1
|
Jones KR, Choi U, Gao JL, Thompson RD, Rodman LE, Malech HL, Kang EM. A Novel Method for Screening Adenosine Receptor Specific Agonists for Use in Adenosine Drug Development. Sci Rep 2017; 7:44816. [PMID: 28317879 PMCID: PMC5357845 DOI: 10.1038/srep44816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/15/2017] [Indexed: 12/19/2022] Open
Abstract
Agonists that target the A1, A2A, A2B and A3 adenosine receptors have potential to be potent treatment options for a number of diseases, including autoimmune diseases, cardiovascular disease and cancer. Because each of these adenosine receptors plays a distinct role throughout the body, obtaining highly specific receptor agonists is essential. Of these receptors, the adenosine A2AR and A2BR share many sequence and structural similarities but highly differ in their responses to inflammatory stimuli. Our laboratory, using a combination of specially developed cell lines and calcium release analysis hardware, has created a new and faster method for determining specificity of synthetic adenosine agonist compounds for the A2A and A2B receptors in human cells. A2A receptor expression was effectively removed from K562 cells, resulting in the development of a distinct null line. Using HIV-lentivector and plasmid DNA transfection, we also developed A2A and A2B receptor over-expressing lines. As adenosine is known to cause changes in intracellular calcium levels upon addition to cell culture, calcium release can be determined in these cell lines upon compound addition, providing a functional readout of receptor activation and allowing us to isolate the most specific adenosine agonist compounds.
Collapse
Affiliation(s)
- Karlie R. Jones
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Uimook Choi
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | | | - Larry E. Rodman
- Lewis and Clark Pharmaceuticals Inc., Charlottesville, VA 22901, USA
| | - Harry L. Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Elizabeth M. Kang
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| |
Collapse
|
2
|
Vyas FS, Hargreaves AJ, Bonner PL, Boocock DJ, Coveney C, Dickenson JM. A1 adenosine receptor-induced phosphorylation and modulation of transglutaminase 2 activity in H9c2 cells: A role in cell survival. Biochem Pharmacol 2016; 107:41-58. [DOI: 10.1016/j.bcp.2016.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/17/2016] [Indexed: 12/25/2022]
|
3
|
Töpfer M, Burbiel CE, Müller CE, Knittel J, Verspohl EJ. Modulation of insulin release by adenosine A1 receptor agonists and antagonists in INS-1 cells: the possible contribution of 86Rb+ efflux and 45Ca2+ uptake. Cell Biochem Funct 2009; 26:833-43. [PMID: 18979526 DOI: 10.1002/cbf.1514] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Due to the lack of specific agonists and antagonists the role of adenosine receptor subtypes with respect to their effect on the insulin secretory system is not well investigated. The A1 receptor may be linked to different 2nd messenger systems, i.e. cAMP, K+- and 45Ca2+ channel activity. Partial A1 receptor agonists are going to be developed in order to improve diabetes (increase in insulin sensitivity, lowering of FFA and triglycerides). In this study newly synthesized selective A1 receptor agonists and antagonists were investigated thereby integrating three parameters, insulin release (RIA), 45Ca2+ uptake and 86Rb+ efflux (surrogate for K+ efflux) of INS-1 cells, an insulin secretory cell line. The presence of A1-receptors was demonstrated by Western blotting. The receptor nonselective adenosine analogue NECA (5-N-ethylcarboxyamidoadenosine) at high concentration (10 microM) had no effect on insulin release and 45Ca2+ uptake which could be interpreted as the sum of effects mediated by mutual antagonistic adenosine receptor subtypes. However, an inhibitory effect mediated by A1 receptor agonism was detected at 10 nM NECA and could be confirmed by adding the A1 receptor antagonist PSB-36 (1-butyl-8-(3-noradamantyl)-3-(3-hydroxy-propyl)xanthine). NECA inhibited 86Rb+ efflux which, however, did not fit with the simultaneous inhibition of insulin secretion. The selective A1 receptor agonist CHA (N6-cyclohexyladenosine) inhibited insulin release; the simultaneously increased Ca2+ uptake (nifedipine dependent) and inhibition of 86Rb+ efflux did not fit the insulin release data. The CHA effect (even the maximum effect at 50 microM) can be increased by 10 microM NECA indicating that CHA and NECA have nonspecific and physiologically non-relevant effects on 86Rb+ efflux in addition to their A1-receptor interaction. Since PSB-36 did not influence the NECA-induced inhibition of 86Rb+ efflux, the NECA effect is not mediated by potassium channel-linked A1 receptors. The nonselective adenosine receptor antagonist caffeine increased insulin release which was reversed by CHA as expected when hypothesizing that both act via A1 receptors in this case. In conclusion, stimulation of A1 receptors by receptor selective and nonselective compounds reduced insulin release which is not coupled to opening of potassium channels (86Rb+ efflux experiments) or inhibition of calcium channels (45Ca2+ uptake experiments). It may be expected that of all pleiotropic 2nd messengers, the cAMP system (not tested here) is predominant for A1 receptor effects and the channel systems (K+ and Ca2+) are of minor importance and do not contribute to insulin release though being coupled to the receptor in other tissues.
Collapse
Affiliation(s)
- M Töpfer
- Department of Pharmacology, Institute of Medicinal Chemistry, Münster, Germany
| | | | | | | | | |
Collapse
|
4
|
Preston A, Frydenberg M, Haynes JM. A1 and A2A adenosine receptor modulation of alpha 1-adrenoceptor-mediated contractility in human cultured prostatic stromal cells. Br J Pharmacol 2004; 141:302-10. [PMID: 14751869 PMCID: PMC1574187 DOI: 10.1038/sj.bjp.0705535] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. This study investigated the possibility that adenosine receptors modulate the alpha(1)-adrenoceptor-mediated contractility of human cultured prostatic stromal cells (HCPSC). 2. The nonselective adenosine receptor agonist, 5'-N-ethylcarboxamido-adenosine (NECA; 10 nm-10 microm), and the A(1) adenosine receptor selective agonist, cyclopentyladenosine (CPA; 10 nm-10 microm), elicited significant contractions in HCPSC, with maximum contractile responses of 18+/-3% and 17+/-2% reduction in initial cell length, respectively. 3. In the presence of a threshold concentration of phenylephrine (PE) (100 nm), CPA (1 nm-10 microm) caused contractions, with an EC(50) of 124+/-12 nm and maximum contractile response of 37+/-4%. The A(1) adenosine receptor-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX 100 nm) blocked this effect. In the presence of DPCPX (100 nm), NECA (1 nm-10 microm) inhibited contractions elicited by a submaximal concentration of PE (10 microm), with an IC(50) of 48+/-2 nm. The A(2A) adenosine receptor-selective antagonist 4-(2-[7-amino-2-[furyl][1,2,4]triazolo[2,3-alpha][1,3,5,]triazin-5-yl amino]ethyl)phenol (Zm241385 100 nm) blocked this effect. 4. In BCECF-AM (10 microm)-loaded cells, both CPA (100 pM-1 microm) and NECA (100 pm-10 microm) elicited concentration-dependent decreases in intracellular pH (pH(i)), with EC(50) values of 3.1+/-0.3 and 6.0+/-0.3 nm, respectively. The response to NECA was blocked by Zm241385 (100 nm; apparent pK(B) of 9.4+/-0.4), but not by DPCPX (100 nm). The maximum response to CPA was blocked by DPCPX (100 nm), and unaffected by Zm241385 (100 nm). 5. NECA (10 nm-10 microm) alone did not increase [(3)H]-cAMP in HCPSC. In the presence of DPCPX (100 nm), NECA (10 nm-10 microm) caused a concentration dependent increase in [(3)H]-cAMP, with an EC(50) of 1.2+/-0.1 microm. This response was inhibited by Zm241385 (100 nm). CPA (10 nm-10 microm) had no effect on cAMP, in the presence or absence of forskolin (1 microm). 6. These findings are consistent with a role for adenosine receptors in the modulation of adrenoceptor-mediated contractility in human prostate-derived cells.
Collapse
Affiliation(s)
- A Preston
- School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | | | | |
Collapse
|
5
|
Florán B, Florán L, Erlij D, Aceves J. Activation of dopamine D4 receptors modulates [3H]GABA release in slices of the rat thalamic reticular nucleus. Neuropharmacology 2004; 46:497-503. [PMID: 14975673 DOI: 10.1016/j.neuropharm.2003.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Revised: 09/26/2003] [Accepted: 10/03/2003] [Indexed: 11/21/2022]
Abstract
The thalamic reticular nucleus (nRt) is innervated by dopaminergic projections from the sustantia nigra compacta (SNc) and is rich in dopamine D4 receptors, however, the functional effects of dopamine on this structure are unknown. We examined whether the D1 receptor agonist SKF 38393, or the D2 class receptor agonist quinpirole, modify depolarization evoked Ca(2+)-dependent [3H]GABA release. SKF 38393 was without effects, whereas quinpirole inhibited [3H]GABA release with an IC50 of 81 +/- 33 nM. Dose-dependence determinations of agonists (quinpirole and PD 168, 077) and antagonists (L-745,870, U-101958, clozapine and raclopride) with different affinities for different D2 class subtype receptors showed that a D4 receptor mediates quinpirole inhibition. We used methylphenidate, an agent that acts by increasing interstitial dopamine, to determine whether endogenous dopamine modulates [3H]GABA release. Methylphenidate inhibited [3H]GABA release showing that the nRt contains sufficient endogenous dopamine to activate D4 receptors. This inhibition was completely reversed by selectively blocking D4 receptors with L-745,870 or U-101958 indicating that the catecholamine receptors that modulate GABA release are D4 receptors. Given the importance of the nRt in the control of attention, sensory processing and the generation of rhythmic activity during slow wave sleep, it is possible that abnormal nRt function may generate some of the manifestations of the disorders of dopaminergic transmission.
