1
|
Bettinazzi S, Liang J, Rodriguez E, Bonneau M, Holt R, Whitehead B, Dowling DK, Lane N, Camus MF. Assessing the role of mitonuclear interactions on mitochondrial function and organismal fitness in natural Drosophila populations. Evol Lett 2024; 8:916-926. [PMID: 39677574 PMCID: PMC11637609 DOI: 10.1093/evlett/qrae043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 12/17/2024] Open
Abstract
Mitochondrial function depends on the effective interactions between proteins and RNA encoded by the mitochondrial and nuclear genomes. Evidence suggests that both genomes respond to thermal selection and promote adaptation. However, the contribution of their epistatic interactions to life history phenotypes in the wild remains elusive. We investigated the evolutionary implications of mitonuclear interactions in a real-world scenario that sees populations adapted to different environments, altering their geographical distribution while experiencing flow and admixture. We created a Drosophila melanogaster panel with replicate native populations from the ends of the Australian east-coast cline, into which we substituted the mtDNA haplotypes that were either predominant or rare at each cline-end, thus creating putatively mitonuclear matched and mismatched populations. Our results suggest that mismatching may impact phenotype, with populations harboring the rarer mtDNA haplotype suffering a trade-off between aerobic capacity and key fitness aspects such as reproduction, growth, and survival. We discuss the significance of mitonuclear interactions as modulators of life history phenotypes in the context of future adaptation and population persistence.
Collapse
Affiliation(s)
- Stefano Bettinazzi
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jane Liang
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Enrique Rodriguez
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marion Bonneau
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ruben Holt
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ben Whitehead
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - M Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
2
|
Panov AV, Mayorov VI, Dikalov SI. Role of Fatty Acids β-Oxidation in the Metabolic Interactions Between Organs. Int J Mol Sci 2024; 25:12740. [PMID: 39684455 DOI: 10.3390/ijms252312740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
In recent decades, several discoveries have been made that force us to reconsider old ideas about mitochondria and energy metabolism in the light of these discoveries. In this review, we discuss metabolic interaction between various organs, the metabolic significance of the primary substrates and their metabolic pathways, namely aerobic glycolysis, lactate shuttling, and fatty acids β-oxidation. We rely on the new ideas about the supramolecular structure of the mitochondrial respiratory chain (respirasome), the necessity of supporting substrates for fatty acids β-oxidation, and the reverse electron transfer via succinate dehydrogenase during β-oxidation. We conclude that ATP production during fatty acid β-oxidation has its upper limits and thus cannot support high energy demands alone. Meanwhile, β-oxidation creates conditions that significantly accelerate the cycle: glucose-aerobic glycolysis-lactate-gluconeogenesis-glucose. Therefore, glycolytic ATP production becomes an important energy source in high energy demand. In addition, lactate serves as a mitochondrial substrate after converting to pyruvate + H+ by the mitochondrial lactate dehydrogenase. All coupled metabolic pathways are irreversible, and the enzymes are organized into multienzyme structures.
Collapse
Affiliation(s)
- Alexander V Panov
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31201, USA
| | - Vladimir I Mayorov
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31201, USA
| | | |
Collapse
|
3
|
Edmands S, Denova JR, Flanagan BA, Jah M, Applebaum SL. Mitonuclear effects on sex ratio persist across generations in interpopulation hybrids. J Evol Biol 2024; 37:1386-1393. [PMID: 39324636 PMCID: PMC11531650 DOI: 10.1093/jeb/voae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/08/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
Eukaryotic energy production requires tight coordination between nuclear and mitochondrial gene products. Because males and females often have different energetic strategies, optimal mitonuclear coordination may be sex-specific. Previous work found evidence for sex-specific mitonuclear effects in the copepod Tigriopus californicus by comparing two parental lines and their reciprocal F1 crosses. However, an alternative hypothesis is that the patterns were driven by the parental source of nuclear alleles. Here, we test this alternative hypothesis by extending the same cross to F2 hybrids, which receive both maternal and paternal nuclear alleles from F1 hybrids. Results confirm mitonuclear effects on sex ratio, with distorted ratios persisting from the F1 to F2 generations, despite reduced fitness in F2 hybrids. No sex-by-cross interactions were found for other phenotypic traits measured. Mitochondrial DNA content was higher in females. Both routine metabolic rate and oxidative DNA damage were lower in F2 hybrids than in parentals. The persistence of sex-specific mitonuclear effects, even in the face of F2 hybrid breakdown, attests to the magnitude of these effects, which contribute to the maintenance of within-population mitochondrial DNA polymorphisms.
Collapse
Affiliation(s)
- Suzanne Edmands
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Jacob R Denova
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Ben A Flanagan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Murad Jah
- Environmental Studies Program, University of Southern California, Los Angeles, CA, United States
| | - Scott L Applebaum
- Environmental Studies Program, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Huang Y, Li H, Liang R, Chen J, Tang Q. The influence of sex-specific factors on biological transformations and health outcomes in aging processes. Biogerontology 2024; 25:775-791. [PMID: 39001953 PMCID: PMC11374838 DOI: 10.1007/s10522-024-10121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The aging process demonstrates notable differences between males and females, which are key factors in disease susceptibility and lifespan. The differences in sex chromosomes are fundamental to the presence of sex bias in organisms. Moreover, sex-specific epigenetic modifications and changes in sex hormone levels impact the development of immunity differently during embryonic development and beyond. Mitochondria, telomeres, homeodynamic space, and intestinal flora are intricately connected to sex differences in aging. These elements can have diverse effects on men and women, resulting in unique biological transformations and health outcomes as they grow older. This review explores how sex interacts with these elements and shapes the aging process.
Collapse
Affiliation(s)
- Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Hongyu Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
5
|
Pithan JB, Rinehart JP, Greenlee KJ, López-Martínez G. Effects of age on oxidative stress and locomotion in the pollinator, Megachile rotundata. JOURNAL OF INSECT PHYSIOLOGY 2024; 157:104666. [PMID: 38969333 DOI: 10.1016/j.jinsphys.2024.104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
Despite numerous aging studies, the relationship between oxidative stress, aging, and decline in functions such as locomotion is still debated. Insects offer a promising model for analyzing the relationship between oxidative stress and aging, because they exhibit vast differences in lifespan that may be affected by the environment, social factors, levels of activity, and aging interventions. In this study, we explore the effects of aging on oxidative stress and locomotion using the pollinator, Megachile rotundata, a species that is very mobile and active in the adult stage. Across the adult lifespan of M. rotundata, we assessed changes in walking, flight, oxidative damage, and antioxidant defenses. Our results suggest that M. rotundata experience age-related declines in flight, but not walking. Additionally, we found that oxidative damage and antioxidant capacity initially increase with age and physical activity, but then levels are maintained. Overall, these data show that M. rotundata, like some other organisms, may not perfectly follow the free radical theory of aging.
Collapse
|
6
|
Pacheco-Fuentes H, Ton R, Griffith SC. Short- and long-term consequences of heat exposure on mitochondrial metabolism in zebra finches (Taeniopygia castanotis). Oecologia 2023; 201:637-648. [PMID: 36894790 PMCID: PMC10038956 DOI: 10.1007/s00442-023-05344-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023]
Abstract
Understanding the consequences of heat exposure on mitochondrial function is crucial as mitochondria lie at the core of metabolic processes, also affecting population dynamics. In adults, mitochondrial metabolism varies with temperature but can also depend on thermal conditions experienced during development. We exposed zebra finches to two alternative heat treatments during early development: "constant", maintained birds at ambient 35 °C from parental pair formation to fledglings' independence, while "periodic" heated broods at 40 °C, 6 h daily at nestling stage. Two years later, we acclimated birds from both experiments at 25 °C for 21 days, before exposing them to artificial heat (40 °C, 5 h daily for 10 days). After both conditions, we measured red blood cells' mitochondrial metabolism using a high-resolution respirometer. We found significantly decreased mitochondrial metabolism for Routine, Oxidative Phosphorylation (OxPhos) and Electron Transport System maximum capacity (ETS) after the heat treatments. In addition, the birds exposed to "constant" heat in early life showed lower oxygen consumption at the Proton Leak (Leak) stage after the heat treatment as adults. Females showed higher mitochondrial respiration for Routine, ETS and Leak independent of the treatments, while this pattern was reversed for OxPhos coupling efficiency (OxCE). Our results show that short-term acclimation involved reduced mitochondrial respiration, and that the reaction of adult birds to heat depends on the intensity, pattern and duration of temperature conditions experienced at early-life stages. Our study provides insight into the complexity underlying variation in mitochondrial metabolism and raises questions on the adaptive value of long-lasting physiological adjustments triggered by the early-life thermal environment.
