1
|
Shan S, Hoffman JM. Serine metabolism in aging and age-related diseases. GeroScience 2025; 47:611-630. [PMID: 39585647 PMCID: PMC11872823 DOI: 10.1007/s11357-024-01444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Non-essential amino acids are often overlooked in biomedical research; however, they are crucial components of organismal metabolism. One such metabolite that is integral to physiological function is serine. Serine acts as a pivotal link connecting glycolysis with one-carbon and lipid metabolism, as well as with pyruvate and glutathione syntheses. Interestingly, increasing evidence suggests that serine metabolism may impact the aging process, and supplementation with serine may confer benefits in safeguarding against aging and age-related disorders. This review synthesizes recent insights into the regulation of serine metabolism during aging and its potential to promote healthy lifespan and mitigate a spectrum of age-related diseases.
Collapse
Affiliation(s)
- Shengshuai Shan
- Department of Biological Sciences, Augusta University, Augusta, GA, 30912, USA.
| | - Jessica M Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
2
|
Lokhov PG, Balashova EE, Maslov DL, Trifonova OP, Archakov AI. Aging and Pathological Conditions Similarity Revealed by Meta-Analysis of Metabolomics Studies Suggests the Existence of the Health and Age-Related Metapathway. Metabolites 2024; 14:593. [PMID: 39590829 PMCID: PMC11597009 DOI: 10.3390/metabo14110593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The incidence of many diseases increases with age and leads to multimorbidity, characterized by the presence of multiple diseases in old age. This phenomenon is closely related to systemic metabolic changes; the most suitable way to study it is through metabolomics. The use of accumulated metabolomic data to characterize this phenomenon at the system level may provide additional insight into the nature and strength of aging-disease relationships. Methods: For this purpose, metabolic changes associated with human aging and metabolic alterations under different pathological conditions were compared. To do this, the published results of metabolomic studies on human aging were compared with data on metabolite alterations collected in the human metabolome database through metabolite set enrichment analysis (MSEA) and combinatorial analysis. Results: It was found that human aging and pathological conditions involve the set of the same metabolic pathways with a probability of 99.96%. These data show the high identity of the aging process and the development of diseases at the metabolic level and allow to identify the set of metabolic pathways reflecting age-related changes closely associated with health. Based on these pathways, a metapathway was compiled, changes in which are simultaneously associated with health and age. Conclusions: The knowledge about the strength of the convergence of aging and pathological conditions has been supplemented by the rigor evidence at the metabolome level, which also made it possible to outline the age and health-relevant place in the human metabolism.
Collapse
|
3
|
Gao AW, El Alam G, Zhu Y, Li W, Sulc J, Li X, Katsyuba E, Li TY, Overmyer KA, Lalou A, Mouchiroud L, Sleiman MB, Cornaglia M, Morel JD, Houtkooper RH, Coon JJ, Auwerx J. High-content phenotypic analysis of a C. elegans recombinant inbred population identifies genetic and molecular regulators of lifespan. Cell Rep 2024; 43:114836. [PMID: 39368088 PMCID: PMC11996002 DOI: 10.1016/j.celrep.2024.114836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/10/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
Lifespan is influenced by complex interactions between genetic and environmental factors. Studying those factors in model organisms of a single genetic background limits their translational value for humans. Here, we mapped lifespan determinants in 85 C. elegans recombinant inbred advanced intercross lines (RIAILs). We assessed molecular profiles-transcriptome, proteome, and lipidome-and life-history traits, including lifespan, development, growth dynamics, and reproduction. RIAILs exhibited large variations in lifespan, which correlated positively with developmental time. We validated three longevity modulators, including rict-1, gfm-1, and mltn-1, among the top candidates obtained from multiomics data integration and quantitative trait locus (QTL) mapping. We translated their relevance to humans using UK Biobank data and showed that variants in GFM1 are associated with an elevated risk of age-related heart failure. We organized our dataset as a resource that allows interactive explorations for new longevity targets.
Collapse
Affiliation(s)
- Arwen W Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands.
| | - Gaby El Alam
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yunyun Zhu
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Weisha Li
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Jonathan Sulc
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Elena Katsyuba
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Nagi Bioscience SA, EPFL Innovation Park, 1025 Saint-Sulpice, Switzerland
| | - Terytty Y Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Katherine A Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53515, USA
| | - Amelia Lalou
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laurent Mouchiroud
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Nagi Bioscience SA, EPFL Innovation Park, 1025 Saint-Sulpice, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Matteo Cornaglia
- Nagi Bioscience SA, EPFL Innovation Park, 1025 Saint-Sulpice, Switzerland
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53515, USA; Department of Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Lesnik C, Kaletsky R, Ashraf JM, Sohrabi S, Cota V, Sengupta T, Keyes W, Luo S, Murphy CT. Enhanced branched-chain amino acid metabolism improves age-related reproduction in C. elegans. Nat Metab 2024; 6:724-740. [PMID: 38418585 DOI: 10.1038/s42255-024-00996-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Reproductive ageing is one of the earliest human ageing phenotypes, and mitochondrial dysfunction has been linked to oocyte quality decline; however, it is not known which mitochondrial metabolic processes are critical for oocyte quality maintenance with age. To understand how mitochondrial processes contribute to Caenorhabditis elegans oocyte quality, we characterized the mitochondrial proteomes of young and aged wild-type and long-reproductive daf-2 mutants. Here we show that the mitochondrial proteomic profiles of young wild-type and daf-2 worms are similar and share upregulation of branched-chain amino acid (BCAA) metabolism pathway enzymes. Reduction of the BCAA catabolism enzyme BCAT-1 shortens reproduction, elevates mitochondrial reactive oxygen species levels, and shifts mitochondrial localization. Moreover, bcat-1 knockdown decreases oocyte quality in daf-2 worms and reduces reproductive capability, indicating the role of this pathway in the maintenance of oocyte quality with age. Notably, oocyte quality deterioration can be delayed, and reproduction can be extended in wild-type animals both by bcat-1 overexpression and by supplementing with vitamin B1, a cofactor needed for BCAA metabolism.
Collapse
Affiliation(s)
- Chen Lesnik
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
- Faculty of Natural Sciences, Department of Human Biology, University of Haifa, Haifa, Israel
| | - Rachel Kaletsky
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
| | - Jasmine M Ashraf
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
| | - Salman Sohrabi
- LSI Genomics, Princeton University, Princeton, NJ, USA
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Vanessa Cota
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
- Department of Biology, Tacoma Community College, Tacoma, WA, USA
| | - Titas Sengupta
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
| | - William Keyes
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
| | - Shijing Luo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- LSI Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
5
|
Membrez M, Migliavacca E, Christen S, Yaku K, Trieu J, Lee AK, Morandini F, Giner MP, Stiner J, Makarov MV, Garratt ES, Vasiloglou MF, Chanvillard L, Dalbram E, Ehrlich AM, Sanchez-Garcia JL, Canto C, Karagounis LG, Treebak JT, Migaud ME, Heshmat R, Razi F, Karnani N, Ostovar A, Farzadfar F, Tay SKH, Sanders MJ, Lillycrop KA, Godfrey KM, Nakagawa T, Moco S, Koopman R, Lynch GS, Sorrentino V, Feige JN. Trigonelline is an NAD + precursor that improves muscle function during ageing and is reduced in human sarcopenia. Nat Metab 2024; 6:433-447. [PMID: 38504132 DOI: 10.1038/s42255-024-00997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/26/2024] [Indexed: 03/21/2024]
Abstract
Mitochondrial dysfunction and low nicotinamide adenine dinucleotide (NAD+) levels are hallmarks of skeletal muscle ageing and sarcopenia1-3, but it is unclear whether these defects result from local changes or can be mediated by systemic or dietary cues. Here we report a functional link between circulating levels of the natural alkaloid trigonelline, which is structurally related to nicotinic acid4, NAD+ levels and muscle health in multiple species. In humans, serum trigonelline levels are reduced with sarcopenia and correlate positively with muscle strength and mitochondrial oxidative phosphorylation in skeletal muscle. Using naturally occurring and isotopically labelled trigonelline, we demonstrate that trigonelline incorporates into the NAD+ pool and increases NAD+ levels in Caenorhabditis elegans, mice and primary myotubes from healthy individuals and individuals with sarcopenia. Mechanistically, trigonelline does not activate GPR109A but is metabolized via the nicotinate phosphoribosyltransferase/Preiss-Handler pathway5,6 across models. In C. elegans, trigonelline improves mitochondrial respiration and biogenesis, reduces age-related muscle wasting and increases lifespan and mobility through an NAD+-dependent mechanism requiring sirtuin. Dietary trigonelline supplementation in male mice enhances muscle strength and prevents fatigue during ageing. Collectively, we identify nutritional supplementation of trigonelline as an NAD+-boosting strategy with therapeutic potential for age-associated muscle decline.
Collapse
Affiliation(s)
- Mathieu Membrez
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | | | - Stefan Christen
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Alaina K Lee
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Francesco Morandini
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maria Pilar Giner
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Jade Stiner
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mikhail V Makarov
- Mitchell Cancer Institute, Department of Pharmacology, F. P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Emma S Garratt
- Institute of Developmental Sciences, Human Developmental and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Maria F Vasiloglou
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Lucie Chanvillard
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy M Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Carles Canto
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Leonidas G Karagounis
- Nestlé Health Science, Translation Research, Lausanne, Switzerland
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie E Migaud
- Mitchell Cancer Institute, Department of Pharmacology, F. P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Science Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Farzadfar
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Stacey K H Tay
- KTP-National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Matthew J Sanders
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Karen A Lillycrop
- Institute of Developmental Sciences, Human Developmental and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Keith M Godfrey
- Institute of Developmental Sciences, Human Developmental and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Medical Research Council Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Sofia Moco
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - René Koopman
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Vincenzo Sorrentino
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland.