Collapse
Affiliation(s)
- Benjamín Florán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508 San Pedro Zacatenco, Apartado Postal 14-740, 07360, México city, Mexico.
| | | | | | | |
Collapse
|
6
|
Scaramuzzi RJ, Baker DJ. Possible therapeutic benefits of adenosine-potentiating drugs in reducing age-related degenerative disease in dogs and cats. J Vet Pharmacol Ther 2003; 26:327-35. [PMID: 14633184 DOI: 10.1046/j.1365-2885.2003.00527.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adenosine is a ubiquitous, biologically important molecule that is a precursor of other biologically active molecules. It also is a component of some co-factors and has distinct physiological actions in its own right. Levels are maintained by synthesis from dietary precursors and re-cycling. The daily turnover of adenosine is very high. Adenosine can act either as a hormone by binding to adenosine receptors, four adenosine receptor subtypes have been identified, and as an intracellular modulator, after transport into the cell by membrane transporter proteins. One of the principal intracellular actions of adenosine is inhibition of the enzyme phosphodiesterase. Extracellular adenosine also has specific neuromodulatory actions on dopamine and glutamate. Selective and nonselective agonists and antagonists of adenosine are available. The tasks of developing, evaluating and exploiting the therapeutic potential of these compounds is still in its infancy. Adenosine has actions in the central nervous system (CNS), heart and vascular system, skeletal muscle and the immune system and the presence of receptors suggests potential actions in the gonads and other organs. Adenosine agonists improve tissue perfusion through actions on vascular smooth muscle and erythrocyte fluidity and they can be used to improve the quality of life in aged dogs. This article reviews the therapeutic potential of adenosine-potentiating drugs in the treatment of age-related conditions in companion animals, some of which may be exacerbated by castration or spaying at an early age.
Collapse
Affiliation(s)
- R J Scaramuzzi
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, UK.
| | | |
Collapse
|
7
|
Fredholm BB, Assender JW, Irenius E, Kodama N, Saito N. Synergistic effects of adenosine A1 and P2Y receptor stimulation on calcium mobilization and PKC translocation in DDT1 MF-2 cells. Cell Mol Neurobiol 2003; 23:379-400. [PMID: 12825834 PMCID: PMC11530149 DOI: 10.1023/a:1023644822539] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. The effect of adenosine analogues and of nucleotides, alone or in combination, on intracellular calcium, accumulation of inositol (1,4,5) trisphosphate (InsP3), and on activation of protein kinase C (PKC) was studied in DDT1 MF2 cells derived from a Syrian hamster myosarcoma. These cells were found to express mRNA for A1 and some as yet unidentified P2Y receptor(s). 2. Activation of either receptor type stimulated the production of InsP3 and raised intracellular calcium in DDT1 MF2 cells. Similarly, the A1 selective agonist N6-cyclopentyladenosine (CPA) increased PKC-dependent phosphorylation of the substrate MBP(4-14) and induced a PKC translocation to the plasma membrane as determined using [3H]-phorbol dibutyrate (PDBu) binding in DDT1 MF-2 cells. However, neither adenosine nor CPA induced a significant translocation of transiently transfected gamma-PKC-GFP from the cytosol to the cell membrane. In contrast to adenosine analogues, ATP and UTP also caused a rapid but transient translocation of gamma-PKC-GFP and activation of PKC. 3. Doses of the A1 agonist CPA and of ATP or UTP per se caused barely detectable increases in intracellular Ca2+ but when combined, they caused an almost maximal stimulation. Similarly, adenosine (0.6 microM) and UTP (or ATP, 2.5 microM), which per se caused no detectable translocation of either gamma- or epsilon-PKC-GFP, caused when combined a very clear-cut translocation of both PKC subforms, albeit with different time courses. These results show that simultaneous activation of P2Y and adenosine A1 receptors synergistically increases Ca2+ transients and translocation of PKC in DDT1 MF-2 cells. Since adenosine is rapidly formed by breakdown of extracellular ATP, such interactions may be biologically important.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Adenosine Triphosphate/metabolism
- Adenosine Triphosphate/pharmacology
- Animals
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cell Membrane/drug effects
- Cell Membrane/enzymology
- Cricetinae
- Drug Synergism
- Green Fluorescent Proteins
- Inositol 1,4,5-Trisphosphate/metabolism
- Intracellular Fluid/drug effects
- Intracellular Fluid/metabolism
- Luminescent Proteins
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Protein Isoforms/drug effects
- Protein Isoforms/metabolism
- Protein Kinase C/drug effects
- Protein Kinase C/metabolism
- Protein Transport/drug effects
- Protein Transport/physiology
- Purinergic P1 Receptor Agonists
- Receptors, Purinergic P1/metabolism
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2Y1
- Recombinant Fusion Proteins/pharmacology
- Tumor Cells, Cultured
- Uridine Triphosphate/metabolism
- Uridine Triphosphate/pharmacology
Collapse
Affiliation(s)
- Bertil B Fredholm
- Department of Physiology and Pharmacology, Section of Molecular Neuropharmacology, Karolinska Institute, S-171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
8
|
Dickenson JM. Stimulation of protein kinase B and p70 S6 kinase by the histamine H1 receptor in DDT1MF-2 smooth muscle cells. Br J Pharmacol 2002; 135:1967-76. [PMID: 11959800 PMCID: PMC1573327 DOI: 10.1038/sj.bjp.0704664] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2001] [Revised: 12/04/2001] [Accepted: 02/01/2002] [Indexed: 12/19/2022] Open
Abstract
1. Previous studies have shown that the histamine H(1) receptor activates p42/p44 mitogen-activated protein kinases (MAPK) in DDT(1)MF-2 smooth muscle cells via a phosphatidylinositol 3-kinase (PI-3K)-dependent pathway. In this study the effect of histamine H(1) receptor stimulation on protein kinase B (PKB) and p70 S6 kinase, both of which are downstream targets of PI-3K, has been investigated. Increases in PKB and p70 S6 kinase activation were monitored by Western blotting using phospho-specific PKB (Ser(473)) and p70 S6 kinase (Thr(421)/Ser(424)) antibodies. 2. Histamine stimulated time and concentration-dependent increases in the phosphorylation of PKB and p70 S6 kinase in DDT(1)MF-2 cells. Both responses were completely inhibited by the histamine H(1) receptor antagonist mepyramine and following pre-treatment with pertussis toxin, to block G(i)/G(o) protein dependent pathways. 3. The PI-3K inhibitors wortmannin (IC(50) 5.9+/-0.5 nM) and LY 294002 (IC(50) 6.9+/-0.8 microM) attenuated the increase in PKB phosphorylation induced by histamine (100 microM) in a concentration-dependent manner. 4. Histamine-induced increases in p70 S6 kinase phosphorylation were partially sensitive to rapamycin (20 nM; 68% inhibition) but completely blocked by wortmannin (100 nM), LY 294002 (30 microM) and the MAPK kinase inhibitor PD 98059 (50 microM). 5. In summary, these data demonstrate that the histamine H(1) receptor stimulates PKB and p70 S6 kinase phosphorylation in DDT(1)MF-2 smooth muscle cells. However, functional studies revealed that histamine does not stimulate DDT(1)MF-2 cell proliferation or attenuate staurosporine-induced caspase-3 activity. The challenge for future research will be to link the stimulation of these kinase pathways with the physiological and pathophysiological roles of the histamine H(1) receptor.
Collapse
Affiliation(s)
- John M Dickenson
- Department of Life Sciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| |
Collapse
|
9
|
Robinson AJ, Dickenson JM. Activation of the p38 and p42/p44 mitogen-activated protein kinase families by the histamine H(1) receptor in DDT(1)MF-2 cells. Br J Pharmacol 2001; 133:1378-86. [PMID: 11498525 PMCID: PMC1621152 DOI: 10.1038/sj.bjp.0704200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. The mitogen-activated protein kinases (MAPKs) consist of the p42/p44 MAPKs and the stress-activated protein kinases, c-Jun N-terminal kinase (JNK) and p38 MAPK. In this study we have examined the effect of histamine H(1) receptor activation on MAPK pathway activation in the smooth muscle cell line DDT(1)MF-2. 2. Histamine stimulated time and concentration-dependent increases in p42/p44 MAPK activation in DDT(1)MF-2 cells. Responses to histamine were inhibited by the histamine H(1) receptor antagonist mepyramine (K(D) 3.5 nM) and following pre-treatment with pertussis toxin (PTX; 57% inhibition). 3. Histamine-induced increases in p42/p44 MAPK activation were blocked by inhibitors of MAPK kinase 1 (PD 98059), tyrosine kinase (genistein and tyrphostin A47), phosphatidylinositol 3-kinase (wortmannin and LY 294002) and protein kinase C (Ro 31-8220; 10 microM; 41% inhibition). Inhibitors of Src tyrosine kinase (PP2) and the epidermal growth factor tyrosine kinase (AG1478) were without effect. Removal of extracellular Ca(2+), chelation of intracellular Ca(2+) with BAPTA and inhibition of focal adhesion assembly (cytochalasin D) had no significant effect on histamine-induced p42/p44 MAPK activation. 4. Histamine stimulated time and concentration-dependent increases in p38 MAPK activation in DDT(1)MF-2 cells but had no effect on JNK activation. Histamine-induced p38 MAPK activation was inhibited by pertussis toxin (74% inhibition) and the p38 MAPK inhibitor SB 203580 (95% inhibition). 5. In summary, we have shown the histamine H(1) receptor activates p42/p44 MAPK and p38 MAPK signalling pathways in DDT(1)MF-2 smooth muscle cells. Interestingly, signalling to both pathways appears to involve histamine H(1) receptor coupling to G(i)/G(o)-proteins.
