1
|
Bukanova JV, Kondratenko RV, Solntseva EI. Interaction Between Allopregnanolone and Amiloride Binding Sites on the GABA A Receptor. Cell Biochem Biophys 2025; 83:2453-2459. [PMID: 39730891 DOI: 10.1007/s12013-024-01654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 12/29/2024]
Abstract
Allopregnanolone (Allo) is a positive allosteric modulator of the GABAA receptor, and amiloride (Ami) is a competitive antagonist of the GABAA receptor. The purpose of this work was to study the combined effect of Allo and Ami on functional activity of GABAA receptor. The GABA-induced chloride current (IGABA) was measured in isolated Purkinje cells of rat cerebellum using the patch-clamp technique and a system of fast application. Our results indicate that Allo suppresses the inhibitory effect of Ami on IGABA, the IC50 value of Ami concentration-response curve was increased from 164 to 547 µM (P < 0.001) in the presence of Allo. Next, GABA concentration-response curves (EC50 = 5.8 µM) were constructed in the presence of Allo (EC50 = 1.2 µM), Ami (EC50 = 25.5 µM), and the combination of Allo+Ami (EC50 = 3.2 µM). Changes in EC50 values as a percentage relative to the control were calculated. The blocking effect of Ami is reduced in the presence of Allo (340% vs 150%, P < 0.01) and the potentiating effect of Allo does not change in the presence of Ami (78% vs 87%, P > 0.05). The results suggest that there is an allosteric relationship between the Allo and Ami binding sites on GABAA receptor that operates in one direction, from Allo sites to Ami site, but not vice versa.
Collapse
|
2
|
Rufener L, Danelli V, Bertrand D, Sager H. The novel isoxazoline ectoparasiticide lotilaner (Credelio™): a non-competitive antagonist specific to invertebrates γ-aminobutyric acid-gated chloride channels (GABACls). Parasit Vectors 2017; 10:530. [PMID: 29089046 PMCID: PMC5664438 DOI: 10.1186/s13071-017-2470-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The isoxazolines are a novel class of parasiticides that are potent inhibitors of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls) and, to a lesser extent, of inhibitory glutamate-gated chloride channels (GluCls). Lotilaner (Credelio™), a novel representative of this chemical class, is currently evaluated for its excellent ectoparasiticide properties. METHODS In this study, we investigated the molecular mode of action and pharmacology of lotilaner. We report the successful gene identification, cDNA cloning and functional expression in Xenopus oocytes of Drosohpila melanogaster (wild type and dieldrin/fipronil-resistant forms), Lepeophtheirus salmonis (an ectoparasite copepod crustacean of salmon), Rhipicephalus microplus and Canis lupus familiaris GABACls. Automated Xenopus oocyte two-electrode voltage clamp electrophysiology was used to assess GABACls functionality and to compare ion channel inhibition by lotilaner with that of established insecticides addressing GABACls as targets. RESULTS In these assays, we demonstrated that lotilaner is a potent non-competitive antagonist of insects (fly) GABACls. No cross-resistance with dieldrin or fipronil resistance mutations was detected, suggesting that lotilaner might bind to a site at least partly different from the one bound by known GABACl blockers. Using co-application experiments, we observed that lotilaner antagonism differs significantly from the classical open channel blocker fipronil. We finally confirmed for the first time that isoxazoline compounds are not only powerful antagonists of GABACls of acari (ticks) but also of crustaceans (sea lice), while no activity on a dog GABAA receptor was observed up to a concentration of 10 μM. CONCLUSIONS Together, these results demonstrate that lotilaner is a non-competitive antagonist specific to invertebrate's γ-aminobutyric acid-gated chloride channels (GABACls). They contribute to our understanding of the mode of action of this new ectoparasiticide compound.
Collapse
Affiliation(s)
- Lucien Rufener
- Elanco Animal Health, Mattenstrasse 24a, CH-4058, Basel, Switzerland.
| | - Vanessa Danelli
- Elanco Animal Health, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| | - Daniel Bertrand
- HiQScreen Sàrl, Route de Compois 6, CH-1222, Vésenaz, Switzerland
| | - Heinz Sager
- Elanco Animal Health, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| |
Collapse
|
3
|
Beltrán González AN, Pomata PE, Goutman JD, Gasulla J, Chebib M, Calvo DJ. Benzodiazepine modulation of homomeric GABAAρ1 receptors: differential effects of diazepam and 4'-chlorodiazepam. Eur J Pharmacol 2014; 743:24-30. [PMID: 25246015 DOI: 10.1016/j.ejphar.2014.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 11/26/2022]
Abstract
GABA(A) receptors (GABA(A)Rs) are ligand-gated ion channels that mediate inhibitory neurotransmission in the central nervous system (CNS). They are members of the Cys-loop receptor family and display marked structural and functional heterogeneity. Many GABA(A)Rs receptor subtypes are allosterically modulated by benzodiazepines (BDZs), which are drugs extensively used as anxiolytics, sedative-hypnotics and anticonvulsants. One high-affinity site and at least three additional low-affinity sites for BDZ recognition have been identified in several heteromeric and homomeric variants of the GABA(A)Rs (e.g.: α1β2γ2, α1β2/3, β3, etc.). However, the modulation of homomeric GABA(A)ρRs by BDZs was not previously revealed, and these receptors, for a long a time, were assumed to be fully insensitive to the actions of these drugs. In the present study, human homomeric GABA(A)ρ1 receptors were expressed in Xenopus oocytes and GABA-evoked responses electrophysiologically recorded in the presence or absence of BDZs. GABA(A)ρ1 receptor-mediated responses were modulated by diazepam and 4'-chlorodiazepam in the micromolar range, in a concentration-dependent, voltage-independent and reversible manner. Diazepam produced potentiating effects on GABA-evoked Cl(-) currents and 4'-Cl diazepam induced biphasic effects depending on the GABA concentration, whereas Ro15-4513 and alprazolam were negative modulators. BDZ actions were insensitive to flumazenil. Other BDZs showed negligible activity at equivalent experimental conditions. Our results suggest that GABA(A)ρ1 receptor function can be selectively and differentially modulated by BDZs.
Collapse
Affiliation(s)
- Andrea N Beltrán González
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Pablo E Pomata
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Juan D Goutman
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Javier Gasulla
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Mary Chebib
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Daniel J Calvo
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina.
| |
Collapse
|
4
|
Palmer MJ, Harvey J. Honeybee Kenyon cells are regulated by a tonic GABA receptor conductance. J Neurophysiol 2014; 112:2026-35. [PMID: 25031259 DOI: 10.1152/jn.00180.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The higher cognitive functions of insects are dependent on their mushroom bodies (MBs), which are particularly large in social insects such as honeybees. MB Kenyon cells (KCs) receive multisensory input and are involved in associative learning and memory. In addition to receiving sensory input via excitatory nicotinic synapses, KCs receive inhibitory GABAergic input from MB feedback neurons. Cultured honeybee KCs exhibit ionotropic GABA receptor currents, but the properties of GABA-mediated inhibition in intact MBs are currently unknown. Here, using whole cell recordings from KCs in acutely isolated honeybee brain, we show that KCs exhibit a tonic current that is inhibited by picrotoxin but not by bicuculline. Bath application of GABA (5 μM) and taurine (1 mM) activate a tonic current in KCs, but l-glutamate (0.1-0.5 mM) has no effect. The tonic current is strongly potentiated by the allosteric GABAA receptor modulator pentobarbital and is reduced by inhibition of Ca(2+) channels with Cd(2+) or nifedipine. Noise analysis of the GABA-evoked current gives a single-channel conductance value for the underlying receptors of 27 ± 3 pS, similar to that of resistant to dieldrin (RDL) receptors. The amount of injected current required to evoke action potential firing in KCs is significantly lower in the presence of picrotoxin. KCs recorded in an intact honeybee head preparation similarly exhibit a tonic GABA receptor conductance that reduces neuronal excitability, a property that is likely to contribute to the sparse coding of sensory information in insect MBs.
