1
|
Song M, Zhang Z, Li Y, Xiang Y, Li C. Midgut microbiota affects the intestinal barrier by producing short-chain fatty acids in Apostichopus japonicus. Front Microbiol 2023; 14:1263731. [PMID: 37915855 PMCID: PMC10616862 DOI: 10.3389/fmicb.2023.1263731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction The intestinal microbiota participates in host physiology and pathology through metabolites, in which short-chain fatty acids (SCFAs) are considered principal products and have extensive influence on intestine homeostasis. It has been reported that skin ulceration syndrome (SUS), the disease of Apostichopus japonicus caused by Vibrio splendidus, is associated with the alteration of the intestinal microbiota composition. Method To investigate whether the intestinal microbiota affects A. japonicus health via SCFAs, in this study, we focus on the SCFA profiling and intestinal barrier function in A. japonicus treated with V. splendidus. Results and discussion We found that V. splendidus could destroy the mid-intestine integrity and downregulate the expression of tight junction proteins ZO-1 and occludin in A. japonicus, which further dramatically decreased microorganism abundance and altered SCFAs contents. Specifically, acetic acid is associated with the largest number of microorganisms and has a significant correlation with occludin and ZO-1 among the seven SCFAs. Furthermore, our findings showed that acetic acid could maintain the intestinal barrier function by increasing the expression of tight junction proteins and rearranging the tight junction structure by regulating F-actin in mid-intestine epithelial cells. Thus, our results provide insights into the effects of the gut microbiome and SCFAs on intestine barrier homeostasis and provide essential knowledge for intervening in SUS by targeting metabolites or the gut microbiota.
Collapse
Affiliation(s)
- Mingshan Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Yanan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Yangxi Xiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
2
|
Yasmin F, Sahito AM, Mir SL, Khatri G, Shaikh S, Gul A, Hassan SA, Koritala T, Surani S. Electrical neuromodulation therapy for inflammatory bowel disease. World J Gastrointest Pathophysiol 2022; 13:128-142. [PMID: 36187600 PMCID: PMC9516456 DOI: 10.4291/wjgp.v13.i5.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/19/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disease of the gastrointestinal (GI) tract. It has financial and quality of life impact on patients. Although there has been a significant advancement in treatments, a considerable number of patients do not respond to it or have severe side effects. Therapeutic approaches such as electrical neuromodulation are being investigated to provide alternate options. Although bioelectric neuromodulation technology has evolved significantly in the last decade, sacral nerve stimulation (SNS) for fecal incontinence remains the only neuromodulation protocol commonly utilized use for GI disease. For IBD treatment, several electrical neuromodulation techniques have been studied, such as vagus NS, SNS, and tibial NS. Several animal and clinical experiments were conducted to study the effectiveness, with encouraging results. The precise underlying mechanisms of action for electrical neuromodulation are unclear, but this modality appears to be promising. Randomized control trials are required to investigate the efficacy of intrinsic processes. In this review, we will discuss the electrical modulation therapy for the IBD and the data pertaining to it.
Collapse
Affiliation(s)
- Farah Yasmin
- Department of Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Abdul Moiz Sahito
- Department of Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Syeda Lamiya Mir
- Department of Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Govinda Khatri
- Department of Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Somina Shaikh
- Department of Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Ambresha Gul
- Department of Medicine, People’s University of Medical and Health Sciences, Nawabshah 67480, Pakistan
| | - Syed Adeel Hassan
- Department of Medicine, University of Louisville, Louiseville, KY 40292, United States
| | - Thoyaja Koritala
- Department of Medicine, Mayo Clinic, Rochester, NY 55902, United States
| | - Salim Surani
- Department of Medicine, Texas A&M University, College Station, TX 77843, United States
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55902, United States
| |
Collapse
|
3
|
Mechanisms underlying spontaneous phasic contractions and sympathetic control of smooth muscle in the rat caudal epididymis. Pflugers Arch 2021; 473:1925-1938. [PMID: 34596752 DOI: 10.1007/s00424-021-02609-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/03/2021] [Accepted: 07/29/2021] [Indexed: 01/20/2023]
Abstract
Here we investigate mechanisms underlying spontaneous phasic contractions (SPCs) and sympathetic control of contractility in the rat epididymis, a long tubular duct involved in transportation and maturation of sperm. Longitudinal contractions of short segments (~ 1.5 mm) of rat proximal and distal caudal epididymal duct were measured + / - nerve stimulation. The extent of sympathetic innervation of these duct regions was determined by immunohistochemistry. Proximal caudal duct segments (150-300 μm dia.) exhibited SPCs, while distal segments (350-500 μm) were quiescent in ~ 80% of preparations. SPC amplitude and frequency were reduced by the L-type voltage-dependent Ca2+ channel (LVDCC) blocker nifedipine (1 μM), with the T-type voltage-dependent Ca2+ channel (TVDCC) blocker ML218 (1 μM) specifically decreasing SPC frequency. SPCs were inhibited upon blockade of the SR/ER Ca2+-ATPase (CPA 10 μM). SPCs were also inhibited by caffeine (1 μM), 2-APB (100 μM), niflumic acid (100 μM), or by lowering extracellular [Cl-] from 134.4 to 12.4 mM but not by ryanodine (25 μM) or tetracaine (100 μM). Electrical field stimulation (EFS) at 2 Hz for 60 s caused a sustained α1-adrenoceptor-sensitive contraction in distal segments and enhanced and/or induced α2-adrenoceptor-sensitive oscillatory phasic contractions in proximal and distal segments, the latter mimicked by application of the α2-adrenoceptor agonist clonidine. We hypothesise that SPCs in the proximal cauda are triggered by pacemaker mechanisms involving rhythmic IP3 receptor-operated SR/ER store Ca2+ release and resultant activation of CaCC with TVDCCs and possibly LVDCCs subserving in this process. Sympathetic nerve-released noradrenaline induces α2-adrenoceptor-mediated phasic contractions in the proximal and distal cauda. These findings provide new pharmacological targets for male infertility and contraception.
Collapse
|
4
|
Sanders KM, Mutafova-Yambolieva VN. Neurotransmitters responsible for purinergic motor neurotransmission and regulation of GI motility. Auton Neurosci 2021; 234:102829. [PMID: 34146957 DOI: 10.1016/j.autneu.2021.102829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Classical concepts of peripheral neurotransmission were insufficient to explain enteric inhibitory neurotransmission. Geoffrey Burnstock and colleagues developed the idea that ATP or a related purine satisfies the criteria for a neurotransmitter and serves as an enteric inhibitory neurotransmitter in GI muscles. Cloning of purinergic receptors and development of specific drugs and transgenic mice have shown that enteric inhibitory responses depend upon P2Y1 receptors in post-junctional cells. The post-junctional cells that transduce purinergic neurotransmitters in the GI tract are PDGFRα+ cells and not smooth muscle cells (SMCs). PDGFRα+ cells express P2Y1 receptors, are activated by enteric inhibitory nerve stimulation and generate Ca2+ oscillations, express small-conductance Ca2+-activated K+ channels (SK3), and generate outward currents when exposed to P2Y1 agonists. These properties are consistent with post-junctional purinergic responses, and similar responses and effectors are not functional in SMCs. Refinements in methodologies to measure purines in tissue superfusates, such as high-performance liquid chromatography (HPLC) coupled with etheno-derivatization of purines and fluorescence detection, revealed that multiple purines are released during stimulation of intrinsic nerves. β-NAD+ and other purines, better satisfy criteria for the purinergic neurotransmitter than ATP. HPLC has also allowed better detection of purine metabolites, and coupled with isolation of specific types of post-junctional cells, has provided new concepts about deactivation of purine neurotransmitters. In spite of steady progress, many unknowns about purinergic neurotransmission remain and require additional investigation to understand this important regulatory mechanism in GI motility.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Violeta N Mutafova-Yambolieva
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
5
|
Motahari Z, Moody SA, Maynard TM, LaMantia AS. In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all suspects? J Neurodev Disord 2019; 11:7. [PMID: 31174463 PMCID: PMC6554986 DOI: 10.1186/s11689-019-9267-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS), a copy number variation (CNV) disorder, occurs in approximately 1:4000 live births due to a heterozygous microdeletion at position 11.2 (proximal) on the q arm of human chromosome 22 (hChr22) (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011). This disorder was known as DiGeorge syndrome, Velo-cardio-facial syndrome (VCFS) or conotruncal anomaly face syndrome (CTAF) based upon diagnostic cardiovascular, pharyngeal, and craniofacial anomalies (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011; Burn et al., J Med Genet 30:822-4, 1993) before this phenotypic spectrum was associated with 22q11.2 CNVs. Subsequently, 22q11.2 deletion emerged as a major genomic lesion associated with vulnerability for several clinically defined behavioral deficits common to a number of neurodevelopmental disorders (Fernandez et al., Principles of Developmental Genetics, 2015; Robin and Shprintzen, J Pediatr 147:90-6, 2005; Schneider et al., Am J Psychiatry 171:627-39, 2014). RESULTS The mechanistic relationships between heterozygously deleted 22q11.2 genes and 22q11DS phenotypes are still unknown. We assembled a comprehensive "line-up" of the 36 protein coding loci in the 1.5 Mb minimal critical deleted region on hChr22q11.2, plus 20 protein coding loci in the distal 1.5 Mb that defines the 3 Mb typical 22q11DS deletion. We categorized candidates based upon apparent primary cell biological functions. We analyzed 41 of these genes that encode known proteins to determine whether haploinsufficiency of any single 22q11.2 gene-a one gene to one phenotype correspondence due to heterozygous deletion restricted to that locus-versus complex multigenic interactions can account for single or multiple 22q11DS phenotypes. CONCLUSIONS Our 22q11.2 functional genomic assessment does not support current theories of single gene haploinsufficiency for one or all 22q11DS phenotypes. Shared molecular functions, convergence on fundamental cell biological processes, and related consequences of individual 22q11.2 genes point to a matrix of multigenic interactions due to diminished 22q11.2 gene dosage. These interactions target fundamental cellular mechanisms essential for development, maturation, or homeostasis at subsets of 22q11DS phenotypic sites.