Collapse
Affiliation(s)
- Alex J Robinson
- Department of Life Sciences, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS
| | - John M Dickenson
- Department of Life Sciences, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS
- Author for correspondence:
| |
Collapse
|
10
|
Arias-Montaño JA, Floran B, Garcia M, Aceves J, Young JM. Histamine H(3) receptor-mediated inhibition of depolarization-induced, dopamine D(1) receptor-dependent release of [(3)H]-gamma-aminobutryic acid from rat striatal slices. Br J Pharmacol 2001; 133:165-71. [PMID: 11325806 PMCID: PMC1572768 DOI: 10.1038/sj.bjp.0704053] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2000] [Revised: 02/20/2001] [Accepted: 02/22/2001] [Indexed: 11/09/2022] Open
Abstract
1. A study was made of the regulation of [(3)H]-gamma-aminobutyric acid ([(3)H]-GABA) release from slices of rat striatum by endogenous dopamine and exogenous histamine and a histamine H(3)-agonist. Depolarization-induced release of [(3)H]-GABA was Ca(2+)-dependent and was increased in the presence of the dopamine D(2) receptor family antagonist, sulpiride (10 microM). The sulpiride-potentiated release of [(3)H]-GABA was strongly inhibited by the dopamine D(1) receptor family antagonist, SCH 23390 (1 microM). Neither antagonist altered basal release. 2. The 15 mM K(+)-induced release of [(3)H]-GABA in the presence of sulpiride was inhibited by 100 microM histamine (mean inhibition 78+/-3%) and by the histamine H(3) receptor-selective agonist, immepip, 1 microM (mean inhibition 81+/-5%). The IC(50) values for histamine and immepip were 1.3+/-0.2 microM and 16+/-2 nM, respectively. The inhibitory effects of histamine and immepip were reversed by the H(3) receptor antagonist, thioperamide, 1 microM. 3. The inhibition of 15 mM K(+)-induced [(3)H]-GABA release by immepip was reversed by the H(3) receptor antagonist, clobenpropit, K(d) 0.11+/-0.04 nM. Clobenpropit alone had no effect on basal or stimulated release of [(3)H]-GABA. 4. Elevated K(+) caused little release of [(3)H]-GABA from striatal slices from reserpinized rats, unless the D(1) partial agonist, R(+)-SKF 38393, 1 microM, was also present. The stimulated release in the presence of SKF 38393 was reduced by 1 microM immepip to the level obtained in the absence of SKF 38393. 5. These observations demonstrate that histamine H(3) receptor activation strongly inhibits the dopamine D(1) receptor-dependent release of [(3)H]-GABA from rat striatum; primarily through an interaction at the terminals of GABA neurones.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Calcium/pharmacology
- Dopamine/metabolism
- Dopamine D2 Receptor Antagonists
- Histamine/pharmacology
- Histamine Agonists/pharmacology
- Histamine Antagonists/pharmacology
- Imidazoles/antagonists & inhibitors
- Imidazoles/pharmacology
- In Vitro Techniques
- Male
- Membrane Potentials/drug effects
- Neostriatum/drug effects
- Neostriatum/metabolism
- Piperidines/antagonists & inhibitors
- Piperidines/pharmacology
- Potassium/pharmacology
- Rats
- Rats, Wistar
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/metabolism
- Receptors, Histamine H3/metabolism
- Reserpine/pharmacology
- Sulpiride/antagonists & inhibitors
- Sulpiride/pharmacology
- Thiourea/analogs & derivatives
- Thiourea/pharmacology
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- J-A Arias-Montaño
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigacion y de Estudios Avanzados, Apartado Postal 14-740, Mexico, D.F., Mexico
| | - B Floran
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigacion y de Estudios Avanzados, Apartado Postal 14-740, Mexico, D.F., Mexico
| | - M Garcia
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigacion y de Estudios Avanzados, Apartado Postal 14-740, Mexico, D.F., Mexico
| | - J Aceves
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigacion y de Estudios Avanzados, Apartado Postal 14-740, Mexico, D.F., Mexico
| | - J M Young
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QJ
| |
Collapse
|
11
|
Robinson AJ, Dickenson JM. Regulation of p42/p44 MAPK and p38 MAPK by the adenosine A(1) receptor in DDT(1)MF-2 cells. Eur J Pharmacol 2001; 413:151-61. [PMID: 11226388 DOI: 10.1016/s0014-2999(01)00761-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mitogen-activated protein kinase (MAPK) family consists of the p42/p44 MAPKs and the stress-activated protein kinases, c-Jun N-terminal kinase (JNK) and p38 MAPK. We have previously reported that the human adenosine A(1) receptor stimulates p42/p44 MAPK in transfected Chinese hamster ovary cells. In this study, we have investigated whether the endogenous adenosine A(1) receptor in the smooth muscle cell line, DDT(1)MF-2 activates p42/p44 MAPK, JNK and p38 MAPK. The adenosine A(1) receptor agonist N(6)-cyclopentyladenosine stimulated time and concentration-dependent increases in p42/p44 MAPK and p38 MAPK phosphorylation in DDT(1)MF-2 cells. No increases in JNK phosphorylation were observed following adenosine A(1) receptor activation. N(6)-cyclopentyladenosine-mediated increases in p42/p44 MAPK and p38 MAPK phosphorylation were blocked by the selective adenosine A(1) receptor antagonist 1,3-dipropylcyclopentylxanthine and following pretreatment of cells with pertussis toxin. Furthermore, adenosine A(1) receptor-mediated increases in p42/p44 MAPK were sensitive to the MAPK kinase 1 inhibitor PD 98059 (2'-amino-3'-methoxyflavone), whereas p38 MAPK responses were blocked by the p38 MAPK inhibitor SB 203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole). The broad range protein tyrosine kinase inhibitors genistein and tyrphostin A47 (alpha-cyano-(3,4-dihydroxy)thiocinnamide) did not block adenosine A(1) receptor stimulation of p42/p44 MAPK. For comparison, insulin-mediated increases in p42/p44 MAPK were blocked by genistein and tyrphostin A47. The Src tyrosine kinase inhibitor PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) and the epidermal growth factor receptor tyrosine kinase inhibitor AG1478 (4-(3-chloroanilino)-6,7-dimethoxyquinazoline) also had no effect on adenosine A(1) receptor stimulation of p42/p44 MAPK. Furthermore, the protein kinase C inhibitors Ro 31-8220 (3-[1-[3-(2-isothioureido) propyl]indol-3-yl]-4-(1-methylindol-3-yl)-3-pyrrolin-2,5-dione), chelerythrine and GF 109203X (2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)-maleimide) were without effect on adenosine A(1) receptor-induced p42/p44 MAPK phosphorylation. In contrast, wortmannin and LY 294002 (2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one), inhibitors of phosphatidylinositol 3-kinase, attenuated adenosine A(1) receptor stimulation of p42/p44 MAPK phosphorylation. In conclusion, the adenosine A(1) receptor stimulates p42/p44 MAPK through a pathway which appears to be independent of tyrosine kinase activation but involves phosphatidylinositol 3-kinase. Finally, adenosine A(1) receptor stimulation in DDT(1)MF-2 cells also activated p38 MAPK but not JNK via a pertussis toxin-sensitive pathway.
Collapse
Affiliation(s)
- A J Robinson
- Department of Life Sciences, Faculty of Science and Mathematics, Nottingham Trent University, Clifton Lane, NG11 8NS, Nottingham, UK
| | | |
Collapse
|
12
|
Cordeaux Y, Briddon SJ, Megson AE, McDonnell J, Dickenson JM, Hill SJ. Influence of receptor number on functional responses elicited by agonists acting at the human adenosine A(1) receptor: evidence for signaling pathway-dependent changes in agonist potency and relative intrinsic activity. Mol Pharmacol 2000; 58:1075-84. [PMID: 11040056 DOI: 10.1124/mol.58.5.1075] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of A(1) adenosine receptors leads to the inhibition of cAMP accumulation and the stimulation of inositol phosphate accumulation via pertussis toxin-sensitive G-proteins. In this study we have investigated the signaling of the A(1) adenosine receptor in Chinese hamster ovary (CHO) cells, when expressed at approximately 203 fmol/mg (CHOA1L) and at approximately 3350 fmol/mg (CHOA1H). In CHOA1L cells, the agonists N(6)-cyclopentyladenosine (CPA), (R)-N(6)-(2-phenylisopropyl)adenosine, and 5'-(N-ethylcarboxamido)adenosine (NECA) inhibited cAMP production in a concentration-dependent manner. After pertussis toxin treatment, the agonist NECA produced a stimulation of cAMP production, whereas CPA and (R)-N(6)-(2-phenylisopropyl)adenosine were ineffective. In CHOAIH cells, however, all three agonists produced both an inhibition of adenylyl cyclase and a pertussis toxin-insensitive stimulation of adenylyl cyclase. All three agonists were more potent at inhibiting adenylyl cyclase in CHOA1H cells than in CHOA1L cells. In contrast, A(1) agonists (and particularly NECA) were less potent at stimulating inositol phosphate accumulation in CHOA1H cells than in CHOA1L cells. After pertussis toxin treatment, agonist-stimulated inositol phosphate accumulation was reduced in CHOA1H cells and abolished in CHOA1L cells. The relative intrinsic activity of NECA in stimulating inositol phosphate accumulation, compared to CPA (100%), was much greater in the presence of pertussis toxin (289.6%) than in the absence of pertussis toxin (155.2%). These data suggest that A(1) adenosine receptors can couple to both pertussis toxin-sensitive and -insensitive G-proteins in an expression level-dependent manner. These data also suggest that the ability of this receptor to activate different G-proteins is dependent on the agonist present.
Collapse
Affiliation(s)
- Y Cordeaux
- Institute of Cell Signalling and School of Biomedical Sciences, Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
13
|
Germack R, Dickenson JM. Activation of protein kinase B by the A(1)-adenosine receptor in DDT(1)MF-2 cells. Br J Pharmacol 2000; 130:867-74. [PMID: 10864894 PMCID: PMC1572146 DOI: 10.1038/sj.bjp.0703396] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In this study the effect of insulin and A(1)-adenosine receptor stimulation on protein kinase B (PKB) activation has been investigated in the hamster vas deferens smooth muscle cell line DDT(1)MF-2. Increases in PKB phosphorylation were determined by Western blotting using an antibody that detects PKB phosphorylation at Ser(473). Insulin, a recognized activator of PKB, stimulated a concentration-dependent increase in PKB phosphorylation in DDT(1)MF-2 cells (EC(50) 5+/-1 pM). The selective A(1)-adenosine receptor agonist N(6)-cyclopentyladenosine (CPA) stimulated time and concentration-dependent increases in PKB phosphorylation in DDT(1)MF-2 cells (EC(50) 1.3+/-0.5 nM). CPA-mediated increases in PKB phosphorylation were antagonized by the A(1)-adenosine receptor selective antagonist 1,3-dipropylcyclopentylxanthine (DPCPX) yielding an apparent K(D) value of 2.3 nM. Pre-treatment of DDT(1)MF-2 cells with pertussis toxin (PTX, 100 ng ml(-1) for 16 h), to block G(i)/G(o)-dependent pathways, abolished CPA (1 microM) induced phosphorylation of PKB. In contrast, responses to insulin (100 nM) were resistant to PTX pre-treatment. The phosphatidylinositol 3-kinase (PI-3K) inhibitors wortmannin (IC(50) 10.3+/-0.6 nM) and LY 294002 (IC(50) 10.3+/-1.2 microM) attenuated the phosphorylation of PKB elicited by CPA (1 microM) in a concentration-dependent manner. Wortmannin (30 nM) and LY 294002 (30 microM) also blocked responses to insulin (100 nM). Removal of extracellular Ca(2+) and chelation of intracellular Ca(2+) with BAPTA had no significant effect on CPA-induced PKB phosphorylation. Similarly, pretreatment (30 min) with inhibitors of protein kinase C (Ro 31-8220; 10 microM), tyrosine kinase (genistein; 100 microM), mitogen-activated protein (MAP) kinase kinase (PD 98059; 50 microM) and p38 MAPK (SB 203580; 20 microM) had no significant effect on CPA-induced PKB phosphorylation. In conclusion, these data demonstrate that A(1)-adenosine receptor stimulation in DDT(1)MF-2 cells increases PKB phosphorylation through a PTX and PI-3K-sensitive pathway.