Collapse
Affiliation(s)
- Mary J Palmer
- Division of Neuroscience, Medical Research Institute, University of Dundee, Dundee, United Kingdom
| | - Jenni Harvey
- Division of Neuroscience, Medical Research Institute, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
5
|
Gassel M, Wolf C, Noack S, Williams H, Ilg T. The novel isoxazoline ectoparasiticide fluralaner: selective inhibition of arthropod γ-aminobutyric acid- and L-glutamate-gated chloride channels and insecticidal/acaricidal activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 45:111-24. [PMID: 24365472 DOI: 10.1016/j.ibmb.2013.11.009] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/22/2013] [Accepted: 11/28/2013] [Indexed: 05/13/2023]
Abstract
Isoxazolines are a novel class of parasiticides that are potent inhibitors of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls) and L-glutamate-gated chloride channels (GluCls). In this study, the effects of the isoxazoline drug fluralaner on insect and acarid GABACl (RDL) and GluCl and its parasiticidal potency were investigated. We report the identification and cDNA cloning of Rhipicephalus (R.) microplus RDL and GluCl genes, and their functional expression in Xenopus laevis oocytes. The generation of six clonal HEK293 cell lines expressing Rhipicephalus microplus RDL and GluCl, Ctenocephalides felis RDL-A285 and RDL-S285, as well as Drosophila melanogaster RDLCl-A302 and RDL-S302, combined with the development of a membrane potential fluorescence dye assay allowed the comparison of ion channel inhibition by fluralaner with that of established insecticides addressing RDL and GluCl as targets. In these assays fluralaner was several orders of magnitude more potent than picrotoxinin and dieldrin, and performed 5-236 fold better than fipronil on the arthropod RDLs, while a rat GABACl remained unaffected. Comparative studies showed that R. microplus RDL is 52-fold more sensitive than R. microplus GluCl to fluralaner inhibition, confirming that the GABA-gated chloride channel is the primary target of this new parasiticide. In agreement with the superior RDL on-target activity, fluralaner outperformed dieldrin and fipronil in insecticidal screens on cat fleas (Ctenocephalides felis), yellow fever mosquito larvae (Aedes aegypti) and sheep blowfly larvae (Lucilia cuprina), as well as in acaricidal screens on cattle tick (R. microplus) adult females, brown dog tick (Rhipicephalus sanguineus) adult females and Ornithodoros moubata nymphs. These findings highlight the potential of fluralaner as a novel ectoparasiticide.
Collapse
Affiliation(s)
- Michael Gassel
- MSD Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Christian Wolf
- MSD Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Sandra Noack
- MSD Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Heike Williams
- MSD Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Thomas Ilg
- MSD Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany.
| |
Collapse
|
6
|
Dong C, Hu A, Ni Y, Zuo Y, Li GH. Effects of midazolam, pentobarbital and ketamine on the mRNA expression of ion channels in a model organism Daphnia pulex. BMC Anesthesiol 2013; 13:32. [PMID: 24134334 PMCID: PMC3879215 DOI: 10.1186/1471-2253-13-32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/07/2013] [Indexed: 02/05/2023] Open
Abstract
Background Over the last few decades intensive studies have been carried out on the molecular targets mediating general anesthesia as well as the effects of general anesthetics. The γ-aminobutyric acid type A receptor (GABAAR) has been indicated as the primary target of general anaesthetics such as propofol, etomidate and isoflurane, and sedating drugs including benzodiazepines and barbiturates. The GABAAR is also involved in drug tolerance and dependence. However, the involvement of other ion channels is possible. Methods Using reverse transcription and quantitative PCR techniques, we systematically investigated changes in the mRNA levels of ion channel genes in response to exposure to midazolam, pentobarbital and ketamine in a freshwater model animal, Daphnia pulex. To retrieve the sequences of Daphnia ion channel genes, Blast searches were performed based on known human or Drosophila ion channel genes. Retrieved sequences were clustered with the maximum-likelihood method. To quantify changes in gene expression after the drug treatments for 4 hours, total RNA was extracted and reverse transcribed into cDNA and then amplified using quantitative PCR. Results A total of 108 ion channel transcripts were examined, and 19, 11 and 11 of them are affected by midazolam (100 μM), pentobarbital (200 μM) and ketamine (100 μM), respectively, covering a wide variety of ion channel types. There is some degree of overlap with midazolam- and pentobarbital-induced changes in the mRNA expression profiles, but ketamine causes distinct changes in gene expression pattern. In addition, flumazenil (10 μM) eliminates the effect of midazolam on the mRNA expression of the GABAA receptor subunit Rdl, suggesting a direct interaction between midazolam and GABAA receptors. Conclusions Recent research using high throughput technology suggests that changes in mRNA expression correlate with delayed protein expression. Therefore, the mRNA profile changes in our study may reflect the molecular targets not only in drug actions, but also in chronic drug addiction. Our data also suggest the possibility that hypnotic/anesthetic drugs are capable of altering the functions of the nervous system, as well as those non-nerve tissues with abundant ion channel expressions.
Collapse
Affiliation(s)
| | | | | | | | - Guo Hua Li
- Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Molecular cloning and characterization of novel glutamate-gated chloride channel subunits from Schistosoma mansoni. PLoS Pathog 2013; 9:e1003586. [PMID: 24009509 PMCID: PMC3757052 DOI: 10.1371/journal.ppat.1003586] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/15/2013] [Indexed: 12/28/2022] Open
Abstract
Cys-loop ligand-gated ion channels (LGICs) mediate fast ionotropic neurotransmission. They are proven drug targets in nematodes and arthropods, but are poorly characterized in flatworms. In this study, we characterized the anion-selective, non-acetylcholine-gated Cys-loop LGICs from Schistosoma mansoni. Full-length cDNAs were obtained for SmGluCl-1 (Smp_096480), SmGluCl-2 (Smp_015630) and SmGluCl-3 (Smp_104890). A partial cDNA was retrieved for SmGluCl-4 (Smp_099500/Smp_176730). Phylogenetic analyses suggest that SmGluCl-1, SmGluCl-2, SmGluCl-3 and SmGluCl-4 belong to a novel clade of flatworm glutamate-gated chloride channels (GluCl) that includes putative genes from trematodes and cestodes. The flatworm GluCl clade was distinct from the nematode-arthropod and mollusc GluCl clades, and from all GABA receptors. We found no evidence of GABA receptors in S. mansoni. SmGluCl-1, SmGluCl-2 and SmGluCl-3 subunits were characterized by two-electrode voltage clamp (TEVC) in Xenopus oocytes, and shown to encode Cl−-permeable channels gated by glutamate. SmGluCl-2 and SmGluCl-3 produced functional homomers, while SmGluCl-1 formed heteromers with SmGluCl-2. Concentration-response relationships revealed that the sensitivity of SmGluCl receptors to L-glutamate is among the highest reported for GluCl receptors, with EC50 values of 7–26 µM. Chloride selectivity was confirmed by current-voltage (I/V) relationships. SmGluCl receptors are insensitive to 1 µM ivermectin (IVM), indicating that they do not belong to the highly IVM-sensitive GluClα subtype group. SmGluCl receptors are also insensitive to 10 µM meclonazepam, a schistosomicidal benzodiazepine. These results provide the first molecular evidence showing the contribution of GluCl receptors to L-glutamate signaling in S. mansoni, an unprecedented finding in parasitic flatworms. Further work is needed to elucidate the roles of GluCl receptors in schistosomes and to explore their potential as drug targets. Schistosomiasis is a debilitating disease caused by blood flukes in the genus Schistosoma that afflicts over 200 million people worldwide. Treatment relies almost exclusively on a single drug, praziquantel. Reports of sub-optimal efficacy of praziquantel raise concerns about the prospect of drug resistance and highlight the need to develop new schistosomicidal drugs. Neuroactive receptors are recognized targets of insecticides and anthelmintics. Likewise, neuronal receptors of schistosomes are attractive targets for drug development. Lacking a coelom and a proper circulatory system, schistosomes are thought to lack the capacity for endocrine signaling, and therefore depend entirely on neuronal modulation to control functions vital to their survival and reproduction. We characterized a novel family of glutamate-gated chloride channel (GluCl) receptors from S. mansoni that are pharmacologically and evolutionarily distinct from GluCls in nematodes, insects and snails. Our phylogenetic analyses suggest that these receptors are also widely distributed in other flukes and tapeworms. This study provides the first molecular evidence for the contribution of an inhibitory component to glutamatergic signaling in S. mansoni. Our findings add to a growing body of evidence suggesting that glutamatergic signaling in schistosomes may be physiologically important, and could be targeted for chemotherapeutic intervention.
