1
|
Ulengin-Talkish I, Cyert MS. A cellular atlas of calcineurin signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119366. [PMID: 36191737 PMCID: PMC9948804 DOI: 10.1016/j.bbamcr.2022.119366] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Intracellular Ca2+ signals are temporally controlled and spatially restricted. Signaling occurs adjacent to sites of Ca2+ entry and/or release, where Ca2+-dependent effectors and their substrates co-localize to form signaling microdomains. Here we review signaling by calcineurin, the Ca2+/calmodulin regulated protein phosphatase and target of immunosuppressant drugs, Cyclosporin A and FK506. Although well known for its activation of the adaptive immune response via NFAT dephosphorylation, systematic mapping of human calcineurin substrates and regulators reveals unexpected roles for this versatile phosphatase throughout the cell. We discuss calcineurin function, with an emphasis on where signaling occurs and mechanisms that target calcineurin and its substrates to signaling microdomains, especially binding of cognate short linear peptide motifs (SLiMs). Calcineurin is ubiquitously expressed and regulates events at the plasma membrane, other intracellular membranes, mitochondria, the nuclear pore complex and centrosomes/cilia. Based on our expanding knowledge of localized CN actions, we describe a cellular atlas of Ca2+/calcineurin signaling.
Collapse
Affiliation(s)
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA 94035, United States.
| |
Collapse
|
2
|
King DR, Sedovy MW, Eaton X, Dunaway LS, Good ME, Isakson BE, Johnstone SR. Cell-To-Cell Communication in the Resistance Vasculature. Compr Physiol 2022; 12:3833-3867. [PMID: 35959755 DOI: 10.1002/cphy.c210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.
Collapse
Affiliation(s)
- D Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Meghan W Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Xinyan Eaton
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Williams RB, Johnson CN. A Review of Calcineurin Biophysics with Implications for Cardiac Physiology. Int J Mol Sci 2021; 22:ijms222111565. [PMID: 34768996 PMCID: PMC8583826 DOI: 10.3390/ijms222111565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Calcineurin, also known as protein phosphatase 2B, is a heterodimeric serine threonine phosphatase involved in numerous signaling pathways. During the past 50 years, calcineurin has been the subject of extensive investigation. Many of its cellular and physiological functions have been described, and the underlying biophysical mechanisms are the subject of active investigation. With the abundance of techniques and experimental designs utilized to study calcineurin and its numerous substrates, it is difficult to reconcile the available information. There have been a plethora of reports describing the role of calcineurin in cardiac disease. However, a physiological role of calcineurin in healthy cardiomyocyte function requires clarification. Here, we review the seminal biophysical and structural details that are responsible for the molecular function and inhibition of calcineurin. We then focus on literature describing the roles of calcineurin in cardiomyocyte physiology and disease.
Collapse
Affiliation(s)
- Ryan B. Williams
- Department of Chemistry, Mississippi State University, Starkville, MS 39759, USA;
| | - Christopher N. Johnson
- Department of Chemistry, Mississippi State University, Starkville, MS 39759, USA;
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
4
|
Maher A, El Sayed N, Nafea H, Gad M. Rolipram rescues memory consolidation deficits caused by sleep deprivation: Implication of the cAMP/PKA and cAMP/Epac pathways. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:631-639. [PMID: 34397335 DOI: 10.2174/1871527320666210816105144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Over the last few years, the number of people suffering from sleeping disorders has increased significantly despite negative effects on cognition and an association with brain inflammation. OBJECTIVES We assessed memory deficits caused by sleep deprivation (SD) to determine the therapeutic effect of phosphodiesterase 4 (PDE4) inhibitors on SD-induced memory deficits and to investigate whether the modulation of memory deficits by PDE4 inhibitors is mediated by a protein kinase A (PKA)-independent pathway in conjunction with a PKA-dependent pathway. METHODS Adult male mice were divided into four groups. Three SD groups were deprived of Rapid eye movement (REM) sleep for 12 h a day for six consecutive days. They were tested daily in the Morris water maze to evaluate learning and memory. One of the SD groups was injected with a PDE4 inhibitor, rolipram (1 mg/kg ip), whereas another had rolipram co-administered with chlorogenic acid (CHA, 20 mg/kg ip), an inhibitor of PKA. After 6 days, the mice were sacrificed, and the hippocampi were evaluated for cyclic AMP (cAMP) and nuclear factor Nrf-2 levels. The hippocampal expression of PKA, phosphorylated cAMP response element-binding protein (CREB), and phosphorylated glycogen synthase 3β (Ser389) were also evaluated. RESULTS SD caused a significant decrease in cAMP levels in the brain and had a detrimental effect on learning and memory. The administration of rolipram or rolipram+CHA resulted in an improvement in cognitive function. CONCLUSION The present study provides evidence that restoration of memory with PDE4 inhibitors occurs through a dual mechanism involving the PKA and Epac pathways.