Collapse
Affiliation(s)
- Renée Germack
- Department of Life Sciences, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS
| | - John M Dickenson
- Department of Life Sciences, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS
- Author for correspondence:
| |
Collapse
|
14
|
Dickenson JM, Hill SJ. Potentiation of adenosine A1 receptor-mediated inositol phospholipid hydrolysis by tyrosine kinase inhibitors in CHO cells. Br J Pharmacol 1998; 125:1049-57. [PMID: 9846644 PMCID: PMC1565676 DOI: 10.1038/sj.bjp.0702170] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The effect of protein tyrosine kinase inhibitors on human adenosine A1 receptor-mediated [3H]-inositol phosphate ([3H]-IP) accumulation has been studied in transfected Chinese hamster ovary cells (CHO-A1) cells. 2. In agreement with our previous studies the selective adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) stimulated the accumulation of [3H]-IPs in CHO-A1 cells. Pre-treatment with the broad spectrum tyrosine kinase inhibitor genistein (100 microM; 30 min) potentiated the responses elicited by 1 microM (199+/-17% of control CPA response) and 10 microM CPA (234+/-15%). Similarly, tyrphostin A47 (100 microM) potentiated the accumulation of [3H]-IPs elicited by 1 microM CPA (280+/-32%). 3. Genistein (EC50 = 13.7+/-1.2 microM) and tyrphostin A47 (EC50 = 10.4+/-3.9 microM) potentiated the [3H]-IP response to 1 microM CPA in a concentration-dependent manner. 4. Pre-incubation with the inactive analogues of genistein and tyrphostin A47, daidzein (100 microM; 30 min) and tyrphostin A1 (100 microM; 30 min), respectively, had no significant effect on the accumulation of [3H]-IPs elicited by 1 microM CPA. 5. Genistein (100 microM) had no significant effect on the accumulation of [3H]-IPs produced by the endogenous thrombin receptor (1 u ml(-1); 100+/-10% of control response). In contrast, tyrphostin A47 produced a small augmentation of the thrombin [3H]-IP response (148+/-13%). 6. Genistein (100 microM) had no effect on the [3H]-IP response produced by activation of the endogenous Gq-protein coupled CCK(A) receptor with the sulphated C-terminal octapeptide of cholecystokinin (1 microM CCK-8; 96+/-6% of control). In contrast, tyrphostin A47 (100 microM) caused a small but significant increase in the response to 1 microM CCK-8 (113+/-3% of control). 7. The phosphatidylinositol 3-kinase inhibitor LY 294002 (30 microM) and the MAP kinase kinase inhibitor PD 98059 (50 microM) had no significant effect on the [3H]-IP responses produced by 1 microM CPA and 1 microM CCK-8. 8. These observations suggest that a tyrosine kinase-dependent pathway may be involved in the regulation of human adenosine A1 receptor mediated [3H]-IP responses in CHO-A1 cells.
Collapse
Affiliation(s)
- J M Dickenson
- Institute of Cell Signalling and School of Biomedical Sciences, Queen's Medical Centre, Nottingham
| | | |
Collapse
|
15
|
Dickenson JM, Hill SJ. Involvement of G-protein betagamma subunits in coupling the adenosine A1 receptor to phospholipase C in transfected CHO cells. Eur J Pharmacol 1998; 355:85-93. [PMID: 9754942 DOI: 10.1016/s0014-2999(98)00468-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In transfected Chinese hamster ovary (CHO-A1) cells the human adenosine A1 receptor directly stimulates pertussis toxin-sensitive increases in inositol phosphate production and potentiates (synergistically) the inositol phosphate responses mediated by Gq-coupled P2Y2 purinoceptor and CCK(A) receptors. In the present study we have investigated the role of Gbetagamma subunits in mediating adenosine A1 receptor effects on phospholipase C activation (both direct and synergistic) by transiently transfecting CHO-A1 cells with a scavenger of Gbetagamma subunits: the C-terminus of beta-adrenoceptor kinase 1 (beta ark1 residues 495-689). [3H]inositol phosphate responses to the selective adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA; 1 microM) were inhibited (41 +/- 1%) in CHO-A1 cells transiently transfected with the Gbetagamma scavenger, beta ark1 (495-689). Expression of beta ark1 (495-689) protein was confirmed by Western blotting. In contrast, adenosine A1 receptor-mediated inhibition of forskolin stimulated [3H]cyclic AMP accumulation was unaffected by transient expression of beta ark1 (495-689). Beta ark1 (495-689) expression had no significant effect on the [3H]inositol phosphate responses produced by activation of the endogenous P2Y2 purinoceptor (100 microM UTP; 92 +/- 0.8% of control). [3H]inositol phosphate accumulation in response to adenosine A receptor activation was also attenuated in CHO-K1 cells co-transfected with the beta ark1 (495-689) minigene (59 +/- 4% inhibition of control response to 1 microM CPA). Finally, transient expression of beta ark1 (495-689) in CHO-A1 cells inhibited the augmentation of [3H]inositol phosphate responses resulting from co-activation of adenosine A1 receptors and P2Y2 purinoceptors. These experiments indicate that Gbetagamma subunits are involved in the direct coupling the adenosine A1 receptor to phospholipase C and that they also participate in the augmentation of P2Y2 purinoceptor-mediated [3H]inositol phosphate responses by the adenosine A1 receptor.
Collapse
Affiliation(s)
- J M Dickenson
- Institute of Cell Signalling, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, UK
| | | |
Collapse
|
16
|
Saura CA, Mallol J, Canela EI, Lluis C, Franco R. Adenosine deaminase and A1 adenosine receptors internalize together following agonist-induced receptor desensitization. J Biol Chem 1998; 273:17610-7. [PMID: 9651356 DOI: 10.1074/jbc.273.28.17610] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A1 adenosine receptors (A1Rs) and adenosine deaminase (ADA; EC 3.5.4. 4) interact on the cell surface of DDT1MF-2 smooth muscle cells. The interaction facilitates ligand binding and signaling via A1R, but it is not known whether it has a role in homologous desensitization of A1Rs. Here we show that chronic exposure of DDT1MF-2 cells to the A1R agonist, N6-(R)-(phenylisopropyl)adenosine (R-PIA), caused a rapid aggregation or clustering of A1 receptor molecules on the cell membrane, which was enhanced by pretreatment with ADA. Colocalization between A1R and ADA occurred in the R-PIA-induced clusters. Interestingly, colocalization between A1R and ADA also occurred in intracellular vesicles after internalization of both protein molecules in response to R-PIA. Agonist-induced aggregation of A1Rs was mediated by phosphorylation of A1Rs, which was enhanced and accelerated in the presence of ADA. Ligand-induced second-messenger desensitization of A1Rs was also accelerated in the presence of exogenous ADA, and it correlated well with receptor phosphorylation. However, although phosphorylation of A1R returned to its basal state within minutes, desensitization continued for hours. The loss of cell-surface binding sites (sequestration) induced by the agonist was time-dependent (t1/2= 10 +/- 1 h) and was accelerated by ADA. All of these results strongly suggest that ADA plays a key role in the regulation of A1Rs by accelerating ligand-induced desensitization and internalization and provide evidence that the two cell surface proteins internalize via the same endocytic pathway.