Collapse
Affiliation(s)
| | - Riccardo Ton
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Simon C Griffith
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
7
|
Semaniuk UV, Gospodaryov DV, Strilbytska OM, Kucharska AZ, Sokół-Łętowska A, Burdyliuk NI, Storey KB, Bayliak MM, Lushchak O. Chili-supplemented food decreases glutathione- S-transferase activity in Drosophila melanogaster females without a change in other parameters of antioxidant system. Redox Rep 2022; 27:221-229. [PMID: 36200601 PMCID: PMC9553170 DOI: 10.1080/13510002.2022.2123884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVES Many plant-derived anti-aging preparations influence antioxidant defense system. Consumption of food supplemented with chili pepper powder was found to extend lifespan in the fruit fly, Drosophila melanogaster. The present study aimed to test a connection between life-extending effect of chili powder and antioxidant defense system of D. melanogaster. METHODS Flies were reared for 15 days in the mortality cages on food with 0% (control), 0.04%, 0.12%, 0.4%, or 3% chili powder. Antioxidant and related enzymes, as well as oxidative stress indices were measured. RESULTS Female flies that consumed chili-supplemented food had a 40-60% lower glutathione-S-transferase (GST) activity as compared with the control cohort. Activity of superoxide dismutase (SOD) was about 37% higher in males that consumed food with 3% chili powder in comparison with the control cohort. Many of the parameters studied were sex-dependent. CONCLUSIONS Consumption of chili-supplemented food extends lifespan in fruit fly cohorts in a concentration- and gender-dependent manner. However, this extension is not mediated by a strengthening of antioxidant defenses. Consumption of chili-supplemented food does not change the specific relationship between antioxidant and related enzymes in D. melanogaster, and does not change the linkage of the activities of these enzymes to fly gender.
Collapse
Affiliation(s)
- Uliana V Semaniuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Olha M Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Alicja Z Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Anna Sokół-Łętowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Nadia I Burdyliuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | | | - Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.,Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
8
|
Panov A, Mayorov VI, Dikalov S. Metabolic Syndrome and β-Oxidation of Long-Chain Fatty Acids in the Brain, Heart, and Kidney Mitochondria. Int J Mol Sci 2022; 23:4047. [PMID: 35409406 PMCID: PMC9000033 DOI: 10.3390/ijms23074047] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
We present evidence that metabolic syndrome (MetS) represents the postreproductive stage of the human postembryonic ontogenesis. Accordingly, the genes governing this stage experience relatively weak evolutionary selection pressure, thus representing the metabolic phenotype of distant ancestors with β-oxidation of long-chain fatty acids (FAs) as the primary energy source. Mitochondria oxidize at high-rate FAs only when succinate, glutamate, or pyruvate are present. The heart and brain mitochondria work at a wide range of functional loads and possess an intrinsic inhibition of complex II to prevent oxidative stress at periods of low functional activity. Kidney mitochondria constantly work at a high rate and lack inhibition of complex II. We suggest that in people with MetS, oxidative stress is the central mechanism of the heart and brain pathologies. Oxidative stress is a secondary pathogenetic mechanism in the kidney, while the primary mechanisms are kidney hypoxia caused by persistent hyperglycemia and hypertension. Current evidence suggests that most of the nongenetic pathologies associated with MetS originate from the inconsistencies between the metabolic phenotype acquired after the transition to the postreproductive stage and excessive consumption of food rich in carbohydrates and a sedentary lifestyle.
Collapse
Affiliation(s)
- Alexander Panov
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31201, USA;
| | - Vladimir I. Mayorov
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31201, USA;
| | - Sergey Dikalov
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
9
|
Flanagan BA, Li N, Edmands S. Mitonuclear interactions alter sex-specific longevity in a species without sex chromosomes. Proc Biol Sci 2021; 288:20211813. [PMID: 34727715 PMCID: PMC8564613 DOI: 10.1098/rspb.2021.1813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Impaired mitochondrial function can lead to senescence and the ageing phenotype. Theory predicts degenerative ageing phenotypes and mitochondrial pathologies may occur more frequently in males due to the matrilineal inheritance pattern of mitochondrial DNA observed in most eukaryotes. Here, we estimated the sex-specific longevity for parental and reciprocal F1 hybrid crosses for inbred lines derived from two allopatric Tigriopus californicus populations with over 20% mitochondrial DNA divergence. T. californicus lacks sex chromosomes allowing for more direct testing of mitochondrial function in sex-specific ageing. To better understand the ageing mechanism, we estimated two age-related phenotypes (mtDNA content and 8-hydroxy-20-deoxyguanosine (8-OH-dG) DNA damage) at two time points in the lifespan. Sex differences in lifespan depended on the mitochondrial and nuclear backgrounds, including differences between reciprocal F1 crosses which have different mitochondrial haplotypes on a 50 : 50 nuclear background, with nuclear contributions coming from alternative parents. Young females showed the highest mtDNA content which decreased with age, while DNA damage in males increased with age and exceed that of females 56 days after hatching. The adult sex ratio was male-biased and was attributed to complex mitonuclear interactions. Results thus demonstrate that sex differences in ageing depend on mitonuclear interactions in the absence of sex chromosomes.
Collapse
Affiliation(s)
- Ben A. Flanagan
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 130, Los Angeles, CA 90089, USA
| | - Ning Li
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 130, Los Angeles, CA 90089, USA
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 130, Los Angeles, CA 90089, USA
| |
Collapse
|
10
|
Emerging methods for and novel insights gained by absolute quantification of mitochondrial DNA copy number and its clinical applications. Pharmacol Ther 2021; 232:107995. [PMID: 34592204 DOI: 10.1016/j.pharmthera.2021.107995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The past thirty years have seen a surge in interest in pathophysiological roles of mitochondria, and the accurate quantification of mitochondrial DNA copy number (mCN) in cells and tissue samples is a fundamental aspect of assessing changes in mitochondrial health and biogenesis. Quantification of mCN between studies is surprisingly variable due to a combination of physiological variability and diverse protocols being used to measure this endpoint. The advent of novel methods to quantify nucleic acids like digital polymerase chain reaction (dPCR) and high throughput sequencing offer the ability to measure absolute values of mCN. We conducted an in-depth survey of articles published between 1969 -- 2020 to create an overview of mCN values, to assess consensus values of tissue-specific mCN, and to evaluate consistency between methods of assessing mCN. We identify best practices for methods used to assess mCN, and we address the impact of using specific loci on the mitochondrial genome to determine mCN. Current data suggest that clinical measurement of mCN can provide diagnostic and prognostic value in a range of diseases and health conditions, with emphasis on cancer and cardiovascular disease, and the advent of means to measure absolute mCN should improve future clinical applications of mCN measurements.
Collapse
|
11
|
Kam JH, Hogg C, Fosbury R, Shinhmar H, Jeffery G. Mitochondria are specifically vulnerable to 420nm light in drosophila which undermines their function and is associated with reduced fly mobility. PLoS One 2021; 16:e0257149. [PMID: 34478469 PMCID: PMC8415596 DOI: 10.1371/journal.pone.0257149] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023] Open
Abstract
Increased blue light exposure has become a matter of concern as it has a range of detrimental effects, but the mechanisms remain unclear. Mitochondria absorb short wavelength light but have a specific absorbance at 420nm at the lower end of the human visual range. This 420nm absorption is probably due to the presence of porphyrin. We examine the impact of 420nm exposure on drosophila melanogaster mitochondria and its impact on fly mobility. Daily 15 mins exposures for a week significantly reduced mitochondrial complex activities and increased mitochondrial inner membrane permeability, which is a key metric of mitochondrial health. Adenosine triphosphate (ATP) levels were not significantly reduced and mobility was unchanged. There are multiple options for energy/time exposure combinations, but we then applied single 420nm exposure of 3h to increase the probability of an effect on ATP and mobility, and both were significantly reduced. ATP and mitochondrial membrane permeability recovered and over corrected at 72h post exposure. However, despite this, normal mobility did not return. Hence, the effect of short wavelengths on mitochondrial function is to reduce complex activity and increasing membrane permeability, but light exposure to reduce ATP and to translate into reduced mobility needs to be sustained.
Collapse
Affiliation(s)
- Jaimie Hoh Kam
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Chris Hogg
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Robert Fosbury
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Harpreet Shinhmar
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Towarnicki SG, Ballard JWO. Towards understanding the evolutionary dynamics of mtDNA. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 31:355-364. [PMID: 33026269 DOI: 10.1080/24701394.2020.1830076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Historically, mtDNA was considered a selectively neutral marker that was useful for estimating the population genetic history of the maternal lineage. Over time there has been an increasing appreciation of mtDNA and mitochondria in maintaining cellular and organismal health. Beyond energy production, mtDNA and mitochondria have critical cellular roles in signalling. Here we briefly review the structure of mtDNA and the role of the mitochondrion in energy production. We then discuss the predictions that can be obtained from quaternary structure modelling and focus on mitochondrial complex I. Complex I is the primary entry point for electrons into the electron transport system is the largest respiratory complex of the chain and produces about 40% of the proton flux used to synthesize ATP. A focus of the review is Drosophila's utility as a model organism to study the selective advantage of specific mutations. However, we note that the incorporation of insights from a multitude of systems is necessary to fully understand the range of roles that mtDNA has in organismal fitness. We speculate that dietary changes can illicit stress responses that influence the selective advantage of specific mtDNA mutations and cause spatial and temporal fluctuations in the frequencies of mutations. We conclude that developing our understanding of the roles mtDNA has in determining organismal fitness will enable increased evolutionary insight and propose we can no longer assume it is evolving as a strictly neutral marker without testing this hypothesis.