Collapse
Affiliation(s)
- Ahmed Maher
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo. Egypt
| | - Nesrine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University. Egypt
| | - Heba Nafea
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo. Egypt
| | - Mohamed Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo. Egypt
| |
Collapse
|
5
|
AKAP79/150 coordinates leptin-induced PKA signaling to regulate K ATP channel trafficking in pancreatic β-cells. J Biol Chem 2021; 296:100442. [PMID: 33617875 PMCID: PMC8010710 DOI: 10.1016/j.jbc.2021.100442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 01/21/2023] Open
Abstract
The adipocyte hormone leptin regulates glucose homeostasis both centrally and peripherally. A key peripheral target is the pancreatic β-cell, which secretes insulin upon glucose stimulation. Leptin is known to suppress glucose-stimulated insulin secretion by promoting trafficking of KATP channels to the β-cell surface, which increases K+ conductance and causes β-cell hyperpolarization. We have previously shown that leptin-induced KATP channel trafficking requires protein kinase A (PKA)-dependent actin remodeling. However, whether PKA is a downstream effector of leptin signaling or PKA plays a permissive role is unknown. Using FRET-based reporters of PKA activity, we show that leptin increases PKA activity at the cell membrane and that this effect is dependent on N-methyl-D-aspartate receptors, CaMKKβ, and AMPK, which are known to be involved in the leptin signaling pathway. Genetic knockdown and rescue experiments reveal that the increased PKA activity upon leptin stimulation requires the membrane-targeted PKA-anchoring protein AKAP79/150, indicating that PKA activated by leptin is anchored to AKAP79/150. Interestingly, disrupting protein phosphatase 2B (PP2B) anchoring to AKAP79/150, known to elevate basal PKA signaling, leads to increased surface KATP channels even in the absence of leptin stimulation. Our findings uncover a novel role of AKAP79/150 in coordinating leptin and PKA signaling to regulate KATP channel trafficking in β-cells, hence insulin secretion. The study further advances our knowledge of the downstream signaling events that may be targeted to restore insulin secretion regulation in β-cells defective in leptin signaling, such as those from obese individuals with type 2 diabetes.
Collapse
|
6
|
Manoury B, Idres S, Leblais V, Fischmeister R. Ion channels as effectors of cyclic nucleotide pathways: Functional relevance for arterial tone regulation. Pharmacol Ther 2020; 209:107499. [PMID: 32068004 DOI: 10.1016/j.pharmthera.2020.107499] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Numerous mediators and drugs regulate blood flow or arterial pressure by acting on vascular tone, involving cyclic nucleotide intracellular pathways. These signals lead to regulation of several cellular effectors, including ion channels that tune cell membrane potential, Ca2+ influx and vascular tone. The characterization of these vasocontrictive or vasodilating mechanisms has grown in complexity due to i) the variety of ion channels that are expressed in both vascular endothelial and smooth muscle cells, ii) the heterogeneity of responses among the various vascular beds, and iii) the number of molecular mechanisms involved in cyclic nucleotide signalling in health and disease. This review synthesizes key data from literature that highlight ion channels as physiologically relevant effectors of cyclic nucleotide pathways in the vasculature, including the characterization of the molecular mechanisms involved. In smooth muscle cells, cation influx or chloride efflux through ion channels are associated with vasoconstriction, whereas K+ efflux repolarizes the cell membrane potential and mediates vasodilatation. Both categories of ion currents are under the influence of cAMP and cGMP pathways. Evidence that some ion channels are influenced by CN signalling in endothelial cells will also be presented. Emphasis will also be put on recent data touching a variety of determinants such as phosphodiesterases, EPAC and kinase anchoring, that complicate or even challenge former paradigms.
Collapse
Affiliation(s)
- Boris Manoury
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France.