Collapse
Affiliation(s)
- Zahra Motahari
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Sally Ann Moody
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Thomas Michael Maynard
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Anthony-Samuel LaMantia
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| |
Collapse
|
6
|
Arin RM, Gorostidi A, Navarro-Imaz H, Rueda Y, Fresnedo O, Ochoa B. Adenosine: Direct and Indirect Actions on Gastric Acid Secretion. Front Physiol 2017; 8:737. [PMID: 29018360 PMCID: PMC5614973 DOI: 10.3389/fphys.2017.00737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Composed by a molecule of adenine and a molecule of ribose, adenosine is a paradigm of recyclable nucleoside with a multiplicity of functions that occupies a privileged position in the metabolic and regulatory contexts. Adenosine is formed continuously in intracellular and extracellular locations of all tissues. Extracellular adenosine is a signaling molecule, able to modulate a vast range of physiologic responses in many cells and organs, including digestive organs. The adenosine A1, A2A, A2B, and A3 receptors are P1 purinergic receptors, G protein-coupled proteins implicated in tissue protection. This review is focused on gastric acid secretion, a process centered on the parietal cell of the stomach, which contains large amounts of H+/K+-ATPase, the proton pump responsible for proton extrusion during acid secretion. Gastric acid secretion is regulated by an extensive collection of neural stimuli and endocrine and paracrine agents, which act either directly at membrane receptors of the parietal cell or indirectly through other regulatory cells of the gastric mucosa, as well as mechanic and chemic stimuli. In this review, after briefly introducing these points, we condense the current body of knowledge about the modulating action of adenosine on the pathophysiology of gastric acid secretion and update its significance based on recent findings in gastric mucosa and parietal cells in humans and animal models.
Collapse
Affiliation(s)
- Rosa M Arin
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Adriana Gorostidi
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Hiart Navarro-Imaz
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Yuri Rueda
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Olatz Fresnedo
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| |
Collapse
|
7
|
Purinergic Signalling in the Gut. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 891:91-112. [PMID: 27379638 DOI: 10.1007/978-3-319-27592-5_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The article will begin with the discovery of purinergic inhibitory neuromuscular transmission in the 1960s/1970s, the proposal for purinergic cotransmission in 1976 and the recognition that sympathetic nerves release adenosine 5'-triphosphate (ATP), noradrenaline and neuropeptide Y, while non-adrenergic, non-cholinergic inhibitory nerve cotransmitters are ATP, nitric oxide and vasoactive intestinal polypeptide in variable proportions in different regions of the gut. Later, purinergic synaptic transmission in the myenteric and submucosal plexuses was established and purinergic receptors expressed by both glial and interstitial cells. The focus will then be on purinergic mechanosensory transduction involving release of ATP from mucosal epithelial cells during distension to activate P2X3 receptors on submucosal sensory nerve endings. The responses of low threshold fibres mediate enteric reflex activity via intrinsic sensory nerves, while high threshold fibres initiate pain via extrinsic sensory nerves. Finally, the involvement of purinergic signalling in an animal model of colitis will be presented, showing that during distension there is increased ATP release, increased P2X3 receptor expression on calcitonin gene-related peptide-labelled sensory neurons and increased sensory nerve activity.
Collapse
|
8
|
Burnstock G, Loesch A. Sympathetic innervation of the kidney in health and disease: Emphasis on the role of purinergic cotransmission. Auton Neurosci 2017; 204:4-16. [DOI: 10.1016/j.autneu.2016.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 11/29/2022]
|
9
|
Mitsui R, Hashitani H. Properties of synchronous spontaneous Ca 2+ transients in the mural cells of rat rectal arterioles. Pflugers Arch 2017; 469:1189-1202. [PMID: 28429070 DOI: 10.1007/s00424-017-1978-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/20/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
Abstract
Synchrony of spontaneous Ca2+ transients among venular mural cells (smooth muscle cells and pericytes) in visceral organs relies on the intercellular spread of L-type voltage-dependent Ca2+ channel (LVDCC)-dependent depolarisations. However, the mechanisms underlying the synchrony of spontaneous Ca2+ transients between arteriolar mural cells are less understood. The spontaneous intracellular Ca2+ dynamics of arteriolar mural cells in the rat rectal submucosa were visualised by Cal-520 Ca2+ imaging to analyse their synchrony. The mural cells in fine arterioles that had a rounded cell body with several extended processes developed spontaneous 'synchronous' Ca2+ transients arising from Ca2+ released from sarcoendoplasmic reticulum Ca2+ stores. Gap junction blockers (3 μM carbenoxolone, 10 μM 18β-glycyrrhetinic acid), a Ca2+-activated Cl- channel (CaCC) blocker (100 μM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) or lowering extracellular Cl- concentration (from 134.4 to 12.4 mM) disrupted the synchrony of Ca2+ transients between arteriolar mural cells. Blockers of T-type voltage-dependent Ca2+ channels (TVDCCs, 1 μM mibefradil or ML218) or LVDCCs (1 μM nifedipine) reduced the Ca2+ transient frequency or their area under curve (AUC), respectively. However, neither TVDCC nor LVDCC blockers disrupted the synchrony of Ca2+ transients among arteriolar mural cells. This is in contrast with rectal venules in which nifedipine disrupted the synchrony of spontaneous Ca2+ transients. Thus, spontaneous transient depolarisations arising from the opening of CaCCs may effectively spread to neighbouring arteriolar mural cells via gap junctions to maintain the Ca2+ transient synchrony. Activation of TVDCCs appears to accelerate spontaneous Ca2+ transients, while LVDCCs predominantly contribute to the duration of Ca2+ transients.
Collapse
Affiliation(s)
- Retsu Mitsui
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-Ku, Nagoya, 467-8601, Japan.
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| |
Collapse
|
10
|
Wehrwein EA, Orer HS, Barman SM. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Compr Physiol 2016; 6:1239-78. [PMID: 27347892 DOI: 10.1002/cphy.c150037] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Comprised of the sympathetic nervous system, parasympathetic nervous system, and enteric nervous system, the autonomic nervous system (ANS) provides the neural control of all parts of the body except for skeletal muscles. The ANS has the major responsibility to ensure that the physiological integrity of cells, tissues, and organs throughout the entire body is maintained (homeostasis) in the face of perturbations exerted by both the external and internal environments. Many commonly prescribed drugs, over-the-counter drugs, toxins, and toxicants function by altering transmission within the ANS. Autonomic dysfunction is a signature of many neurological diseases or disorders. Despite the physiological relevance of the ANS, most neuroscience textbooks offer very limited coverage of this portion of the nervous system. This review article provides both historical and current information about the anatomy, physiology, and pharmacology of the sympathetic and parasympathetic divisions of the ANS. The ultimate aim is for this article to be a valuable resource for those interested in learning the basics of these two components of the ANS and to appreciate its importance in both health and disease. Other resources should be consulted for a thorough understanding of the third division of the ANS, the enteric nervous system. © 2016 American Physiological Society. Compr Physiol 6:1239-1278, 2016.
