enzyme plays any role in cardiac aging. Ventricular myocytes were isolated from young (2-3 months old) or aged (26-28 months old) male FVB wild-type and cardiac-specific ADH (class I, isozyme type 1) transgenic mice. Mechanical properties were measured using an IonOptix system. Aged FVB myocytes displayed significantly reduced ADH activity compared with young ones, which was restored by the ADH transgene. Compared with young cardiomyocytes, aged FVB myocytes exhibited prolonged relengthening duration and a steaper decline in peak shortening amplitude in response to elevated electrical stimuli. Although ADH transgene itself did not alter mechanical properties in young mice, it rescued aging-associated diastolic dysfunction without affecting dampened contractile response to high stimulus frequency. Immunoblot analysis revealed reduced sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) and Na(+)-Ca(2+) exchanger (NCX) levels in conjunction with enhanced phospholamban expression in aged FVB hearts. ADH transgene prevented aging-induced reduction in SERCA2a and NCX without affecting up-regulated phospholamban. Our data suggest that aging is associated with a reduced ADH enzymatic activity and diastolic dysfunction, which may be corrected with cardiac overexpression of the ADH enzyme. Alteration in cardiac Ca(2+) cycling proteins including SERCA2a and NCX may play a role in both pathogenesis of cardiac aging and the beneficial effect of ADH enzyme.
Collapse
Affiliation(s)
- Kelly K Guo
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | | |
Collapse
|