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Lesnik C, Kaletsky R, Ashraf JM, Sohrabi S, Cota V, Sengupta T, Keyes W, Luo S, Murphy CT. Enhanced Branched-Chain Amino Acid Metabolism Improves Age-Related Reproduction in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.09.527915. [PMID: 38370685 PMCID: PMC10871302 DOI: 10.1101/2023.02.09.527915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Reproductive aging is one of the earliest human aging phenotypes, and mitochondrial dysfunction has been linked to oocyte quality decline. However, it is not known which mitochondrial metabolic processes are critical for oocyte quality maintenance with age. To understand how mitochondrial processes contribute to C. elegans oocyte quality, we characterized the mitochondrial proteomes of young and aged wild-type and long-reproductive daf-2 mutants. Here we show that the mitochondrial proteomic profiles of young wild-type and daf-2 worms are similar and share upregulation of branched-chain amino acid (BCAA) metabolism pathway enzymes. Reduction of the BCAA catabolism enzyme BCAT-1 shortens reproduction, elevates mitochondrial reactive oxygen species levels, and shifts mitochondrial localization. Moreover, bcat-1 knockdown decreases oocyte quality in daf-2 worms and reduces reproductive capability, indicating the role of this pathway in the maintenance of oocyte quality with age. Importantly, oocyte quality deterioration can be delayed, and reproduction can be extended in wild-type animals both by bcat-1 overexpression and by supplementing with Vitamin B1, a cofactor needed for BCAA metabolism.
Collapse
|
7
|
Gao AW, Alam GE, Zhu Y, Li W, Katsyuba E, Sulc J, Li TY, Li X, Overmyer KA, Lalou A, Mouchiroud L, Sleiman MB, Cornaglia M, Morel JD, Houtkooper RH, Coon JJ, Auwerx J. High-content phenotypic analysis of a C. elegans recombinant inbred population identifies genetic and molecular regulators of lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575638. [PMID: 38293129 PMCID: PMC10827074 DOI: 10.1101/2024.01.15.575638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Lifespan is influenced by complex interactions between genetic and environmental factors. Studying those factors in model organisms of a single genetic background limits their translational value for humans. Here, we mapped lifespan determinants in 85 genetically diverse C. elegans recombinant intercross advanced inbred lines (RIAILs). We assessed molecular profiles - transcriptome, proteome, and lipidome - and life-history traits, including lifespan, development, growth dynamics, and reproduction. RIAILs exhibited large variations in lifespan, which positively correlated with developmental time. Among the top candidates obtained from multi-omics data integration and QTL mapping, we validated known and novel longevity modulators, including rict-1, gfm-1 and mltn-1. We translated their relevance to humans using UK Biobank data and showed that variants in RICTOR and GFM1 are associated with an elevated risk of age-related heart disease, dementia, diabetes, kidney, and liver diseases. We organized our dataset as a resource (https://lisp-lms.shinyapps.io/RIAILs/) that allows interactive explorations for new longevity targets.
Collapse
Affiliation(s)
- Arwen W. Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Gaby El Alam
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Yunyun Zhu
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Weisha Li
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Elena Katsyuba
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Nagi Bioscience SA, EPFL Innovation Park, CH-1025 Saint-Sulpice, Switzerland
| | - Jonathan Sulc
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Terytty Y. Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Present address: State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Laboratory of Longevity and Metabolic Adaptations, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Katherine A. Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
| | - Amelia Lalou
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Laurent Mouchiroud
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Nagi Bioscience SA, EPFL Innovation Park, CH-1025 Saint-Sulpice, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Matteo Cornaglia
- Nagi Bioscience SA, EPFL Innovation Park, CH-1025 Saint-Sulpice, Switzerland
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Possik E, Klein LL, Sanjab P, Zhu R, Côté L, Bai Y, Zhang D, Sun H, Al-Mass A, Oppong A, Ahmad R, Parker A, Madiraju SRM, Al-Mulla F, Prentki M. Glycerol 3-phosphate phosphatase/PGPH-2 counters metabolic stress and promotes healthy aging via a glycogen sensing-AMPK-HLH-30-autophagy axis in C. elegans. Nat Commun 2023; 14:5214. [PMID: 37626039 PMCID: PMC10457390 DOI: 10.1038/s41467-023-40857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Metabolic stress caused by excess nutrients accelerates aging. We recently demonstrated that the newly discovered enzyme glycerol-3-phosphate phosphatase (G3PP; gene Pgp), which operates an evolutionarily conserved glycerol shunt that hydrolyzes glucose-derived glycerol-3-phosphate to glycerol, counters metabolic stress and promotes healthy aging in C. elegans. However, the mechanism whereby G3PP activation extends healthspan and lifespan, particularly under glucotoxicity, remained unknown. Here, we show that the overexpression of the C. elegans G3PP homolog, PGPH-2, decreases fat levels and mimics, in part, the beneficial effects of calorie restriction, particularly in glucotoxicity conditions, without reducing food intake. PGPH-2 overexpression depletes glycogen stores activating AMP-activate protein kinase, which leads to the HLH-30 nuclear translocation and activation of autophagy, promoting healthy aging. Transcriptomics reveal an HLH-30-dependent longevity and catabolic gene expression signature with PGPH-2 overexpression. Thus, G3PP overexpression activates three key longevity factors, AMPK, the TFEB homolog HLH-30, and autophagy, and may be an attractive target for age-related metabolic disorders linked to excess nutrients.
Collapse
Affiliation(s)
- Elite Possik
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada.
- Department of Medicine, Divisions of Cardiology and Experimental Medicine, McGill University Health Centre (MUHC), Montreal, Canada.
| | - Laura-Lee Klein
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Perla Sanjab
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Ruyuan Zhu
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
- Diabetes Research Center, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Laurence Côté
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Ying Bai
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
- Diabetes Research Center, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Dongwei Zhang
- Department of Biological Sciences, Faculty of Science, Kuwait University, 13060, Kuwait City, Kuwait
| | - Howard Sun
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Anfal Al-Mass
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
- Department of Biological Sciences, Faculty of Science, Kuwait University, 13060, Kuwait City, Kuwait
| | - Abel Oppong
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Rasheed Ahmad
- Departments of Immunology, Microbiology, Genetics, and Bioinformatics, Dasman Diabetes Institute, Kuwait City, 15462, Kuwait
| | - Alex Parker
- Department of Neurosciences, CRCHUM, Montreal, Canada
| | - S R Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Fahd Al-Mulla
- Departments of Immunology, Microbiology, Genetics, and Bioinformatics, Dasman Diabetes Institute, Kuwait City, 15462, Kuwait
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada.
| |
Collapse
|
9
|
Zhang M, Cui S, Mao B, Zhang Q, Zhao J, Tang X, Chen W. Urolithin A Produced by Novel Microbial Fermentation Possesses Anti-aging Effects by Improving Mitophagy and Reducing Reactive Oxygen Species in Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6348-6357. [PMID: 37040550 DOI: 10.1021/acs.jafc.3c01062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Urolithin, intestinal microbiota metabolites of ellagitannin-rich foods, exhibit anti-aging activities. However, urolithin A is significantly superior to other types of urolithin with regard to this anti-aging function. This study aimed to screen edible urolithin A-producing strains of bacteria and explore the corresponding anti-aging efficacy of fermented products produced by these strains using Caenorhabditis elegans as a model. Our results showed that the Lactobacillus plantarum strains CCFM1286, CCFM1290, and CCFM1291 converted ellagitannin to produce urolithin A; the corresponding yields of urolithin A from these strains were 15.90 ± 1.46, 24.70 ± 0.82, and 32.01 ± 0.97 μM, respectively. Furthermore, it was found that the pomegranate juice extracts fermented by the CCFM1286, CCFM1290, and CCFM1291 strains of L. plantarum could extend lifespan by 26.04 ± 0.12, 32.05 ± 0.14, and 46.33 ± 0.12%, respectively, by improving mitochondrial function and/or reducing reactive oxygen species levels. These findings highlight the potential application of this fermentation in the subsequent development of anti-aging products.
Collapse
Affiliation(s)
- Mengwei Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| |
Collapse
|
10
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
11
|
Lin ZH, Chang SY, Shen WC, Lin YH, Shen CL, Liao SB, Liu YC, Chen CS, Ching TT, Wang HD. Isocitrate Dehydrogenase Alpha-1 Modulates Lifespan and Oxidative Stress Tolerance in Caenorhabditis elegans. Int J Mol Sci 2022; 24:ijms24010612. [PMID: 36614054 PMCID: PMC9820670 DOI: 10.3390/ijms24010612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Altered metabolism is a hallmark of aging. The tricarboxylic acid cycle (TCA cycle) is an essential metabolic pathway and plays an important role in lifespan regulation. Supplementation of α-ketoglutarate, a metabolite converted by isocitrate dehydrogenase alpha-1 (idha-1) in the TCA cycle, increases lifespan in C. elegans. However, whether idha-1 can regulate lifespan in C. elegans remains unknown. Here, we reported that the expression of idha-1 modulates lifespan and oxidative stress tolerance in C. elegans. Transgenic overexpression of idha-1 extends lifespan, increases the levels of NADPH/NADP+ ratio, and elevates the tolerance to oxidative stress. Conversely, RNAi knockdown of idha-1 exhibits the opposite effects. In addition, the longevity of eat-2 (ad1116) mutant via dietary restriction (DR) was reduced by idha-1 knockdown, indicating that idha-1 may play a role in DR-mediated longevity. Furthermore, idha-1 mediated lifespan may depend on the target of rapamycin (TOR) signaling. Moreover, the phosphorylation levels of S6 kinase (p-S6K) inversely correlate with idha-1 expression, supporting that the idha-1-mediated lifespan regulation may involve the TOR signaling pathway. Together, our data provide new insights into the understanding of idha-1 new function in lifespan regulation probably via DR and TOR signaling and in oxidative stress tolerance in C. elegans.