Collapse
Affiliation(s)
- C A Saura
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, 08028 Barcelona, Catalunya, Spain
| | | | | | | | | |
Collapse
|
17
|
Haynes JM, Hill SJ. Beta-adrenoceptor-mediated inhibition of alpha 1-adrenoceptor-mediated and field stimulation-induced contractile responses in the prostate of the guinea pig. Br J Pharmacol 1997; 122:1067-74. [PMID: 9401771 PMCID: PMC1565050 DOI: 10.1038/sj.bjp.0701494] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The prostate of the guinea pig responds to electrical field-stimulation (2 s trains, 0.1 ms pulses at 3-60 Hz, supramaximal voltage) with contractile responses. At 18 Hz these responses were inhibited (82 +/- 2%) by the L-type Ca2+ channel blocker, nifedipine (10 microM) and (by 100%) by the neurotoxin, tetrodotoxin (500 nM). The alpha 1A-selective adrenoceptor antagonist, 5-methylurapidil, inhibited responses to field stimulation in the absence and presence of nifedipine (10 microM) with -log molar (p) IC50 (+/- s.e. mean) values of 7.95 +/- 0.14 and 7.01 +/- 0.07, respectively. 2. The non-selective beta-adrenoceptor agonist, isoprenaline, reduced (56 +/- 8%) field stimulation induced contractile responses (pEC50 6.91 +/- 0.11). The non-selective beta-adrenoceptor antagonist propranolol (50 nM) and the beta 1-adrenoceptor selective antagonist, atenolol (3 microM), but not the beta 2-adrenoceptor antagonist ICI 118,551 ((+/-)-1 -[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxyl]-3-[1-methylethyl)amino ]-2-butanol HCl; 100 nM) antagonized this effect (apparent pKB values 8.44 +/- 0.22 and 6.92 +/- 0.21, respectively) indicating an effect mediated through beta 1-like adrenoceptors. In the presence of nifedipine (10 microM) isoprenaline (up to 10 microM) did not inhibit the remaining response to field-stimulation. 3. Phenylephrine elicited contractile responses (pEC50 4.47 +/- 0.30) from preparations of guinea pig prostate which were reduced (63 +/- 25%) by nifedipine (10 microM). This response was antagonized by 5-methylurapidil (100 nM, apparent pKB 8.24 +/- 0.33), but was not affected by preincubation chloroethylclonidine (50 microM, 30 min). Responses to phenylephrine (30 microM) were inhibited (by up to 52 +/- 5%) by isoprenaline (pIC50 6.40 +/- 0.35, the beta 2-adrenoceptor selective agonist, salbutamol was weakly effective). Propranolol (300 nM), ICI 118,551 (100 nM) and atenolol (3 microM) shifted isoprenaline concentration-response curves to the right (apparent pKB +/- s.e. values 7.68 +/- 1.10; 8.00 +/- 0.72 and 6.62 +/- 0.95, respectively). In the presence of nifedipine (10 microM) responses to phenylephrine (30 microM,) were inhibited (by up to 51 +/- 4%) by isoprenaline (pIC50 6.88 +/- 0.17): propranolol (300 nM) and ICI 118,551 (100 nM), but not atenolol (3 microM) antagonized this effect (apparent pKB values 8.85 +/- 1.53 and 8.35 +/- 1.18, respectively). Thus beta 1-like and beta 2-like adrenoceptors may be involved in the isoprenaline-stimulated inhibition of phenylephrine concentration-response curves. 4. Phenylephrine stimulated [3H]-inositol phosphate accumulation (pEC50 4.47 +/- 0.83), an effect insensitive to chloroethylclonidine pre-treatment (50 microM, 30 min) and to nifedipine (10 microM), but inhibited by 5-methylurapidil (apparent pKD 7.90 +/- 0.22). Isoprenaline (up to 1 microM) did not affect the phenylephrine-stimulated maximal increase in [3H]-inositol phosphates but did increase [3H]-cyclic adenosine monophosphate ([3H]-cAMP) accumulation (pEC50 6.77 +/- 0.66); propranolol (30 nM) and ICI 118,551 (110 nM), but not atenolol (up to 3 microM), antagonized this effect. These responses may therefore be mediated through beta 2-like adrenoceptors. 5. These results show that the alpha 1-adrenoceptor mediated and field stimulation-induced contractions of the guinea pig prostate are partly dependent upon intracellular and extracellular sources of Ca2+. We conclude that both beta 1- and beta 2-like adrenoceptors inhibit responses to phenylephrine in the prostate of the guinea pig. The beta 1-like adrenoceptor-mediated inhibition of these responses is evident upon the field stimulation-induced and nifedipine-sensitive component of the response to phenylephrine and may not involve the activation of adenylyl cyclase. The beta 2-like adrenoceptor may inhibit both nifedipine sensitive and insensitive components of the response to phenylephrine, possibly through the activation of adenylyl cyclase, but not through the i
Collapse
Affiliation(s)
- J M Haynes
- Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, Nottingham
| | | |
Collapse
|
18
|
Adenosine A1 receptor-mediated activation of phospholipase C in cultured astrocytes depends on the level of receptor expression. J Neurosci 1997. [PMID: 9185533 DOI: 10.1523/jneurosci.17-13-04956.1997] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adenosine A1 receptors induce an inhibition of adenylyl cyclase via G-proteins of the Gi/o family. In addition, simultaneous stimulation of A1 receptors and of receptor-mediated activation of phospholipase C (PLC) results in a synergistic potentiation of PLC activity. Evidence has accumulated that Gbetagamma subunits mediate this potentiating effect. However, an A1 receptor-mediated increase in extracellular glutamate was suggested to be responsible for the potentiating effect in mouse astrocyte cultures. We have investigated the synergistic activation of PLC by adenosine A1 and alpha1 adrenergic receptors in primary cultures of astrocytes derived from different regions of the newborn rat brain. It is reported here that (1) adenosine A1 receptor mRNA as well as receptor protein is present in astrocytes from all brain regions, (2) A1 receptor-mediated inhibition of adenylyl cyclase is of similar extent in all astrocyte cultures, (3) the A1 receptor-mediated potentiation of PLC activity requires higher concentrations of agonist than adenylyl cyclase inhibition and is dependent on the expression level of A1 receptor, and (4) the potentiating effect on PLC activity is unrelated to extracellular glutamate. Taken together, our data support the notion that betagamma subunits are the relevant signal transducers for A1 receptor-mediated PLC activation in rat astrocytes. Because of the lower affinity of betagamma, as compared with alpha subunits, more betagamma subunits are required for PLC activation. Therefore, only in cultures with higher levels of adenosine A1 receptors is the release of betagamma subunits via Gi/o activation sufficient to stimulate PLC. It is concluded that variation of the expression level of adenosine A1 receptors may be an important regulatory mechanism to control PLC activation via this receptor.
Collapse
|
19
|
Biber K, Klotz KN, Berger M, Gebicke-Härter PJ, van Calker D. Adenosine A1 receptor-mediated activation of phospholipase C in cultured astrocytes depends on the level of receptor expression. J Neurosci 1997; 17:4956-64. [PMID: 9185533 PMCID: PMC6573309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Adenosine A1 receptors induce an inhibition of adenylyl cyclase via G-proteins of the Gi/o family. In addition, simultaneous stimulation of A1 receptors and of receptor-mediated activation of phospholipase C (PLC) results in a synergistic potentiation of PLC activity. Evidence has accumulated that Gbetagamma subunits mediate this potentiating effect. However, an A1 receptor-mediated increase in extracellular glutamate was suggested to be responsible for the potentiating effect in mouse astrocyte cultures. We have investigated the synergistic activation of PLC by adenosine A1 and alpha1 adrenergic receptors in primary cultures of astrocytes derived from different regions of the newborn rat brain. It is reported here that (1) adenosine A1 receptor mRNA as well as receptor protein is present in astrocytes from all brain regions, (2) A1 receptor-mediated inhibition of adenylyl cyclase is of similar extent in all astrocyte cultures, (3) the A1 receptor-mediated potentiation of PLC activity requires higher concentrations of agonist than adenylyl cyclase inhibition and is dependent on the expression level of A1 receptor, and (4) the potentiating effect on PLC activity is unrelated to extracellular glutamate. Taken together, our data support the notion that betagamma subunits are the relevant signal transducers for A1 receptor-mediated PLC activation in rat astrocytes. Because of the lower affinity of betagamma, as compared with alpha subunits, more betagamma subunits are required for PLC activation. Therefore, only in cultures with higher levels of adenosine A1 receptors is the release of betagamma subunits via Gi/o activation sufficient to stimulate PLC. It is concluded that variation of the expression level of adenosine A1 receptors may be an important regulatory mechanism to control PLC activation via this receptor.
Collapse
Affiliation(s)
- K Biber
- Department of Psychiatry, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Zhu PJ, Krnjević K. Endogenous adenosine on membrane properties of CA1 neurons in rat hippocampal slices during normoxia and hypoxia. Neuropharmacology 1997; 36:169-76. [PMID: 9144654 DOI: 10.1016/s0028-3908(96)00166-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of endogenous adenosine release on CA1 neurons in hippocampal slices were studied under normoxic and hypoxic conditions, by using extra-/intracellular and whole-cell recordings. During normoxia, the adenosine antagonist, 8-(p-sulphophenyl) theophylline (8-SPT) or adenosine deaminase (ADA) potentiated both evoked CA1 EPSPs and spontaneous synaptic activity, but not monosynaptic IPSPs; there was a minimal depolarization (by 1 mV), probably caused by the enhanced synaptic activity, but no increase in input conductance. Under voltage-clamp with KCl electrodes (with holding potential (VH) near -70 mV), hypoxia (4-5 min) elicited a rise in input conductance and an outward current that reversed near -90 mV, in keeping with the activation of K conductance. These effects of hypoxia were partly attenuated by 8-SPT (10 microM). The hypoxia-induced outward current and conductance increase were abolished by 1 mM Ba, being replaced by a small inward current and a conductance decrease. These data indicate that adenosine tonically inhibits excitatory, but not inhibitory, synaptic transmission, has no direct effect on input conductance, and contributes to the hyperpolarization and fall in input resistance induced by hypoxia.
Collapse
Affiliation(s)
- P J Zhu
- Anaesthesia Research Department, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
21
|
Sipma H, Fredholm BB, Den Hertog A, Nelemans A. Plasma membrane Ca2+ pumping plays a prominent role in adenosine A1 receptor mediated changes in [Ca2+]i in DDT1 MF-2 cells. Eur J Pharmacol 1996; 306:187-94. [PMID: 8813632 DOI: 10.1016/0014-2999(96)00183-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Adenosine A1 receptor mediated formation of inosito 1,4,5-trisphosphate (Ins(1,4,5)P3) and accumulation of cytoplasmic Ca2+ ([Ca2+]i) were investigated in DDT1 MF-2 smooth muscle cells. A strong reduction of the adenosine and N6-cyclopentyladenosine (CPA) induced rise in [Ca2+]i was observed after blocking Ca2+ entry across the plasma membrane with LaCl3. This effect of LaCl3 was not observed in the absence of extracellular Ca2+; it was not caused by reduced Ins(1,4,5)P3 formation or changed Ins(1,4,5)P3 induced Ca2+ release, or influenced by temperature. The inhibition of the CPA induced increase in [Ca2+]i by LaCl3 was strongly counteracted in the presence of ortho-vanadate, an inhibitor of plasma membrane Ca2+ ATPase. Ortho-vanadate might also reduce protein tyrosine-phosphate phosphatase activity involved in tyrosine kinase mediated phospholipase C (PLC) activation. However, ortho-vanadate and tyrphostin 25, a tyrosine kinase inhibitor, did not affect the CPA induced formation of Ins(1,4,5)P3. Taken together, these results show a strong contribution of Ca2+ pumping across the plasma membrane to the regulation of [Ca2+]i mediated by adenosine A1 receptors. Na+/Ca2+ exchange only played a minor role in the initial phase of CPA induced Ca2+ metabolism as measured in low Na+ containing solution. The mechanism by which adenosine A1 receptors activate plasma membrane Ca2+ ATPase pumps does not include direct stimulation of pumps, but most likely involves an indirect pathway activated by a rapid increase in [Ca2+]i.