Collapse
Affiliation(s)
- Erica A Wehrwein
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Hakan S Orer
- Department of Pharmacology, Koc University School of Medicine, Istanbul, Turkey
| | - Susan M Barman
- Department of Pharmacology &Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
11
|
Abstract
There are nineteen different receptor proteins for adenosine, adenine and uridine nucleotides, and nucleotide sugars, belonging to three families of G protein-coupled adenosine and P2Y receptors, and ionotropic P2X receptors. The majority are functionally expressed in blood vessels, as purinergic receptors in perivascular nerves, smooth muscle and endothelial cells, and roles in regulation of vascular contractility, immune function and growth have been identified. The endogenous ligands for purine receptors, ATP, ADP, UTP, UDP and adenosine, can be released from different cell types within the vasculature, as well as from circulating blood cells, including erythrocytes and platelets. Many purine receptors can be activated by two or more of the endogenous ligands. Further complexity arises because of interconversion between ligands, notably adenosine formation from the metabolism of ATP, leading to complex integrated responses through activation of different subtypes of purine receptors. The enzymes responsible for this conversion, ectonucleotidases, are present on the surface of smooth muscle and endothelial cells, and may be coreleased with neurotransmitters from nerves. What selectivity there is for the actions of purines/pyrimidines comes from differential expression of their receptors within the vasculature. P2X1 receptors mediate the vasocontractile actions of ATP released as a neurotransmitter with noradrenaline (NA) from sympathetic perivascular nerves, and are located on the vascular smooth muscle adjacent to the nerve varicosities, the sites of neurotransmitter release. The relative contribution of ATP and NA as functional cotransmitters varies with species, type and size of blood vessel, neuronal firing pattern, the tone/pressure of the blood vessel, and in ageing and disease. ATP is also a neurotransmitter in non-adrenergic non-cholinergic perivascular nerves and mediates vasorelaxation via smooth muscle P2Y-like receptors. ATP and adenosine can act as neuromodulators, with the most robust evidence being for prejunctional inhibition of neurotransmission via A1 adenosine receptors, but also prejunctional excitation and inhibition of neurotransmission via P2X and P2Y receptors, respectively. P2Y2, P2Y4 and P2Y6 receptors expressed on the vascular smooth muscle are coupled to vasocontraction, and may have a role in pathophysiological conditions, when purines are released from damaged cells, or when there is damage to the protective barrier that is the endothelium. Adenosine is released during hypoxia to increase blood flow via vasodilator A2A and A2B receptors expressed on the endothelium and smooth muscle. ATP is released from endothelial cells during hypoxia and shear stress and can act at P2Y and P2X4 receptors expressed on the endothelium to increase local blood flow. Activation of endothelial purine receptors leads to the release of nitric oxide, hyperpolarising factors and prostacyclin, which inhibits platelet aggregation and thus ensures patent blood flow. Vascular purine receptors also regulate endothelial and smooth muscle growth, and inflammation, and thus are involved in the underlying processes of a number of cardiovascular diseases.
Collapse
Affiliation(s)
- Vera Ralevic
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| | - William R Dunn
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
12
|
Molecular identification of P2X receptors in vascular smooth muscle cells from rat anterior, posterior, and basilar arteries. Pharmacol Rep 2015; 67:1055-60. [PMID: 26481522 DOI: 10.1016/j.pharep.2015.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/17/2015] [Accepted: 03/25/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Purinergic P2X receptors in vascular smooth muscle cells (VSMCs) play an important role in physiological stimulatory responses to the extracellularly released ATP. The aim of this work was to identify molecular P2X receptor subunits in VSMCs isolated from rat anterior, posterior and basilar arteries using a number of contemporary laboratory techniques. METHODS P2X mediated ionic currents were recorded using amphotericin B perforated patch clamp method. Gene expression analysis was performed using RT-PCR in manually collected VSMCs. The expression of proteins was confirmed by fluorescent immunocytochemistry. RESULTS Under voltage clamp conditions VSMCs stimulated by application of 10 μmol/l selective P2X receptor agonist αβ-meATP, the biphasic currents consisting of rapidly rising rapidly desensitizing and slowly desensitizing components were observed in freshly isolated myocytes from all three arteries. Using RT-PCR, the expression of genes encoding only P2X1 and P2X4 receptor subunits was detected in preparations from all three arteries. The expression of corresponding P2X1 and P2X4 receptor subunit proteins was confirmed in isolated VSMCs. CONCLUSIONS Our work therefore identified that in major arteries of rat cerebral circulation VSMCs express only P2X1 and P2X4 receptors subunits. We can propose that these P2X receptor subunits participate in functional P2X receptor structures mediating ATP-evoked stimulatory responses in cerebral vascular myocytes in vivo.
Collapse
|
13
|
Sukhanova KY, Bouryi VA, Gordienko DV. Convergence of Ionotropic and Metabotropic Signal Pathways upon Activation of P2X Receptors in Vascular Smooth Muscle Cells. NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9464-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Mutafova-Yambolieva VN, Durnin L. The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 2014; 144:162-91. [PMID: 24887688 PMCID: PMC4185222 DOI: 10.1016/j.pharmthera.2014.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
The past half century has witnessed tremendous advances in our understanding of extracellular purinergic signaling pathways. Purinergic neurotransmission, in particular, has emerged as a key contributor in the efficient control mechanisms in the nervous system. The identity of the purine neurotransmitter, however, remains controversial. Identifying it is difficult because purines are present in all cell types, have a large variety of cell sources, and are released via numerous pathways. Moreover, studies on purinergic neurotransmission have relied heavily on indirect measurements of integrated postjunctional responses that do not provide direct information for neurotransmitter identity. This paper discusses experimental support for adenosine 5'-triphosphate (ATP) as a neurotransmitter and recent evidence for possible contribution of other purines, in addition to or instead of ATP, in chemical neurotransmission in the peripheral, enteric and central nervous systems. Sites of release and action of purines in model systems such as vas deferens, blood vessels, urinary bladder and chromaffin cells are discussed. This is preceded by a brief discussion of studies demonstrating storage of purines in synaptic vesicles. We examine recent evidence for cell type targets (e.g., smooth muscle cells, interstitial cells, neurons and glia) for purine neurotransmitters in different systems. This is followed by brief discussion of mechanisms of terminating the action of purine neurotransmitters, including extracellular nucleotide hydrolysis and possible salvage and reuptake in the cell. The significance of direct neurotransmitter release measurements is highlighted. Possibilities for involvement of multiple purines (e.g., ATP, ADP, NAD(+), ADP-ribose, adenosine, and diadenosine polyphosphates) in neurotransmission are considered throughout.
Collapse
Affiliation(s)
| | - Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, United States
| |
Collapse
|
15
|
Functional properties of submucosal venules in the rat stomach. Pflugers Arch 2014; 467:1327-42. [PMID: 25066613 DOI: 10.1007/s00424-014-1576-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/12/2014] [Accepted: 07/04/2014] [Indexed: 10/25/2022]
Abstract
Venules in the stomach may have intrinsic properties for maintaining active microcirculation drainage even during gastric filling. Properties of spontaneous and nerve-mediated activity of submucosal venules in the rat stomach were investigated. Changes in vasodiameter and intracellular Ca(2+) in venular smooth muscle cells (SMCs) were monitored by video tracking and Fluo-8 Ca(2+) imaging, respectively. Venular SMCs developed synchronous spontaneous Ca(2+) transients and corresponding rhythmic constrictions of the venules. Nominally Ca(2+)-free solution or an L-type Ca(2+) channel blocker (1 μM nifedipine) disrupted the Ca(2+) transient synchrony and abolished spontaneous constrictions. Spontaneous constrictions were also prevented by inhibitors of sarcoplasmic reticulum Ca(2+)-ATPase (10 μM cyclopiazonic acid (CPA)), IP3 receptors (100 μM 2-APB) or Ca(2+)-activated Cl(-) channels (100 μM niflumic acid). Transmural nerve stimulation (TNS) induced a long-lasting venular constriction that was abolished by α-adrenoceptor antagonist (1 μM phentolamine), while TNS evoked a sympathetic transient constriction of arterioles that was abolished by a combination of phentolamine and a P2 purinoceptor antagonist (10 μM pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS)). Consistently, P2X1 purinoceptor immunoreactivity was detected in arteriolar but not venular SMCs. Primary afferent nerve stimulation (300 nM capsaicin) caused a venular dilatation by releasing calcitonin gene-related peptide. Thus, Ca(2+) release from the sarcoplasmic reticulum may play a fundamental role in the generation of spontaneous Ca(2+) transients, while electrical coupling amongst venular SMCs via L-type Ca(2+) channel activation appears to be critical for Ca(2+) transient synchrony as well as spontaneous contractions. Sympathetic venular constrictions appear to be exclusively mediated by noradrenaline due to the lack of P2X1 receptor in venular SMCs.
Collapse
|
16
|
Vascular smooth muscle cells from small human omental arteries express P2X1 and P2X4 receptor subunits. Purinergic Signal 2014; 10:565-72. [PMID: 24845338 DOI: 10.1007/s11302-014-9415-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023] Open
Abstract
Stimulation of P2X receptors by ATP in vascular smooth muscle cells (VSMCs) is proposed to mediate vascular tone. However, understanding of P2X receptor-mediated actions in human blood vessels is limited, and therefore, the current work investigates the role of P2X receptors in freshly isolated small human gastro-omental arteries (HGOAs). Expression of P2X1 and P2X4 receptor subunit messenger RNA (mRNA) and protein was identified in individual HGOA VSMCs using RT-PCR and immunofluorescent analysis and using Western blot in multi-cellular preparations. ATP of 10 μmol/l and αβ-meATP of 10 μmol/l, a selective P2X receptor agonist, evoked robust increases in [Ca(2+)]i in fluo-3-loaded HGOA VSMCs. Pre-incubation with 1 μmol/l NF279, a selective P2X receptor antagonist, reduced the amplitude of αβ-meATP-induced increase in [Ca(2+)]i by about 70 %. ATP of 10 μmol/l and αβ-meATP of 10 μmol/l produced similar contractile responses in segments of HGOA, and these contractions were greatly reduced by 2 μmol/l NF449, a selective P2X receptor inhibitor. These data suggest that VSMCs from HGOA express P2X1 and P2X4 receptor subunits with homomeric P2X1 receptors likely serving as the predominant target for extracellular ATP.