Collapse
|
8
|
A novel action of highly specific acaricide; bifenazate as a synergist for a GABA-gated chloride channel of Tetranychus urticae [Acari: Tetranychidae]. Neurotoxicology 2012; 33:307-13. [DOI: 10.1016/j.neuro.2012.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 01/09/2012] [Accepted: 01/27/2012] [Indexed: 11/18/2022]
|
9
|
Two amino acid residues contribute to a cation-π binding interaction in the binding site of an insect GABA receptor. J Neurosci 2011; 31:12371-6. [PMID: 21865479 DOI: 10.1523/jneurosci.1610-11.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cys-loop receptor binding sites characteristically possess an "aromatic box," where several aromatic amino acid residues surround the bound ligand. A cation-π interaction between one of these residues and the natural agonist is common, although the residue type and location are not conserved. Even in the closely related vertebrate GABA(A) and GABA(C) receptors, residues in distinct locations perform this role: in GABA(A) receptors, a Tyr residue in loop A forms a cation-π interaction with GABA, while in GABA(C) receptors it is a loop B residue. GABA-activated Cys-loop receptors also exist in invertebrates, where they have distinct pharmacologies and are the target of a range of pesticides. Here we examine the location of GABA in an insect binding site by incorporating a series of fluorinated Phe derivatives into the receptor binding pocket using unnatural amino acid mutagenesis, and evaluating the resulting receptors when expressed in Xenopus oocytes. A homology model suggests that two aromatic residues (in loops B and C) are positioned such that they could contribute to a cation-π interaction with the primary ammonium of GABA, and the data reveal a clear correlation between the GABA EC(50) and the cation-π binding ability both at Phe206 (loop B) and Tyr254 (loop C), demonstrating for the first time the contribution of two aromatic residues to a cation-π interaction in a Cys-loop receptor.
Collapse
|
10
|
McGonigle I, Lummis SCR. Molecular characterization of agonists that bind to an insect GABA receptor. Biochemistry 2010; 49:2897-902. [PMID: 20180551 PMCID: PMC2852148 DOI: 10.1021/bi901698c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Ionotropic GABA receptors are widely distributed throughout the vertebrate and invertebrate central nervous system (CNS) where they mediate inhibitory neurotransmission. One of the most widely studied insect GABA receptors is constructed from RDL (resistance to dieldrin) subunits from Drosophila melanogaster. The aim of this study was to determine critical features of agonists binding to RDL receptors using in silico and experimental data. Partial atomic charges and dipole separation distances of a range of GABA analogues were calculated, and the potency of the analogues was determined using RDL receptors expressed in Xenopus oocytes. These data revealed functional agonists require an ammonium group and an acidic group with an optimum separation distance of ∼5 Å. To determine how the agonists bind to the receptor, a homology model of the extracellular domain was generated and agonists were docked into the binding site. The docking studies support the requirements for functional agonists and also revealed a range of potential interactions with binding site residues, including hydrogen bonds and cation−π interactions. We conclude that the model and docking procedures yield a good model of the insect GABA receptor binding site and the location of agonists within it.
Collapse
Affiliation(s)
- Ian McGonigle
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | |
Collapse
|
11
|
Bush E, Foreman R, Walker RJ, Holden-Dye L. The actions of chloride channel blockers, barbiturates and a benzodiazepine on Caenorhabditis elegans glutamate- and ivermectin-gated chloride channel subunits expressed in Xenopus oocytes. INVERTEBRATE NEUROSCIENCE 2010; 9:175-84. [PMID: 20224918 DOI: 10.1007/s10158-010-0096-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/22/2010] [Indexed: 11/30/2022]
Abstract
The pharmacology of Caenorhabditis elegans glutamate-gated chloride (GluCl) channels was determined by making intracellular voltage-clamp recordings from Xenopus oocytes expressing GluCl subunits. As previously reported (Cully et al. 1994), GluClalpha1beta responded to glutamate (in a picrotoxin sensitive manner) and ivermectin, while GluClbeta responded only to glutamate and GluClalpha1 only to ivermectin. This assay was used to further investigate the action of chloride channel compounds. The arylaminobenzoate, NPPB, reduced the action of glutamate on the heteromeric GluClalpha1beta channel (IC(50) 6.03 +/- 0.81 microM). The disulphonate stilbene, DNDS, blocked the effect of both glutamate and ivermectin on GluClalpha1beta channels, the action of glutamate on GluClbeta subunits, and the effect of ivermectin on GluClalpha1 subunits (IC(50)s 1.58-3.83 microM). Surprisingly, amobarbital and pentobarbital, otherwise known as positive allosteric modulators of ligand-gated chloride channels, acted as antagonists. Both compounds reduced the action of glutamate on the GluClalpha1beta heteromer (IC(50)s of 2.04 +/- 0.5 and 17.56 +/- 2.16 microM, respectively). Pentobarbital reduced the action of glutamate on the GluClbeta homomeric subunit with an IC(50) of 0.59 +/- 0.09 microM, while reducing the responses to ivermectin on both GluClalpha1beta and GluClalpha1 with IC(50)s of 8.7 +/- 0.5 and 12.9 +/- 2.5 microM, respectively. For all the antagonists, the mechanism is apparently non-competitive. The benzodiazepine, flurazepam had no apparent effect on these glutamate- and ivermectin-gated chloride channel subunits. Thus, arylaminobenzoates, disulphonate stilbenes, and barbiturates are non-competitive antagonists of C. elegans GluCl channels.
Collapse
Affiliation(s)
- Elizabeth Bush
- School of Biological Sciences, Bassett Crescent East, University of Southampton, Southampton, UK
| | | | | | | |
Collapse
|
12
|
Buckingham SD, Higashino Y, Sattelle DB. Allosteric modulation by benzodiazepines of GABA-gated chloride channels of an identified insect motor neurone. INVERTEBRATE NEUROSCIENCE 2009; 9:85-9. [PMID: 19847463 DOI: 10.1007/s10158-009-0091-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 09/18/2009] [Indexed: 02/05/2023]
Abstract
The actions of benzodiazepines were studied on the responses to GABA of the fast coxal depressor (D(f)) motor neurone of the cockroach, Periplaneta americana. Ro5-4864, diazepam and clonazepam were investigated. Responses to GABA receptors were enhanced by both Ro5-4864 and diazepam, whereas clonazepam, a potent-positive allosteric modulator of human GABA(A) receptors, was ineffective on the native insect GABA receptors of the D(f) motor neurone. Thus, clear pharmacological differences exist between insect and mammalian native GABA-gated chloride channels with respect to the actions of benzodiazepines. The results enhance our understanding of invertebrate GABA-gated chloride channels which have recently proved important in (a) comparative studies aimed at identifying human allosteric drug-binding sites and (b) understanding the actions of compounds used to control ectoparasites and insect crop pests.
Collapse
Affiliation(s)
- Steven D Buckingham
- MRC Functional Genomics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | | | |
Collapse
|
13
|
El Hassani AK, Giurfa M, Gauthier M, Armengaud C. Inhibitory neurotransmission and olfactory memory in honeybees. Neurobiol Learn Mem 2008; 90:589-95. [PMID: 18755283 DOI: 10.1016/j.nlm.2008.07.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 06/20/2008] [Accepted: 07/22/2008] [Indexed: 11/25/2022]
Abstract
In insects, gamma-aminobutyric acid (GABA) and glutamate mediate fast inhibitory neurotransmission through ligand-gated chloride channel receptors. Both GABA and glutamate have been identified in the olfactory circuit of the honeybee. Here we investigated the role of inhibitory transmission mediated by GABA and glutamate-gated chloride channels (GluCls) in olfactory learning and memory in honeybees. We combined olfactory conditioning with injection of ivermectin, an agonist of GluCl receptors. We also injected a blocker of glutamate transporters (L-trans-PDC) or a GABA analog (TACA). We measured acquisition and retention 1, 24 and 48 h after the last acquisition trial. A low dose of ivermectin (0.01 ng/bee) impaired long-term olfactory memory (48 h) while a higher dose (0.05 ng/bee) had no effect. Double injections of ivermectin and L-trans-PDC or TACA had different effects on memory retention, depending on the doses and agents combined. When the low dose of ivermectin was injected after Ringer, long-term memory was again impaired (48 h). Such an effect was rescued by injection of both TACA and L-trans-PDC. A combination of the higher dose of ivermectin and TACA decreased retention at 48 h. We interpret these results as reflecting the involvement of both GluCl and GABA receptors in the impairment of olfactory long-term memory induced by ivermectin. These results illustrate the diversity of inhibitory transmission and its implication in long-term olfactory memory in honeybees.