Collapse
Affiliation(s)
- H Sipma
- Groningen Institute for Drugs Studies (GIDS), Department of Clinical Pharmacology, University of Groningen, Netherlands
| | | | | | | |
Collapse
|
22
|
Dickenson JM, Hill SJ. Synergistic interactions between human transfected adenosine A1 receptors and endogenous cholecystokinin receptors in CHO cells. Eur J Pharmacol 1996; 302:141-51. [PMID: 8791002 DOI: 10.1016/0014-2999(96)00039-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of Gi coupled receptor activation (adenosine A1 and 5-HT1B receptors) on cholecystokinin receptor-stimulated inositol phosphate accumulation has been investigated in Chinese hamster ovary cells transfected with the human adenosine A1 receptor cDNA (CHO-A1). CHO cells constitutively express the 5-HT1B receptor [Berg, Clarke, Sailstad, Saltzman and Maayani (1994) Mol. Pharmacol. 46, 477-484]. Our previous studies using CHO-A1 cells have revealed that both the adenosine A1 and 5-HT1B receptor are negatively coupled to adenylyl cyclase activity and stimulate increases in [Ca2+]i, through a pertussis toxin-sensitive pathway. In the present study the selective adenosine A1 receptor agonist N6-cyclopentyladenosine stimulated a pertussis toxin-sensitive increase in total [3H]inositol phosphate accumulation. The sulphated C-terminal octapeptide of cholecystokinin (CCK-8) stimulated a robust and pertussis toxin-insensitive increase in [3H]inositol phosphate accumulation through the activation of CCKA receptors. Co-stimulation of CHO-A1 cells with N6-cyclopentyladenosine and CCK-8 produced a synergistic increase in [3H]inositol phosphate accumulation. The synergistic interaction between N6-cyclopentyladenosine and CCK-8 was abolished in pertussis toxin-treated cells. Synergy between N6-cyclopentyladenosine and CCK-8 still occurred in the absence of extracellular calcium. The 5-HT1B receptor agonist 5-carboxyamidotryptamine did not stimulate a measurable increase in [3H]inositol phosphate accumulation. Furthermore, 5-carboxyamidotryptamine had no significant effect on CCK-8 mediated [3H]inositol phosphate production. Activation of endogenous P2U receptors (Gq/Gll coupled) with ATP gamma S produced a significant increase in [3H]inositol phosphate accumulation. Co-stimulation of CHO-A1 cells with ATP gamma S and CCK-8 produced additive increases in [3H]inositol phosphate accumulation. These data indicate that CHO-A1 cells may prove a useful model system in which to investigate further the mechanisms underlying the intracellular 'cross-talk' between phospholipase C coupled receptors (Gq/Gll linked) and Gi/Go coupled receptors.
Collapse
Affiliation(s)
- J M Dickenson
- Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, Nottingham, UK.
| | | |
Collapse
|
23
|
Ciruela F, Saura C, Canela EI, Mallol J, Lluis C, Franco R. Adenosine deaminase affects ligand-induced signalling by interacting with cell surface adenosine receptors. FEBS Lett 1996; 380:219-23. [PMID: 8601428 DOI: 10.1016/0014-5793(96)00023-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adenosine deaminase (ADA) is not only a cytosolic enzyme but can be found as an ecto-enzyme. At the plasma membrane, an adenosine deaminase binding protein (CD26, also known as dipeptidylpeptidase IV) has been identified but the functional role of this ADA/CD26 complex is unclear. Here by confocal microscopy, affinity chromatography and coprecipitation experiments we show that A1 adenosine receptor (A1R) is a second ecto-ADA binding protein. Binding of ADA to A1R increased its affinity for the ligand thus suggesting that ADA was needed for an effective coupling between A1R and heterotrimeric G proteins. This was confirmed by the fact that ASA, independently of its catalytic behaviour, enhanced the ligand-induced second messenger production via A1R. These findings demonstrate that, apart from the cleavage of adenosine, a further role of ecto-adenosine deaminase on the cell surface is to facilitate the signal transduction via A1R.
Collapse
Affiliation(s)
- F Ciruela
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Dickenson JM, Hill SJ. Coupling of an endogenous 5-HT1B-like receptor to increases in intracellular calcium through a pertussis toxin-sensitive mechanism in CHO-K1 cells. Br J Pharmacol 1995; 116:2889-96. [PMID: 8680721 PMCID: PMC1909226 DOI: 10.1111/j.1476-5381.1995.tb15941.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1. Chinese hamster ovary cells (CHO-K1) express an endogenous 5-hydroxytryptamine (5-HT)1B-like receptor that is negatively coupled to adenylyl cyclase through a pertussis toxin (PTX)-sensitive mechanism. Furthermore, the human adenosine A1 receptor when expressed in CHO-K1 cells (CHO-A1) has been shown to mobilize intracellular Ca2+ through a PTX-sensitive mechanism. Therefore the aim of this investigation was to determine whether the endogenous 5-HT1B-like receptor was able to stimulate increases in intracellular free [Ca2+] ([Ca2+]i) in CHO-A1 cells. 2. In agreement with previous studies using CHO cells, 5-hydroxytryptamine (5-HT) elicited a concentration-dependent inhibition of forskolin-stimulated [3H]-cyclic AMP production in CHO-A1 cells (p[EC50] = 7.73 +/- 0.13). 5-HT (1 microM) inhibited 47 +/- 5% of the [3H]-cyclic AMP accumulation induced by 3 microM forskolin. Forskolin stimulated [3H]-cyclic AMP accumulation was also inhibited by the 5-HT1 receptor agonists (p[EC50] values) 5-carboxyamidotryptamine (5-CT; 8.07 +/- 0.08), RU 24969 (8.12 +/- 0.33) and sumatriptan (5.80 +/- 0.31). 3. 5-HT elicited a concentration-dependent increase in [Ca2+]i in CHO-A1 cells (p[EC50] = 8.07 +/- 0.05). In the presence of 2 mM extracellular Ca2+, 5-HT (1 microM) increased [Ca2+]i from 174 +/- 17 nM to 376 +/- 22 nM. The 5-HT1 receptor agonists (p[EC50] values), 5-carboxyamidotryptamine (5-CT; 7.9 +/- 0.02), RU 24969 (8.1 +/- 0.07) and sumatriptan (5.9 +/- 0.11) all elicited concentration-dependent increases in [Ca2+]i. Similar maximal increases in [Ca2+]i were obtained with each agonist. The selective 5-HT1A receptor agonist, 8-OH-DPAT (10 microM) did not stimulate increases in [Ca2+]i. 5-HT (100 microM) and 5-CT (10 microM) did not stimulate a measurable increase in [3H]-inositol phosphate accumulation in CHO-A1 cells. 4. 5-HT (1 microM)-mediated increases in [Ca2+]i were insensitive to the 5-HT receptor antagonist, ritanserin (5-HT2; 100 nM), ketanserin (5-HT2; 100 nM), LY-278,584 (5-HT3; 1 microM) and WAY 100635 (5-HT1A; 1 microM). The response to 5-HT (100 nM) was antagonized by the non-selective 5-HT1 antagonist, methiothepin (pKb = 8.90 +/- 0.09) and the 5-HT1D antagonist GR 127935 (pKb = 10.44 +/- 0.06). 5. Pretreatment with PTX (200 ng ml-1 for 4 h) completely attenuated the Ca2+ response to 100 microM 5-HT. 6. In untransfected CHO-K1 cells, 5-HT (1 microM), RU 24969 (1 microM), and 5-CT (1 microM) elicited increases in [Ca2+]i similar to those observed in CHO-A1 cells. 7. These data demonstrate that in CHO-K1 cells the endogenously expressed 5-HT1B-like receptor couples to the phospholipase C/Ca2+ signalling pathway through a PTX-sensitive pathway, suggesting the involvement of Gi/Go protein(s).
Collapse
Affiliation(s)
- J M Dickenson
- Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, Nottingham
| | | |
Collapse
|
25
|
Megson AC, Dickenson JM, Townsend-Nicholson A, Hill SJ. Synergy between the inositol phosphate responses to transfected human adenosine A1-receptors and constitutive P2-purinoceptors in CHO-K1 cells. Br J Pharmacol 1995; 115:1415-24. [PMID: 8564200 PMCID: PMC1908880 DOI: 10.1111/j.1476-5381.1995.tb16632.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. The effect of adenosine A1-receptor and P2-purinoceptor agonists on [3H]-inositol phosphate accumulation has been investigated in CHO-K1 cells transfected with the human adenosine A1-receptor. 2. Adenosine receptor agonists stimulated [3H]-inositol phosphate accumulation in CHO-K1 cells with a rank potency order of N6-cyclopentyladenosine (CPA) > 5'-N-ethylcarboxamidoadenosine (NECA) > 2-chloroadenosine > N6-2-(4-aminophenyl) ethyladenosine (APNEA). The responses to both CPA and APNEA were antagonized by the A1 selective antagonist, 1,3-dipropylcyclopentylxanthine (DPCPX) yielding KD values of 1.2 nM and 4.3 nM respectively. 3. ATP, UTP and ATP gamma S were also able to stimulate [3H]-inositol phosphate accumulation in these cells with EC50 values of 1.9 microM, 1.3 microM and 5.0 microM respectively. 2-Methyl-thio-ATP was a weak agonist of this response (EC50 > 100 microM). 4. The [3H]-inositol phosphate response to CPA was completely attenuated by pertussis toxin treatment (24 h; 100 ng ml-1). In contrast, the responses to ATP, UTP and ATP gamma S were only reduced by circa 30% in pertussis toxin-treated cells. 5. The simultaneous addition of CPA and either ATP, UTP or ATP gamma S produced a large augmentation of [3H]-inositol phospholipid hydrolysis. This was due to an increase in the maximal response and was significantly greater than the predicted additive response for activation of these two receptor systems. The synergy was not observed in pertussis toxin-treated cells. 6. No synergy was observed between the [3H]-inositol phosphate responses to histamine and ATP in CHO-K1 cells transfected with the bovine histamine H1-receptor. In these cells the response to histamine was completely resistant to inhibition by pertussis toxin treatment. 7. This study provides a clear demonstration of a synergy between pertussis toxin-sensitive and insensitive receptor systems in a model cell system which is an ideal host for transfected cDNA sequences. This model system should provide a unique opportunity to unravel the mechanisms underlying this example of receptor cross-talk involving phospholipase C.