Collapse
|
17
|
Sukhanova KY, Thugorka OM, Bouryi VA, Harhun MI, Gordienko DV. Mechanisms of the sarcoplasmic reticulum Ca2+ release induced by P2X receptor activation in mesenteric artery myocytes. Pharmacol Rep 2014; 66:363-72. [PMID: 24905510 DOI: 10.1016/j.pharep.2013.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 10/09/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND ATP is one of the principal sympathetic neurotransmitters which contracts vascular smooth muscle cells (SMCs) via activation of ionotropic P2X receptors (P2XRs). We have recently demonstrated that contraction of the guinea pig small mesenteric arteries evoked by stimulation of P2XRs is sensitive to inhibitors of IP3 receptors (IP3Rs). Here we analyzed contribution of IP3Rs and ryanodine receptors (RyRs) to [Ca(2+)]i transients induced by P2XR agonist αβ-meATP (10 μM) in single SMCs from these vessels. METHODS The effects of inhibition of L-type Ca(2+) channels (VGCCs), RyRs and IP3Rs (5 μM nicardipine, 100 μM tetracaine and 30 μM 2-APB, respectively) on αβ-meATP-induced [Ca(2+)]i transients were analyzed using fast x-y confocal Ca(2+) imaging. RESULTS The effect of IP3R inhibition on the [Ca(2+)]i transient was significantly stronger (67 ± 7%) than that of RyR inhibition (40 ± 5%) and was attenuated by block of VGCCs. The latter indicates that activation of VGCCs is linked to IP3R-mediated Ca(2+) release. Immunostaining of RyRs and IP3Rs revealed that RyRs are located mainly in deeper sarcoplasmic reticulum (SR) while sub-plasma membrane (PM) SR elements are enriched with type 1 IP3Rs. This structural peculiarity makes IP3Rs more accessible to Ca(2+) entering the cell via VGCCs. Thus, IP3Rs may serve as an "intermediate amplifier" between voltage-gated Ca(2+) entry and RyR-mediated Ca(2+) release. CONCLUSIONS P2X receptor activation in mesenteric artery SMCs recruits IP3Rs-mediated Ca(2+) release from sub-PM SR, which is facilitated by activation of VGCCs. Sensitivity of IP3R-mediated release to VGCC antagonists in vascular SMCs makes this mechanism of special therapeutic significance.
Collapse
Affiliation(s)
- Khrystyna Yu Sukhanova
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, State Key Laboratory of Molecular and Cellular Biology, A.A. Bogomoletz Institute of Physiology, Kiev, Ukraine.
| | - Oleksandr M Thugorka
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, State Key Laboratory of Molecular and Cellular Biology, A.A. Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Vitali A Bouryi
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, State Key Laboratory of Molecular and Cellular Biology, A.A. Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Maksym I Harhun
- Division of Biomedical Sciences, St. George's, University of London, London, UK
| | - Dmitri V Gordienko
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, State Key Laboratory of Molecular and Cellular Biology, A.A. Bogomoletz Institute of Physiology, Kiev, Ukraine; Inserm U1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France.
| |
Collapse
|
18
|
Okamoto T, Barton MJ, Hennig GW, Birch GC, Grainger N, Corrigan RD, Koh SD, Sanders KM, Smith TK. Extensive projections of myenteric serotonergic neurons suggest they comprise the central processing unit in the colon. Neurogastroenterol Motil 2014; 26:556-70. [PMID: 24460867 DOI: 10.1111/nmo.12302] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/12/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND 5-Hydroxytryptamine (5-HT, serotonin) is an important regulator of colonic motility and secretion; yet the role of serotonergic neurons in the colon is controversial. METHODS We used immunohistochemical techniques to examine their projections throughout the enteric nervous system and interstitial cells of Cajal (ICC) networks in the murine proximal to mid colon. KEY RESULTS Serotonergic neurons, which were mainly calbindin positive, occurred only in myenteric ganglia (1 per 3 ganglia). They were larger than nNOS neurons but similar in size to Dogiel Type II (AH) neurons. 5-HT neurons, appeared to make numerous varicose contacts with each other, most nNOS neurons, Dogiel Type II/AH neurons and glial cells. 5-HT, calbindin and nNOS nerve fibers also formed a thin perimuscular nerve plexus that was associated with ganglia, which contained both nNOS positive and negative neurons, which lay directly upon the submucosal pacemaker ICC network. Neurons in perimuscular ganglia were surrounded by 5-HT varicosities. Submucous ganglia contained nNOS positive and negative neurons, and calbindin positive neurons, which also appeared richly supplied by serotonergic nerve varicosities. Serotonergic nerve fibers ran along submucosal arterioles, but not veins. Varicosities of serotonergic nerve fibers were closely associated with pacemaker ICC networks and with intramuscular ICC (ICC-IM). 5-HT2B receptors were found on a subpopulation of non-5-HT containing myenteric neurons and their varicosities, pacemaker ICC-MY and ICC-IM. CONCLUSIONS & INFERENCES Myenteric serotonergic neurons, whose axons exhibit considerable divergence, regulate the entire enteric nervous system and are important in coordinating motility with secretion. They are not just interneurons, as regularly assumed, but possibly also motor neurons to ICC and blood vessels, and some may even be sensory neurons.
Collapse
Affiliation(s)
- T Okamoto
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Burnstock G. Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 2014; 10:3-50. [PMID: 24307520 PMCID: PMC3944042 DOI: 10.1007/s11302-013-9397-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/04/2023] Open
Abstract
Purinergic signalling plays major roles in the physiology and pathophysiology of digestive organs. Adenosine 5'-triphosphate (ATP), together with nitric oxide and vasoactive intestinal peptide, is a cotransmitter in non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. P2X and P2Y receptors are widely expressed in myenteric and submucous enteric plexuses and participate in sympathetic transmission and neuromodulation involved in enteric reflex activities, as well as influencing gastric and intestinal epithelial secretion and vascular activities. Involvement of purinergic signalling has been identified in a variety of diseases, including inflammatory bowel disease, ischaemia, diabetes and cancer. Purinergic mechanosensory transduction forms the basis of enteric nociception, where ATP released from mucosal epithelial cells by distension activates nociceptive subepithelial primary afferent sensory fibres expressing P2X3 receptors to send messages to the pain centres in the central nervous system via interneurons in the spinal cord. Purinergic signalling is also involved in salivary gland and bile duct secretion.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
20
|
Cervi AL, Lukewich MK, Lomax AE. Neural regulation of gastrointestinal inflammation: role of the sympathetic nervous system. Auton Neurosci 2013; 182:83-8. [PMID: 24412637 DOI: 10.1016/j.autneu.2013.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/11/2013] [Indexed: 12/20/2022]
Abstract
The sympathetic innervation of the gastrointestinal (GI) tract regulates motility, secretion and blood flow by inhibiting the activity of the enteric nervous system (ENS) and direct vasoconstrictor innervation of the gut microvasculature. In addition to these well-established roles, there is evidence that the sympathetic nervous system (SNS) can modulate GI inflammation. Postganglionic sympathetic neurons innervate lymphoid tissues and immune cells within the GI tract. Furthermore, innate and adaptive immune cells express receptors for sympathetic neurotransmitters. Activation of these receptors can affect a variety of important immune cell functions, including cytokine release and differentiation of helper T lymphocyte subsets. This review will consider the neuroanatomical evidence of GI immune cell innervation by sympathetic axons, the effects of blocking or enhancing SNS activity on GI inflammation, and the converse modulation of sympathetic neuroanatomy and function by GI inflammation.
Collapse
Affiliation(s)
- Andrea L Cervi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Mark K Lukewich
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Alan E Lomax
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Medicine, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
21
|
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
22
|
Fountain SJ. Primitive ATP-activated P2X receptors: discovery, function and pharmacology. Front Cell Neurosci 2013; 7:247. [PMID: 24367292 PMCID: PMC3853471 DOI: 10.3389/fncel.2013.00247] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/19/2013] [Indexed: 12/02/2022] Open
Abstract
Adenosine 5-triphosphate (ATP) is omnipresent in biology. It is therefore no surprise that organisms have evolved multifaceted roles for ATP, exploiting its abundance and restriction of passive diffusion across biological membranes. A striking role is the emergence of ATP as a bona fide transmitter molecule, whereby the movement of ATP across membranes serves as a chemical message through a direct ligand-receptor interaction. P2X receptors are ligand-gated ion channels that mediate fast responses to the transmitter ATP in mammalian cells including central and sensory neurons, vascular smooth muscle, endothelium, and leukocytes. Molecular cloning of P2X receptors and our understanding of structure-function relationships has provided sequence information with which to query an exponentially expanding wealth of genome sequence information including protist, early animal and human pathogen genomes. P2X receptors have now been cloned and characterized from a number of simple organisms. Such work has led to surprising new cellular roles for the P2X receptors family and an unusual phylogeny, with organisms such as Drosophila and C. elegans notably lacking P2X receptors despite retaining ionotropic receptors for other common transmitters that are present in mammals. This review will summarize current work on the evolutionary biology of P2X receptors and ATP as a signaling molecule, discuss what can be drawn from such studies when considering the action of ATP in higher animals and plants, and outline how simple organisms may be exploited experimentally to inform P2X receptor function in a wider context.