Collapse
Affiliation(s)
- Samuel G Towarnicki
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - J William O Ballard
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| |
Collapse
|
13
|
Sex and age specific reduction in stress resistance and mitochondrial DNA copy number in Drosophila melanogaster. Sci Rep 2019; 9:12305. [PMID: 31444377 PMCID: PMC6707197 DOI: 10.1038/s41598-019-48752-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/07/2019] [Indexed: 01/01/2023] Open
Abstract
Environmental stresses such as extreme temperatures, dehydration and food deprivation may have distinct consequences for different age-classes and for males and females across species. Here we investigate a natural population of the model organism Drosophila melanogaster. Males and females at ages 3, 19 and 35 days were tested for stress resistance; i.e. the ability of flies to cope with starvation and both cold and hot temperatures. Further, we tested a measure of metabolic efficiency, namely mitochondrial DNA copy number (mtDNA CN) in both sexes at all three age-classes. We hypothesize that stress resistance is reduced at old age and more so in males, and that mtDNA CN is a biomarker for sex- and age-dependent reductions in the ability to cope with harsh environments. We show that: (1) males exhibit reduced starvation tolerance at old age, whereas older females are better in coping with periods without food compared to younger females, (2) heat tolerance decreases with increasing age in males but not in females, (3) cold tolerance is reduced at old age in both sexes, and (4) old males have reduced mtDNA CN whereas mtDNA CN slightly increases with age in females. In conclusion, our data provide strong evidence for trait and sex specific consequences of aging with females generally being better at coping with environmental stress at old age. The reduced mtDNA CN in old males suggests reduced metabolic efficiency and this may partly explain why males are less stress tolerant at old age than females. We suggest that mtDNA CN might be a suitable biomarker for physiological robustness. Our findings likely extend to other taxa than Drosophila and therefore we discuss the observations in relation to aging and sex specific lifespan across species.
Collapse
|
14
|
Filippi-Codaccioni O, Beugin MP, de Vienne DM, Portanier E, Fouchet D, Kaerle C, Muselet L, Queney G, Petit EJ, Regis C, Pons JB, Pontier D. Coexistence of two sympatric cryptic bat species in French Guiana: insights from genetic, acoustic and ecological data. BMC Evol Biol 2018; 18:175. [PMID: 30458712 PMCID: PMC6247516 DOI: 10.1186/s12862-018-1289-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/02/2018] [Indexed: 01/29/2023] Open
Abstract
Background The distinction between lineages of neotropical bats from the Pteronotus parnellii species complex has been previously made according to mitochondrial DNA, and especially morphology and acoustics, in order to separate them into two species. In these studies, either sample sizes were too low when genetic and acoustic or morphological data were gathered on the same individuals, or genetic and other data were collected on different individuals. In this study, we intensively sampled bats in 4 caves and combined all approaches in order to analyse genetic, morphologic, and acoustic divergence between these lineages that live in the same caves in French Guiana. Results A multiplex of 20 polymorphic microsatellite markers was developed using the 454-pyrosequencing technique to investigate for the first time the extent of reproductive isolation between the two lineages and the population genetic structure within lineages. We genotyped 748 individuals sampled between 2010 and 2015 at the 20 nuclear microsatellite loci and sequenced a portion of the cytochrome c oxydase I gene in a subset of these. Two distinct, non-overlapping haplogroups corresponding to cryptic species P. alitonus and P. rubiginosus were revealed, in accordance with previous findings. No spatial genetic structure between caves was detected for both species. Hybridization appeared to be quite limited (0.1–4%) using microsatellite markers whereas introgression was more common (7.5%) and asymmetric for mitochondrial DNA (mtDNA). Conclusions The extremely low rate of hybridization could be explained by differences in life cycle phenology between species as well as morphological and acoustical distinction between sexes in one or the other species. Taken together, these results add to our growing understanding of the nature of species boundaries in Pteronotus parnelli, but deserve more in-depth studies to understand the evolutionary processes underlying asymmetric mtDNA introgression in this group of cryptic species. Electronic supplementary material The online version of this article (10.1186/s12862-018-1289-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ondine Filippi-Codaccioni
- University Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622, Villeurbanne, France.,Université de Lyon, LabEx Ecofect, Nadine Cizaire, 92 rue Pasteur, CS 30122 69361, Lyon Cedex 07, France.,SEISE 26 bis Barrouil, 33720, Illats, France
| | - Marie-Pauline Beugin
- University Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622, Villeurbanne, France.,Université de Lyon, LabEx Ecofect, Nadine Cizaire, 92 rue Pasteur, CS 30122 69361, Lyon Cedex 07, France.,ANTAGENE, Animal Genomics Laboratory, 6 allée du Levant, 69890, La Tour de Salvagny (Lyon), France
| | - Damien M de Vienne
- University Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622, Villeurbanne, France.,Université de Lyon, LabEx Ecofect, Nadine Cizaire, 92 rue Pasteur, CS 30122 69361, Lyon Cedex 07, France
| | - Elodie Portanier
- University Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622, Villeurbanne, France.,Université de Lyon, VetAgro Sup - Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, BP 83, F-69280, Marcy l'Etoile, France.,Office National de la Chasse et de la Faune Sauvage - Unité Faune de Montagne, 147 Route de Lodève, Les Portes du Soleil, F-34990, Juvignac, France
| | - David Fouchet
- University Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622, Villeurbanne, France.,Université de Lyon, LabEx Ecofect, Nadine Cizaire, 92 rue Pasteur, CS 30122 69361, Lyon Cedex 07, France
| | - Cecile Kaerle
- ANTAGENE, Animal Genomics Laboratory, 6 allée du Levant, 69890, La Tour de Salvagny (Lyon), France
| | - Lina Muselet
- ANTAGENE, Animal Genomics Laboratory, 6 allée du Levant, 69890, La Tour de Salvagny (Lyon), France
| | - Guillaume Queney
- ANTAGENE, Animal Genomics Laboratory, 6 allée du Levant, 69890, La Tour de Salvagny (Lyon), France
| | - Eric J Petit
- UMR ESE, Ecology and Ecosystem Health, INRA, Agrocampus Ouest, 65 rue de Saint-Brieuc, 35042, Rennes Cedex, France
| | - Corinne Regis
- University Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622, Villeurbanne, France.,Université de Lyon, LabEx Ecofect, Nadine Cizaire, 92 rue Pasteur, CS 30122 69361, Lyon Cedex 07, France
| | - Jean-Baptiste Pons
- University Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622, Villeurbanne, France.,Université de Lyon, LabEx Ecofect, Nadine Cizaire, 92 rue Pasteur, CS 30122 69361, Lyon Cedex 07, France
| | - Dominique Pontier
- University Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622, Villeurbanne, France. .,Université de Lyon, LabEx Ecofect, Nadine Cizaire, 92 rue Pasteur, CS 30122 69361, Lyon Cedex 07, France.
| |
Collapse
|
15
|
Castillo-Morales A, Monzón-Sandoval J, Urrutia AO, Gutiérrez H. Postmitotic cell longevity-associated genes: a transcriptional signature of postmitotic maintenance in neural tissues. Neurobiol Aging 2018; 74:147-160. [PMID: 30448614 DOI: 10.1016/j.neurobiolaging.2018.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/03/2018] [Accepted: 10/11/2018] [Indexed: 12/24/2022]
Abstract
Different cell types have different postmitotic maintenance requirements. Nerve cells, however, are unique in this respect as they need to survive and preserve their functional complexity for the entire lifetime of the organism, and failure at any level of their supporting mechanisms leads to a wide range of neurodegenerative conditions. Whether these differences across tissues arise from the activation of distinct cell type-specific maintenance mechanisms or the differential activation of a common molecular repertoire is not known. To identify the transcriptional signature of postmitotic cellular longevity (PMCL), we compared whole-genome transcriptome data from human tissues ranging in longevity from 120 days to over 70 years and found a set of 81 genes whose expression levels are closely associated with increased cell longevity. Using expression data from 10 independent sources, we found that these genes are more highly coexpressed in longer-living tissues and are enriched in specific biological processes and transcription factor targets compared with randomly selected gene samples. Crucially, we found that PMCL-associated genes are downregulated in the cerebral cortex and substantia nigra of patients with Alzheimer's and Parkinson's disease, respectively, as well as Hutchinson-Gilford progeria-derived fibroblasts, and that this downregulation is specifically linked to their underlying association with cellular longevity. Moreover, we found that sexually dimorphic brain expression of PMCL-associated genes reflects sexual differences in lifespan in humans and macaques. Taken together, our results suggest that PMCL-associated genes are part of a generalized machinery of postmitotic maintenance and functional stability in both neural and non-neural cells and support the notion of a common molecular repertoire differentially engaged in different cell types with different survival requirements.
Collapse
Affiliation(s)
- Atahualpa Castillo-Morales
- School of Life Sciences, University of Lincoln, Lincoln, UK; Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Jimena Monzón-Sandoval
- School of Life Sciences, University of Lincoln, Lincoln, UK; Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK; Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | | |
Collapse
|
16
|
Drosophila melanogaster as a Model for Diabetes Type 2 Progression. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1417528. [PMID: 29854726 PMCID: PMC5941822 DOI: 10.1155/2018/1417528] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/03/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Drosophila melanogaster has been used as a very versatile and potent model in the past few years for studies in metabolism and metabolic disorders, including diabetes types 1 and 2. Drosophila insulin signaling, despite having seven insulin-like peptides with partially redundant functions, is very similar to the human insulin pathway and has served to study many different aspects of diabetes and the diabetic state. Yet, very few studies have addressed the chronic nature of diabetes, key for understanding the full-blown disease, which most studies normally explore. One of the advantages of having Drosophila mutant viable combinations at different levels of the insulin pathway, with significantly reduced insulin pathway signaling, is that the abnormal metabolic state can be studied from the onset of the life cycle and followed throughout. In this review, we look at the chronic nature of impaired insulin signaling. We also compare these results to the results gleaned from vertebrate model studies.