Collapse
Affiliation(s)
- A C Megson
- Department of Physiology & Pharmacology, Medical School, Queen's Medical Centre, Nottingham
| | | | | | | |
Collapse
|
26
|
Peakman MC, Hill SJ. Adenosine A1 receptor-mediated changes in basal and histamine-stimulated levels of intracellular calcium in primary rat astrocytes. Br J Pharmacol 1995; 115:801-10. [PMID: 8548180 PMCID: PMC1908518 DOI: 10.1111/j.1476-5381.1995.tb15004.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. The effects of adenosine A1 receptor stimulation on basal and histamine-stimulated levels of intracellular free calcium ion concentration ([Ca2+]i) have been investigated in primary astrocyte cultures derived from neonatal rat forebrains. 2. Histamine (0.1 microM-1 mM) caused rapid, concentration-dependent increases in [Ca2+]i over basal levels in single type-2 astrocytes in the presence of extracellular calcium. A maximum mean increase of 1,468 +/- 94 nM over basal levels was recorded in 90% of type-2 cells treated with 1 mM histamine (n = 49). The percentage of type-2 cells exhibiting calcium increases in response to histamine appeared to vary in a concentration-dependent manner. However, the application of 1 mM histamine to type-1 astrocytes had less effect, eliciting a mean increase in [Ca2+]i of 805 +/- 197 nM over basal levels in only 30% of the cells observed (n = 24). 3. In the presence of extracellular calcium, the A1 receptor-selective agonist, N6-cyclopentyladenosine (CPA, 10 microM), caused a maximum mean increase in [Ca2+]i of 1,110 +/- 181 nM over basal levels in 30% of type-2 astrocytes observed (n = 53). The size of this response was concentration-dependent; however, the percentage of type-2 cells exhibiting calcium increases in response to CPA did not appear to vary in a concentration-dependent manner. A mean calcium increase of 605 +/- 89 nM over basal levels was also recorded in 23% of type-1 astrocytes treated with 10 microM CPA (n = 30). 4. In the absence of extracellular calcium, in medium containing 0.1 mM EGTA, a mean increase in [Ca2+]i of 504 +/- 67 nM over basal levels was recorded in 41% of type-2 astrocytes observed (n = 41) after stimulation with 1 microM CPA. However, in the presence of extracellular calcium, pretreatment with the A1 receptor-selective antagonist, 8-cyclopentyl-1,3-dipropylxanthine, for 5-10 min before stimulation with 1 microM CPA, completely antagonized the response in 100% of the cells observed. 5. In type-2 astrocytes, prestimulation with 10 nM CPA significantly increased the size of the calcium response produced by 0.1 microM histamine and the percentage of responding cells. Treatment with 0.1 microM histamine alone caused a mean calcium increase of 268 +/- 34 nM in 41% of the cells observed (n = 34). After treatment with 10 nM CPA, mean calcium increase of 543 +/- 97 nM was recorded in 100% of the cells observed (n = 33). 6. These data indicate that adenosine Al receptors couple to intracellular calcium mobilization and extracellular calcium influx in type-1 and type-2 astrocytes in primary culture. In addition, the simultaneous activation of adenosine Al receptors on type-2 astrocytes results in an augmentation of the calcium response to histamine H1 receptor stimulation.
Collapse
Affiliation(s)
- M C Peakman
- Department of Physiology & Pharmacology, Medical School, Queen's Medical Centre, Nottingham
| | | |
Collapse
|
27
|
Tomlinson PR, Wilson JW, Stewart AG. Salbutamol inhibits the proliferation of human airway smooth muscle cells grown in culture: relationship to elevated cAMP levels. Biochem Pharmacol 1995; 49:1809-19. [PMID: 7598743 DOI: 10.1016/0006-2952(94)00532-q] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The link between increased usage of beta-adrenoceptor agonists and worsening of asthma symptoms has raised interest in the effects of agents such as salbutamol on airway wall remodelling, and particularly airway smooth muscle proliferation. In the present study we have investigated the role of increases in intracellular cAMP in the inhibitory effect of salbutamol on airway smooth muscle proliferation. The inhibitory effects of a combination of submaximally effective concentrations of salbutamol (10 nM) and the non-selective phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX, 100 microM) on thrombin (0.3 U/mL)-induced mitogenesis in human cultured airway smooth muscle cells was greater than that for either agent alone. In addition, agents known to increase cAMP-dependent protein kinase activity including forskolin (10 microM), 8-bromoadenosine-3',5'-cyclic monophosphate (100 microM), and prostaglandin E2 (1 microM) have an inhibitory effect on thrombin (0.3 U/mL)-induced induced proliferation. Furthermore, the cAMP antagonist, 8-bromoadenosine-3',5'-cyclic monophosphorothioate, Rp-isomer (300 microM) significantly reduced the inhibitory effect of salbutamol (10 nM) on thrombin (0.3 U/mL)-induced DNA synthesis. In IBMX (100 microM)-pretreated cells, salbutamol (100 nM) increased intracellular cAMP levels via stimulation of a beta 2-adrenoceptor. Salbutamol (10 microM), at concentrations supramaximally effective for inhibition of mitogenesis, had no effect on thrombin (0.3 U/mL)-induced increases in intracellular calcium levels. Therefore, our results suggest that the previously reported inhibition of mitogen-induced proliferation in human cultured airway smooth muscle cells by the beta 2-adrenoceptor agonist, salbutamol (100 nM), is at least partly due to elevation of intracellular cAMP, while there is no effect of salbutamol on initial mitogen-induced increases in intracellular calcium.
Collapse
Affiliation(s)
- P R Tomlinson
- Microsurgery Research Centre, St. Vincent's Hospital, Fitzroy, Australia
| | | | | |
Collapse
|
28
|
Dickenson JM, Camps M, Gierschik P, Hill SJ. Activation of phospholipase C by G-protein beta gamma subunits in DDT1MF-2 cells. Eur J Pharmacol 1995; 288:393-8. [PMID: 7774686 DOI: 10.1016/0922-4106(95)90055-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Adenosine A1 receptors directly stimulate inositol phospholipid hydrolysis and Ca2+ mobilization through a pertussis toxin sensitive mechanism in DDT1MF-2 cells. In the present study we have investigated whether G protein beta gamma subunits (G beta gamma) are capable of stimulating phospholipase C in DDT1MF-2 cell membrane preparations using lipid vesicles containing [3H]phosphatidylinositol 4,5-bisphosphate. DDT1MF-2 cell membrane and soluble fractions were found to contain phospholipase C activity which was stimulated by increases in free Ca2+ ion concentration. G beta gamma purified from bovine retinal transducin produced significant increases in phospholipase C activity in DDT1MF-2 cell membranes. G beta gamma-dependent activation of phospholipase C, while virtually absent in the presence of low Ca2+ ion concentrations, increased markedly with increasing free Ca2+ ion concentration. These data suggest that membrane bound phospholipase C in DDT1MF-2 cells is sensitive to Ca2+, and may be stimulated conditionally by G beta gamma subunits, i.e. G beta gamma subunits activate the enzyme only in the presence of Ca2+. G beta gamma subunits also stimulated soluble phospholipase C in DDT1MF-2 cells. These findings support the hypothesis that Gi beta gamma subunits are involved in adenosine A1 receptor stimulated phospholipase C/Ca2+ signaling in DDT1MF-2 cells.
Collapse
Affiliation(s)
- J M Dickenson
- Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, Nottingham, UK
| | | | | | | |
Collapse
|
29
|
Dickenson JM, Hill SJ. Selective potentiation of histamine H1-receptor stimulated calcium responses by 1,4-dithiothreitol in DDT1MF-2 cells. Biochem Pharmacol 1994; 48:1721-8. [PMID: 7980641 DOI: 10.1016/0006-2952(94)90457-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of 1,4-dithiothreitol (DTT) on agonist-stimulated increases in intracellular free calcium concentration ([Ca2+]i) has been investigated in the smooth muscle cell line, DDT1MF-2, derived from hamster vas deferens. Pretreatment with DTT (1 mM) produced a large leftward parallel shift in concentration-response curve for histamine H1-receptor mediated increases in [Ca2+]i. The EC50 values for H1-receptor stimulated increases in [Ca2+]i in the absence and presence of DTT were 11.3 +/- 1.5 microM (N = 6) and 0.52 +/- 0.15 microM (N = 6), respectively. DTT had no significant effect on the maximum Ca2+ response elicited by histamine (100 microM). In the presence of DTT the partial H1-receptor agonist 2-pyridylethylamine (100 microM) increased [Ca2+]i from 112 +/- 14 nM to 237 +/- 24 nM (N = 10). In control cells 2-pyridylethylamine (100 microM) did not elicit a Ca2+ response. DTT had no significant effect on the maximum Ca2+ response elicited by 1 mM 2-pyridylethylamine. The enhancement of histamine H1-receptor Ca2+ responses by DTT was reversed by the sulphydryl oxidizing agent dithiobis-(2-nitrobenzoic acid). DTT had no significant effect on adenosine A1-, bradykinin and ATP-receptor stimulated increases in [Ca2+]i. [3H]mepyramine binding experiments confirmed that DTT increased agonist affinity. DTT produced a small, but significant, leftward shift in concentration-response curve for histamine displacement of [3H]mepyramine binding. These data suggest that DTT potentiates H1-receptor mediated Ca2+ responses by increasing agonist affinity.
Collapse
Affiliation(s)
- J M Dickenson
- Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, Nottingham, U.K
| | | |
Collapse
|
30
|
Dickenson JM, Hill SJ. Interactions between adenosine A1- and histamine H1-receptors. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1994; 26:959-69. [PMID: 8088416 DOI: 10.1016/0020-711x(94)90066-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The interactions or "cross-talk" between adenosine A1-receptors and receptors coupled to phospholipase C (leading to the hydrolysis of inositol phospholipids) have been well documented in the literature. For example, activating the A1-receptor selectively potentiates the histamine H1-receptor stimulated hydrolysis of inositol phospholipids in guinea-pig cerebral slices. In contrast, when the adenosine receptor is activated in the cerebral cortex of mouse or man the histamine response is selectively inhibited. Our studies have focused on the smooth muscle cell line, DDT1 MF-2, derived from hamster vas deferens. These cells express A1-receptors which, in addition to the expected negative coupling to adenylate cyclase, also stimulate inositol phospholipid hydrolysis and Ca2+ mobilization. These A1-receptors also potentiate histamine H1-receptor responses, i.e. inositol phospholipid hydrolysis and Ca2+ mobilization. The mechanism(s) underlying the potentiation or inhibition of histamine H1-receptor responses by the adenosine A1-receptor remain to be unravelled. One mechanism may involve intracellular "cross-talk" at the G-protein level. This review will discuss how beta gamma subunits from G(i) proteins could be involved in augmenting responses to calcium mobilizing receptors.