Collapse
Affiliation(s)
- Zhi-Han Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 115201, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115201, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106319, Taiwan
| | - Shun-Ya Chang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wen-Chi Shen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yen-Hung Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chiu-Lun Shen
- Department of Life Science, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Sin-Bo Liao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Chun Liu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chang-Shi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tsui-Ting Ching
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 300044, Taiwan
- Correspondence: ; Tel.: +88-635742470
| |
Collapse
|
12
|
Sleiman MB, Roy S, Gao AW, Sadler MC, von Alvensleben GVG, Li H, Sen S, Harrison DE, Nelson JF, Strong R, Miller RA, Kutalik Z, Williams RW, Auwerx J. Sex- and age-dependent genetics of longevity in a heterogeneous mouse population. Science 2022; 377:eabo3191. [PMID: 36173858 PMCID: PMC9905652 DOI: 10.1126/science.abo3191] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DNA variants that modulate life span provide insight into determinants of health, disease, and aging. Through analyses in the UM-HET3 mice of the Interventions Testing Program (ITP), we detected a sex-independent quantitative trait locus (QTL) on chromosome 12 and identified sex-specific QTLs, some of which we detected only in older mice. Similar relations between life history and longevity were uncovered in mice and humans, underscoring the importance of early access to nutrients and early growth. We identified common age- and sex-specific genetic effects on gene expression that we integrated with model organism and human data to create a hypothesis-building interactive resource of prioritized longevity and body weight genes. Finally, we validated Hipk1, Ddost, Hspg2, Fgd6, and Pdk1 as conserved longevity genes using Caenorhabditis elegans life-span experiments.
Collapse
Affiliation(s)
- Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA
| | - Arwen W. Gao
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Marie C. Sadler
- Institute of Primary Care and Public Health (Unisante), University of Lausanne, Lausanne 1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Giacomo V. G. von Alvensleben
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Hao Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - James F. Nelson
- Barshop Center for Longevity Studies at the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Randy Strong
- Barshop Center for Longevity Studies at the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- South Texas Veterans Healthcare System, San Antonio, TX 78229, USA
| | - Richard A. Miller
- Department of Pathology, University of Michigan Geriatrics Center, Ann Arbor, MI 48109-2200, USA
| | - Zoltán Kutalik
- Institute of Primary Care and Public Health (Unisante), University of Lausanne, Lausanne 1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
13
|
Diwan B, Sharma R. Nutritional components as mitigators of cellular senescence in organismal aging: a comprehensive review. Food Sci Biotechnol 2022; 31:1089-1109. [PMID: 35756719 PMCID: PMC9206104 DOI: 10.1007/s10068-022-01114-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022] Open
Abstract
The process of cellular senescence is rapidly emerging as a modulator of organismal aging and disease. Targeting the development and removal of senescent cells is considered a viable approach to achieving improved organismal healthspan and lifespan. Nutrition and health are intimately linked and an appropriate dietary regimen can greatly impact organismal response to stress and diseases including during aging. With a renewed focus on cellular senescence, emerging studies demonstrate that both primary and secondary nutritional elements such as carbohydrates, proteins, fatty acids, vitamins, minerals, polyphenols, and probiotics can influence multiple aspects of cellular senescence. The present review describes the recent molecular aspects of cellular senescence-mediated understanding of aging and then studies available evidence of the cellular senescence modulatory attributes of major and minor dietary elements. Underlying pathways and future research directions are deliberated to promote a nutrition-centric approach for targeting cellular senescence and thus improving human health and longevity.
Collapse
Affiliation(s)
- Bhawna Diwan
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Rohit Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| |
Collapse
|
14
|
Wang X, Li X, Wang J, Wang J, Hu C, Zeng J, Shi A, Lin L. SMGL-1/NBAS acts as a RAB-8 GEF to regulate unconventional protein secretion. J Cell Biol 2022; 221:213235. [PMID: 35604368 PMCID: PMC9129922 DOI: 10.1083/jcb.202111125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 01/07/2023] Open
Abstract
Unconventional protein secretion (UPS) pathways are conserved across species. However, the underlying mechanisms that regulate Golgi-bypassing UPS of integral proteins remain elusive. In this study, we show that RAB-8 and SMGL-1/NBAS are required for the UPS of integral proteins in C. elegans intestine. SMGL-1 resides in the ER-Golgi intermediate compartment and adjacent RAB-8-positive structures, and NRZ complex component CZW-1/ZW10 is required for this residency. Notably, SMGL-1 acts as a guanine nucleotide exchange factor for RAB-8, ensuring UPS of integral proteins by driving the activation of RAB-8. Furthermore, we show that Pseudomonas aeruginosa infection elevated the expression of SMGL-1 and RAB-8. Loss of SMGL-1 or RAB-8 compromised resistance to environmental colchicine, arsenite, and pathogenic bacteria. These results suggest that the SMGL-1/RAB-8-mediated UPS could integrate environmental signals to serve as a host defense response. Together, by establishing the C. elegans intestine as a multicellular model, our findings provide insights into RAB-8-dependent Golgi-bypassing UPS, especially in the context of epithelia in vivo.
Collapse
Affiliation(s)
- Xianghong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinxin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junkai Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiabin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Can Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia Zeng
- Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China,Correspondence to Anbing Shi:
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China,Long Lin:
| |
Collapse
|
15
|
Liu YJ, Gao AW, Smith RL, Janssens GE, Panneman DM, Jongejan A, van Weeghel M, Vaz FM, Silvestrini MJ, Lapierre LR, MacInnes AW, Houtkooper RH. Reduced ech-6 expression attenuates fat-induced lifespan shortening in C. elegans. Sci Rep 2022; 12:3350. [PMID: 35233004 PMCID: PMC8888598 DOI: 10.1038/s41598-022-07397-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Deregulated energy homeostasis represents a hallmark of aging and results from complex gene-by-environment interactions. Here, we discovered that reducing the expression of the gene ech-6 encoding enoyl-CoA hydratase remitted fat diet-induced deleterious effects on lifespan in Caenorhabditis elegans, while a basal expression of ech-6 was important for survival under normal dietary conditions. Lipidomics revealed that supplementation of fat in ech-6-silenced worms had marginal effects on lipid profiles, suggesting an alternative fat utilization for energy production. Transcriptomics further suggest a causal relation between the lysosomal pathway, energy production, and the longevity effect conferred by the interaction between ech-6 and fat diets. Indeed, enhancing energy production from endogenous fat by overexpressing lysosomal lipase lipl-4 recapitulated the lifespan effects of fat diets on ech-6-silenced worms. Collectively, these results suggest that the gene ech-6 is potential modulator of metabolic flexibility and may be a target for promoting metabolic health and longevity.
Collapse
Affiliation(s)
- Yasmine J Liu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Arwen W Gao
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Reuben L Smith
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Daan M Panneman
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, AZ, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Core Facility Metabolomics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Core Facility Metabolomics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Melissa J Silvestrini
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Alyson W MacInnes
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Gao AW, El Alam G, Lalou A, Li TY, Molenaars M, Zhu Y, Overmyer KA, Shishkova E, Hof K, Bou Sleiman M, Houtkooper RH, Coon JJ, Auwerx J. Multi-omics analysis identifies essential regulators of mitochondrial stress response in two wild-type C. elegans strains. iScience 2022; 25:103734. [PMID: 35118355 PMCID: PMC8792074 DOI: 10.1016/j.isci.2022.103734] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a promising pharmacological target for aging and age-related diseases. However, the integrative analysis of the impact of UPRmt activation on different signaling layers in animals with different genetic backgrounds is lacking. Here, we applied systems approaches to investigate the effect of UPRmt induced by doxycycline (Dox) on transcriptome, proteome, and lipidome in two genetically divergent worm strains, named N2 and CB4856. From the integrated omics datasets, we found that Dox prolongs lifespan of both worm strains through shared and strain-specific mechanisms. Specifically, Dox strongly impacts mitochondria, upregulates defense response, and lipid metabolism, while decreasing triglycerides. We further validated that lipid genes acs-2/20 and fat-7/6 were required for Dox-induced UPRmt and longevity in N2 and CB4856 worms, respectively. Our data have translational value as they indicate that the beneficial effects of Dox-induced UPRmt on lifespan are consistent across different genetic backgrounds through different regulators. Dox extends lifespan of N2 and CB4856 via shared and strain-specific mechanisms Dox controls mitochondria, defense responses, and lipid metabolism in both strains Dox-mediated longevity requires acs-2/20 in N2 and fat-7/6 in CB4856 worms
Collapse
Affiliation(s)
- Arwen W. Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Gaby El Alam
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Amélia Lalou
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Terytty Yang Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, AZ, the Netherlands
| | - Yunyun Zhu
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Katherine A. Overmyer
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
| | - Kevin Hof
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, AZ, the Netherlands
| | - Joshua J. Coon
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Corresponding author
| |
Collapse
|
17
|
Li Z, Zhang P, Zhang R, Wang X, Tse YC, Zhang H. A collection of toolkit strains reveals distinct localization and dynamics of membrane-associated transcripts in epithelia. Cell Rep 2021; 35:109072. [PMID: 33951426 DOI: 10.1016/j.celrep.2021.109072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/10/2021] [Accepted: 04/11/2021] [Indexed: 01/10/2023] Open
Abstract
Visualizing mRNA in real time in vivo at high resolution is critical for a full understanding of the spatiotemporal dynamics of gene regulation and function. Here, using a PP7/PCP-based mRNA-tagging approach, we construct a collection of tissue-specific and differentially expressed toolkit strains for visualizing mRNAs encoding apical, basolateral, and junctional proteins in Caenorhabditis elegans epithelia. We precisely delineate the spatiotemporal organization and dynamics of these transcripts across multiple subcellular compartments and tissues. Remarkably, all the transcripts exhibit an asymmetric, membrane-associated localization during epithelial polarization and maturation, which suggests that mRNA localization is a prerequisite for epithelial polarization and function. Single-particle tracking reveals striking features of the transport dynamics of the mRNAs in a gene-specific, compartment-linked, and time-resolved manner. The toolkit can be used to identify the cis-regulatory elements and trans-acting factors for mRNA localization. This study provides a valuable resource to investigate complex RNA dynamics in epithelial polarity and morphogenesis.