Collapse
Affiliation(s)
- Samuel J Fountain
- School of Biological Sciences, University of East Anglia Norwich, UK
| |
Collapse
|
23
|
Westcott EB, Segal SS. Perivascular innervation: a multiplicity of roles in vasomotor control and myoendothelial signaling. Microcirculation 2013; 20:217-38. [PMID: 23289720 DOI: 10.1111/micc.12035] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/25/2012] [Indexed: 12/30/2022]
Abstract
The control of vascular resistance and tissue perfusion reflect coordinated changes in the diameter of feed arteries and the arteriolar networks they supply. Against a background of myogenic tone and metabolic demand, vasoactive signals originating from perivascular sympathetic and sensory nerves are integrated with endothelium-derived signals to produce vasodilation or vasoconstriction. PVNs release adrenergic, cholinergic, peptidergic, purinergic, and nitrergic neurotransmitters that lead to SMC contraction or relaxation via their actions on SMCs, ECs, or other PVNs. ECs release autacoids that can have opposing actions on SMCs. Respective cell layers are connected directly to each other through GJs at discrete sites via MEJs projecting through holes in the IEL. Whereas studies of intercellular communication in the vascular wall have centered on endothelium-derived signals that govern SMC relaxation, attention has increasingly focused on signaling from SMCs to ECs. Thus, via MEJs, neurotransmission from PVNs can evoke distinct responses from ECs subsequent to acting on SMCs. To integrate this emerging area of investigation in light of vasomotor control, the present review synthesizes current understanding of signaling events that originate within SMCs in response to perivascular neurotransmission in light of EC feedback. Although often ignored in studies of the resistance vasculature, PVNs are integral to blood flow control and can provide a physiological stimulus for myoendothelial communication. Greater understanding of these underlying signaling events and how they may be affected by aging and disease will provide new approaches for selective therapeutic interventions.
Collapse
Affiliation(s)
- Erika B Westcott
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212, USA
| | | |
Collapse
|
24
|
Moynes DM, Lucas GH, Beyak MJ, Lomax AE. Effects of inflammation on the innervation of the colon. Toxicol Pathol 2013; 42:111-7. [PMID: 24159054 DOI: 10.1177/0192623313505929] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease lead to altered gastrointestinal (GI) function as a consequence of the effects of inflammation on the tissues that comprise the GI tract. Among these tissues are several types of neurons that detect the state of the GI tract, transmit pain, and regulate functions such as motility, secretion, and blood flow. This review article describes the structure and function of the enteric nervous system, which is embedded within the gut wall, the sympathetic motor innervation of the colon and the extrinsic afferent innervation of the colon, and considers the evidence that colitis alters these important sensory and motor systems. These alterations may contribute to the pain and altered bowel habits that accompany IBD.
Collapse
Affiliation(s)
- Derek M Moynes
- 1Department of Biomedical and Molecular Sciences, Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
25
|
Antonioli L, Colucci R, Pellegrini C, Giustarini G, Tuccori M, Blandizzi C, Fornai M. The role of purinergic pathways in the pathophysiology of gut diseases: pharmacological modulation and potential therapeutic applications. Pharmacol Ther 2013; 139:157-88. [PMID: 23588157 DOI: 10.1016/j.pharmthera.2013.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 02/08/2023]
Abstract
Gut homeostasis results from complex neuro-immune interactions aimed at triggering stereotypical and specific programs of coordinated mucosal secretion and powerful motor propulsion. A prominent role in the regulation of this highly integrated network, comprising a variety of immune/inflammatory cells and the enteric nervous system, is played by purinergic mediators. The cells of the digestive tract are literally plunged into a "biological sea" of functionally active nucleotides and nucleosides, which carry out the critical task of driving regulatory interventions on cellular functions through the activation of P1 and P2 receptors. Intensive research efforts are being made to achieve an integrated view of the purinergic system, since it is emerging that the various components of purinergic pathways (i.e., enzymes, transporters, mediators and receptors) are mutually linked entities, deputed to finely modulating the magnitude and the duration of purinergic signaling, and that alterations occurring in this balanced network could be intimately involved in the pathophysiology of several gut disorders. This review article intends to provide a critical appraisal of current knowledge on the purinergic system role in the regulation of gastrointestinal functions, considering these pathways as a whole integrated network, which is capable of finely controlling the levels of bioactive nucleotides and nucleosides in the biophase of their respective receptors. Special attention is paid to the mechanisms through which alterations in the various compartments of the purinergic system could contribute to the pathophysiology of gut disorders, and to the possibility of counteracting such dysfunctions by means of pharmacological interventions on purinergic molecular targets.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
After some early hints, cotransmission was proposed in 1976 and then "chemical coding" later established for sympathetic nerves (noradrenaline/norepinephrine, adenosine 5'-triphosphate (ATP), and neuropeptide Y), parasympathetic nerves (acetylcholine, ATP, and vasoactive intestinal polypeptide (VIP)), enteric nonadrenergic, noncholinergic inhibitory nerves (ATP, nitric oxide, and VIP), and sensory-motor nerves (calcitonin gene-related peptide, substance P, and ATP). ATP is a primitive signaling molecule that has been retained as a cotransmitter in most, if not all, nerve types in both the peripheral and central nervous systems. Neuropeptides coreleased with small molecule neurotransmitters in autonomic nerves do not usually act as cotransmitters but rather as prejunctional neuromodulators or trophic factors. Autonomic cotransmission offers subtle, local variation in physiological control mechanisms, rather than the dominance of inflexible central control mechanisms envisaged earlier. The variety of information imparted by a single neuron then greatly increases the sophistication and complexity of local control mechanisms. Cotransmitter composition shows considerable plasticity in development and aging, in pathophysiological conditions and following trauma or surgery. For example, ATP appears to become a more prominent cotransmitter in inflammatory and stress conditions.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, UK and Department of Pharmacology, University of Melbourne, Australia.
| |
Collapse
|
27
|
Roberts JA, Lukewich MK, Sharkey KA, Furness JB, Mawe GM, Lomax AE. The roles of purinergic signaling during gastrointestinal inflammation. Curr Opin Pharmacol 2012; 12:659-66. [PMID: 23063457 DOI: 10.1016/j.coph.2012.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 02/09/2023]
Abstract
Extracellular purines play important roles as neurotransmitters and paracrine mediators in the gastrointestinal (GI) tract. Inflammation of the GI tract causes marked changes in the release and extracellular catabolism of purines, and can modulate purinoceptor expression and/or signaling. The functional consequences of this include suppression of the purinergic component of inhibitory neuromuscular and neurovascular transmission, increased release of purines from immune and epithelial cells, loss of enteric neurons to damage through P2X(7) purinoceptors, and enhanced activation of pain fibres. The purinergic system represents an important target for drug therapies that may improve GI inflammation and its consequences.
Collapse
Affiliation(s)
- Jane A Roberts
- Department of Anatomy and Neurobiology, University of Vermont, Burlington, VT, USA
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Lazarowski ER. Vesicular and conductive mechanisms of nucleotide release. Purinergic Signal 2012; 8:359-73. [PMID: 22528679 DOI: 10.1007/s11302-012-9304-9] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 01/21/2012] [Indexed: 12/22/2022] Open
Abstract
Extracellular nucleotides and nucleosides promote a vast range of physiological responses, via activation of cell surface purinergic receptors. Virtually all tissues and cell types exhibit regulated release of ATP, which, in many cases, is accompanied by the release of uridine nucleotides. Given the relevance of extracellular nucleotide/nucleoside-evoked responses, understanding how ATP and other nucleotides are released from cells is an important physiological question. By facilitating the entry of cytosolic nucleotides into the secretory pathway, recently identified vesicular nucleotide and nucleotide-sugar transporters contribute to the exocytotic release of ATP and UDP-sugars not only from endocrine/exocrine tissues, but also from cell types in which secretory granules have not been biochemically characterized. In addition, plasma membrane connexin hemichannels, pannexin channels, and less-well molecularly defined ATP conducting anion channels have been shown to contribute to the release of ATP (and UTP) under a variety of conditions.
Collapse
Affiliation(s)
- Eduardo R Lazarowski
- School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7248, USA.
| |
Collapse
|
30
|
|
31
|
Lazarowski ER, Sesma JI, Seminario-Vidal L, Kreda SM. Molecular mechanisms of purine and pyrimidine nucleotide release. ADVANCES IN PHARMACOLOGY 2011; 61:221-61. [PMID: 21586361 DOI: 10.1016/b978-0-12-385526-8.00008-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Given the widespread importance of purinergic receptor-evoked signaling, understanding how ATP and other nucleotides are released from cells in a regulated manner is an essential physiological question. Nonlytic release of ATP, UTP, UDP-glucose, and other nucleotides occurs in all cell types and tissues via both constitutive mechanisms, that is, in the absence of external stimuli, and to a greater extent in response to biochemical or mechanical/physical stimuli. However, a molecular understanding of the processes regulating nucleotide release has only recently begun to emerge. It is generally accepted that nucleotide release occurs in two different scenarios, exocytotic release from the secretory pathway or via conductive/transport mechanisms, and a critical review of our current understanding of these mechanisms is presented in this chapter.