Collapse
Affiliation(s)
- Abdessalam Kacimi El Hassani
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, CNRS UMR 5169, 118 Route de Narbonne, 31062 TOULOUSE Cedex 4, France
| | | | | | | |
Collapse
|
14
|
Mitchell EA, Herd MB, Gunn BG, Lambert JJ, Belelli D. Neurosteroid modulation of GABAA receptors: molecular determinants and significance in health and disease. Neurochem Int 2008; 52:588-95. [PMID: 18055067 DOI: 10.1016/j.neuint.2007.10.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/30/2007] [Accepted: 10/10/2007] [Indexed: 11/18/2022]
Abstract
Over the past 20 years it has become apparent that certain steroids, synthesised de novo in the brain, hence named neurosteroids, produce immediate changes (within seconds) in neuronal excitability, a time scale that precludes a genomic locus of action. Identified molecular targets underlying modulation of brain excitability include both the inhibitory GABA(A) and the excitatory NMDA receptor. Of particular interest is the interaction of certain neurosteroids with the GABA(A) receptor, the major inhibitory receptor in mammalian brain. During the last decade, compelling evidence has accrued to reveal that locally produced neurosteroids may selectively "fine tune" neuronal inhibition. A range of molecular mechanisms including the subunit composition of the receptor(s), phosphorylation and local steroid metabolism, underpin the region- and neuronal selectivity of action of neurosteroids at synaptic and extrasynaptic GABA(A) receptors. The relative contribution played by each of these mechanisms in a variety of physiological and pathophysiological scenarios is currently being scrutinised at a cellular and molecular level. However, it is not known how such mechanisms may act in concert to influence behavioural profiles in health and disease. An important question concerns the identification of the anatomical substrates mediating the repertoire of behaviours produced by neurosteroids. "Knock-in" mice expressing mutant GABA(A) subunits engineered to be insensitive to benzodiazepines or general anaesthetics have proved invaluable in evaluating the role of GABA(A) receptor subtypes in complex behaviours such as sedation, cognition and anxiety [Rudolph, U., Mohler, H., 2006. GABA-based therapeutic approaches: GABA(A) receptor subtype functions. Curr. Opin. Pharmacol. 6, 18-23]. However, the development of a similar approach for neurosteroids has been hampered by the limited knowledge that, until recently, has surrounded the identity of the amino acid residues contributing to the neurosteroid binding pocket. Here, we will review recent progress in identifying the neurosteroid binding site on the GABA(A) receptor, and discuss how these discoveries will impact on our understanding of the role of neurosteroids in health and disease.
Collapse
Affiliation(s)
- Elizabeth A Mitchell
- Neurosciences Institute, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Ninewells Hospital, Dundee DD1 9SY, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
An ionotropic GABA receptor in cultured mushroom body Kenyon cells of the honeybee and its modulation by intracellular calcium. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:329-40. [DOI: 10.1007/s00359-007-0308-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 11/30/2007] [Accepted: 12/04/2007] [Indexed: 11/25/2022]
|
16
|
Hosie AM, Wilkins ME, Smart TG. Neurosteroid binding sites on GABA(A) receptors. Pharmacol Ther 2007; 116:7-19. [PMID: 17560657 DOI: 10.1016/j.pharmthera.2007.03.011] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
Controlling neuronal excitability is vitally important for maintaining a healthy central nervous system (CNS) and this relies on the activity of type A gamma-aminobutyric acid (GABA(A)) neurotransmitter receptors. Given this role, it is therefore important to understand how these receptors are regulated by endogenous modulators in the brain and determine where they bind to the receptor. One of the most potent groups of modulators is the neurosteroids which regulate the activity of synaptic and extrasynaptic GABA(A) receptors. This level of regulation is thought to be physiologically important and its dysfunction may be relevant to numerous neurological conditions. The aim of this review is to summarise those studies that over the last 20 years have focussed upon finding the binding sites for neurosteroids on GABA(A) receptors. We consider the nature of steroid binding sites in other proteins where this has been determined at atomic resolution and how their generic features were mapped onto GABA(A) receptors to help locate 2 putative steroid binding sites. Altogether, the findings strongly suggest that neurosteroids do bind to discrete sites on the GABA(A) receptor and that these are located within the transmembrane domains of alpha and beta receptor subunits. The implications for neurosteroid binding to other inhibitory receptors such as glycine and GABA(C) receptors are also considered. Identifying neurosteroid binding sites may enable the precise pathophysiological role(s) of neurosteroids in the CNS to be established for the first time, as well as providing opportunities for the design of novel drug entities.
Collapse
Affiliation(s)
- Alastair M Hosie
- University College London, Department of Pharmacology, Gower Street, London, WC1E 6BT
| | | | | |
Collapse
|
17
|
Buckingham SD, Biggin PC, Sattelle BM, Brown LA, Sattelle DB. Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides. Mol Pharmacol 2005; 68:942-51. [PMID: 16027231 DOI: 10.1124/mol.105.015313] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ionotropic GABA receptors are abundant in both vertebrate and invertebrate nervous systems, where they mediate rapid, mostly inhibitory synaptic transmission. A GABA-gated chloride channel subunit from Drosophila melanogaster [Resistant to Dieldrin (RDL)] has been cloned, functionally expressed, and found to exhibit many aspects of the pharmacology of native, bicuculline-insensitive insect GABA receptors. RDL is the target of the commercially important insecticide fipronil. A point mutation in the channel-lining region of the RDL molecule is known to underlie most cases of resistance to insecticides acting on GABA receptors. RDL is widely distributed throughout the insect nervous system, but the subunit composition of RDL-containing in native receptors is unknown. It is possible that in some instances, RDL coexpresses with glutamate-gated chloride channel subunits. Other ionotropic receptor subunits (LCCH3 and GRD) form GABA-gated cation channels when heterologously expressed. Interest in RDL as a model ligandgated anion channel has been enhanced by the recent discovery of pre-mRNA A-to-I editing, which, together with alternative splicing, adds to the functional diversity of this GABA receptor subunit.
Collapse
Affiliation(s)
- Steven David Buckingham
- Medical Research Council Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, UK
| | | | | | | | | |
Collapse
|
18
|
Priestley CM, Williamson EM, Wafford KA, Sattelle DB. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABA(A) receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br J Pharmacol 2003; 140:1363-72. [PMID: 14623762 PMCID: PMC1574153 DOI: 10.1038/sj.bjp.0705542] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The GABA-modulating and GABA-mimetic activities of the monoterpenoid thymol were explored on human GABAA and Drosophila melanogaster homomeric RDLac GABA receptors expressed in Xenopus laevis oocytes, voltage-clamped at -60 mV. The site of action of thymol was also investigated. Thymol, 1-100 microm, resulted in a dose-dependent potentiation of the EC20 GABA response in oocytes injected with either alpha1beta3gamma2s GABAA subunit cDNAs or the RDLac subunit RNA. At 100 microm thymol, current amplitudes in response to GABA were 416+/-72 and 715+/-85% of controls, respectively. On both receptors, thymol, 100 microm, elicited small currents in the absence of GABA. The EC50 for GABA at alpha1beta3gamma2s GABAA receptors was reduced by 50 microm thymol from 15+/-3 to 4+/-1 microm, and the Hill slope changed from 1.35+/-0.14 to 1.04+/-0.16; there was little effect on the maximum GABA response. Thymol (1-100 microm) potentiation of responses to EC20 GABA for alpha1beta1gamma2s, alpha6beta3gamma2s and alpha1beta3gamma2s human GABAA receptors was almost identical, arguing against actions at benzodiazepine or loreclezole sites. Neither flumazenil, 3-hydroxymethyl-beta-carboline (3-HMC), nor 5alpha-pregnane-3alpha, 20alpha-diol (5alpha-pregnanediol) affected thymol potentiation of the GABA response at alpha1beta3gamma2s receptors, providing evidence against actions at the benzodiazepine/beta-carboline or steroid sites. Thymol stimulated the agonist actions of pentobarbital and propofol on alpha1beta3gamma2s receptors, consistent with a mode of action distinct from that of either compound. These data suggest that thymol potentiates GABAA receptors through a previously unidentified binding site.