Collapse
Affiliation(s)
- Zhimin Li
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Pei Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Ruotong Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Xinyan Wang
- Core Research Facilities, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Chung Tse
- Core Research Facilities, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongjie Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China.
| |
Collapse
|
18
|
Acetyl-CoA Metabolism and Histone Acetylation in the Regulation of Aging and Lifespan. Antioxidants (Basel) 2021; 10:antiox10040572. [PMID: 33917812 PMCID: PMC8068152 DOI: 10.3390/antiox10040572] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Acetyl-CoA is a metabolite at the crossroads of central metabolism and the substrate of histone acetyltransferases regulating gene expression. In many tissues fasting or lifespan extending calorie restriction (CR) decreases glucose-derived metabolic flux through ATP-citrate lyase (ACLY) to reduce cytoplasmic acetyl-CoA levels to decrease activity of the p300 histone acetyltransferase (HAT) stimulating pro-longevity autophagy. Because of this, compounds that decrease cytoplasmic acetyl-CoA have been described as CR mimetics. But few authors have highlighted the potential longevity promoting roles of nuclear acetyl-CoA. For example, increasing nuclear acetyl-CoA levels increases histone acetylation and administration of class I histone deacetylase (HDAC) inhibitors increases longevity through increased histone acetylation. Therefore, increased nuclear acetyl-CoA likely plays an important role in promoting longevity. Although cytoplasmic acetyl-CoA synthetase 2 (ACSS2) promotes aging by decreasing autophagy in some peripheral tissues, increased glial AMPK activity or neuronal differentiation can stimulate ACSS2 nuclear translocation and chromatin association. ACSS2 nuclear translocation can result in increased activity of CREB binding protein (CBP), p300/CBP-associated factor (PCAF), and other HATs to increase histone acetylation on the promoter of neuroprotective genes including transcription factor EB (TFEB) target genes resulting in increased lysosomal biogenesis and autophagy. Much of what is known regarding acetyl-CoA metabolism and aging has come from pioneering studies with yeast, fruit flies, and nematodes. These studies have identified evolutionary conserved roles for histone acetylation in promoting longevity. Future studies should focus on the role of nuclear acetyl-CoA and histone acetylation in the control of hypothalamic inflammation, an important driver of organismal aging.
Collapse
|
19
|
Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Res Rev 2020; 64:101188. [PMID: 33031925 DOI: 10.1016/j.arr.2020.101188] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Metabolism plays a significant role in the regulation of aging at different levels, and metabolic reprogramming represents a major driving force in aging. Metabolic reprogramming leads to impaired organismal fitness, an age-dependent increase in susceptibility to diseases, decreased ability to mount a stress response, and increased frailty. The complexity of age-dependent metabolic reprogramming comes from the multitude of levels on which metabolic changes can be connected to aging and regulation of lifespan. This is further complicated by the different metabolic requirements of various tissues, cross-organ communication via metabolite secretion, and direct effects of metabolites on epigenetic state and redox regulation; however, not all of these changes are causative to aging. Studies in yeast, flies, worms, and mice have played a crucial role in identifying mechanistic links between observed changes in various metabolic traits and their effects on lifespan. Here, we review how changes in the organismal and organ-specific metabolome are associated with aging and how targeting of any one of over a hundred different targets in specific metabolic pathways can extend lifespan. An important corollary is that restriction or supplementation of different metabolites can change activity of these metabolic pathways in ways that improve healthspan and extend lifespan in different organisms. Due to the high levels of conservation of metabolism in general, translating findings from model systems to human beings will allow for the development of effective strategies for human health- and lifespan extension.
Collapse
|
20
|
Ohtsuka H, Shimasaki T, Aiba H. Genes affecting the extension of chronological lifespan in Schizosaccharomyces pombe (fission yeast). Mol Microbiol 2020; 115:623-642. [PMID: 33064911 PMCID: PMC8246873 DOI: 10.1111/mmi.14627] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
So far, more than 70 genes involved in the chronological lifespan (CLS) of Schizosaccharomyces pombe (fission yeast) have been reported. In this mini‐review, we arrange and summarize these genes based on the reported genetic interactions between them and the physical interactions between their products. We describe the signal transduction pathways that affect CLS in S. pombe: target of rapamycin complex 1, cAMP‐dependent protein kinase, Sty1, and Pmk1 pathways have important functions in the regulation of CLS extension. Furthermore, the Php transcription complex, Ecl1 family proteins, cyclin Clg1, and the cyclin‐dependent kinase Pef1 are important for the regulation of CLS extension in S. pombe. Most of the known genes involved in CLS extension are related to these pathways and genes. In this review, we focus on the individual genes regulating CLS extension in S. pombe and discuss the interactions among them.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
21
|
Shi D, Xia X, Cui A, Xiong Z, Yan Y, Luo J, Chen G, Zeng Y, Cai D, Hou L, McDermott J, Li Y, Zhang H, Han JDJ. The precursor of PI(3,4,5)P 3 alleviates aging by activating daf-18(Pten) and independent of daf-16. Nat Commun 2020; 11:4496. [PMID: 32901024 PMCID: PMC7479145 DOI: 10.1038/s41467-020-18280-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 08/04/2020] [Indexed: 01/31/2023] Open
Abstract
Aging is characterized by the loss of homeostasis and the general decline of physiological functions, accompanied by various degenerative diseases and increased rates of mortality. Aging targeting small molecule screens have been performed many times, however, few have focused on endogenous metabolic intermediates-metabolites. Here, using C. elegans lifespan assays, we conducted a worm metabolite screen and identified an eukaryotes conserved metabolite, myo-inositol (MI), to extend lifespan, increase mobility and reduce fat content. Genetic analysis of enzymes in MI metabolic pathway suggest that MI alleviates aging through its derivative PI(4,5)P2. MI and PI(4,5)P2 are precursors of PI(3,4,5)P3, which is negatively related to longevity. The longevity effect of MI is dependent on the tumor suppressor gene, daf-18 (homologous to mouse Pten), independent of its classical pathway downstream genes, akt or daf-16. Furthermore, we found MI effects on aging and lifespan act through mitophagy regulator PTEN induced kinase-1 (pink-1) and mitophagy. MI's anti-aging effect is also conserved in mouse, indicating a conserved mechanism in mammals.
Collapse
Affiliation(s)
- Dawei Shi
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xian Xia
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Aoyuan Cui
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, SINH, SIBS, CAS, Shanghai, 200031, P.R. China
| | - Zhongxiang Xiong
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Yizhen Yan
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing Luo
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Guoyu Chen
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yingying Zeng
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Donghong Cai
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Lei Hou
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Joseph McDermott
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, SINH, SIBS, CAS, Shanghai, 200031, P.R. China
| | - Hong Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, 100101, Beijing, P.R. China
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, P.R. China.
| |
Collapse
|
22
|
Jin K, Wilson KA, Beck JN, Nelson CS, Brownridge GW, Harrison BR, Djukovic D, Raftery D, Brem RB, Yu S, Drton M, Shojaie A, Kapahi P, Promislow D. Genetic and metabolomic architecture of variation in diet restriction-mediated lifespan extension in Drosophila. PLoS Genet 2020; 16:e1008835. [PMID: 32644988 PMCID: PMC7347105 DOI: 10.1371/journal.pgen.1008835] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023] Open
Abstract
In most organisms, dietary restriction (DR) increases lifespan. However, several studies have found that genotypes within the same species vary widely in how they respond to DR. To explore the mechanisms underlying this variation, we exposed 178 inbred Drosophila melanogaster lines to a DR or ad libitum (AL) diet, and measured a panel of 105 metabolites under both diets. Twenty four out of 105 metabolites were associated with the magnitude of the lifespan response. These included proteinogenic amino acids and metabolites involved in α-ketoglutarate (α-KG)/glutamine metabolism. We confirm the role of α-KG/glutamine synthesis pathways in the DR response through genetic manipulations. We used covariance network analysis to investigate diet-dependent interactions between metabolites, identifying the essential amino acids threonine and arginine as “hub” metabolites in the DR response. Finally, we employ a novel metabolic and genetic bipartite network analysis to reveal multiple genes that influence DR lifespan response, some of which have not previously been implicated in DR regulation. One of these is CCHa2R, a gene that encodes a neuropeptide receptor that influences satiety response and insulin signaling. Across the lines, variation in an intronic single nucleotide variant of CCHa2R correlated with variation in levels of five metabolites, all of which in turn were correlated with DR lifespan response. Inhibition of adult CCHa2R expression extended DR lifespan of flies, confirming the role of CCHa2R in lifespan response. These results provide support for the power of combined genomic and metabolomic analysis to identify key pathways underlying variation in this complex quantitative trait. Dietary restriction extends lifespan across most organisms in which it has been tested. However, several studies have now demonstrated that this effect can vary dramatically across different genotypes within a population. Within a population, dietary restriction might be beneficial for some, yet detrimental for others. Here, we measure the metabolome of 178 genetically characterized fly strains on fully fed and restricted diets. The fly strains vary widely in their lifespan response to dietary restriction. We then use information about each strain’s genome and metabolome (a measure of small molecules circulating in flies) to pinpoint cellular pathways that govern this variation in response. We identify a novel pathway involving the gene CCHa2R, which encodes a neuropeptide receptor that has not previously been implicated in dietary restriction or age-related signaling pathways. This study demonstrates the power of leveraging systems biology and network biology methods to understand how and why different individuals vary in their response to health and lifespan-extending interventions.