| | - Sarah Idres
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | - Véronique Leblais
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | | |
Collapse
|
7
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Turzo M, Vaith J, Lasitschka F, Weigand MA, Busch CJ. Role of ATP-sensitive potassium channels on hypoxic pulmonary vasoconstriction in endotoxemia. Respir Res 2018; 19:29. [PMID: 29433570 PMCID: PMC5810061 DOI: 10.1186/s12931-018-0735-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/05/2018] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND ATP-regulated potassium channels (KATP) regulate pulmonary vascular tone and are involved in hypoxic pulmonary vasoconstriction (HPV). In patients with inflammation like sepsis or ARDS, HPV is impaired, resulting in a ventilation-perfusion mismatch and hypoxia. Since increase of vascular KATP channel Kir6.1 has been reported in animal models of endotoxemia, we studied the expression and physiological effects of Kir6.1 in murine endotoxemic lungs. We hypothesized that inhibition of overexpressed Kir6.1 increases HPV in endotoxemia. METHODS Mice (C57BL/6; n = 55) with (n = 27) and without (n = 28) endotoxemia (35 mg/kg LPS i.p. for 18 h) were analyzed for Kir6.1 gene as well as protein expression and HPV was examined in isolated perfused mouse lungs with and without selective inhibition of Kir6.1 with PNU-37883A. Pulmonary artery pressure (PAP) and pressure-flow curves during normoxic (FiO2 0.21) and hypoxic (FiO2 0.01) ventilation were obtained. HPV was quantified as the increase in perfusion pressure in response to hypoxic ventilation in mmHg of baseline perfusion pressure (ΔPAP) in the presence and absence of PNU-37883A. RESULTS Endotoxemia increases pulmonary Kir6.1 gene (+ 2.8 ± 0.3-fold) and protein expression (+ 2.1 ± 0.3-fold). Hypoxia increases HPV in lungs of control animals, while endotoxemia decreases HPV (∆PAP control: 9.2 ± 0.9 mmHg vs. LPS: 3.0 ± 0.7 mmHg, p < 0.05, means ± SEM). Inhibition of Kir6.1 with 1 μM PNU-37883A increases HPV in endotoxemia, while not increasing HPV in controls (∆PAP PNU control: 9.3 ± 0.7 mmHg vs. PNU LPS 8.3 ± 0.9 mmHg, p < 0.05, means ± SEM). CONCLUSION Endotoxemia increases pulmonary Kir6.1 gene and protein expression. Inhibition of Kir6.1 augments HPV in murine endotoxemic lungs.
Collapse
Affiliation(s)
- Maurizio Turzo
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Julian Vaith
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Cornelius J Busch
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Aziz Q, Li Y, Tinker A. Potassium channels in the sinoatrial node and their role in heart rate control. Channels (Austin) 2018; 12:356-366. [PMID: 30301404 PMCID: PMC6207292 DOI: 10.1080/19336950.2018.1532255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022] Open
Abstract
Potassium currents determine the resting membrane potential and govern repolarisation in cardiac myocytes. Here, we review the various currents in the sinoatrial node focussing on their molecular and cellular properties and their role in pacemaking and heart rate control. We also describe how our recent finding of a novel ATP-sensitive potassium channel population in these cells fits into this picture.
Collapse
Affiliation(s)
- Qadeer Aziz
- William Harvey Heart Centre, Barts & The London School of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Yiwen Li
- William Harvey Heart Centre, Barts & The London School of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Andrew Tinker
- William Harvey Heart Centre, Barts & The London School of Medicine & Dentistry, Queen Mary, University of London, London, UK
| |
Collapse
|
10
|
Chen S, Hao X, Yu L, Zhang P, Cao W, Chen H, Zhu D. Gastrodin causes vasodilation by activating K ATP channels in vascular smooth muscles via PKA-dependent signaling pathway. J Recept Signal Transduct Res 2017; 37:543-549. [PMID: 28840751 DOI: 10.1080/10799893.2017.1369118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Gastrodin, one of the major components extracted from the Chinese herb Gastrodia elata Bl., has been widely used as an anticonvulsant, sedative, analgesic and hypotensive. In our study, we aimed to investigate the effects and possible mechanisms of gastrodin on vascular KATP channels. Tension experiments were used on rat mesenteric artery rings without an endothelium. Patch clamp experiments were executed to investigate the influences of gastrodin on the membrane current in mesenteric artery smooth muscle cells. Gastrodin induced vasorelaxation in a concentration dependent manner when rat mesenteric artery rings were pre-contracted with Phenylephrine. The vasorelaxation effect was partially diminished by pre-treating with a KATP channel inhibitor, or a PKA inhibitor. With whole-cell patch-clamp recording techniques, we found that gastrodin is a activator of KATP in rat mesenteric artery smooth muscle cells, and this effect was eliminate by pre-treating with H89or PKI, PKA inhibitor. In addition, when rat vascular smooth muscle cells were treated with 100 μM gastrodin for 24 h, maximum KATP current density increased by 28.1%. The results indicate that gastrodin exerts vasorelaxation effect through activation of PKA and subsequent opening of smooth muscle KATP channels.