Collapse
Affiliation(s)
- Caroline M Priestley
- Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX.
| | | | | | | |
Collapse
|
19
|
Bamber BA, Twyman RE, Jorgensen EM. Pharmacological characterization of the homomeric and heteromeric UNC-49 GABA receptors in C. elegans. Br J Pharmacol 2003; 138:883-93. [PMID: 12642390 PMCID: PMC1573730 DOI: 10.1038/sj.bjp.0705119] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
(1) UNC-49B and UNC-49C are gamma-aminobutyric acid (GABA) receptor subunits encoded by the Caenorhabditis elegans unc-49 gene. UNC-49B forms a homomeric GABA receptor, or can co-assemble with UNC-49C to form a heteromeric receptor. The pharmacological properties of UNC-49B homomers and UNC-49B/C heteromers were investigated in Xenopus oocytes. (2) The UNC-49 subunits are most closely related to the bicuculline- and benzodiazepine-insensitive RDL GABA receptors of insects. Consistent with this classification, bicuculline (10 micro M) did not inhibit, nor did diazepam (10 micro M) enhance UNC-49B homomeric or UNC-49B/C heteromeric receptors. (3) The UNC-49C subunit strongly affects the pharmacology of UNC-49B/C heteromeric receptors. UNC-49B homomers were much more picrotoxin sensitive than UNC-49B/C heteromers (IC(50)=0.9+/-0.2 micro M and 166+/-42 micro M, respectively). Pentobarbitone enhancement was greater for UNC-49B homomers compared to UNC-49B/C heteromers. Propofol (50 micro M) slightly enhanced UNC-49B homomers but slightly inhibited UNC-49B/C heteromers. Penicillin G (10 mM) inhibited UNC-49B homomers less strongly than UNC-49B/C heteromers (30% compared to 53% inhibition, respectively). (4) Several aspects of UNC-49 pharmacology were unusual. Picrotoxin sensitivity strongly correlates with dieldrin sensitivity, yet UNC-49B homomers were highly dieldrin resistant. The enhancing neurosteroid pregnanolone (5beta-pregnan-3alpha-ol-20-one; 10 micro M) strongly inhibited both UNC-49 receptors. Alphaxalone (10 micro M), another enhancing neurosteroid, did not affect UNC-49B homomers, but slightly inhibited UNC-49B/C heteromers. (5) UNC-49 subunits and mammalian GABA(A) receptor alpha, beta, and gamma subunit classes all share roughly the same degree of sequence similarity. Thus, although they are most similar to other invertebrate GABA receptors, the UNC-49 receptors share significant structural and pharmacological overlap with mammalian GABA(A) receptors.
Collapse
Affiliation(s)
- Bruce A Bamber
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
20
|
Alix P, Grolleau F, Hue B. Ca2+/calmodulin-dependent protein kinase regulates GABA-activated Cl- current in cockroach dorsal unpaired median neurons. J Neurophysiol 2002; 87:2972-82. [PMID: 12037200 DOI: 10.1152/jn.2002.87.6.2972] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied gamma-aminobutyric acid (GABA)-mediated currents in short-term cultured dorsal unpaired median (DUM) neurons of cockroach Periplaneta americana using the whole cell patch-clamp technique in symmetrical chloride solutions. All DUM neurons voltage-clamped at -50 mV displayed inward currents (I(GABA)) when 10(-4) M of GABA was applied by pneumatic pressure-ejection pulses. The semi-logarithmic curve of I(GABA) amplitude versus the ejection time yielded a Hill coefficient of 4.0. I(GABA) was chloride (Cl-) because the reversal potential given by the current-voltage (I-V) curve varied according to the value predicted by the Nernst equation for Cl- dependence. In addition, I(GABA) was almost completely blocked by bath application of the chloride channel blockers picrotoxin (PTX) or 3,3-bis(trifluoromethyl)bicyclo-[2,2,1]heptane-2,2-diacarbonitrile (BIDN). The I-V curve for I(GABA) displayed a unexpected biphasic aspect and was best fitted by two linear regressions giving two slope conductances of 35.6 +/- 2.1 and 80.9 +/- 4.1 nS for potentials ranging from 0 to -30 and -30 to -70 mV, respectively. At -50 mV, the current amplitude was decreased by cadmium chloride (CdCl2, 10(-3) M) and calcium-free solution. The semi-logarithmic curve for CdCl2-resistant I(GABA) gave a Hill coefficient of 2.4. Hyperpolarizing voltage step from -50 to -80 mV was known to increase calcium influx through calcium-resting channels. According to this protocol, a significant increase of I(GABA) amplitude was observed. However, this effect was never obtained when the same protocol was applied on cell body pretreated with CdCl2. When the calmodulin blocker N-(6-aminohexyl)-5-chloro-1-naphtalene-sulfonamide or the calcium-calmodulin-dependent protein kinase blocker 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62) was added in the pipette solution, I(GABA) amplitude was decreased. Pressure ejection application of the cis-4-aminocrotonic acid (CACA) on DUM neuron cell body held at -50 mV, evoked a Cl- inward current which was insensitive to CdCl2. The Hill plot yielded a Hill coefficient of 2.3, and the I-V curve was always linear in the negative potential range with a slope conductance of 32.4 +/- 1.1 nS. These results, similar to those obtained with GABA in the presence of CdCl2 and KN-62, indicated that CACA activated one subtype of GABA receptor. Our study demonstrated that at least two distinct subtypes of Cl--dependent GABA receptors were expressed in DUM neurons, one of which is regulated by an intracellular Ca2+-dependent mechanism via a calcium-dependent protein kinase. The consequences of the modulatory action of Ca2+ in GABA receptors function and their sensitivity to insecticide are discussed.
Collapse
Affiliation(s)
- Philippe Alix
- Laboratoire de Neurophysiologie Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Accueil 2647, Université d'Angers, F-49045 Angers Cedex, France
| | | | | |
Collapse
|
21
|
Le Corronc H, Alix P, Hue B. Differential sensitivity of two insect GABA-gated chloride channels to dieldrin, fipronil and picrotoxinin. JOURNAL OF INSECT PHYSIOLOGY 2002; 48:419-431. [PMID: 12770091 DOI: 10.1016/s0022-1910(02)00061-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the central nervous system of both vertebrates and invertebrates inhibitory neurotransmission is mainly achieved through activation of gamma-aminobutyric acid (GABA) receptors. Extensive studies have established the structural and pharmacological properties of vertebrate GABA receptors. Although the vast majority of insect GABA-sensitive responses share some properties with vertebrate GABAA receptors, peculiar pharmacological properties of these receptors led us to think that several GABA-gated chloride channels are present in insects. We describe here the pharmacological properties of two GABA receptor subtypes coupled to a chloride channel on dorsal unpaired median (DUM) neurones of the adult male cockroach. Long applications of GABA induce a large biphasic hyperpolarization, consisting of an initial transient hyperpolarization followed by a slow phase of hyperpolarization that is not quickly desensitized. With GABA, the transient hyperpolarization is sensitive to picrotoxinin, fipronil and dieldrin whereas the slow response is insensitive to these insecticides.When GABA is replaced by muscimol and cis-4-aminocrotonic acid (CACA) a biphasic hyperpolarization consisting of an initial transient hyperpolarization followed by a sustained phase is evoked which is blocked by picrotoxinin and fipronil. Exposure to dieldrin decreases only the early phase of the muscimol and CACA-induced biphasic response, suggesting that two GABA-gated chloride channel receptor subtypes are present in DUM neurones. This study describes, for the first time, a dieldrin resistant component different to the dieldrin- and picrotoxinin-resistant receptor found in several insect species.
Collapse
Affiliation(s)
- Hervé Le Corronc
- University of Angers, Laboratory of Neurophysiology, UPRES EA 2647, Faculty of Sciences, 2 boulevard Lavoisier, 49045 Angers cedex, France
| | | | | |
Collapse
|
22
|
Hosie AM, Buckingham SD, Presnail JK, Sattelle DB. Alternative splicing of a Drosophila GABA receptor subunit gene identifies determinants of agonist potency. Neuroscience 2001; 102:709-14. [PMID: 11226707 DOI: 10.1016/s0306-4522(00)00483-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alternative splicing of the Drosophila melanogaster Rdl gene yields four ionotropic GABA receptor subunits. The two Rdl splice variants cloned to date, RDL(ac) and RDL(bd) (DRC17-1-2), differ in their apparent agonist affinity. Here, we report the cloning of a third splice variant of Rdl, RDL(ad). Two-electrode voltage clamp electrophysiology was used to investigate agonist pharmacology of this expressed subunit following cRNA injection into Xenopus laevis oocytes. The EC(so) values for GABA and its analogues isoguvacine, muscimol, isonipecotic acid and 3-amino sulphonic acid on the RDL(ad) homomeric receptor differed from those previously described for RDL(ac) and DRC17-1-2 receptors. In addition to providing a possible physiological role for the alternative splicing of Rdl, these data delineate a hitherto functionally unassigned region of the N-terminal domain of GABA receptor subunits, which affects agonist potency and aligns closely with known determinants of potency in nicotinic acetylcholine receptors. Thus, using expression in Xenopus oocytes, we have demonstrated differences in agonist potency for the neurotransmitter GABA (and four analogues) between splice variant products of the Drosophila melanogaster Rdl gene encoding homomer-forming GABA receptor subunits.