Collapse
Affiliation(s)
- Kelly Jin
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kenneth A. Wilson
- Buck Institute for Research on Aging, Novato, California, United States of America
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, California, United States of America
| | - Jennifer N. Beck
- Buck Institute for Research on Aging, Novato, California, United States of America
| | | | - George W. Brownridge
- Buck Institute for Research on Aging, Novato, California, United States of America
- Dominican University of California, San Rafael, California, United States of America
| | - Benjamin R. Harrison
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Rachel B. Brem
- Buck Institute for Research on Aging, Novato, California, United States of America
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Shiqing Yu
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
| | - Mathias Drton
- Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, California, United States of America
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, California, United States of America
| | - Daniel Promislow
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
23
|
Alam I, Almajwal AM, Alam W, Alam I, Ullah N, Abulmeaaty M, Razak S, Khan S, Pawelec G, Paracha PI. The immune-nutrition interplay in aging – facts and controversies. ACTA ACUST UNITED AC 2019. [DOI: 10.3233/nha-170034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Iftikhar Alam
- Department of Community Health Sciences, Clinical Nutrition Program, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Human Nutrition & Dietetics, Bacha Khan University Charsadda, Charsadda, Khyber Pakhtunkhwa, Pakistan
- Tübingen Ageing and Tumour Immunology Group, Zentrum für Medizinische Forschung, University of Tübingen, Tübingen, Germany
| | - Ali M. Almajwal
- Department of Community Health Sciences, Clinical Nutrition Program, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Wajid Alam
- Oral and Maxillofacial Surgery, Khyber Colleg of Dentistry, KPK, Peshawar, Pakistan
| | - Ibrar Alam
- Department of Biotechnology, Bacha Khan University Charsadda, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Niamat Ullah
- Department of Human Nutrition, The Agriculture University Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mahmoud Abulmeaaty
- Department of Community Health Sciences, Clinical Nutrition Program, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, Clinical Nutrition Program, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saleem Khan
- Department of Human Nutrition, The Agriculture University Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Graham Pawelec
- Tübingen Ageing and Tumour Immunology Group, Zentrum für Medizinische Forschung, University of Tübingen, Tübingen, Germany
- Health Sciences North Research Institute, Sudbury, ON, Canada
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Parvez Iqbal Paracha
- Department of Human Nutrition, The Agriculture University Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
24
|
Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer's disease. Signal Transduct Target Ther 2019; 4:29. [PMID: 31637009 PMCID: PMC6799833 DOI: 10.1038/s41392-019-0063-8] [Citation(s) in RCA: 379] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory loss along with neuropsychiatric symptoms and a decline in activities of daily life. Its main pathological features are cerebral atrophy, amyloid plaques, and neurofibrillary tangles in the brains of patients. There are various descriptive hypotheses regarding the causes of AD, including the cholinergic hypothesis, amyloid hypothesis, tau propagation hypothesis, mitochondrial cascade hypothesis, calcium homeostasis hypothesis, neurovascular hypothesis, inflammatory hypothesis, metal ion hypothesis, and lymphatic system hypothesis. However, the ultimate etiology of AD remains obscure. In this review, we discuss the main hypotheses of AD and related clinical trials. Wealthy puzzles and lessons have made it possible to develop explanatory theories and identify potential strategies for therapeutic interventions for AD. The combination of hypometabolism and autophagy deficiency is likely to be a causative factor for AD. We further propose that fluoxetine, a selective serotonin reuptake inhibitor, has the potential to treat AD.
Collapse
Affiliation(s)
- Pei-Pei Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yi Xie
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Xiao-Yan Meng
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jian-Sheng Kang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
25
|
Deacetylation of metabolic enzymes by Sirt2 modulates pyruvate homeostasis to extend insect lifespan. Aging (Albany NY) 2019; 10:1053-1072. [PMID: 29769432 PMCID: PMC5990394 DOI: 10.18632/aging.101447] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022]
Abstract
Diapause in insects is akin to dauer in Caenorhabditis elegans and hibernation in vertebrates. Diapause causes a profound extension of lifespan by low metabolic activity. However, the detailed regulatory mechanisms for low metabolic activity remain unknown. Here, we showed that low pyruvate levels are present in the brains of diapause-destined pupae of the cotton bollworm Helicoverpa armigera, and three enzymes pyruvate kinase (PK), phosphoenolpyruvate carboxykinase (PEPCK), and phosphoglycerate mutase (PGAM) are closely correlated with pyruvate homeostasis. Notably, Sirt2 can deacetylate the three enzymes to increase their activity in vitro. Thus, low Sirt2 expression in the brains of diapause individuals decreases PK and PEPCK protein levels as well as PGAM activity, resulting in low pyruvate levels and low tricarboxylic acid cycle activity and eventually inducing diapause initiation by low metabolic activity. These findings suggest that pyruvate is a checkpoint for development or lifespan extension, and Sirt2 is a negative regulator to extend lifespan in insects.
Collapse
|
26
|
Dakik P, Medkour Y, Mohammad K, Titorenko VI. Mechanisms Through Which Some Mitochondria-Generated Metabolites Act as Second Messengers That Are Essential Contributors to the Aging Process in Eukaryotes Across Phyla. Front Physiol 2019; 10:461. [PMID: 31057428 PMCID: PMC6482166 DOI: 10.3389/fphys.2019.00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022] Open
Abstract
Recent studies have revealed that some low-molecular weight molecules produced in mitochondria are essential contributing factors to aging and aging-associated pathologies in evolutionarily distant eukaryotes. These molecules are intermediates or products of certain metabolic reactions that are activated in mitochondria in response to specific changes in the nutrient, stress, proliferation, or age status of the cell. After being released from mitochondria, these metabolites directly or indirectly change activities of a distinct set of protein sensors that reside in various cellular locations outside of mitochondria. Because these protein sensors control the efficiencies of some pro- or anti-aging cellular processes, such changes in their activities allow to create a pro- or anti-aging cellular pattern. Thus, mitochondria can function as signaling platforms that respond to certain changes in cell stress and physiology by remodeling their metabolism and releasing a specific set of metabolites known as "mitobolites." These mitobolites then define the pace of cellular and organismal aging because they regulate some longevity-defining processes taking place outside of mitochondria. In this review, we discuss recent progress in understanding mechanisms underlying the ability of mitochondria to function as such signaling platforms in aging and aging-associated diseases.
Collapse
|
27
|
Glycine promotes longevity in Caenorhabditis elegans in a methionine cycle-dependent fashion. PLoS Genet 2019; 15:e1007633. [PMID: 30845140 PMCID: PMC6424468 DOI: 10.1371/journal.pgen.1007633] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/19/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
The deregulation of metabolism is a hallmark of aging. As such, changes in the expression of metabolic genes and the profiles of amino acid levels are features associated with aging animals. We previously reported that the levels of most amino acids decline with age in Caenorhabditis elegans (C. elegans). Glycine, in contrast, substantially accumulates in aging C. elegans. In this study we show that this is coupled to a decrease in gene expression of enzymes important for glycine catabolism. We further show that supplementation of glycine significantly prolongs C. elegans lifespan, and early adulthood is important for its salutary effects. Moreover, supplementation of glycine ameliorates specific transcriptional changes that are associated with aging. Glycine feeds into the methionine cycle. We find that mutations in components of this cycle, methionine synthase (metr-1) and S-adenosylmethionine synthetase (sams-1), completely abrogate glycine-induced lifespan extension. Strikingly, the beneficial effects of glycine supplementation are conserved when we supplement with serine, which also feeds into the methionine cycle. RNA-sequencing reveals a similar transcriptional landscape in serine- and glycine-supplemented worms both demarked by widespread gene repression. Taken together, these data uncover a novel role of glycine in the deceleration of aging through its function in the methionine cycle.
Collapse
|
28
|
Canfield CA, Bradshaw PC. Amino acids in the regulation of aging and aging-related diseases. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
Katsyuba E, Mottis A, Zietak M, De Franco F, van der Velpen V, Gariani K, Ryu D, Cialabrini L, Matilainen O, Liscio P, Giacchè N, Stokar-Regenscheit N, Legouis D, de Seigneux S, Ivanisevic J, Raffaelli N, Schoonjans K, Pellicciari R, Auwerx J. De novo NAD + synthesis enhances mitochondrial function and improves health. Nature 2018; 563:354-359. [PMID: 30356218 PMCID: PMC6448761 DOI: 10.1038/s41586-018-0645-6] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/18/2018] [Indexed: 01/04/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a cosubstrate for several enzymes, including the sirtuin family of NAD+-dependent protein deacylases. Beneficial effects of increased NAD+ levels and sirtuin activation on mitochondrial homeostasis, organismal metabolism and lifespan have been established across species. Here we show that α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), the enzyme that limits the proportion of ACMS able to undergo spontaneous cyclisation in the de novo NAD+ synthesis pathway, controls cellular NAD+ levels via an evolutionary conserved mechanism from C. elegans to the mouse. Genetic and pharmacological inhibition of ACMSD boosts de novo NAD+ synthesis and SIRT1 activity, ultimately enhancing mitochondrial function. We furthermore characterized a series of potent and selective ACMSD inhibitors, which, given the restricted ACMSD expression in kidney and liver, are of high therapeutic interest to protect these tissues from injury. ACMSD hence is a key modulator of cellular NAD+ levels, sirtuin activity, and mitochondrial homeostasis in kidney and liver.