Collapse
Affiliation(s)
- Eduardo R Lazarowski
- Cystic Fibrosis/Pulmonary Research & Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, USA
| | | | | | | |
Collapse
|
32
|
Harhun MI, Povstyan OV, Gordienko DV. Purinoreceptor-mediated current in myocytes from renal resistance arteries. Br J Pharmacol 2010; 160:987-97. [PMID: 20590593 PMCID: PMC2936003 DOI: 10.1111/j.1476-5381.2010.00714.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 12/31/2009] [Accepted: 02/02/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Ionotropic purinoreceptors (P2X) in renal vascular smooth muscle cells (RVSMCs) are involved in mediating the sympathetic control and paracrine regulation of renal blood flow (RBF). Activation of P2X receptors elevates [Ca(2+)](i) in RVSMCs triggering their contraction, leading to renal vasoconstriction and decrease of RBF. The goal of the present work was to characterize the P2X receptor-mediated ionic current (I(P2X)) and to identify the types of P2X receptors expressed in myocytes isolated from interlobar and arcuate arteries of rat kidney. EXPERIMENTAL APPROACH The expression of P2X receptors in isolated RVSMCs was analysed by reverse transcription (RT)-PCR. I(P2X) and membrane potential were recorded using the amphotericin B-perforated patch method. KEY RESULTS RT-PCR analysis on single RVSMCs showed the presence of genes encoding P2X1 and P2X4 receptors. Under voltage clamp conditions, the selective P2X receptor agonist alphabeta-methylene ATP (alphabeta-meATP) evoked I(P2X) similar to that induced by ATP. Under current clamp conditions, both ATP and alphabeta-meATP evoked a spike-like membrane depolarization followed by a sustained depolarization, linking P2X receptors in RVSMCs to sympathetic control of renal vascular tone. A selective antagonist of P2X1 receptors, NF279, reduced I(P2X) amplitude by approximately 65% concentration-dependently manner within the nanomolar to sub-micromolar range. The residual current was resistant to micromolar concentrations of NF279, but was inhibited by sub-millimolar to millimolar concentrations of NF279. CONCLUSIONS AND IMPLICATIONS Two types of functional P2X receptors, monomeric P2X1 and heteromeric P2X1/4 receptors, are expressed in RVSMCs. Our study has identified important targets for possible pharmacological intervention in the sympathetic control of renal circulation.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/pharmacology
- Animals
- Arteries/drug effects
- Arteries/physiology
- Kidney/blood supply
- Kinetics
- Male
- Membrane Potentials/drug effects
- Microdissection
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Organ Specificity
- Osmolar Concentration
- Patch-Clamp Techniques
- Purinergic P2 Receptor Agonists
- Purinergic P2 Receptor Antagonists
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred WKY
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X
- Receptors, Purinergic P2X4
- Reverse Transcriptase Polymerase Chain Reaction
- Suramin/analogs & derivatives
- Suramin/pharmacology
Collapse
Affiliation(s)
- Maksym I Harhun
- Ion Channels and Cell Signalling Centre, Division of Basic Medical Sciences, St. George's University of London, London, UK.
| | | | | |
Collapse
|
33
|
Lomax AE, Vanner SJ. Presynaptic inhibition of neural vasodilator pathways to submucosal arterioles by release of purines from sympathetic nerves. Am J Physiol Gastrointest Liver Physiol 2010; 298:G700-5. [PMID: 20185689 DOI: 10.1152/ajpgi.00291.2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Capsaicin-sensitive extrinsic sensory nerves and submucosal vasodilator neurons provide important vasodilator input to submucosal arterioles, but relatively little is known about the signaling between these populations and the sympathetic vasoconstrictor innervation. This study examined whether release of sympathetic purines can modulate dilator nerves. In vitro submucosal preparations from guinea pig ileum were modified to leave the parent mesenteric artery intact so that perivascular sympathetic and extrinsic afferent nerves could be activated by a bipolar stimulating electrode placed on the parent artery, and submucosal vasodilator neurons were activated using focal electrodes placed on submucosal ganglia. The outside diameter of submucosal arterioles was monitored using videomicroscopy, and dilator responses were examined after preconstricting vessels 80-95% with prostaglandin F(2alpha) (400 nM). Mesenteric nerve stimulation evoked a frequency-dependent dilation, with suramin (100 microM) present throughout to inhibit P(2X) receptor-mediated vasoconstrictions. In the presence of guanethidine (10 microM) to inhibit sympathetic purine release, superfusion of ATP (200 nM-6 microM) caused a concentration-dependent inhibition of nerve-evoked dilations. Vasodilations to substance P (10 nM) were not inhibited by ATP in the presence of guanethidine, implicating a presynaptic effect of ATP on neurotransmitter release. The inhibitory effect of ATP was blocked by the adenosine receptor antagonist 8-phenyltheophylline (8-PT; 10 microM). In addition, 8-PT increased the amplitude of nerve-evoked dilations, suggesting a tonic inhibitory effect of adenosine receptors on vasodilator release. Dilations evoked by electrical stimulation of submucosal ganglia were also inhibited almost 50% by ATP (2 microM) and its nonhydrolyzable analog, alpha,beta-methylene-ATP (10 microM). These data suggest that sympathetic varicosities release ATP or a related purine that can act at presynaptic adenosine receptors on extrinsic sensory and submucosal vasodilator neurons to inhibit neurotransmitter release.
Collapse
Affiliation(s)
- Alan E Lomax
- Department of Physiology and Medicine, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
34
|
Lomax AE, Sharkey KA, Furness JB. The participation of the sympathetic innervation of the gastrointestinal tract in disease states. Neurogastroenterol Motil 2010; 22:7-18. [PMID: 19686308 DOI: 10.1111/j.1365-2982.2009.01381.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Knowledge of neural circuits, neurotransmitters and receptors involved in the sympathetic regulation of gastrointestinal (GI) function is well established. However, it is only recently that the interaction of sympathetic neurons, and of sympathetic transmitters, with the GI immune system and with gut flora has begun to be explored. Changes in the behaviour of sympathetic nerves when gut function is compromised, for example in ileus and in inflammation, have been observed, but the roles of the sympathetic innervation in these and other pathologies are not adequately understood. In this article, we first review the principal roles of the sympathetic innervation of the GI tract in controlling motility, fluid exchange and gut blood flow in healthy individuals. We then discuss the evidence that there are important interactions of sympathetic transmitters with the gut immune system and enteric glia, and evidence that inflammation has substantial effects on sympathetic neurons. These reciprocal interactions contribute to pathological changes in ways that are not yet clarified. Finally, we focus on inflammation, diabetes and postoperative ileus as conditions in which there is sympathetic involvement in compromised gut function.
Collapse
Affiliation(s)
- A E Lomax
- Gastrointestinal Diseases Research Unit, Department of Physiology, Queen's University, Kingston, ON, Canada.
| | | | | |
Collapse
|
35
|
Purinergic signalling in autonomic control. Trends Neurosci 2009; 32:241-8. [PMID: 19359051 DOI: 10.1016/j.tins.2009.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 02/07/2023]
Abstract
Intercellular purinergic signalling, which utilizes ATP as a transmitter, is fundamental for the operation of the autonomic nervous system. ATP is released together with 'classical' transmitters from sympathetic and parasympathetic nerves supplying various peripheral targets, modulates neurotransmission in autonomic ganglia, has an important role in local enteric neural control and coordination of intestinal secretion and motility, and acts as a common mediator for several distinct sensory modalities. Recently, the role of ATP-mediated signalling in the central nervous control of autonomic function has been addressed. Emerging data demonstrate that in the brain ATP is involved in the operation of several key cardiorespiratory reflexes, contributes to central processing of viscerosensory information, mediates central CO(2) chemosensory transduction and triggers adaptive changes in breathing, and modulates the activities of the brainstem vagal preganglionic, presympathetic and respiratory neural networks.
Collapse
|
36
|
Abstract
Purines appear to be the most primitive and widespread chemical messengers in the animal and plant kingdoms. The evidence for purinergic signalling in plants, invertebrates and lower vertebrates is reviewed. Much is based on pharmacological studies, but important recent studies have utilized the techniques of molecular biology and receptors have been cloned and characterized in primitive invertebrates, including the social amoeba Dictyostelium and the platyhelminth Schistosoma, as well as the green algae Ostreococcus, which resemble P2X receptors identified in mammals. This suggests that contrary to earlier speculations, P2X ion channel receptors appeared early in evolution, while G protein-coupled P1 and P2Y receptors were introduced either at the same time or perhaps even later. The absence of gene coding for P2X receptors in some animal groups [e.g. in some insects, roundworms (Caenorhabditis elegans) and the plant Arabidopsis] in contrast to the potent pharmacological actions of nucleotides in the same species, suggests that novel receptors are still to be discovered.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | |
Collapse
|
37
|
Neshat S, deVries M, Barajas-Espinosa AR, Skeith L, Chisholm SP, Lomax AE. Loss of purinergic vascular regulation in the colon during colitis is associated with upregulation of CD39. Am J Physiol Gastrointest Liver Physiol 2009; 296:G399-405. [PMID: 19074640 DOI: 10.1152/ajpgi.90450.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Evidence from patients with inflammatory bowel disease (IBD) and animal models suggests that inflammation alters blood flow to the mucosa, which precipitates mucosal barrier dysfunction. Impaired purinergic sympathetic regulation of submucosal arterioles, the resistance vessels of the splanchnic vasculature, is one of the defects identified during IBD and in mouse models of IBD. We hypothesized that this may be a consequence of upregulated catabolism of ATP during colitis. In vivo and in vitro video microscopy techniques were employed to measure the effects of purinergic agonists and inhibitors of CD39, an enzyme responsible for extracellular ATP catabolism, on the diameter of colonic submucosal arterioles from control mice and mice with dextran sodium sulfate [DSS, 5% (wt/vol)] colitis. Using a luciferase-based ATP assay, we examined the degradation of ATP and utilized real-time PCR, Western blotting, and immunohistochemistry to examine the expression and localization of CD39 during colitis. Arterioles from mice with DSS colitis did not constrict in response to ATP (10 microM) but did constrict in the presence of its nonhydrolyzable analog alpha,beta-methylene ATP (1 microM). alpha,beta-Methylene ADP (100 microM), an inhibitor of CD39, restored ATP-induced vasoconstriction in arterioles from mice with DSS-induced colitis. CD39 protein and mRNA expression was markedly increased during colitis. Immunohistochemical analysis demonstrated that, in addition to vascular CD39, F4/80-immunoreactive macrophages accounted for a large proportion of submucosal CD39 staining during colitis. These data implicate upregulation of CD39 in impaired sympathetic regulation of gastrointestinal blood flow during colitis.