Collapse
|
17
|
Aw WC, Garvin MR, Melvin RG, Ballard JWO. Sex-specific influences of mtDNA mitotype and diet on mitochondrial functions and physiological traits in Drosophila melanogaster. PLoS One 2017; 12:e0187554. [PMID: 29166659 PMCID: PMC5699850 DOI: 10.1371/journal.pone.0187554] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/20/2017] [Indexed: 01/01/2023] Open
Abstract
Here we determine the sex-specific influence of mtDNA type (mitotype) and diet on mitochondrial functions and physiology in two Drosophila melanogaster lines. In many species, males and females differ in aspects of their energy production. These sex-specific influences may be caused by differences in evolutionary history and physiological functions. We predicted the influence of mtDNA mutations should be stronger in males than females as a result of the organelle's maternal mode of inheritance in the majority of metazoans. In contrast, we predicted the influence of diet would be greater in females due to higher metabolic flexibility. We included four diets that differed in their protein: carbohydrate (P:C) ratios as they are the two-major energy-yielding macronutrients in the fly diet. We assayed four mitochondrial function traits (Complex I oxidative phosphorylation, reactive oxygen species production, superoxide dismutase activity, and mtDNA copy number) and four physiological traits (fecundity, longevity, lipid content, and starvation resistance). Traits were assayed at 11 d and 25 d of age. Consistent with predictions we observe that the mitotype influenced males more than females supporting the hypothesis of a sex-specific selective sieve in the mitochondrial genome caused by the maternal inheritance of mitochondria. Also, consistent with predictions, we found that the diet influenced females more than males.
Collapse
Affiliation(s)
- Wen C. Aw
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Sydney, Australia
| | - Michael R. Garvin
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Richard G. Melvin
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Sydney, Australia
| | - J. William O. Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
18
|
Mossman JA, Tross JG, Jourjine NA, Li N, Wu Z, Rand DM. Mitonuclear Interactions Mediate Transcriptional Responses to Hypoxia in Drosophila. Mol Biol Evol 2017; 34:447-466. [PMID: 28110272 PMCID: PMC6095086 DOI: 10.1093/molbev/msw246] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Among the major challenges in quantitative genetics and personalized medicine is to understand how gene × gene interactions (G × G: epistasis) and gene × environment interactions (G × E) underlie phenotypic variation. Here, we use the intimate relationship between mitochondria and oxygen availability to dissect the roles of nuclear DNA (nDNA) variation, mitochondrial DNA (mtDNA) variation, hypoxia, and their interactions on gene expression in Drosophila melanogaster. Mitochondria provide an important evolutionary and medical context for understanding G × G and G × E given their central role in integrating cellular signals. We hypothesized that hypoxia would alter mitonuclear communication and gene expression patterns. We show that first order nDNA, mtDNA, and hypoxia effects vary between the sexes, along with mitonuclear epistasis and G × G × E effects. Females were generally more sensitive to genetic and environmental perturbation. While dozens to hundreds of genes are altered by hypoxia in individual genotypes, we found very little overlap among mitonuclear genotypes for genes that were significantly differentially expressed as a consequence of hypoxia; excluding the gene hairy. Oxidative phosphorylation genes were among the most influenced by hypoxia and mtDNA, and exposure to hypoxia increased the signature of mtDNA effects, suggesting retrograde signaling between mtDNA and nDNA. We identified nDNA-encoded genes in the electron transport chain (succinate dehydrogenase) that exhibit female-specific mtDNA effects. Our findings have important implications for personalized medicine, the sex-specific nature of mitonuclear communication, and gene × gene coevolution under variable or changing environments.
Collapse
Affiliation(s)
- Jim A Mossman
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| | - Jennifer G Tross
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA
| | - Nick A Jourjine
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI.,Department of Molecular and Cell Biology, University of California, Berkeley, CA
| | - Nan Li
- Department of Biostatistics, Brown University, Providence, RI
| | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, RI
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| |
Collapse
|
19
|
Sex differences in oxidative stress resistance in relation to longevity in Drosophila melanogaster. J Comp Physiol B 2017; 187:899-909. [PMID: 28261744 DOI: 10.1007/s00360-017-1061-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/05/2017] [Accepted: 01/18/2017] [Indexed: 02/08/2023]
Abstract
Gender differences in lifespan and aging are known across species. Sex differences in longevity within a species can be useful to understand sex-specific aging. Drosophila melanogaster is a good model to study the problem of sex differences in longevity since females are longer lived than males. There is evidence that stress resistance influences longevity. The objective of this study was to investigate if there is a relationship between sex differences in longevity and oxidative stress resistance in D. melanogaster. We observed a progressive age-dependent decrease in the activity of SOD and catalase, major antioxidant enzymes involved in defense mechanisms against oxidative stress in parallel to the increased ROS levels over time. Longer-lived females showed lower ROS levels and higher antioxidant enzymes than males as a function of age. Using ethanol as a stressor, we have shown differential susceptibility of the sexes to ethanol wherein females exhibited higher resistance to ethanol-induced mortality and locomotor behavior compared to males. Our results show strong correlation between sex differences in oxidative stress resistance, antioxidant defenses and longevity. The study suggests that higher antioxidant defenses in females may confer resistance to oxidative stress, which could be a factor that influences sex-specific aging in D. melanogaster.
Collapse
|
20
|
Đorđević M, Stojković B, Savković U, Immonen E, Tucić N, Lazarević J, Arnqvist G. Sex-specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics, ageing, and life history in seed beetles. Evolution 2016; 71:274-288. [PMID: 27861795 DOI: 10.1111/evo.13109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/13/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022]
Abstract
The role of mitochondrial DNA for the evolution of life-history traits remains debated. We examined mitonuclear effects on the activity of the multisubunit complex of the electron transport chain (ETC) involved in oxidative phosphorylation (OXPHOS) across lines of the seed beetle Acanthoscelides obtectus selected for a short (E) or a long (L) life for more than >160 generations. We constructed and phenotyped mitonuclear introgression lines, which allowed us to assess the independent effects of the evolutionary history of the nuclear and the mitochondrial genome. The nuclear genome was responsible for the largest share of divergence seen in ageing. However, the mitochondrial genome also had sizeable effects, which were sex-specific and expressed primarily as epistatic interactions with the nuclear genome. The effects of mitonuclear disruption were largely consistent with mitonuclear coadaptation. Variation in ETC activity explained a large proportion of variance in ageing and life-history traits and this multivariate relationship differed somewhat between the sexes. In conclusion, mitonuclear epistasis has played an important role in the laboratory evolution of ETC complex activity, ageing, and life histories and these are closely associated. The mitonuclear architecture of evolved differences in life-history traits and mitochondrial bioenergetics was sex-specific.
Collapse
Affiliation(s)
- Mirko Đorđević
- Department of Evolutionary Biology, Institute for Biological Research, University of Belgrade, Despota Stefana Boulevard 142, Belgrade, 11060, Serbia
| | - Biljana Stojković
- Department of Evolutionary Biology, Institute for Biological Research, University of Belgrade, Despota Stefana Boulevard 142, Belgrade, 11060, Serbia.,Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, 11000, Serbia
| | - Uroš Savković
- Department of Evolutionary Biology, Institute for Biological Research, University of Belgrade, Despota Stefana Boulevard 142, Belgrade, 11060, Serbia
| | - Elina Immonen
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Nikola Tucić
- Department of Evolutionary Biology, Institute for Biological Research, University of Belgrade, Despota Stefana Boulevard 142, Belgrade, 11060, Serbia
| | - Jelica Lazarević
- Department of Insect Physiology and Biochemistry, Institute for Biological Research, University of Belgrade, Despota Stefana Boulevard 142, Belgrade, 11060, Serbia
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| |
Collapse
|
21
|
Mastrantonio V, Porretta D, Urbanelli S, Crasta G, Nascetti G. Dynamics of mtDNA introgression during species range expansion: insights from an experimental longitudinal study. Sci Rep 2016; 6:30355. [PMID: 27460445 PMCID: PMC4962091 DOI: 10.1038/srep30355] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/30/2016] [Indexed: 11/23/2022] Open
Abstract
Introgressive hybridization represents one of the long-lasting debated genetic consequences of species range expansion. Mitochondrial DNA has been shown to heavily introgress between interbreeding animal species that meet in new sympatric areas and, often, asymmetric introgression from local to the colonizing populations has been observed. Disentangling among the evolutionary and ecological processes that might shape this pattern remains difficult, because they continuously act across time and space. In this context, long-term studies can be of paramount importance. Here, we investigated the dynamics of mitochondrial introgression between two mosquito species (Aedes mariae and Ae. zammitii ) during a colonization event that started in 1986 after a translocation experiment. By analyzing 1,659 individuals across 25 years, we showed that introgression occurred earlier and at a higher frequency in the introduced than in the local species, showing a pattern of asymmetric introgression. Throughout time, introgression increased slowly in the local species, becoming reciprocal at most sites. The rare opportunity to investigate the pattern of introgression across time during a range expansion along with the characteristics of our study-system allowed us to support a role of demographic dynamics in determining the observed introgression pattern.