Collapse
Affiliation(s)
- A M Hosie
- Babraham Institute, Laboratory of Molecular Signalling, Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ, Cambridge, UK
| | | | | | | |
Collapse
|
23
|
Ffrench-Constant RH, Anthony N, Aronstein K, Rocheleau T, Stilwell G. Cyclodiene insecticide resistance: from molecular to population genetics. ANNUAL REVIEW OF ENTOMOLOGY 2000; 45:449-466. [PMID: 10761585 DOI: 10.1146/annurev.ento.45.1.449] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This review follows progress in the analysis of cyclodiene insecticide resistance from the initial isolation of the mutant, through cloning of the resistance gene, to an examination of the distribution of resistance alleles in natural populations. Emphasis is given to the use of a resistant Drosophila mutant as an entry point to cloning the associated gamma-aminobutyric acid (GABA) receptor subunit gene, Resistance to dieldrin. Resistance is associated with replacements of a single amino acid (alanine302) in the chloride ion channel pore of the protein. Replacements of alanine302 not only directly affect the drug binding site but also allosterically destabilize the drug preferred conformation of the receptor. Resistance is thus conferred by a unique dual mechanism associated with alanine302, which is the only residue replaced in a wide range of different resistant insects. The underlying mutations appear either to have arisen once, or multiply, depending on the population biology of the pest insect. Although resistance frequencies decline in the absence of selection, resistance alleles can persist at relatively high frequency and may cause problems for compounds to which cross-resistance is observed, such as the novel fipronils.
Collapse
|
24
|
Aydar E, Beadle DJ. The pharmacological profile of GABA receptors on cultured insect neurones. JOURNAL OF INSECT PHYSIOLOGY 1999; 45:213-219. [PMID: 12770368 DOI: 10.1016/s0022-1910(98)00114-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Neuronal cultures of the cockroach, Periplaneta americana, were used to study the pharmacological profile of GABA receptors using the whole-cell-voltage clamp technique. The results indicated that insect GABA receptors are linked to a chloride channel that can be activated by both GABA(A) and GABA(C) receptor agonists. The receptors are blocked by GABA(A) chloride channel blockers and some insecticides but not by competitive GABA(A) receptor antagonists. The GABA(C) receptor competitive antagonists were either full or partial agonists of the cockroach GABA receptors. The receptors were modulated by the enantiomers of lindane. In conclusion, insect GABA receptors appear to have a distinct pharmacological profile that does not conform to either vertebrate GABA(A) or GABA(C) receptors.
Collapse
Affiliation(s)
- E Aydar
- School of Biological and Molecular Sciences, Oxford Brookes University, Headington, Oxford, UK
| | | |
Collapse
|
25
|
Concas A, Pierobon P, Mostallino MC, Porcu P, Marino G, Minei R, Biggio G. Modulation of gamma-aminobutyric acid (GABA) receptors and the feeding response by neurosteroids in Hydra vulgaris. Neuroscience 1998; 85:979-88. [PMID: 9639289 DOI: 10.1016/s0306-4522(97)00515-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gamma-Aminobutyric acid (GABA) receptors are present in membrane preparations from Hydra vulgaris, one of the most primitive organisms with a nervous system. These receptors are sensitive to muscimol and benzodiazepines and appear to be important in the regulation of the feeding response. The effects of neurosteroids, general anaesthetics, and GABA antagonists on GABA(A) receptors in membranes prepared from Hydra and on the feeding response have now been investigated. The neurosteroids tetrahydroprogesterone and tetrahydrodeoxycorticosterone increased [3H]GABA binding to hydra membranes with nanomolar potency (EC50, 141+/-11 and 623+/-36 nM, respectively) and high efficacy (maximal increase 79+/-6.5 and 62+/-4%, respectively), whereas the 3beta-hydroxy epimer of tetrahydroprogesterone was ineffective. The benzodiazepine receptor ligands diazepam (100 microM), clonazepam (100 microM) and abecarnil (30 microM) enhanced [3H]GABA binding to Hydra membranes by 22, 20 and 24%, respectively; effects abolished by the specific benzodiazepine antagonist flumazenil (100 microM). On the contrary, the peripheral benzodiazepine receptor ligand 4'chlorodiazepam failed to affect [3H]GABA binding to Hydra membranes. The general anaesthetics propofol and alphaxalone similarly increased (+38% and +30% respectively) [3H]GABA binding. Moreover, [3H]GABA binding to Hydra membranes was completely inhibited by the GABA(A) receptor antagonist SR 95531, whereas bicuculline was without effect. The modulation of GABA(A) receptors in vitro by these various drugs correlated with their effects on the glutathione-induced feeding response in the living animals. Tetrahydroprogesterone and tetrahydrodeoxy-corticosterone (1 to 10 microM) prolonged, in a dose-dependent manner, the duration of mouth opening induced by 10 microM glutathione, with maximal effects of +33 and +29%, respectively, apparent at 10 microM neurosteroid. Alphaxalone (10 microM) similarly increased (+33%) the effect of glutathione. The effects of steroids on the feeding response were inhibited by SR 95531 in a dose-dependent manner; t-butylbyclophosphorothyonate (1 microM), a specific Cl- channel blocker, which per se, like picrotoxin but not bicuculline, shortened the duration of the response, also counteracted the steroids effects at 1 microM. These results suggest that the modulation of GABA(A) receptors by steroids is an ancient characteristic of the animal kingdom and that the pharmacological properties of these receptors have been highly conserved through evolution.
Collapse
Affiliation(s)
- A Concas
- Department of Experimental Biology, University of Cagliari, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
McGurk KA, Pistis M, Belelli D, Hope AG, Lambert JJ. The effect of a transmembrane amino acid on etomidate sensitivity of an invertebrate GABA receptor. Br J Pharmacol 1998; 124:13-20. [PMID: 9630337 PMCID: PMC1565349 DOI: 10.1038/sj.bjp.0701787] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. The gamma-aminobutyric acid (GABA)-modulatory and GABA-mimetic actions of etomidate at mammalian GABA(A) receptors are favoured by beta2- or beta3- versus beta1-subunit containing receptors, a selectivity which resides with a single transmembrane amino acid (beta2 N290, beta3 N289, beta1 S290). Here, we have utilized the Xenopus laevis oocyte expression system in conjunction with the two-point voltage clamp technique to determine the influence of the equivalent amino acid (M314) on the actions of this anaesthetic at an etomidate-insensitive invertebrate GABA receptor (Rdl) of Drosophila melanogaster. 2. Complementary RNA-injected oocytes expressing the wild type Rdl GABA receptor and voltage-clamped at -60 mV responded to bath applied GABA with a concentration-dependent inward current response and a calculated EC50 for GABA of 20+/-0.4 microM. Receptors in which the transmembrane methionine residue (M314) had been exchanged for an asparagine (RdlM314N) or a serine (RdlM314S) also exhibited a concentration-dependent inward current response to GABA, but in both cases with a reduced EC50 of 4.8+/-0.2 microM. 3. Utilizing the appropriate GABA EC10, etomidate (300 microM) had little effect on the agonist-evoked current of the wild type Rdl receptor. By contrast, at RdlM314N receptors, etomidate produced a clear concentration-dependent enhancement of GABA-evoked currents with a calculated EC50 of 64+/-3 microM and an Emax of 68+/-2% (of the maximum response to GABA). 4. The actions of etomidate at RdlM314N receptors exhibited an enantioselectivity common to that found for mammalian receptors, with 100 microM R-(+)-etomidate and S-(-)-etomidate enhancing the current induced by GABA (EC10) to 52+/-6% and 12+/-1% of the GABA maximum respectively. 5. The effects of this mutation were selective for etomidate as the GABA-modulatory actions of 1 mM pentobarbitone at wild type Rdl (49+/-4% of the GABA maximum) and RdlM314N receptors (53+/-2% of the GABA maximum) were similar. Additionally, the modest potentiation of GABA produced by the anaesthetic neurosteroid 5alpha-pregnan-3alpha-ol-20-one (Rdl = 25+/-4% of the GABA maximum) was not altered by this mutation (RdlM314N = 18+/-3% of the GABA maximum). 6. Etomidate acting at beta1 (S290)-containing mammalian GABA(A) receptors is known to produce only a modest GABA-modulatory effect. Similarly, etomidate acting at RdlM314S receptors produced an enhancement of GABA but the magnitude of the effect was reduced compared to RdlM314N receptors. 7. Etomidate acting at human alpha6beta3gamma2L receptors is known to produce a large enhancement of GABA-evoked currents and at higher concentrations this anaesthetic directly activates the GABA(A) receptor complex. Mutation of the human beta3 subunit asparagine to methionine (beta3 N289M found in the equivalent position in Rdl completely inhibited both the GABA-modulatory and GABA-mimetic action of etomidate (10-300 microM) acting at alpha6beta3 N289Mgamma2L receptors. 8. It was concluded that, although invertebrate and mammalian proteins exhibit limited sequence homology, allosteric modification of their function by etomidate can be influenced in a complementary manner by a single amino acid substitution. The results are discussed in relation to whether this amino acid contributes to the anaesthetic binding site, or is essential for transduction. Furthermore, this study provides a clear example of the specificity of anaesthetic action.