Collapse
Affiliation(s)
- Elena Katsyuba
- Laboratory of Integrative and Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Adrienne Mottis
- Laboratory of Integrative and Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marika Zietak
- Laboratory of Metabolic Signaling, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Vera van der Velpen
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Karim Gariani
- Laboratory of Integrative and Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Service of Endocrinology, Diabetes, Hypertension and Nutrition, Geneva University Hospitals, Geneva, Switzerland
| | - Dongryeol Ryu
- Laboratory of Integrative and Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Molecular and Integrative Biology Lab, Healthy Aging-Korean Medical Research Center, Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Lucia Cialabrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Olli Matilainen
- Laboratory of Integrative and Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | - Nadine Stokar-Regenscheit
- Histology Core Facility, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - David Legouis
- Intensive Care Unit, Department of Anaesthesiology, Pharmacology and Intensive Care, University Hospital of Geneva, Geneva, Switzerland.,Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sophie de Seigneux
- Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Service of Nephrology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
30
|
Xiao FH, Chen XQ, Yu Q, Ye Y, Liu YW, Yan D, Yang LQ, Chen G, Lin R, Yang L, Liao X, Zhang W, Zhang W, Tang NLS, Wang XF, Zhou J, Cai WW, He YH, Kong QP. Transcriptome evidence reveals enhanced autophagy-lysosomal function in centenarians. Genome Res 2018; 28:1601-1610. [PMID: 30352807 PMCID: PMC6211641 DOI: 10.1101/gr.220780.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 10/03/2018] [Indexed: 12/18/2022]
Abstract
Centenarians (CENs) are excellent subjects to study the mechanisms of human longevity and healthy aging. Here, we analyzed the transcriptomes of 76 centenarians, 54 centenarian-children, and 41 spouses of centenarian-children by RNA sequencing and found that, among the significantly differentially expressed genes (SDEGs) exhibited by CENs, the autophagy-lysosomal pathway is significantly up-regulated. Overexpression of several genes from this pathway, CTSB, ATP6V0C, ATG4D, and WIPI1, could promote autophagy and delay senescence in cultured IMR-90 cells, while overexpression of the Drosophila homolog of WIPI1, Atg18a, extended the life span in transgenic flies. Interestingly, the enhanced autophagy-lysosomal activity could be partially passed on to their offspring, as manifested by their higher levels of both autophagy-encoding genes and serum beclin 1 (BECN1). In light of the normal age-related decline of autophagy-lysosomal functions, these findings provide a compelling explanation for achieving longevity in, at least, female CENs, given the gender bias in our collected samples, and suggest that the enhanced waste-cleaning activity via autophagy may serve as a conserved mechanism to prolong the life span from Drosophila to humans.
Collapse
Affiliation(s)
- Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming 650223, China
| | - Xiao-Qiong Chen
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming 650223, China
| | - Qin Yu
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming 650223, China
| | - Yunshuang Ye
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Yao-Wen Liu
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming 650223, China
| | - Dongjing Yan
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou 571199, China
| | - Li-Qin Yang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming 650223, China
| | - Guijun Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Rong Lin
- Department of Biology, Hainan Medical College, Haikou 571199, China
| | - Liping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Xiaoping Liao
- Department of Neurology, the First Affiliated Hospital of Hainan Medical College, Haikou 571199, China
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou 571199, China
| | - Wei Zhang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Nelson Leung-Sang Tang
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China.,Department of Chemical Pathology and Laboratory for Genetics of Disease Susceptibility, Li Ka Shing Institute of Health Sciences, and School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jumin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Wang-Wei Cai
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou 571199, China
| | - Yong-Han He
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming 650223, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China.,Kunming Key Laboratory of Healthy Aging Study, Kunming 650223, China
| |
Collapse
|
31
|
Vatner DE, Zhang J, Oydanich M, Guers J, Katsyuba E, Yan L, Sinclair D, Auwerx J, Vatner SF. Enhanced longevity and metabolism by brown adipose tissue with disruption of the regulator of G protein signaling 14. Aging Cell 2018; 17:e12751. [PMID: 29654651 PMCID: PMC6052469 DOI: 10.1111/acel.12751] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2018] [Indexed: 12/15/2022] Open
Abstract
Disruption of the regulator for G protein signaling 14 (RGS14) knockout (KO) in mice extends their lifespan and has multiple beneficial effects related to healthful aging, that is, protection from obesity, as reflected by reduced white adipose tissue, protection against cold exposure, and improved metabolism. The observed beneficial effects were mediated by improved mitochondrial function. But most importantly, the main mechanism responsible for the salutary properties of the RGS14 KO involved an increase in brown adipose tissue (BAT), which was confirmed by surgical BAT removal and transplantation to wild-type (WT) mice, a surgical simulation of a molecular knockout. This technique reversed the phenotype of the RGS14 KO and WT, resulting in loss of the improved metabolism and protection against cold exposure in RGS14 KO and conferring this protection to the WT BAT recipients. Another mechanism mediating the salutary features in the RGS14 KO was increased SIRT3. This mechanism was confirmed in the RGS14 X SIRT3 double KO, which no longer demonstrated improved metabolism and protection against cold exposure. Loss of function of the Caenorhabditis elegans RGS-14 homolog confirmed the evolutionary conservation of this mechanism. Thus, disruption of RGS14 is a model of healthful aging, as it not only enhances lifespan, but also protects against obesity and cold exposure and improves metabolism with a key mechanism of increased BAT, which, when removed, eliminates the features of healthful aging.
Collapse
Affiliation(s)
- Dorothy E. Vatner
- Department of Cell Biology & Molecular Medicine; Rutgers University-New Jersey Medical School; Newark NJ USA
| | - Jie Zhang
- Department of Cell Biology & Molecular Medicine; Rutgers University-New Jersey Medical School; Newark NJ USA
| | - Marko Oydanich
- Department of Cell Biology & Molecular Medicine; Rutgers University-New Jersey Medical School; Newark NJ USA
| | - John Guers
- Department of Cell Biology & Molecular Medicine; Rutgers University-New Jersey Medical School; Newark NJ USA
| | - Elena Katsyuba
- Laboratory of Integrative and Systems Physiology; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| | - Lin Yan
- Department of Cell Biology & Molecular Medicine; Rutgers University-New Jersey Medical School; Newark NJ USA
| | - David Sinclair
- Department of Genetics; Harvard Medical School; Boston MA USA
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| | - Stephen F. Vatner
- Department of Cell Biology & Molecular Medicine; Rutgers University-New Jersey Medical School; Newark NJ USA
| |
Collapse
|
32
|
Kuo CJ, Wang ST, Lin CM, Chiu HC, Huang CR, Lee DY, Chang GD, Chou TC, Chen JW, Chen CS. A multi-omic analysis reveals the role of fumarate in regulating the virulence of enterohemorrhagic Escherichia coli. Cell Death Dis 2018. [PMID: 29515100 PMCID: PMC5841434 DOI: 10.1038/s41419-018-0423-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The enteric pathogen enterohemorrhagic Escherichia coli (EHEC) is responsible for outbreaks of bloody diarrhea and hemolytic uremic syndrome (HUS) worldwide. Several molecular mechanisms have been described for the pathogenicity of EHEC; however, the role of bacterial metabolism in the virulence of EHEC during infection in vivo remains unclear. Here we show that aerobic metabolism plays an important role in the regulation of EHEC virulence in Caenorhabditis elegans. Our functional genomic analyses showed that disruption of the genes encoding the succinate dehydrogenase complex (Sdh) of EHEC, including the sdhA gene, attenuated its toxicity toward C. elegans animals. Sdh converts succinate to fumarate and links the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC) simultaneously. Succinate accumulation and fumarate depletion in the EHEC sdhA mutant cells were also demonstrated to be concomitant by metabolomic analyses. Moreover, fumarate replenishment to the sdhA mutant significantly increased its virulence toward C. elegans. These results suggest that the TCA cycle, ETC, and alteration in metabolome all account for the attenuated toxicity of the sdhA mutant, and Sdh catabolite fumarate in particular plays a critical role in the regulation of EHEC virulence. In addition, we identified the tryptophanase (TnaA) as a downstream virulence determinant of SdhA using a label-free proteomic method. We demonstrated that expression of tnaA is regulated by fumarate in EHEC. Taken together, our multi-omic analyses demonstrate that sdhA is required for the virulence of EHEC, and aerobic metabolism plays important roles in the pathogenicity of EHEC infection in C. elegans. Moreover, our study highlights the potential targeting of SdhA, if druggable, as alternative preventive or therapeutic strategies by which to combat EHEC infection.