Collapse
Affiliation(s)
- V Mastrantonio
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - D Porretta
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - S Urbanelli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - G Crasta
- Department of Mathematics, Sapienza University of Rome, Rome, Italy
| | - G Nascetti
- Department of Ecological and Biological Sciences, Tuscia University, Viterbo, Italy
| |
Collapse
|
22
|
Camus MF, Wolf JBW, Morrow EH, Dowling DK. Single Nucleotides in the mtDNA Sequence Modify Mitochondrial Molecular Function and Are Associated with Sex-Specific Effects on Fertility and Aging. Curr Biol 2015; 25:2717-22. [PMID: 26455309 DOI: 10.1016/j.cub.2015.09.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 02/05/2023]
Abstract
Mitochondria underpin energy conversion in eukaryotes. Their small genomes have been the subject of increasing attention, and there is evidence that mitochondrial genetic variation can affect evolutionary trajectories and shape the expression of life-history traits considered to be key human health indicators [1, 2]. However, it is not understood how genetic variation across a diminutive genome, which in most species harbors only about a dozen protein-coding genes, can exert broad-scale effects on the organismal phenotype [2, 3]. Such effects are particularly puzzling given that the mitochondrial genes involved are under strong evolutionary constraint and that mitochondrial gene expression is highly conserved across diverse taxa [4]. We used replicated genetic lines in the fruit fly, Drosophila melanogaster, each characterized by a distinct and naturally occurring mitochondrial haplotype placed alongside an isogenic nuclear background. We demonstrate that sequence variation within the mitochondrial DNA (mtDNA) affects both the copy number of mitochondrial genomes and patterns of gene expression across key mitochondrial protein-coding genes. In several cases, haplotype-mediated patterns of gene expression were gene-specific, even for genes from within the same transcriptional units. This invokes post-transcriptional processing of RNA in the regulation of mitochondrial genetic effects on organismal phenotypes. Notably, the haplotype-mediated effects on gene expression could be traced backward to the level of individual nucleotides and forward to sex-specific effects on fertility and longevity. Our study thus elucidates how small-scale sequence changes in the mitochondrial genome can achieve broad-scale regulation of health-related phenotypes and even contribute to sex-related differences in longevity.
Collapse
Affiliation(s)
- M Florencia Camus
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Jochen B W Wolf
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala SE-75236, Sweden
| | - Edward H Morrow
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
23
|
Rovenko BM, Kubrak OI, Gospodaryov DV, Perkhulyn NV, Yurkevych IS, Sanz A, Lushchak OV, Lushchak VI. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2015; 79:42-54. [PMID: 26050918 DOI: 10.1016/j.jinsphys.2015.05.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
The effects of sucrose in varied concentrations (0.25-20%) with constant amount of yeasts in larval diet on development and metabolic parameters of adult fruit fly Drosophila melanogaster were studied. Larvae consumed more food at low sucrose diet, overeating with yeast. On high sucrose diet, larvae ingested more carbohydrates, despite consuming less food and obtaining less protein derived from yeast. High sucrose diet slowed down pupation and increased pupa mortality, enhanced levels of lipids and glycogen, increased dry body mass, decreased water content, i.e. resulted in obese phenotype. Furthermore, it suppressed reactive oxygen species-induced oxidation of lipids and proteins as well as the activity of superoxide dismutase. The activity of catalase was gender-related. In males, at all sucrose concentrations used catalase activity was higher than at its concentration of 0.25%, whereas in females sucrose concentration virtually did not influence the activity. High sucrose diet increased content of protein thiols and the activity of glucose-6-phosphate dehydrogenase. The increase in sucrose concentration also enhanced uric acid level in females, but caused opposite effects in males. Development on high sucrose diets was accompanied by elevated steady-state insulin-like peptide 3 mRNA level. Finally, carbohydrate starvation at yeast overfeeding on low sucrose diets resulted in oxidative stress reflected by higher levels of oxidized lipids and proteins accompanied by increased superoxide dismutase activity. Potential mechanisms involved in regulation of redox processes by carbohydrates are discussed.
Collapse
Affiliation(s)
- Bohdana M Rovenko
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Olga I Kubrak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Natalia V Perkhulyn
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Ihor S Yurkevych
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences and Newcastle Institute for Ageing, Newcastle University, Newcastle-Upon-Tyne NE4 5PL, UK
| | - Oleh V Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine.
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
24
|
Drosophila melanogaster mitochondrial Hsp22: a role in resistance to oxidative stress, aging and the mitochondrial unfolding protein response. Biogerontology 2015; 17:61-70. [DOI: 10.1007/s10522-015-9591-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/01/2015] [Indexed: 12/27/2022]
|
25
|
Rovenko BM, Kubrak OI, Gospodaryov DV, Yurkevych IS, Sanz A, Lushchak OV, Lushchak VI. Restriction of glucose and fructose causes mild oxidative stress independently of mitochondrial activity and reactive oxygen species in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:27-39. [PMID: 25941153 DOI: 10.1016/j.cbpa.2015.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 01/25/2023]
Abstract
Our recent study showed different effects of glucose and fructose overconsumption on the development of obese phenotypes in Drosophila. Glucose induced glucose toxicity due to the increase in circulating glucose, whereas fructose was more prone to induce obesity promoting accumulation of reserve lipids and carbohydrates (Rovenko et al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75-85). Searching for mechanisms responsible for these phenotypes in this study, we analyzed mitochondrial activity, mitochondrial density, mtROS production, oxidative stress markers and antioxidant defense in fruit flies fed 0.25%, 4% and 10% glucose or fructose. It is shown that there is a complex interaction between dietary monosaccharide concentrations, mitochondrial activity and oxidative modifications to proteins and lipids. Glucose at high concentration (10%) reduced mitochondrial protein density and consequently respiration in flies, while fructose did not affect these parameters. The production of ROS by mitochondria did not reflect activities of mitochondrial complexes. Moreover, there was no clear connection between mtROS production and antioxidant defense or between antioxidant defense and developmental survival, shown in our previous study (Rovenko et al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75-85). Instead, mtROS and antioxidant machinery cooperated to maintain a redox state that determined survival rates, and paradoxically, pro-oxidant conditions facilitated larva survival independently of the type of carbohydrate. It seems that in this complex system glucose controls the amount of oxidative modification regulating mitochondrial activity, while fructose regulates steady-state mRNA levels of antioxidant enzymes.
Collapse
Affiliation(s)
- Bohdana M Rovenko
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Olga I Kubrak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Ihor S Yurkevych
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-Upon-Tyne NE4 5PL, UK; Newcastle University Institute for Ageing, Newcastle University, Newcastle-Upon-Tyne NE4 5PL, UK
| | - Oleh V Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine.
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
26
|
Krůček T, Korandová M, Šerý M, Frydrychová RČ, Krůček T, Korandová M, Szakosová K. Effect of low doses of herbicide paraquat on antioxidant defense in Drosophila. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:235-248. [PMID: 25557922 DOI: 10.1002/arch.21222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Despite a high toxicity, paraquat is one of the most widely used herbicides in the world. Our study evaluated the effect of paraquat exposure on antioxidant response and locomotion activity in Drosophila melanogaster. We examined the enzymatic activity of superoxide dismutase (SOD) and catalase, and the transcript levels of both enzymes. Flies were exposed to a wide range of paraquat concentrations (0.25 μM to 25 mM) for 12 h. SOD, at both transcript and enzymatic levels, revealed a biphasic dose-response curve with the peak at 2.5 μM paraquat. A similar dose-response curve was observed at transcript levels of catalase. Males revealed higher susceptibility to paraquat exposure, displaying higher lethality, increased levels of SOD activity, and increased peroxide levels than in females. We found that the exposure of females to 2.5 μM paraquat leads to an increase in locomotion activity. Because susceptibility to paraquat was enhanced by mating, the study supports the hypothesis of elevation of stress sensitivity as a physiological cost of reproduction.