Collapse
Affiliation(s)
- K A McGurk
- Department of Pharmacology and Neuroscience, Ninewells Hospital and Medical School, Dundee University, Scotland
| | | | | | | | | |
Collapse
|
27
|
Ozoe Y, Akamatsu M, Higata T, Ikeda I, Mochida K, Koike K, Ohmoto T, Nikaido T. Picrodendrin and related terpenoid antagonists reveal structural differences between ionotropic GABA receptors of mammals and insects. Bioorg Med Chem 1998; 6:481-92. [PMID: 9597191 DOI: 10.1016/s0968-0896(98)00012-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Twenty-eight picrotoxane terpenoids, including picrodendrins isolated from the Euphorbiaceae plant, Picrodendron baccatum (L.) Krug and Urban, have been evaluated for their ability to inhibit the specific binding of [3H]EBOB, the noncompetitive antagonist of ionotropic GABA receptors, to rat-brain and housefly (Musca domestica L.)-head membranes. Picrodendrin Q was the most potent competitive inhibitor of [3H]EBOB binding, with IC50 values of 16 nM (rat) and 22 nM (Musca). We find that the spiro gamma-butyrolactone moiety at the 13-position, which contains a carbonyl group conjugated with an unsaturated bond, and the substituents at the 4-position play important roles in the interaction of picrodendrins with their binding site in rat receptors. In contrast, such structural features are not strictly required in the case of the interaction with Musca receptors; the spiro saturated gamma-butyrolactone moiety at the 13-position, which bears the 16-sp3 carbon atom, and the hydroxyl groups at various positions are somewhat tolerated. Quantitative structure-activity studies have clearly shown that the electronegativity of the 16-carbon atom and the presence or absence of the 4- and 8-hydroxyl groups are important determinants of the potency of nor-diterpenes in Musca receptors, while the negative charge on the 17-carbonyl oxygen atom is likely important in the case of rat receptors. These findings indicate that there are significant differences between the structures of the complementary binding sites in rat GABA receptors and Musca GABA receptors. We also infer differences between native Musca GABA receptors and the Drosophila Rdl subunit-containing homo-oligomeric GABA receptors in the structures of their binding sites.
Collapse
Affiliation(s)
- Y Ozoe
- Department of Life Science and Biotechnology, Shimane University, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hosie AM, Aronstein K, Sattelle DB, ffrench-Constant RH. Molecular biology of insect neuronal GABA receptors. Trends Neurosci 1997; 20:578-83. [PMID: 9416671 DOI: 10.1016/s0166-2236(97)01127-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ionotropic gamma-aminobutyric acid (GABA) receptors are distributed throughout the nervous systems of many insect species. As with their vertebrate counterparts, GABAA receptors and GABAC receptors, the binding of GABA to ionotropic insect receptors elicits a rapid, transient opening of anion-selective ion channels which is generally inhibitory. Although insect and vertebrate GABA receptors share a number of structural and functional similarities, their pharmacology differs in several aspects. Recent studies of cloned Drosophila melanogaster GABA receptors have clarified the contribution of particular subunits to these differences. Insect ionotropic GABA receptors are also the target of numerous insecticides and an insecticide-resistant form of a Drosophila GABA-receptor subunit has enhanced our understanding of the structure-function relationship of one aspect of pharmacology common to both insect and vertebrate GABA receptors, namely antagonism by the plant-derived toxin picrotoxinin.
Collapse
Affiliation(s)
- A M Hosie
- Babraham Institute, Dept of Zoology, Cambridge, UK
| | | | | | | |
Collapse
|
29
|
Rauh JJ, Benner E, Schnee ME, Cordova D, Holyoke CW, Howard MH, Bai D, Buckingham SD, Hutton ML, Hamon A, Roush RT, Sattelle DB. Effects of [3H]-BIDN, a novel bicyclic dinitrile radioligand for GABA-gated chloride channels of insects and vertebrates. Br J Pharmacol 1997; 121:1496-505. [PMID: 9257933 PMCID: PMC1564811 DOI: 10.1038/sj.bjp.0701215] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The radiolabelled bicyclic dinitrile, [3H]-3,3-bis-trifluoromethyl-bicyclo[2.2.1]heptane-2,2-dicarbonitrile ([3H]-BIDN), exhibited, specific binding of high affinity to membranes of the southern corn rootworm (Diabrotica undecimpunctata howardi) and other insects. A variety of gamma-aminobutyric acid (GABA) receptor convulsants, including the insecticides heptachlor (IC50, 35 +/- 3 nM) and dieldrin (IC50, 93 +/- 7 nM), displaced [3H]-BIDN from rootworm membranes. When tested at 100 microM, 1-(4-ethynylphenyl)-4-n-propyl-2,6,7-trioxabicyclo[2.2.2]oct ane(EBOB), 4-t-butyl-2,6,7-trioxa-1-phosphabicy-clo[2.2.2]octane-1-thio ne (TBPS), 1-phenyl-4-t-butyl-2,6,7-trioxabicyclo[2.2.2]octane (TBOB) and picrotoxin failed to displace 50% of [3H]-BIDN binding to rootworm membranes indicating that the bicyclic dinitrile radioligand probes a site distinct from those identified by other convulsant radioligands. 2. Dissociation studies showed that dieldrin, ketoendrin, toxaphene, heptachlor epoxide and alpha and beta endosulphan displace bound [3H]-BIDN from rootworm membranes by a competitive mechanism. 3. Rat brain membranes were also shown to possess a population of saturable, specific [3H]-BIDN binding sites, though of lower affinity than in rootworm and with a different pharmacological profile. Of the insecticidal GABAergic convulsants that displaced [3H]-BIDN from rootworm, cockroach (Periplaneta americana) and rat brain membranes, many were more effective in rootworm. 4. Functional GABA-gated chloride channels of rootworm nervous system and of cockroach nerve and muscle were blocked by BIDN, whereas cockroach neuronal GABA(B) receptors were unaffected. 5. Expression in Xenopus oocytes of either rat brain mRNA, or cDNA-derived RNA encoding a GABA receptor subunit (Rdl) that is expressed widely in the nervous system of Drosophila melanogaster resulted in functional, homo-oligomeric GABA receptors that were blocked by BIDN. Thus, BIDN probes a novel site on GABA-gated Cl- channels to which a number of insecticidally-active molecules bind.
Collapse
Affiliation(s)
- J J Rauh
- DuPont Agricultural Products, Stine-Haskell Research Center, Newark, DE 19714, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
1. The Drosophila melanogaster gamma-aminobutyric acid (GABA) receptor subunits, RDLac and DRC 17-1-2, form functional homo-oligomeric receptors when heterologously expressed in Xenopus laevis oocytes. The subunits differ in only 17 amino acids, principally in regions of the N-terminal domain which determine agonist pharmacology in vertebrate ionotropic neurotransmitter receptors. A range of conformationally restricted GABA analogues were tested on the two homo-oligomers and their agonists pharmacology compared with that of insect and vertebrate iontropic GABA receptors. 2. The actions of GABA, isoguvacine and isonipecotic acid on RDLac and DRC 17-1-2 homo-oligomers were compared, by use of two-electrode voltage-clamp. All three compounds were full agonists of both receptors, but were 4-6 fold less potent agonists of DRC 17-1-2 homo-oligomers than of RDLac. However, the relative potencies of these agonists on each receptor were very similar. 3. A more complete agonist profile was established for RDLac homo-oligomers. The most potent agonists of these receptors were GABA, muscimol and trans-aminocrotonic acid (TACA), which were approximately equipotent. RDLac homo-oligomers were fully activated by a range of GABA analogues, with the order of potency: GABA > ZAPA ((Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid) > isoguvacine > imidazole-4-acetic acid > or = isonipecotic acid > or = cis-aminocrotonic acid (CACA) > beta-alanine. 3-Aminopropane sulphonic acid (3-APS), a partial agonist of RDLac homo-oligomers, was the weakest agonist tested and 100 fold less potent than GABA. 4. SR95531, an antagonist of vertebrate GABAA receptors, competitively inhibited the GABA responses of RDLac homo-oligomers, which have previously been found to insensitive to bicuculline. However, its potency (IC50 500 microM) was much reduced when compared to GABAA receptors. 5. The agonist pharmacology of Drosophila RDLac homo-oligomers exhibits aspects of the characteristic pharmacology of certain native insect GABA receptors which distinguish them from vertebrate GABA receptors. The high potency and efficacy of isoguvacine and ZAPA distinguishes RDLac homo-oligomers from bicuculline-insensitive vertebrate GABAC receptors, while the low potency of SR95531 and 3-APS distinguishes them from GABAA receptors. The differences in the potency of agonists on RDLac and DRC 17-1-2 homo-oligomers observed in the present study may assist in identification of further molecular determinants of GABA receptor function.