Collapse
Affiliation(s)
- Cheng-Ju Kuo
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sin-Tian Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Mei Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Chieh Chiu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Rung Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Der-Yen Lee
- The Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Biochemical Sciences, Technology Commons, Center for Systems Biology, National Taiwan University, Taipei, Taiwan
| | - Geen-Dong Chang
- Graduate Institute of Biochemical Sciences, Technology Commons, Center for Systems Biology, National Taiwan University, Taipei, Taiwan
| | - Ting-Chen Chou
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jenn-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Chang-Shi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
33
|
Thiamine and selected thiamine antivitamins - biological activity and methods of synthesis. Biosci Rep 2018; 38:BSR20171148. [PMID: 29208764 PMCID: PMC6435462 DOI: 10.1042/bsr20171148] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022] Open
Abstract
Thiamine plays a very important coenzymatic and non-coenzymatic role in the regulation of basic metabolism. Thiamine diphosphate is a coenzyme of many enzymes, most of which occur in prokaryotes. Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes as well as transketolase are the examples of thiamine-dependent enzymes present in eukaryotes, including human. Therefore, thiamine is considered as drug or diet supplement which can support the treatment of many pathologies including neurodegenerative and vascular system diseases. On the other hand, thiamine antivitamins, which can interact with thiamine-dependent enzymes impeding their native functions, thiamine transport into the cells or a thiamine diphosphate synthesis, are good propose to drug design. The development of organic chemistry in the last century allowed the synthesis of various thiamine antimetabolites such as amprolium, pyrithiamine, oxythiamine, or 3-deazathiamine. Results of biochemical and theoretical chemistry research show that affinity to thiamine diphosphate-dependent enzymes of these synthetic molecules exceeds the affinity of native coenzyme. Therefore, some of them have already been used in the treatment of coccidiosis (amprolium), other are extensively studied as cytostatics in the treatment of cancer or fungal infections (oxythiamine and pyrithiamine). This review summarizes the current knowledge concerning the synthesis and mechanisms of action of selected thiamine antivitamins and indicates the potential of their practical use.
Collapse
|
34
|
Lee D, Son HG, Jung Y, Lee SJV. The role of dietary carbohydrates in organismal aging. Cell Mol Life Sci 2017; 74:1793-1803. [PMID: 27942749 PMCID: PMC11107617 DOI: 10.1007/s00018-016-2432-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/21/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022]
Abstract
Carbohydrates are essential nutrients that are used as a primary source of energy. Carbohydrate utilization should be properly controlled, as abnormal regulation of carbohydrate metabolism is associated with diseases, such as diabetes, cardiovascular diseases, and stroke. These metabolic syndromes have become a serious problem in developed countries, and there is an increased need for research examining the influence of carbohydrates on animal physiology. Diets enriched in glucose, a major carbohydrate, are also associated with accelerated aging in several model organisms, including yeast and Caenorhabditis elegans (C. elegans). Genetic factors that mediate the effects of high glucose diets on aging have been identified during the last decade, mostly through the use of C. elegans. In this review, we describe studies that determine the effects of carbohydrate-enriched diets on aging by focusing on the mechanisms through which evolutionarily conserved pathways mediate the lifespan-altering effects of glucose in C. elegans. These include the insulin/insulin-like growth factor-1, sterol-regulatory element-binding protein, and AMP-activated protein kinase signaling pathways. We also discuss the effects of various carbohydrates and carbohydrate-derived metabolites on aging in model organisms and cultured mammalian cells. Finally, we discuss how dietary carbohydrates influence health and aging in humans.
Collapse
Affiliation(s)
- Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, South Korea
| | - Heehwa G Son
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, South Korea
| | - Yoonji Jung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, South Korea
| | - Seung-Jae V Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, South Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, South Korea.
| |
Collapse
|
35
|
Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med 2016; 22:879-88. [PMID: 27400265 DOI: 10.1038/nm.4132] [Citation(s) in RCA: 700] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023]
Abstract
The biological effects of urolithins remain poorly characterized, despite wide-spread human exposure via the dietary consumption of their metabolic precursors, the ellagitannins, which are found in the pomegranate fruit, as well as in nuts and berries. We identified urolithin A (UA) as a first-in-class natural compound that induces mitophagy both in vitro and in vivo following oral consumption. In C. elegans, UA prevented the accumulation of dysfunctional mitochondria with age and extended lifespan. Likewise, UA prolonged normal activity during aging in C. elegans, including mobility and pharyngeal pumping, while maintaining mitochondrial respiratory capacity. These effects translated to rodents, where UA improved exercise capacity in two different mouse models of age-related decline of muscle function, as well as in young rats. Our findings highlight the health benefits of urolithin A and its potential application in strategies to improve mitochondrial and muscle function.
Collapse
|
36
|
Metabolic profiling of antioxidant supplement with phytochemicals using plasma 1H NMR-based metabolomics in humans. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
37
|
Mishur RJ, Khan M, Munkácsy E, Sharma L, Bokov A, Beam H, Radetskaya O, Borror M, Lane R, Bai Y, Rea SL. Mitochondrial metabolites extend lifespan. Aging Cell 2016; 15:336-48. [PMID: 26729005 PMCID: PMC4783347 DOI: 10.1111/acel.12439] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2015] [Indexed: 12/26/2022] Open
Abstract
Disruption of mitochondrial respiration in the nematode Caenorhabditis elegans can extend lifespan. We previously showed that long-lived respiratory mutants generate elevated amounts of α-ketoacids. These compounds are structurally related to α-ketoglutarate, suggesting they may be biologically relevant. Here, we show that provision of several such metabolites to wild-type worms is sufficient to extend their life. At least one mode of action is through stabilization of hypoxia-inducible factor-1 (HIF-1). We also find that an α-ketoglutarate mimetic, 2,4-pyridinedicarboxylic acid (2,4-PDA), is alone sufficient to increase the lifespan of wild-type worms and this effect is blocked by removal of HIF-1. HIF-1 is constitutively active in isp-1(qm150) Mit mutants, and accordingly, 2,4-PDA does not further increase their lifespan. Incubation of mouse 3T3-L1 fibroblasts with life-prolonging α-ketoacids also results in HIF-1α stabilization. We propose that metabolites that build up following mitochondrial respiratory dysfunction form a novel mode of cell signaling that acts to regulate lifespan.
Collapse
Affiliation(s)
- Robert J. Mishur
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Department of PhysiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Maruf Khan
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Department of PhysiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Erin Munkácsy
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Department of Cellular & Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Lokendra Sharma
- Department of Cellular & Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Biotechnology ProgrammeCenter for Biological SciencesCentral University of South BiharPatna800014India
| | - Alex Bokov
- Department of Epidemiology and BiostatisticsUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Haley Beam
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Oxana Radetskaya
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Megan Borror
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Rebecca Lane
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Yidong Bai
- Department of Cellular & Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Shane L. Rea
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Department of PhysiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| |
Collapse
|
38
|
Gonzalez-Freire M, Diaz-Ruiz A, de Cabo R. 17α-Estradiol: A Novel Therapeutic Intervention to Target Age-related Chronic Inflammation. J Gerontol A Biol Sci Med Sci 2016; 72:1-2. [PMID: 27034507 DOI: 10.1093/gerona/glw041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/17/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marta Gonzalez-Freire
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Alberto Diaz-Ruiz
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland.
| |
Collapse
|
39
|
Pan SY, Gao SH, Lin RC, Zhou SF, Dong HG, Tang MK, Yu ZL, Ko KM. New perspectives on dietary-derived treatments and food safety-antinomy in a new era. Crit Rev Food Sci Nutr 2016; 55:1836-59. [PMID: 24915382 DOI: 10.1080/10408398.2011.654286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite the advances in science and technology and wide use of chemical drugs, dietary intervention (or food therapy) remains useful in preventing or treating many human diseases. A huge body of evidence shows that the dietary pattern or habit is also an important contributing factor to the development of chronic diseases such as hypertension, type 2 diabetes, hyperlipidemia, and cancers. In recent years, over-the-counter health foods, nutraceuticals, and plant-derived medicinal products have been gaining popularity all over the world, particularly in developed countries. Unfortunately, owing to the contamination with various harmful substances in foods and the presence of toxic food components, food-borne diseases have also become increasingly problematic. Incidents of food poisonings or tainted food have been increasing worldwide, particularly in China and other developing countries. Therefore, the government should put in a greater effort in enforcing food safety by improving the surveillance mechanism and exerting highest standards of quality control for foods.
Collapse
Affiliation(s)
- Si-Yuan Pan
- a Beijing University of Chinese Medicine , Beijing , China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Huang J, Xie Y, Sun X, Zeh HJ, Kang R, Lotze MT, Tang D. DAMPs, ageing, and cancer: The 'DAMP Hypothesis'. Ageing Res Rev 2015; 24:3-16. [PMID: 25446804 DOI: 10.1016/j.arr.2014.10.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/24/2014] [Accepted: 10/22/2014] [Indexed: 12/25/2022]
Abstract
Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases.
Collapse
|
41
|
Abstract
Mitochondrial function is key for maintaining cellular health, while mitochondrial failure is associated with various pathologies, including inherited metabolic disorders and age-related diseases. In order to maintain mitochondrial quality, several pathways of mitochondrial quality control have evolved. These systems monitor mitochondrial integrity through antioxidants, DNA repair systems, and chaperones and proteases involved in the mitochondrial unfolded protein response. Additional regulation of mitochondrial function involves dynamic exchange of components through mitochondrial fusion and fission. Sustained stress induces a selective autophagy - termed mitophagy - and ultimately leads to apoptosis. Together, these systems form a network that acts on the molecular, organellar, and cellular level. In this review, we highlight how these systems are regulated in an integrated context- and time-dependent network of mitochondrial quality control that is implicated in healthy aging.