Collapse
Affiliation(s)
- Tomáš Krůček
- Institute of Entomology, Biology Centre AS CR, v.v.i, Ceske Budejovice, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
27
|
Soares JBRC, Gaviraghi A, Oliveira MF. Mitochondrial physiology in the major arbovirus vector Aedes aegypti: substrate preferences and sexual differences define respiratory capacity and superoxide production. PLoS One 2015; 10:e0120600. [PMID: 25803027 PMCID: PMC4372595 DOI: 10.1371/journal.pone.0120600] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/24/2015] [Indexed: 12/03/2022] Open
Abstract
Adult females of Aedes aegypti are facultative blood sucking insects and vectors of Dengue and yellow fever viruses. Insect dispersal plays a central role in disease transmission and the extremely high energy demand posed by flight is accomplished by a very efficient oxidative phosphorylation process, which take place within flight muscle mitochondria. These organelles play a central role in energy metabolism, interconnecting nutrient oxidation to ATP synthesis, but also represent an important site of cellular superoxide production. Given the importance of mitochondria to cell physiology, and the potential contributions of this organelle for A. aegypti biology and vectorial capacity, here, we conducted a systematic assessment of mitochondrial physiology in flight muscle of young adult A. aegypti fed exclusively with sugar. This was carried out by determining the activities of mitochondrial enzymes, the substrate preferences to sustain respiration, the mitochondrial bioenergetic efficiency and capacity, in both mitochondria-enriched preparations and mechanically permeabilized flight muscle in both sexes. We also determined the substrates preferences to promote mitochondrial superoxide generation and the main sites where it is produced within this organelle. We observed that respiration in A. aegypti mitochondria was essentially driven by complex I and glycerol 3 phosphate dehydrogenase substrates, which promoted distinct mitochondrial bioenergetic capacities, but with preserved efficiencies. Respiration mediated by proline oxidation in female mitochondria was strikingly higher than in males. Mitochondrial superoxide production was essentially mediated through proline and glycerol 3 phosphate oxidation, which took place at sites other than complex I. Finally, differences in mitochondrial superoxide production among sexes were only observed in male oxidizing glycerol 3 phosphate, exhibiting higher rates than in female. Together, these data represent a significant step towards the understanding of fundamental mitochondrial processes in A. aegypti, with potential implications for its physiology and vectorial capacity.
Collapse
Affiliation(s)
- Juliana B. R. Correa Soares
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
- Laboratório de Inflamação e Metabolismo, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INBEB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alessandro Gaviraghi
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
- Laboratório de Inflamação e Metabolismo, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INBEB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcus F. Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
- Laboratório de Inflamação e Metabolismo, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INBEB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
28
|
Curcumin mitigates accelerated aging after irradiation in Drosophila by reducing oxidative stress. BIOMED RESEARCH INTERNATIONAL 2015; 2015:425380. [PMID: 25815315 PMCID: PMC4359819 DOI: 10.1155/2015/425380] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 12/17/2022]
Abstract
Curcumin, belonging to a class of natural phenol compounds, has been extensively studied due to its antioxidative, anticancer, anti-inflammatory, and antineurodegenerative effects. Recently, it has been shown to exert dual activities after irradiation, radioprotection, and radiosensitization. Here, we investigated the protective effect of curcumin against radiation damage using D. melanogaster. Pretreatment with curcumin (100 μM) recovered the shortened lifespan caused by irradiation and increased eclosion rate. Flies subjected to high-dose irradiation showed a mutant phenotype of outstretched wings, whereas curcumin pretreatment reduced incidence of the mutant phenotype. Protein carbonylation and formation of γH2Ax foci both increased following high-dose irradiation most likely due to generation of reactive oxygen species. Curcumin pretreatment reduced the amount of protein carbonylation as well as formation of γH2Ax foci. Therefore, we suggest that curcumin acts as an oxidative stress reducer as well as an effective protective agent against radiation damage.
Collapse
|
29
|
Kuijper B, Lane N, Pomiankowski A. Can paternal leakage maintain sexually antagonistic polymorphism in the cytoplasm? J Evol Biol 2015; 28:468-80. [PMID: 25653025 PMCID: PMC4413368 DOI: 10.1111/jeb.12582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/05/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022]
Abstract
A growing number of studies in multicellular organisms highlight low or moderate frequencies of paternal transmission of cytoplasmic organelles, including both mitochondria and chloroplasts. It is well established that strict maternal inheritance is selectively blind to cytoplasmic elements that are deleterious to males – ’mother's curse’. But it is not known how sensitive this conclusion is to slight levels of paternal cytoplasmic leakage. We assess the scope for polymorphism when individuals bear multiple cytoplasmic alleles in the presence of paternal leakage, bottlenecks and recurrent mutation. When fitness interactions among cytoplasmic elements within an individual are additive, we find that sexually antagonistic polymorphism is restricted to cases of strong selection on males. However, when fitness interactions among cytoplasmic elements are nonlinear, much more extensive polymorphism can be supported in the cytoplasm. In particular, mitochondrial mutants that have strong beneficial fitness effects in males and weak deleterious fitness effects in females when rare (i.e. ’reverse dominance’) are strongly favoured under paternal leakage. We discuss how such epistasis could arise through preferential segregation of mitochondria in sex-specific somatic tissues. Our analysis shows how paternal leakage can dampen the evolution of deleterious male effects associated with predominant maternal inheritance of cytoplasm, potentially explaining why ’mother's curse’ is less pervasive than predicted by earlier work.
Collapse
Affiliation(s)
- B Kuijper
- CoMPLEX, Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, UK; Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | | |
Collapse
|
30
|
Chen HY, Maklakov AA. Condition dependence of male mortality drives the evolution of sex differences in longevity. Curr Biol 2014; 24:2423-7. [PMID: 25308078 DOI: 10.1016/j.cub.2014.08.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 11/18/2022]
Abstract
Males and females age at different rates and have different life expectancies across the animal kingdom, but what causes the longevity "gender gaps" remains one of the most fiercely debated puzzles among biologists and demographers. Classic theory predicts that the sex experiencing higher rate of extrinsic mortality evolves faster aging and reduced longevity. However, condition dependence of mortality can counter this effect by selecting against senescence in whole-organism performance. Contrary to the prevailing view but in line with an emerging new theory, we show that the evolution of sex difference in longevity depends on the factors that cause sex-specific mortality and cannot be predicted from the mortality rate alone. Experimental evolution in an obligately sexual roundworm, Caenorhabditis remanei, in which males live longer than females, reveals that sexual dimorphism in longevity erodes rapidly when the extrinsic mortality in males is increased at random. We thus experimentally demonstrate evolution of the sexual monomorphism in longevity in a sexually dimorphic organism. Strikingly, when extrinsic mortality is increased in a way that favors survival of fast-moving individuals, males evolve increased longevities, thereby widening the gender gap. Thus, sex-specific selection on whole-organism performance in males renders them less prone to the ravages of old age than females, despite higher rates of extrinsic mortality. Our results reconcile previous research with recent theoretical breakthroughs by showing that sexual dimorphism in longevity evolves rapidly and predictably as a result of the sex-specific interactions between environmental hazard and organism's condition.
Collapse
Affiliation(s)
- Hwei-yen Chen
- Ageing Research Group, Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden
| | - Alexei A Maklakov
- Ageing Research Group, Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden.
| |
Collapse
|
31
|
Demarest TG, McCarthy MM. Sex differences in mitochondrial (dys)function: Implications for neuroprotection. J Bioenerg Biomembr 2014; 47:173-88. [PMID: 25293493 DOI: 10.1007/s10863-014-9583-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/14/2014] [Indexed: 12/12/2022]
Abstract
Decades of research have revealed numerous differences in brain structure size, connectivity and metabolism between males and females. Sex differences in neurobehavioral and cognitive function after various forms of central nervous system (CNS) injury are observed in clinical practice and animal research studies. Sources of sex differences include early life exposure to gonadal hormones, chromosome compliment and adult hormonal modulation. It is becoming increasingly apparent that mitochondrial metabolism and cell death signaling are also sexually dimorphic. Mitochondrial metabolic dysfunction is a common feature of CNS injury. Evidence suggests males predominantly utilize proteins while females predominantly use lipids as a fuel source within mitochondria and that these differences may significantly affect cellular survival following injury. These fundamental biochemical differences have a profound impact on energy production and many cellular processes in health and disease. This review will focus on the accumulated evidence revealing sex differences in mitochondrial function and cellular signaling pathways in the context of CNS injury mechanisms and the potential implications for neuroprotective therapy development.
Collapse
Affiliation(s)
- Tyler G Demarest
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA,
| | | |
Collapse
|
32
|
Baqri RM, Pietron AV, Gokhale RH, Turner BA, Kaguni LS, Shingleton AW, Kunes S, Miller KE. Mitochondrial chaperone TRAP1 activates the mitochondrial UPR and extends healthspan in Drosophila. Mech Ageing Dev 2014; 141-142:35-45. [PMID: 25265088 DOI: 10.1016/j.mad.2014.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 08/22/2014] [Accepted: 09/19/2014] [Indexed: 01/06/2023]
Abstract
The molecular mechanisms influencing healthspan are unclear but mitochondrial function, resistance to oxidative stress and proteostasis are recurring themes. Tumor necrosis factor Receptor Associated Protein 1 (TRAP1), the mitochondrial analog of Hsp75, regulates levels of reactive oxygen species in vitro and is found expressed at higher levels in tumor cells where it is thought to play a pro-survival role. While TRAP1-directed compartmentalized protein folding is a promising target for cancer therapy, its role at the organismal level is unclear. Here we report that overexpression of TRAP1 in Drosophila extends healthspan by enhancing stress resistance, locomotor activity and fertility while depletion of TRAP1 has the opposite effect, with little effect on lifespan under both conditions. In addition, modulating TRAP1 expression promotes the nuclear translocation of homeobox protein Dve and increases expression of genes associated with the mitochondrial unfolded protein response (UPR(mt)), indicating an activation of this proteostasis pathway. Notably, independent genetic knockdown of components of the UPR(mt) pathway dampen the enhanced stress resistance observed in TRAP1 overexpression flies. Together these studies suggest that TRAP1 regulates healthspan, potentially through activation of the UPR(mt).