Collapse
Affiliation(s)
- S Neshat
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Center, Royal Free and University College Medical School, London NW3 2PF, United Kingdom;
| |
Collapse
|
39
|
|
40
|
Garza A, Huang LZ, Son JH, Winzer-Serhan UH. Expression of nicotinic acetylcholine receptors and subunit messenger RNAs in the enteric nervous system of the neonatal rat. Neuroscience 2008; 158:1521-9. [PMID: 19095047 DOI: 10.1016/j.neuroscience.2008.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/13/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
In the enteric nervous system (ENS) excitatory nicotinic cholinergic transmission is mediated by neuronal nicotinic acetylcholine receptors (nAChR) and is critical for the regulation of gastric motility. nAChRs are ligand-gated pentameric ion channels found in the CNS and peripheral nervous system. The expression of heteromeric nAChR and receptor subunit mRNAs was investigated in the neonatal rat ENS using receptor autoradiography with the radiolabeled ligand (125)I-epibatidine, and in situ hybridization with subtype specific probes for ligand binding alpha (alpha2, alpha3, alpha4, alpha5, alpha6) and structural beta (beta2, beta3, beta4) subunits. The results showed strong nicotine sensitive binding of (125)I-epibatidine around the stomach, and small and large intestines. The binding was partially displaced by A85380, a nicotinic ligand which differentiates between different heteromeric nAChR subtypes, suggesting a mixed receptor population. Radioactive in situ hybridization detected expression of alpha3, alpha5, alpha7, beta2 and beta4 mRNA in the myenteric plexus of the stomach, and small and large intestines. In the submucosal plexus of the small and large intestines expression of alpha3, alpha5 and beta4 was found in some ganglia. There was no signal for alpha4, alpha6 and beta3 in the ENS but positive hybridization signal for alpha2 transcripts was seen in some areas of the small intestines. However, the signal was not associated with any ganglion cells. The results confirm the presence of heteromeric nAChRs in the ENS similar to those found in the peripheral nervous system, with the majority being composed of alpha3(alpha5)beta4, and a few alpha3beta2 nAChRs. In addition, homomeric alpha7 nAChRs could be present.
Collapse
Affiliation(s)
- A Garza
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University System, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
41
|
De Fontgalland D, Wattchow DA, Costa M, Brookes SJH. Immunohistochemical characterization of the innervation of human colonic mesenteric and submucosal blood vessels. Neurogastroenterol Motil 2008; 20:1212-26. [PMID: 18643894 DOI: 10.1111/j.1365-2982.2008.01150.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The aim was to characterize quantitatively the classes of nerves innervating human mesenteric and submucosal vessels. Specimens of uninvolved normal human mesentery and colon were obtained with prior informed consent from patients undergoing elective surgery for bowel carcinoma. Mesenteric and submucosal vessels were processed for double-labelling immunohistochemical localization of tyrosine hydroxylase (TH), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), somatostatin (SOM), vesicular acetylcholine transporter (VAChT) and enkephelin (ENK), each compared to the pan-neuronal marker protein gene product 9.5. Branching patterns of individual nerve fibres were investigated using in vitro anterograde tracing. Sympathetic neurons containing TH and NPY were the largest population, accounting for more than 85% on all vessels. Extrinsic sensory axons, containing SP but not CGRP comprised a second major population on mesenteric vessels: these axons generally lacked TH, NPY and VAChT. On submucosal, but not mesenteric vessels, an additional population of SOM-immunoreactive fibres was present: these axons did not co-localize with TH. Major similarities and differences with enteric vessel innervation in laboratory animals were identified. Sympathetic neurons comprise the largest input. Extrinsic sensory neurons in humans largely lack CGRP but contain SP. Submucosal vessels receive an additional source of innervation not present in mesenteric vessels, which contain SOM, but are rarely cholinergic. These results have significant implications for understanding the control of blood flow to the human gut.
Collapse
Affiliation(s)
- D De Fontgalland
- Department of Human Physiology, Flinders University of South Australia, Bedford Park, SA, Australia
| | | | | | | |
Collapse
|
42
|
Ren J, Bertrand PP. Purinergic receptors and synaptic transmission in enteric neurons. Purinergic Signal 2008; 4:255-66. [PMID: 18368519 PMCID: PMC2486344 DOI: 10.1007/s11302-007-9088-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 11/06/2007] [Indexed: 12/16/2022] Open
Abstract
Purines such as ATP and adenosine participate in synaptic transmission in the enteric nervous system as neurotransmitters or neuromodulators. Purinergic receptors are localized on the cell bodies or nerve terminals of different functional classes of enteric neurons and, with other receptors, form unique receptor complements. Activation of purinergic receptors can regulate neuronal activity by depolarization, by regulating intracellular calcium, or by modulating second messenger pathways. Purinergic signaling between enteric neurons plays an important role in regulating specific enteric reflexes and overall gastrointestinal function. In the present article, we review evidence for purine receptors in the enteric nervous system, including P1 (adenosine) receptors and P2 (ATP) receptors. We will explore the role they play in mediating fast and slow synaptic transmission and in presynaptic inhibition of transmission. Finally, we will examine the molecular properties of the native receptors, their signaling mechanisms, and their role in gastrointestinal pathology.
Collapse
Affiliation(s)
- Jianhua Ren
- Neuroscience Program, Michigan State University, East Lansing, MI 48824 USA
| | - Paul P. Bertrand
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557 USA
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
43
|
Abstract
Adenosine 5'-triphosphate (ATP) is a cotransmitter with classical transmitters in most nerves in the peripheral and central nervous systems, although the proportions vary between tissues and species and in different developmental and pathophysiological circumstances. There was early evidence that ATP was released together with acetylcholine (ACh) from motor nerves supplying skeletal muscle, although it was considered at the time as a molecule involved in the vesicular uptake and storage of ACh. Later it was shown that in the developing neuromuscular junction, released ATP acted on P2X receptor ion channels as a genuine cotransmitter with ACh. Adenosine triphosphate was shown to be released from sympathetic nerves supplying the guinea-pig taenia coli in 1971. Soon after, the possibility was raised that ATP was coreleased with noradrenaline from sympathetic nerves to guinea-pig seminal vesicle, cat nictitating membrane and guinea-pig vas deferens. Sympathetic purinergic cotransmission has also been demonstrated in many blood vessels. Parasympathetic nerves supplying the urinary bladder use ACh and ATP as cotransmitters; ATP acts through P2X ionotropic receptors, whereas the slower component of the response is mediated by the metabotropic muscarinic receptor. Adenosine triphosphate and glutamate appear to be cotransmitters in primary afferent sensory neurons. Adenosine triphosphate, calcitonin gene-related peptide and substance P coexist in some sensory-motor nerves. A subpopulation of intramural enteric nerves provides non-adrenergic, non-cholinergic inhibitory innervation of gut smooth muscle. Three cotransmitters are involved, namely ATP, nitric oxide and vasoactive intestinal polypeptide. In recent years, studies have shown that ATP is released with ACh, noradrenaline, glutamate, gamma-aminobutyric acid, 5-hyroxytryptamine and dopamine in different subpopulations of neurons in the central nervous system.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
44
|
Abstract
Although the concept of purinergic signalling arose from experiments designed to find the identity of the non-adrenergic, non-cholinergic (NANC) inhibitory neurotransmitter in the gut, it has taken many years for the more general importance of the various roles of ATP as a physiological messenger in the gut to be recognized. Firstly, vasoactive intestitial polypeptide (VIP) and later nitric oxide (NO) were considered the NANC transmitter and it was only later, after the concept of cotransmission was established, that ATP, NO and VIP were recognized as cotransmitters in NANC nerves, although the proportions vary in different gut regions. Recently, many purinoceptor subtypes have been identified on myenteric, submucosal motor, sensory and interneurons involved in synaptic neurotransmission and neuromodulation and reflex activity of several kinds, including ascending excitatory and descending inhibitory reflex pathways. Nucleotide receptors have been shown to be expressed on enteric glial cells and interstitial cells of Cajal. Purinergic mechanosensory transduction, involving release of ATP from mucosal epithelial cells during distension to stimulate subepithelial nerve endings of intrinsic and extrinsic sensory nerves to modulate peristalsis and initiate nociception respectively, is attracting current attention. Exciting new areas of interest about purinergic signalling in the gut include: involvement of purines in development, ageing and regeneration, including the role of stem cells; studies of the involvement of nucleotides in the activity of the gut of invertebrates and lower vertebrates; and the pathophysiology of enteric purinergic signalling in diseases including irritable bowel syndrome, postoperative ileus, oesophageal reflux, constipation, diarrhoea, diabetes, Chaga's and Hirschprung's disease.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
45
|
Morato M, Sousa T, Albino-Teixeira A. Purinergic receptors in the splanchnic circulation. Purinergic Signal 2008; 4:267-85. [PMID: 18443747 DOI: 10.1007/s11302-008-9096-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 02/18/2008] [Indexed: 12/13/2022] Open
Abstract
There is considerable evidence that purines are vasoactive molecules involved in the regulation of blood flow. Adenosine is a well known vasodilator that also acts as a modulator of the response to other vasoactive substances. Adenosine exerts its effects by interacting with adenosine receptors. These are metabotropic G-protein coupled receptors and include four subtypes, A(1), A(2A), A(2B) and A(3). Adenosine triphosphate (ATP) is a co-transmitter in vascular neuroeffector junctions and is known to activate two distinct types of P2 receptors, P2X (ionotropic) and P2Y (metabotropic). ATP can exert either vasoconstrictive or vasorelaxant effects, depending on the P2 receptor subtype involved. Splanchnic vascular beds are of particular interest, as they receive a large fraction of the cardiac output. This review focus on purinergic receptors role in the splanchnic vasomotor control. Here, we give an overview on the distribution and diversity of effects of purinergic receptors in splanchnic vessels. Pre- and post-junctional receptormediated responses are summarized. Attention is also given to the interactions between purinergic receptors and other receptors in the splanchnic circulation.