Collapse
Affiliation(s)
- J M Dickenson
- Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, Nottingham, U.K
| | | |
Collapse
|
31
|
Challiss RA, Mistry R, Gray DW, Nahorski SR. Modulatory effects of NMDA on phosphoinositide responses evoked by the metabotropic glutamate receptor agonist 1S,3R-ACPD in neonatal rat cerebral cortex. Br J Pharmacol 1994; 112:231-9. [PMID: 7913380 PMCID: PMC1910290 DOI: 10.1111/j.1476-5381.1994.tb13057.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. The effect of NMDA-receptor stimulation on phosphoinositide signalling in response to the metabotropic glutamate receptor agonist 1-aminocyclopentane-1S,3R-dicarboxylic acid (1S,3R-ACPD) has been examined in neonatal rat cerebral cortex slices. 2. Total [3H]-inositol phosphate ([3H]-InsPx) accumulation, in the presence of 5 mM LiCl, in [3H]-inositol pre-labelled slices was concentration-dependently increased by 1S,3R-ACPD (EC50 16.6 microM) and, at a maximally effective concentration, 1S,3R-ACPD (300 microM) increased [3H]-InsPx accumulation by 12.8 fold over basal values. 3. [3H]-InsPx accumulation stimulated by 1S,1R-ACPD was enhanced by low concentrations of NMDA (3-30 microM), but not by higher concentrations (> 30 microM). [3H]-InsPx accumulations stimulated by 1S,3R-ACPD in the absence or presence of 10 microM NMDA were linear with time, at least over the 15 min period examined; however, in the presence of 100 microM NMDA the initial enhancement of 1S,3R-ACPD-stimulated phosphoinositide hydrolysis progressively decreased with time. 4. In the presence of a maximal enhancing concentration of NMDA (10 microM), the response to 1S,3R-ACPD (300 microM) was increased 1.9 fold and the EC50 for agonist-stimulated [3H]-InsPx accumulation decreased about 4 fold. The enhanced response to the metabotropic agonist was concentration-dependently inhibited by competitive and uncompetitive antagonists of NMDA-receptor activation. 5. 1S,3R-ACPD also stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) mass accumulation with an initial peak response (5-6 fold over basal) at 15 s decaying to a smaller (2 fold), but persistent elevated accumulation (1-10 min). 6. Co-addition of 10 or 100 MicroM NMDA enhanced the initial peak Ins(1,4,5)P3 response to 1S,3RACPD.However, the enhancing effect was only maintained over 10 min in the presence of 1O Micro MNMDA, whilst in contrast, 100 MicroM NMDA ceased to cause a significant enhancement of the metabotropic response by 5 min and completely suppressed lS,3R-ACPD-stimulated Ins(1,4,5)P3 accumulation at 10 min.7. Both basal and 1S,3R-ACPD-stimulated Ins(1,4,5)P3 accumulations were reduced when slices were incubated in nominally Ca2"-free medium. Under these conditions only a concentration-dependent enhancement of the response was observed (EC50 for NMDA facilitation of lS,3R-ACPD-stimulated Ins(1,4,5)P3 accumulation of 32 MicroM).8. These experiments have revealed that at low concentrations, NMDA can dramatically potentiate1S,3R-ACPD-stimulated phosphoinositide hydrolysis, probably by a Ca2"-dependent facilitation of agonist-stimulated phosphoinositide-specific phospholipase C activity. Higher concentrations of NMDA result in time-dependent inhibition of the metabotropic agonist-stimulated response. We believe the former effect could be fundamental in glutamate receptor 'cross-talk', whereas the latter may reflect a Ca2+-dependent neurotoxic effect of NMDA on the neonatal cerebral cortex slices.
Collapse
Affiliation(s)
- R A Challiss
- Department of Cell Physiology and Pharmacology, University of Leicester
| | | | | | | |
Collapse
|
32
|
Iredale PA, Alexander SP, Hill SJ. Coupling of a transfected human brain A1 adenosine receptor in CHO-K1 cells to calcium mobilisation via a pertussis toxin-sensitive mechanism. Br J Pharmacol 1994; 111:1252-6. [PMID: 8032613 PMCID: PMC1910148 DOI: 10.1111/j.1476-5381.1994.tb14880.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. The presence of A1 adenosine receptors in CHO-K1 cells transfected with the human brain A1 sequence was confirmed by ligand binding studies using 8-cyclopentyl-[3H] 1,3-dipropylxanthine ([3H]-DPCPX). 2. Alterations in intracellular calcium ([Ca2+]i) were measured with the calcium-sensitive dye, fura-2. 3. N6-cyclopentyladenosine (CPA), the selective A1 agonist, and 5'-N-ethylcarboxaminoadenosine (NECA), a relatively non-selective adenosine receptor agonist, elicited rapid, biphasic increases in [Ca2+]i which involved both mobilisation from intracellular stores and calcium entry. 4. The calcium response to CPA was significantly inhibited by the selective A1 antagonist DPCPX. The non-selective adenosine receptor, xanthine amino congener (XAC), was less potent. 5. The calcium response to CPA was completely prevented by pretreatment of the cells with pertussis toxin implicating the involvement of Gi in the receptor-mediated response. 6. In summary, we present evidence for the coupling of transfected human brain A1 adenosine receptors in CHO-K1 cells to mobilisation of [Ca2+]i via a pertussis toxin-sensitive G protein.
Collapse
Affiliation(s)
- P A Iredale
- Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, Nottingham
| | | | | |
Collapse
|
33
|
Dickenson JM, Hill SJ. Intracellular cross-talk between receptors coupled to phospholipase C via pertussis toxin-sensitive and insensitive G-proteins in DDT1MF-2 cells. Br J Pharmacol 1993; 109:719-24. [PMID: 8358567 PMCID: PMC2175649 DOI: 10.1111/j.1476-5381.1993.tb13633.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
1. The effect on intracellular free calcium concentration ([Ca2+]i) of simultaneous activation of receptors coupled to phospholipase C via pertussis toxin (PTX)-sensitive and -insensitive G-proteins has been investigated in the hamster vas deferens smooth muscle cell line, DDT1MF-2. 2. In fura-2-loaded DDT1MF-2 cells, activation of adenosine A1-receptors (which are linked to PTX-sensitive G-proteins) with a maximal concentration of N6-cyclopentyladenosine (CPA; 300 nM) increased [Ca2+]i from 121 +/- 5 nM to 254 +/- 20 nM (n = 8). These experiments were performed in the presence of extracellular Ca2+. Stimulation of histamine H1-receptors (which are linked to PTX-insensitive G-proteins) with a low concentration of histamine (1 microM) increased [Ca2+]i from 128 +/- 8 nM to 150 +/- 13 nM (n = 8). When combined, CPA (300 nM) and histamine (1 microM) synergistically raised [Ca2+]i from 134 +/- 6 nM to 607 +/- 61 nM (n = 8). 3. Removal of extracellular Ca2+ (experiments performed in Ca(2+)-free buffer containing 0.1 mM EGTA) had no effect on the synergistic interaction between CPA (300 nM) and histamine (1 microM). 4. The addition of maximal concentrations of CPA (300 nM) and histamine (100 microM) resulted in a rise in [Ca2+]i which was additive when compared to the Ca2+ responses obtained with the two agonists alone. Low (30 nM) and subthreshold (3 nM) concentrations of CPA did not alter the Ca2+ response elicited by maximal concentrations of histamine (100 microM). 5. Subthreshold concentrations of CPA (3 nM) and low concentrations of histamine (1 microM) elicited synergistic rises in [Ca2+]i. 6 Synergistic Ca2+ responses were not observed between histamine Hl- and ATP-receptors when cells were simultaneously stimulated with either 1 microM or 10 microM of each agonist.7 These data suggest that adenosine A1-receptors linked to PTX-sensitive G-protein(s) and histamine H14-receptors linked to PTX-insensitive G-proteins interact synergistically to raise [Ca2+]i. In contrast,activation of ATP-receptors which are linked to PTX-insensitive G-protein(s) do not interact synergically with histamine H1-receptors.
Collapse
Affiliation(s)
- J M Dickenson
- Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, Nottingham
| | | |
Collapse
|
34
|
Dickenson JM, White TE, Hill SJ. The effects of elevated cyclic AMP levels on histamine-H1-receptor-stimulated inositol phospholipid hydrolysis and calcium mobilization in the smooth-muscle cell line DDT1MF-2. Biochem J 1993; 292 ( Pt 2):409-17. [PMID: 8389134 PMCID: PMC1134224 DOI: 10.1042/bj2920409] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of raising cyclic AMP levels, by forskolin stimulation, beta-adrenoceptor activation or cyclic AMP phosphodiesterase inhibition, on inositol phospholipid hydrolysis and increases in intracellular free [Ca2+] ([Ca2+]i) elicited by a range of agonists have been investigated in the hamster vas deferens smooth-muscle cell line DDT1MF-2. Isoprenaline (log [EC50 (M)] = -7.7 +/- 0.2), forskolin and the type IV cyclic AMP phosphodiesterase inhibitor rolipram elicited significant increases in the accumulation of cyclic [3H]AMP. Pretreatment with forskolin (10 microM) attenuated histamine (100 microM)- and N6-cyclopentyladenosine (CPA; 300 nM)-induced release of intracellular Ca2+, observed when cells are stimulated in Ca(2+)-free buffer containing 0.1 mM EGTA. Forskolin had no effect on ATP (100 microM)- or bradykinin (1 microM)-stimulated release of intracellular Ca2+. Histamine-induced intracellular Ca2+ release was also inhibited by pretreatment with rolipram (100 microM) or the membrane-permeant cyclic AMP analogue (Sp)-adenosine 3',5'-monophosphothioate (100 microM). Isoprenaline (1 microM) pretreatment (in the presence of 10 microM rolipram, a concentration which on its own did not decrease the histamine response) attenuated histamine-induced intracellular Ca2+ release. Forskolin inhibited histamine (100 microM)- and CPA (100 nM) stimulated accumulation of [3H]-inositol phosphates, but was without effect on ATP or bradykinin responses. Addition of forskolin (in the presence of 100 microM rolipram) after the cells had been stimulated with histamine (in experiments initiated in Ca(2+)-free buffer) inhibited the rise in [Ca2+]i observed when extracellular Ca2+ (2 mM) was re-applied (owing to receptor-mediated Ca2+ influx). Finally, the refilling of intracellular Ca2+ stores (after receptor-mediated Ca2+ influx is blocked by mepyramine) can be demonstrated in the presence of raised cyclic AMP levels.
Collapse
Affiliation(s)
- J M Dickenson
- Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, Nottingham, U.K
| | | | | |
Collapse
|