Collapse
Affiliation(s)
- Rehan M Baqri
- Department of Zoology, Michigan State University, 203 Natural Sciences Building, East Lansing, MI 48824-1115, USA; Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824-1115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Arielle V Pietron
- Department of Zoology, Michigan State University, 203 Natural Sciences Building, East Lansing, MI 48824-1115, USA
| | - Rewatee H Gokhale
- Department of Zoology, Michigan State University, 203 Natural Sciences Building, East Lansing, MI 48824-1115, USA
| | - Brittany A Turner
- Department of Zoology, Michigan State University, 203 Natural Sciences Building, East Lansing, MI 48824-1115, USA; Department of Biochemistry and Molecular Biology, 319 Biochemistry Building, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology, 319 Biochemistry Building, Michigan State University, East Lansing, MI 48824-1319, USA; Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Alexander W Shingleton
- Department of Zoology, Michigan State University, 203 Natural Sciences Building, East Lansing, MI 48824-1115, USA
| | - Sam Kunes
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kyle E Miller
- Department of Zoology, Michigan State University, 203 Natural Sciences Building, East Lansing, MI 48824-1115, USA; Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824-1115, USA; Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824-1319, USA.
| |
Collapse
|
33
|
The alternative oxidase AOX does not rescue the phenotype of tko25t mutant flies. G3-GENES GENOMES GENETICS 2014; 4:2013-21. [PMID: 25147191 PMCID: PMC4199707 DOI: 10.1534/g3.114.013946] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A point mutation [technical knockout25t (tko25t)] in the Drosophila gene coding for mitoribosomal protein S12 generates a phenotype of developmental delay and bang sensitivity. tko25t has been intensively studied as an animal model for human mitochondrial diseases associated with deficiency of mitochondrial protein synthesis and consequent multiple respiratory chain defects. Transgenic expression in Drosophila of the alternative oxidase (AOX) derived from Ciona intestinalis has previously been shown to mitigate the toxicity of respiratory chain inhibitors and to rescue mutant and knockdown phenotypes associated with cytochrome oxidase deficiency. We therefore tested whether AOX expression could compensate the mutant phenotype of tko25t using the GeneSwitch system to activate expression at different times in development. The developmental delay of tko25t was not mitigated by expression of AOX throughout development. AOX expression for 1 d after eclosion, or continuously throughout development, had no effect on the bang sensitivity of tko25t adults, and continued expression in adults older than 30 d also produced no amelioration of the phenotype. In contrast, transgenic expression of the yeast alternative NADH dehydrogenase Ndi1 was synthetically semi-lethal with tko25t and was lethal when combined with both AOX and tko25t. We conclude that AOX does not rescue tko25t and that the mutant phenotype is not solely due to limitations on electron flow in the respiratory chain, but rather to a more complex metabolic defect. The future therapeutic use of AOX in disorders of mitochondrial translation may thus be of limited value.
Collapse
|
34
|
Maklakov AA, Lummaa V. Evolution of sex differences in lifespan and aging: Causes and constraints. Bioessays 2013; 35:717-24. [DOI: 10.1002/bies.201300021] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Alexei A. Maklakov
- Ageing Research Group, Department of Animal Ecology; Evolutionary Biology Centre, Uppsala University; Uppsala Sweden
| | - Virpi Lummaa
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| |
Collapse
|
35
|
Jumbo-Lucioni P, Bu S, Harbison ST, Slaughter JC, Mackay TFC, Moellering DR, De Luca M. Nuclear genomic control of naturally occurring variation in mitochondrial function in Drosophila melanogaster. BMC Genomics 2012; 13:659. [PMID: 23171078 PMCID: PMC3526424 DOI: 10.1186/1471-2164-13-659] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 11/16/2012] [Indexed: 12/23/2022] Open
Abstract
Background Mitochondria are organelles found in nearly all eukaryotic cells that play a crucial role in cellular survival and function. Mitochondrial function is under the control of nuclear and mitochondrial genomes. While the latter has been the focus of most genetic research, we remain largely ignorant about the nuclear-encoded genomic control of inter-individual variability in mitochondrial function. Here, we used Drosophila melanogaster as our model organism to address this question. Results We quantified mitochondrial state 3 and state 4 respiration rates and P:O ratio in mitochondria isolated from the thoraces of 40 sequenced inbred lines of the Drosophila Genetic Reference Panel. We found significant within-population genetic variability for all mitochondrial traits. Hence, we performed genome-wide association mapping and identified 141 single nucleotide polymorphisms (SNPs) associated with differences in mitochondrial respiration and efficiency (P ≤1 × 10-5). Gene-centered regression models showed that 2–3 SNPs can explain 31, 13, and 18% of the phenotypic variation in state 3, state 4, and P:O ratio, respectively. Most of the genes tagged by the SNPs are involved in organ development, second messenger-mediated signaling pathways, and cytoskeleton remodeling. One of these genes, sallimus (sls), encodes a component of the muscle sarcomere. We confirmed the direct effect of sls on mitochondrial respiration using two viable mutants and their coisogenic wild-type strain. Furthermore, correlation network analysis revealed that sls functions as a transcriptional hub in a co-regulated module associated with mitochondrial respiration and is connected to CG7834, which is predicted to encode a protein with mitochondrial electron transfer flavoprotein activity. This latter finding was also verified in the sls mutants. Conclusions Our results provide novel insights into the genetic factors regulating natural variation in mitochondrial function in D. melanogaster. The integrative genomic approach used in our study allowed us to identify sls as a novel hub gene responsible for the regulation of mitochondrial respiration in muscle sarcomere and to provide evidence that sls might act via the electron transfer flavoprotein/ubiquinone oxidoreductase complex.
Collapse
Affiliation(s)
- Patricia Jumbo-Lucioni
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Phenotypes relevant to oxidative phosphorylation (OXPHOS) in eukaryotes are jointly determined by nuclear and mitochondrial DNA (mtDNA). Thus, in humans, the variable clinical presentations of mitochondrial disease patients bearing the same primary mutation, whether in nuclear or mitochondrial DNA, have been attributed to putative genetic determinants carried in the “other” genome, though their identity and the molecular mechanism(s) by which they might act remain elusive. Here we demonstrate cytoplasmic suppression of the mitochondrial disease-like phenotype of the Drosophila melanogaster nuclear mutant tko25t, which includes developmental delay, seizure sensitivity, and defective male courtship. The tko25t strain carries a mutation in a mitoribosomal protein gene, causing OXPHOS deficiency due to defective intramitochondrial protein synthesis. Phenotypic suppression was associated with increased mtDNA copy number and increased mitochondrial biogenesis, as measured by the expression levels of porin voltage dependent anion channel and Spargel (PGC1α). Ubiquitous overexpression of Spargel in tko25t flies phenocopied the suppressor, identifying it as a key mechanistic target thereof. Suppressor-strain mtDNAs differed from related nonsuppressor strain mtDNAs by several coding-region polymorphisms and by length and sequence variation in the noncoding region (NCR), in which the origin of mtDNA replication is located. Cytoplasm from four of five originally Wolbachia-infected strains showed the same suppressor effect, whereas that from neither of two uninfected strains did so, suggesting that the stress of chronic Wolbachia infection may provide evolutionary selection for improved mitochondrial fitness under metabolic stress. Our findings provide a paradigm for understanding the role of mtDNA genotype in human disease.
Collapse
|
37
|
Melvin RG, Ballard JWO. Females with a mutation in a nuclear-encoded mitochondrial protein pay a higher cost of survival than do males in Drosophila. J Gerontol A Biol Sci Med Sci 2011; 66:765-70. [PMID: 21498433 DOI: 10.1093/gerona/glr056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Males and females age at different rates in a variety of species, but the mechanisms underlying the difference is not understood. In this study, we investigated sex-specific costs of a naturally occurring mildly deleterious deletion (DTrp85, DVal86) in cytochrome c oxidase subunit 7A (cox7A) in Drosophila simulans. We observed that females and males homozygous for the mutation had 30% and 26% reduced Cox activity, respectively, compared with wild type. Furthermore, 4-day-old females had 34%-42% greater physical activity than males. Greater physical activity in mutant females was correlated with a 19% lower 50% survival compared with wild-type females. Mutant and wild-type males had equal survival. These data suggest that females paid a higher cost of the mutation than did males. The data demonstrate linking population genetics and structural modeling to experimental manipulations that lead to functional predictions of mitochondrial bioenergetics and organism aging.
Collapse
|
38
|
Huang CH, Su SL, Hsieh MC, Cheng WL, Chang CC, Wu HL, Kuo CL, Lin TT, Liu CS. Depleted Leukocyte Mitochondrial DNA Copy Number in Metabolic Syndrome. J Atheroscler Thromb 2011; 18:867-73. [DOI: 10.5551/jat.8698] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
39
|
Ballard JWO, Melvin RG. Early life benefits and later life costs of a two amino acid deletion in Drosophila simulans. Evolution 2010; 65:1400-12. [PMID: 21143473 DOI: 10.1111/j.1558-5646.2010.01209.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Linking naturally occurring genotypic variation to the organismal phenotype is critical to our understanding of, and ability to, model biological processes such as adaptation to novel environments, disease, and aging. Rarely, however, does a simple mutation cause a single simple observable trait. Rather it is more common for a mutation to elicit an entangled web of responses. Here, we employ biochemistry as the thread to link a naturally occurring two amino acid deletion in a nuclear encoded mitochondrial protein with physiological benefits and costs in the fly Drosophila simulans. This nuclear encoded gene produces a protein that is imported into the mitochondrion and forms a subunit of complex IV (cytochrome c oxidase, or cox) of the electron transport chain. We observe that flies homozygous for the deletion have an advantage when young but pay a cost later in life. These data show that the organism responds to the deletion in a complex manner that gives insight into the mechanisms that influence mitochondrial bioenergetics and aspects of organismal physiology.