Collapse
Affiliation(s)
- Manuela Morato
- Institute of Pharmacology and Therapeutics, Faculty of Medicine and IBMC, University of Porto, Porto, Portugal
| | | | | |
Collapse
|
46
|
|
47
|
Surprenant A. Functional properties of native and cloned P2X receptors. CIBA FOUNDATION SYMPOSIUM 2007; 198:208-19; discussion 219-22. [PMID: 8879827 DOI: 10.1002/9780470514900.ch12] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Electrophysiological experiments on dissociated smooth muscle and neurons have revealed three distinct phenotypes of P2X receptor: (1) a rapidly desensitizing, beta-methylene ATP-sensitive response typical of most smooth muscle; (2) a non-desensitizing, alpha,beta-methylene ATP-insensitive response characteristic of PC12 phaeochromocytoma cells and rat superior cervical ganglion neurons; and (3) a non-desensitizing, alpha, beta-methylene ATP-sensitive response observed in sensory neurons. All of these purinoceptors share a similar cationic and high Ca2+ permeability and sensitivity to blockade by suramin, Cibacron blue, oxidized ATP, pyridoxal-5-phosphate and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid. Heterologous expression of two forms of cloned P2X receptors (from rat vas deferens and PC12 cells) reveals that each cloned receptor can reconstitute native responses with remarkable fidelity. Such results suggest that homo-oligomeric channels may be formed from single subunits of the P2X receptor in smooth muscle, PC12 cells and some neurons. The third phenotype observed in native cells might result from co-assembly of subunits of the cloned receptors. However, co-expression studies show that these two forms of the P2X receptor do not heteropolymerize. Therefore, the non-desensitizing, alpha, beta-methylene ATP-sensitive response observed in sensory neurons may result from a distinct P2X receptor or from heteropolymerization of more than one distinct P2X purinoceptor.
Collapse
Affiliation(s)
- A Surprenant
- Glaxo Institute for Molecular Biology, Geneva, Switzerland
| |
Collapse
|
48
|
North RA. P2X receptors: a third major class of ligand-gated ion channels. CIBA FOUNDATION SYMPOSIUM 2007; 198:91-105; discussion 105-9. [PMID: 8879820 DOI: 10.1002/9780470514900.ch5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Three classes of ligand-gated ion channels are defined by their molecular architecture. The first embraces nicotinic, 5-HT3, glycine and GABA receptors. The second class contains the glutamate receptors-AMPA, kainate and NMDA types. The third class is the P2X receptors for ATP. Current knowledge of the structure of these channels is reviewed, and set beside what is known of their basic functional properties. The aim of this paper is to consider how our more complete understanding of the first two classes of channels might be helpful in forming a molecular picture of P2X receptor function.
Collapse
Affiliation(s)
- R A North
- Glaxo Institute for Molecular Biology, Geneva, Switzerland
| |
Collapse
|
49
|
Park J, Galligan JJ, Fink GD, Swain GM. Differences in sympathetic neuroeffector transmission to rat mesenteric arteries and veins as probed by in vitro continuous amperometry and video imaging. J Physiol 2007; 584:819-34. [PMID: 17761778 PMCID: PMC2276997 DOI: 10.1113/jphysiol.2007.134338] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
As arteries are resistance blood vessels while veins perform a capacitance function, it might be expected that sympathetic neural control of arteries and veins would differ. The function of sympathetic nerves supplying mesenteric arteries (MA) and veins (MV) in rats was investigated using in vitro continuous amperometry with a carbon fibre microelectrode and video imaging. We simultaneously measured noradrenaline (NA) overflow at the blood vessel adventitial surface and vasoconstriction evoked by electrical stimulation of perivascular sympathetic nerves. Sympathetic nerve arrangement was studied using glyoxylic acid-induced fluorescence of NA. We found that: (i) there were significant differences between MA and MV in the arrangement of sympathetic nerves; (ii) frequency-response curves for NA overflow and vasoconstriction for MV were left-shifted compared to MA; (iii) the P2X receptor antagonist, pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 10 microm), reduced constrictions in MA but not in MV while the alpha(1)-adrenergic receptor antagonist, prazosin (0.1 microm), blocked constrictions in MV but not in MA; (iv) NA overflow for MA was enhanced by the alpha(2)-adrenergic receptor antagonist, yohimbine (1.0 microm), and attenuated by the alpha(2)-adrenergic receptor agonist, UK 14,304 (1.0 microm), while yohimbine and UK 14,304 had little effect in MV; (v) cocaine (10 microm) produced larger increases in NA overflow in MA than in MV; (vi) UK 14,304 constricted MV but not MA while yohimbine reduced constrictions in MV but not MA. We conclude that there are fundamental differences in sympathetic neuroeffector mechanisms in MA and MV, which are likely to contribute to their different haemodynamic functions.
Collapse
Affiliation(s)
- Jinwoo Park
- Department of Chemistry and the Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
50
|
Lomax AE, O'Reilly M, Neshat S, Vanner SJ. Sympathetic vasoconstrictor regulation of mouse colonic submucosal arterioles is altered in experimental colitis. J Physiol 2007; 583:719-30. [PMID: 17615098 PMCID: PMC2277024 DOI: 10.1113/jphysiol.2007.136838] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent studies suggest that altered neural regulation of the gastrointestinal microvasculature contributes to the pathogenesis of inflammatory bowel disease. Therefore, we employed video microscopy techniques to monitor nerve-evoked vasoconstrictor responses in mouse colonic submucosal arterioles in vitro and examined the effect of 2,4,6-trinitrobenzene sulphonic acid (TNBS) colitis. Nerve stimulation (2-20 Hz) caused frequency-dependent vasoconstrictor responses that were abolished by tetrodotoxin (300 nm) and guanethidine (10 microm). The P2 receptor antagonist suramin (100 microm) or the alpha(1)-adrenoceptor antagonist prazosin (100 nm) reduced the vasoconstriction and the combination of suramin and prazosin completely abolished responses. Nerve-evoked constrictions of submucosal arterioles from mice with TNBS colitis were inhibited by prazosin but not suramin. Superfusion of ATP (10 microm) resulted in large vasoconstrictions in control mice but had no effect in mice with colitis whereas constrictions to phenylephrine (3 microm) were unaffected. P2X(1) receptor immunohistochemistry did not suggest any alteration in receptor expression following colitis. However, Western blotting revealed that submucosal P2X(1) receptor expression was increased during colitis. In contrast to ATP, alphabeta-methylene-ATP (1 microm), which is resistant to catabolism by nucleotidases, constricted control and TNBS arterioles. This indicates that reduced purinergic transmission to submucosal arterioles may be due to increased degradation of ATP during colitis. These data comprise the first description of the neural regulation of mouse submucosal arterioles and identify a defect in sympathetic regulation of the GI vasculature during colitis due to reduced purinergic neurotransmission.
Collapse
Affiliation(s)
- A E Lomax
- Gastrointestinal Diseases Research Unit, Queen's University at Kingston General Hospital, Kingston, Ontario K7L 2V7, Canada.
| | | | | | | |
Collapse
|