Collapse
Affiliation(s)
- A M Hosie
- Department of Zoology, University of Cambridge
| | | |
Collapse
|
31
|
Hosie AM, Ozoe Y, Koike K, Ohmoto T, Nikaido T, Sattelle DB. Actions of picrodendrin antagonists on dieldrin-sensitive and -resistant Drosophila GABA receptors. Br J Pharmacol 1996; 119:1569-76. [PMID: 8982503 PMCID: PMC1915789 DOI: 10.1111/j.1476-5381.1996.tb16074.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. A series of terpenoid compounds, recently isolated from Picrodendron baccatum, share a picrotoxane skeleton with picrotoxinin, an antagonist of ionotropic GABA receptors. Referred to as picrodendrins, they inhibit the binding of [35S]-tert-butylbicyclophosphorothionate (TBPS) to rat GABAA receptors. Hitherto, their effects on GABA receptors have not been investigated electrophysiologically. Under two-electrode voltage-clamp, the actions of picrodendrins and related terpenoids have been assayed on homooligomeric GABA receptors formed by the expression of a Drosophila GABA receptor subunit (RDLac) in Xenopus oocytes. 2. All the terpenoids tested, dose-dependently antagonized currents induced by 30 microM (EC50) GABA. 3. Tutin and its analogues (dihydrotutin and isohyenanchin) differ in the structure of their axial C4 substituents. Of these compounds, tutin, which bears an isopropenyl group at this carbon atom, was the most potent antagonist of RDLac homo-oligomers, whereas isohyenanchin, which bears a hydroxyisopropyl group, was the least potent antagonist tested. 4. Picrodendrins differ mainly in the structure of their C9 substituents. The IC50s of picrodendrins ranged from 17 +/- 1.3 nM (picrodendrin-Q) to 1006 +/- 1.3 nM (picrodendrin-O). As such, the most potent picrodendrins (Q, A and B) were approximately equipotent with picrotoxinin as antagonists of RDLac homo-oligomers. 5. Certain picrodendrin compounds effected a use-dependent blockade of RDLac homo-oligomers. Such a biphasic block was not observed with tutin analogues. 6. Picrotoxin-resistant RDLacA3025 homo-oligomers, which have a single amino acid substitution (A302S) in the 2nd transmembrane region, were markedly less sensitive to picrodendrin-O than the wild-type, dieldrin-sensitive, homo-oligomers. 7. The relative potency of tutin analogues demonstrates that the structure-activity relationship of the C4 substituent of picrotoxane-based compounds is conserved in vertebrates and insects. However, the relative order of potency of picrodendrins on RDLac homo-oligomers is distinctly different from that observed in previous radioligand binding studies performed on vertebrate GABAA receptors. As picrodendrin compounds differ in the structure of their C9 substituents, these data suggest that the optimal convulsant pharmacophores of vertebrate GABAA receptors and RDLac homo-oligomers differ with respect to this substituent.
Collapse
Affiliation(s)
- A M Hosie
- Department of Zoology, University of Cambridge, UK
| | | | | | | | | | | |
Collapse
|
32
|
Matsuda K, Hosie AM, Buckingham SD, Squire MD, Baylis HA, Sattelle DB. pH-dependent actions of THIP and ZAPA on an ionotropic Drosophila melanogaster GABA receptor. Brain Res 1996; 739:335-8. [PMID: 8955956 DOI: 10.1016/s0006-8993(96)00998-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The actions of THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) and ZAPA (Z-3-[(aminoiminomethyl)thio]prop-2-enoic acid) were tested on an ionotropic homo-oligomeric GABA receptor of Drosophila melanogaster. The amplitude of currents activated by THIP and ZAPA declined rapidly during agonist application and a rebound response was observed on washout. By correcting the pH shift induced by these acid salts, responses more typical of GABA agonists were seen. Less striking pH-dependence was observed in the case of GABA responses.
Collapse
Affiliation(s)
- K Matsuda
- Babraham Institute Laboratory of Molecular Signalling, Department of Zoology, University of Cambridge, UK
| | | | | | | | | | | |
Collapse
|
33
|
Buckingham SD, Matsuda K, Hosie AM, Baylis HA, Squire MD, Lansdell SJ, Millar NS, Sattelle B. Wild-type and insecticide-resistant homo-oligomeric GABA receptors of Drosophila melanogaster stably expressed in a Drosophila cell line. Neuropharmacology 1996; 35:1393-401. [PMID: 9014156 DOI: 10.1016/s0028-3908(96)00087-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
RDL is an ionotropic GABA receptor subunit, a product of the Rdl gene, originally identified in the Maryland strain of Drosophila melanogaster. Here, we report the generation of a Drosophila melanogaster cell line (S2-RDLA302S) stably expressing a mutated, dieldrin-resistant (A302S) form of RDL. The properties of this dieldrin-resistant, homo-oligomeric receptor have been compared with those of the stably expressed, wild-type form (S2-RDL). Using these stable lines, a striking reduction in sensitivity to both picrotoxinin and dieldrin was observed for responses to GABA of S2-RDLA302S compared to S2-RDL. To determine if these stable insect cell lines generate results similar to those obtained by transient expression in Xenopus laevis oocytes, we have examined the actions of two widely used convulsants, EBOB and TBPS, and a recently developed convulsant BIDN, on RDL-mediated GABA responses in the two expression systems. In both oocytes and S2 cells, the three convulsants suppressed the amplitude of responses to GABA. Thus, in accord with earlier work on agonist and allosteric sites, the S2-RDL cell line is found to yield similar pharmacological results to those obtained in transient expression studies. Stable cell lines are now available expressing susceptible and resistant forms of an ionotropic receptor by GABAergic insecticides.
Collapse
Affiliation(s)
- S D Buckingham
- Babraham Institute Laboratory of Molecular Signalling, Department of Zoology, University of Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Walker RJ, Brooks HL, Holden-Dye L. Evolution and overview of classical transmitter molecules and their receptors. Parasitology 1996; 113 Suppl:S3-33. [PMID: 9051927 DOI: 10.1017/s0031182000077878] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
All the classical transmitter ligand molecules evolved at least 1000 million years ago. With the possible exception of the Porifera and coelenterates (Cnidaria), they occur in all the remaining phyla. All transmitters have evolved the ability to activate a range of ion channels, resulting in excitation, inhibition and biphasic or multiphasic responses. All transmitters can be synthesised in all three basic types of neurones, i.e. sensory, interneurone and motoneurone. However their relative importance as sensory, interneurone or motor transmitters varies widely between the phyla. It is likely that all neurones contain more than one type of releasable molecule, often a combination of a classical transmitter and a neuroactive peptide. Second messengers, i.e. G proteins and phospholipase C systems, appeared early in evolution and occur in all phyla that have been investigated. Although the evidence is incomplete, it is likely that all the classical transmitter receptor subtypes identified in mammals, also occur throughout the phyla. The invertebrate receptors so far cloned show some interesting homologies both between those from different invertebrate phyla and with mammalian receptors. This indicates that many of the basic receptor subtypes, including benzodiazepine subunits, evolved at an early period, probably at least 800 million years ago. Overall, the evidence stresses the similarity between the major phyla rather than their differences, supporting a common origin from primitive helminth stock.
Collapse
Affiliation(s)
- R J Walker
- Department of Physiology and Pharmacology, Biomedical Sciences, Bassett Crescent East, University of Southampton, UK
| | | | | |
Collapse
|