Collapse
Affiliation(s)
- J William O Ballard
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney 2052, Australia.
| | | |
Collapse
|
40
|
Production of reactive oxygen species by the mitochondrial electron transport chain in Drosophila melanogaster. J Bioenerg Biomembr 2010; 42:135-42. [PMID: 20300811 DOI: 10.1007/s10863-010-9281-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 02/17/2010] [Indexed: 12/19/2022]
Abstract
Mitochondrial free radicals and in particular mitochondrial Reactive Oxygen Species (mtROS) are considered to be totally or partially responsible for several different diseases including Parkinson, diabetes or cancer. Even more importantly, mtROS have also been proposed as the main driving force behind the aging process. Thus, in the last decade, there has been a growing interest in the role of free radicals as signalling molecules. Collectively this makes understanding mechanisms controlling free radical production extremely important. There is extensive published literature on mammalian models (essentially rat, mouse and guinea pig) however; this is not the case in Drosophila melanogaster. Drosophila is an excellent model to study different physiological and pathological processes. Additionally a robust method to study mtROS is extremely useful. In the present article, we describe a simple--but extremely sensitive--method to study mtROS production in Drosophila. We have performed various experiments to determine which specific respiratory complexes produce free radicals in the electron transport chain of Drosophila melanogaster. Complex I is the main generator of ROS in Drosophila mitochondria, leaking electrons either in the forward or reverse direction. The production of ROS during reverse electron transport can be prevented either by rotenone or by the oxidation of NADH by complex I. These results clearly show that Drosophila mitochondria function in a very similar way to mammalian mitochondria, and therefore are a very relevant experimental model for biochemical studies related to ageing.
Collapse
|
41
|
Torres TT, Dolezal M, Schlötterer C, Ottenwälder B. Expression profiling of Drosophila mitochondrial genes via deep mRNA sequencing. Nucleic Acids Res 2010; 37:7509-18. [PMID: 19843606 PMCID: PMC2794191 DOI: 10.1093/nar/gkp856] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play an essential role in several cellular processes. Nevertheless, very little is known about patterns of gene expression of genes encoded by the mitochondrial DNA (mtDNA). In this study, we used next-generation sequencing (NGS) for transcription profiling of genes encoded in the mitochondrial genome of Drosophila melanogaster and D. pseudoobscura. The analysis of males and females in both species indicated that the expression pattern was conserved between the two species, but differed significantly between both sexes. Interestingly, mRNA levels were not only different among genes encoded by separate transcription units, but also showed significant differences among genes located in the same transcription unit. Hence, mRNA abundance of genes encoded by mtDNA seems to be heavily modulated by post-transcriptional regulation. Finally, we also identified several transcripts with a noncanonical structure, suggesting that processing of mitochondrial transcripts may be more complex than previously assumed.
Collapse
|
42
|
Galtier N, Nabholz B, Glémin S, Hurst GDD. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 2009; 18:4541-50. [PMID: 19821901 DOI: 10.1111/j.1365-294x.2009.04380.x] [Citation(s) in RCA: 631] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- N Galtier
- Institut des Sciences de l'Evolution, Université Montpellier 2, C.N.R.S. UMR 5554, Place E. Bataillon, CC 64, 34195 Montpellier, France.
| | | | | | | |
Collapse
|
43
|
Tang S, Le PK, Tse S, Wallace DC, Huang T. Heterozygous mutation of Opa1 in Drosophila shortens lifespan mediated through increased reactive oxygen species production. PLoS One 2009; 4:e4492. [PMID: 19221591 PMCID: PMC2637430 DOI: 10.1371/journal.pone.0004492] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 12/19/2008] [Indexed: 12/03/2022] Open
Abstract
Optic atrophy 1 (OPA1) is a dynamin-like GTPase located in the inner mitochondrial membrane and mutations in OPA1 are associated with autosomal dominant optic atrophy (DOA). OPA1 plays important roles in mitochondrial fusion, cristae remodeling and apoptosis. Our previous study showed that dOpa1 mutation caused elevated reactive oxygen species (ROS) production and resulted in damage and death of the cone and pigment cells in Drosophila eyes. Since ROS-induced oxidative damage to the cells is one of the primary causes of aging, in this study, we examined the effects of heterozygous dOpa1 mutation on the lifespan. We found that heterozygous dOpa1 mutation caused shortened lifespan, increased susceptibility to oxidative stress and elevated production of ROS in the whole Drosophila. Antioxidant treatment partially restored lifespan in the male dOpa1 mutants, but had no effects in the females. Heterozygous dOpa1 mutation caused an impairment of respiratory chain complex activities, especially complexes II and III, and reversible decreased aconitase activity. Heterozygous dOpa1 mutation is also associated with irregular and dysmorphic mitochondria in the muscle. Our results, for the first time, demonstrate the important role of OPA1 in aging and lifespan, which is most likely mediated through augmented ROS production.
Collapse
Affiliation(s)
- Sha Tang
- Division of Human Genetics, Department of Pediatrics, University of California Irvine, Irvine, California, United States of America
| | - Phung Khanh Le
- Division of Human Genetics, Department of Pediatrics, University of California Irvine, Irvine, California, United States of America
| | - Stephanie Tse
- Division of Human Genetics, Department of Pediatrics, University of California Irvine, Irvine, California, United States of America
| | - Douglas C. Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics, University of California Irvine, Irvine, California, United States of America
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
| | - Taosheng Huang
- Division of Human Genetics, Department of Pediatrics, University of California Irvine, Irvine, California, United States of America
- Center for Molecular and Mitochondrial Medicine and Genetics, University of California Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Department of Pathology, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Interactions between coexisting intracellular genomes: mitochondrial density and Wolbachia infection. Appl Environ Microbiol 2009; 75:1916-21. [PMID: 19181828 DOI: 10.1128/aem.02677-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many arthropods are infected with maternally transmitted microorganisms, leading to the coexistence of several intracellular genomes within the host cells, including their own mitochondria. As these genomes are cotransmitted, their patterns of evolution have been intimately linked, with possible consequences for the diversity and evolution of the host mitochondrial DNA. The evolutionary aspects of the situation have been thoroughly investigated, especially the selective sweep on the mitochondria as a result of Wolbachia invasion, whereas direct interactions between mitochondria and intracellular symbionts within the host cells or body have received little attention. Since endosymbionts exploit host resources but mitochondria supply energy to meet the bioenergetic demands of organisms, an unanswered question concerns the correlation between their densities. Here, we investigated the influence of Wolbachia symbiosis on mitochondrial density in two parasitic wasps of Drosophila species, both of which are naturally infected by three Wolbachia strains, but they differ in their degree of dependency on these bacteria. In Leptopilina heterotoma, all Wolbachia strains are facultative, whereas Asobara tabida requires a strain of Wolbachia for oogenesis to occur. In both species, Wolbachia infections are stable and well regulated, since the density of each strain does not depend on the presence or absence of other strains. Using lines that harbor various Wolbachia infection statuses, we found that mitochondrial density was not affected by the infection regardless of the sex and age of the host, which is strongly reminiscent of the independent regulation of specific Wolbachia strains and suggest that the protagonists coexist independently of each other as the result of a long-term coevolutionary interaction.
Collapse
|
45
|
Kawasaki N, Brassil CE, Brooks RC, Bonduriansky R. Environmental effects on the expression of life span and aging: an extreme contrast between wild and captive cohorts of Telostylinus angusticollis (Diptera: Neriidae). Am Nat 2008; 172:346-57. [PMID: 18710341 DOI: 10.1086/589519] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Most research on life span and aging has been based on captive populations of short-lived animals; however, we know very little about the expression of these traits in wild populations of such organisms. Because life span and aging are major components of fitness, the extent to which the results of many evolutionary studies in the laboratory can be generalized to natural settings depends on the degree to which the expression of life span and aging differ in natural environments versus laboratory environments and whether such environmental effects interact with phenotypic variation. We investigated life span and aging in Telostylinus angusticollis in the wild while simultaneously estimating these parameters under a range of conditions in a laboratory stock that was recently established from the same wild population. We found that males live less than one-fifth as long and age at least twice as rapidly in the wild as do their captive counterparts. In contrast, we found no evidence of aging in wild females. These striking sex-specific differences between captive and wild flies support the emerging view that environment exerts a profound influence on the expression of life span and aging. These findings have important implications for evolutionary gerontology and, more generally, for the interpretation of fitness estimates in captive populations.
Collapse
Affiliation(s)
- Noriyoshi Kawasaki
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052, New South Wales, Australia
| | | | | | | |
Collapse
|
46
|
Bonduriansky R, Maklakov A, Zajitschek F, Brooks R. Sexual selection, sexual conflict and the evolution of ageing and life span. Funct Ecol 2008. [DOI: 10.1111/j.1365-2435.2008.01417.x] [Citation(s) in RCA: 380] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|