Collapse
Affiliation(s)
- Ntsiki M Held
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
42
|
Edwards C, Canfield J, Copes N, Brito A, Rehan M, Lipps D, Brunquell J, Westerheide SD, Bradshaw PC. Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans. BMC Genet 2015; 16:8. [PMID: 25643626 PMCID: PMC4328591 DOI: 10.1186/s12863-015-0167-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/16/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Little is known about the role of amino acids in cellular signaling pathways, especially as it pertains to pathways that regulate the rate of aging. However, it has been shown that methionine or tryptophan restriction extends lifespan in higher eukaryotes and increased proline or tryptophan levels increase longevity in C. elegans. In addition, leucine strongly activates the TOR signaling pathway, which when inhibited increases lifespan. RESULTS Therefore each of the 20 proteogenic amino acids was individually supplemented to C. elegans and the effects on lifespan were determined. All amino acids except phenylalanine and aspartate extended lifespan at least to a small extent at one or more of the 3 concentrations tested with serine and proline showing the largest effects. 11 of the amino acids were less potent at higher doses, while 5 even decreased lifespan. Serine, proline, or histidine-mediated lifespan extension was greatly inhibited in eat-2 worms, a model of dietary restriction, in daf-16/FOXO, sir-2.1, rsks-1 (ribosomal S6 kinase), gcn-2, and aak-2 (AMPK) longevity pathway mutants, and in bec-1 autophagy-defective knockdown worms. 8 of 10 longevity-promoting amino acids tested activated a SKN-1/Nrf2 reporter strain, while serine and histidine were the only amino acids from those to activate a hypoxia-inducible factor (HIF-1) reporter strain. Thermotolerance was increased by proline or tryptophan supplementation, while tryptophan-mediated lifespan extension was independent of DAF-16/FOXO and SKN-1/Nrf2 signaling, but tryptophan and several related pyridine-containing compounds induced the mitochondrial unfolded protein response and an ER stress response. High glucose levels or mutations affecting electron transport chain (ETC) function inhibited amino acid-mediated lifespan extension suggesting that metabolism plays an important role. Providing many other cellular metabolites to C. elegans also increased longevity suggesting that anaplerosis of tricarboxylic acid (TCA) cycle substrates likely plays a role in lifespan extension. CONCLUSIONS Supplementation of C. elegans with 18 of the 20 individual amino acids extended lifespan, but lifespan often decreased with increasing concentration suggesting hormesis. Lifespan extension appears to be caused by altered mitochondrial TCA cycle metabolism and respiratory substrate utilization resulting in the activation of the DAF-16/FOXO and SKN-1/Nrf2 stress response pathways.
Collapse
Affiliation(s)
- Clare Edwards
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - John Canfield
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Neil Copes
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Andres Brito
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Muhammad Rehan
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - David Lipps
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Jessica Brunquell
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Sandy D Westerheide
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Patrick C Bradshaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
43
|
Lee D, Hwang W, Artan M, Jeong DE, Lee SJ. Effects of nutritional components on aging. Aging Cell 2015; 14:8-16. [PMID: 25339542 PMCID: PMC4326908 DOI: 10.1111/acel.12277] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 12/11/2022] Open
Abstract
Nutrients including carbohydrates, proteins, lipids, vitamins, and minerals regulate various physiological processes and are essential for the survival of organisms. Reduced overall caloric intake delays aging in various organisms. However, the role of each nutritional component in the regulation of lifespan is not well established. In this review, we describe recent studies focused on the regulatory role of each type of nutrient in aging. Moreover, we will discuss how the amount or composition of each nutritional component may influence longevity or health in humans.
Collapse
Affiliation(s)
- Dongyeop Lee
- Department of Life Sciences; Pohang University of Science and Technology; Pohang Gyeongbuk South Korea
| | - Wooseon Hwang
- Department of Life Sciences; Pohang University of Science and Technology; Pohang Gyeongbuk South Korea
| | - Murat Artan
- Information Technology Convergence Engineering; Pohang University of Science and Technology; Pohang Gyeongbuk South Korea
| | - Dae-Eun Jeong
- Department of Life Sciences; Pohang University of Science and Technology; Pohang Gyeongbuk South Korea
| | - Seung-Jae Lee
- Department of Life Sciences; Pohang University of Science and Technology; Pohang Gyeongbuk South Korea
- Information Technology Convergence Engineering; Pohang University of Science and Technology; Pohang Gyeongbuk South Korea
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang Gyeongbuk 790-784 South Korea
| |
Collapse
|
44
|
BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea. Curr Genet 2015; 61:545-53. [DOI: 10.1007/s00294-015-0474-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
|
45
|
Kim GH, Lee YE, Lee GH, Cho YH, Lee YN, Jang Y, Paik D, Park JJ. Overexpression of malic enzyme in the larval stage extends Drosophila lifespan. Biochem Biophys Res Commun 2014; 456:676-82. [PMID: 25511696 DOI: 10.1016/j.bbrc.2014.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 02/01/2023]
Abstract
Metabolic modifications during the developmental period can extend longevity. We found that malic enzyme (Men) overexpression during the larval period lengthened the lifespan of Drosophila. Men overexpression by S106-GeneSwitch-Gal4 driver increased pyruvate content and NADPH/NADP(+) ratio but reduced triglyceride, glycogen, and ATP levels in the larvae. ROS levels increased unexpectedly in Men-overexpressing larvae. Interestingly, adults exposed to larval Men-overexpression maintained ROS tolerance with enhanced expression levels of glutathione-S-transferase D2 and thioredoxin-2. Our results suggest that metabolic changes mediated by Men during development might be related to the control of ROS tolerance and the longevity of Drosophila.
Collapse
Affiliation(s)
- Gye-Hyeong Kim
- Department of Physiology, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | - Young-Eun Lee
- Department of Physiology, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | - Gun-Ho Lee
- Department of Physiology, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | - Youn-Ho Cho
- Department of Physiology, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | - Young-Nam Lee
- Department of Physiology, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | - Yeogil Jang
- Department of Physiology, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | - Donggi Paik
- Department of Physiology, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | - Joong-Jean Park
- Department of Physiology, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Republic of Korea.
| |
Collapse
|
46
|
Liu J, Chin-Sang ID. C. elegans as a model to study PTEN's regulation and function. Methods 2014; 77-78:180-90. [PMID: 25514044 DOI: 10.1016/j.ymeth.2014.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 02/06/2023] Open
Abstract
PTEN (phosphatase and tensin homolog deleted on chromosome 10) has important roles in tumor suppression, metabolism, and development, yet its regulators, effectors, and functions are not fully understood. DAF-18 is the PTEN ortholog in Caenorhabditis elegans. DAF-18's role is highly conserved to human PTEN, and can be functionally replaced by human PTEN. Thus C. elegans provides a valuable model to study PTEN. This review assesses current and emerging methods to study DAF-18's regulators and functions in C. elegans. We propose genetic modify screens to identify genes that interact with daf-18/PTEN. These genes are potential targets for anticancer drug therapies. We also provide a review on the roles DAF-18/PTEN has during C. elegans development and how studying these physiological roles can provide mechanistic insight on DAF-18/PTEN function.
Collapse
Affiliation(s)
- Jun Liu
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
47
|
Curt A, Zhang J, Minnerly J, Jia K. Intestinal autophagy activity is essential for host defense against Salmonella typhimurium infection in Caenorhabditis elegans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:214-218. [PMID: 24674884 DOI: 10.1016/j.dci.2014.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
Salmonella typhimurium infects both intestinal epithelial cells and macrophages. Autophagy is a lysosomal degradation pathway that is present in all eukaryotes. Autophagy has been reported to limit the Salmonella replication in Caenorhabditis elegans and in mammals. However, it is unknown whether intestinal autophagy activity plays a role in host defense against Salmonella infection in C. elegans. In this study, we inhibited the autophagy gene bec-1 in different C. elegans tissues and examined the survival of these animals following Salmonella infection. Here we show that inhibition of the bec-1 gene in the intestine but not in other tissues confers susceptibility to Salmonella infection, which is consistent with recent studies in mice showing that autophagy is involved in clearance of Salmonella in the intestinal epithelial cells. Therefore, the intestinal autophagy activity is essential for host defense against Salmonella infection from C. elegans to mice, perhaps also in humans.
Collapse
Affiliation(s)
- Alexander Curt
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA
| | - Jiuli Zhang
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA
| | - Justin Minnerly
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA
| | - Kailiang Jia
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA.
| |
Collapse
|
48
|
Castelein N, Muschol M, Dhondt I, Cai H, De Vos WH, Dencher NA, Braeckman BP. Mitochondrial efficiency is increased in axenically cultured Caenorhabditis elegans. Exp Gerontol 2014; 56:26-36. [DOI: 10.1016/j.exger.2014.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 11/25/2022]
|
49
|
Abstract
One of the biggest challenges in biology is to understand how mitochondria influence aging and age-related diseases. Chin et al. (2014) reveal how a mitochondrial metabolite (mitobolite) inhibits mitochondrial ATPase and extends lifespan by mimicking dietary restriction in worms.
Collapse
Affiliation(s)
| | - Amit Khanna
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
50
|
A method to identify and validate mitochondrial modulators using mammalian cells and the worm C. elegans. Sci Rep 2014; 4:5285. [PMID: 24923838 PMCID: PMC4055904 DOI: 10.1038/srep05285] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/21/2014] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are semi-autonomous organelles regulated by a complex network of proteins that are vital for many cellular functions. Because mitochondrial modulators can impact many aspects of cellular homeostasis, their identification and validation has proven challenging. It requires the measurement of multiple parameters in parallel to understand the exact nature of the changes induced by such compounds. We developed a platform of assays scoring for mitochondrial function in two complementary models systems, mammalian cells and C. elegans. We first optimized cell culture conditions and established the mitochondrial signature of 1,200 FDA-approved drugs in liver cells. Using cell-based and C. elegans assays, we further defined the metabolic effects of two pharmacological classes that emerged from our hit list, i.e. imidazoles and statins. We found that these two drug classes affect respiration through different and cholesterol-independent mechanisms in both models. Our screening strategy enabled us to unequivocally identify compounds that have toxic or beneficial effects on mitochondrial activity. Furthermore, the cross-species approach provided novel mechanistic insight and allowed early validation of hits that act on mitochondrial function.
Collapse
|