Collapse
Affiliation(s)
- Shuo Chen
- a Department of Biopharmaceutical Sciences, College of Pharmacy , Harbin Medical University , Daqing , PR China
| | - Xuewei Hao
- b Department of Biochemistry, Inspection Institute , Harbin Medical University , Daqing , PR China
| | - Lei Yu
- a Department of Biopharmaceutical Sciences, College of Pharmacy , Harbin Medical University , Daqing , PR China
| | - Ping Zhang
- b Department of Biochemistry, Inspection Institute , Harbin Medical University , Daqing , PR China
| | - Weiwei Cao
- a Department of Biopharmaceutical Sciences, College of Pharmacy , Harbin Medical University , Daqing , PR China
| | - Hongyang Chen
- b Department of Biochemistry, Inspection Institute , Harbin Medical University , Daqing , PR China
| | - Daling Zhu
- a Department of Biopharmaceutical Sciences, College of Pharmacy , Harbin Medical University , Daqing , PR China
| |
Collapse
|
11
|
Li S, Chen S, Yang W, Liao L, Li S, Li J, Zheng Y, Zhu D. Allicin relaxes isolated mesenteric arteries through activation of PKA-K ATP channel in rat. J Recept Signal Transduct Res 2016; 37:17-24. [PMID: 27049346 DOI: 10.3109/10799893.2016.1155065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Allicin is a natural effective organosulfur compound isolated from garlic, which possesses many beneficial properties, such as antibacterial, anti-inflammatory, antimicrobial, hypotensive and hypolipidemic. In the present study, we investigated the effects and the underlying mechanisms of allicin on isolated mesenteric arteries (MAs). We examined MAs relaxation induced by allicin on rat-isolated mesenteric artery (MA) rings, the KATP channels with patch, and the expression of Kir6.1 and SUR2B with western blotting and NO production with Diaminofluorescein-FM diacetate (DAF-FMDA) in rat mesenteric artery smooth muscle cells (MASMCs). The results showed that allicin elicited the dose-dependent vasorelaxation effect with phenylephrine (PE) precontracted rat MA rings. The vasorelaxation effect was endothelium and NO independent but could be diminished by inhibition of PKA and KATP channels in the vascular smooth muscle. Allicin activated KATP channels in rat MASMCs, and the activation of KATP channels was inhibited by the inhibitors of PKA and KATP channels. But allicin had no effect on the expression of KATP subtypes Kir6.1 and SUR2B. These observations suggest that allicin exerts vasorelaxation effect through activation of PKA-KATP-signaling pathway.
Collapse
Affiliation(s)
- Shuzhen Li
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , PR China
| | - Shuo Chen
- b Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University-Daqing , PR China , and
| | - Weiwei Yang
- c College of Food Science, Northeast Agricultural University , PR China
| | - Lin Liao
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , PR China
| | - Shanshan Li
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , PR China
| | - Jiali Li
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , PR China
| | - Yaqin Zheng
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , PR China
| | - Daling Zhu
- c College of Food Science, Northeast Agricultural University , PR China
| |
Collapse
|
12
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
13
|
Steady-state modulation of voltage-gated K+ channels in rat arterial smooth muscle by cyclic AMP-dependent protein kinase and protein phosphatase 2B. PLoS One 2015; 10:e0121285. [PMID: 25793374 PMCID: PMC4368632 DOI: 10.1371/journal.pone.0121285] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/29/2015] [Indexed: 01/17/2023] Open
Abstract
Voltage-gated potassium channels (Kv) are important regulators of membrane potential in vascular smooth muscle cells, which is integral to controlling intracellular Ca2+ concentration and regulating vascular tone. Previous work indicates that Kv channels can be modulated by receptor-driven alterations of cyclic AMP-dependent protein kinase (PKA) activity. Here, we demonstrate that Kv channel activity is maintained by tonic activity of PKA. Whole-cell recording was used to assess the effect of manipulating PKA signalling on Kv and ATP-dependent K+ channels of rat mesenteric artery smooth muscle cells. Application of PKA inhibitors, KT5720 or H89, caused a significant inhibition of Kv currents. Tonic PKA-mediated activation of Kv appears maximal as application of isoprenaline (a β-adrenoceptor agonist) or dibutyryl-cAMP failed to enhance Kv currents. We also show that this modulation of Kv by PKA can be reversed by protein phosphatase 2B/calcineurin (PP2B). PKA-dependent inhibition of Kv by KT5720 can be abrogated by pre-treatment with the PP2B inhibitor cyclosporin A, or inclusion of a PP2B auto-inhibitory peptide in the pipette solution. Finally, we demonstrate that tonic PKA-mediated modulation of Kv requires intact caveolae. Pre-treatment of the cells with methyl-β-cyclodextrin to deplete cellular cholesterol, or adding caveolin-scaffolding domain peptide to the pipette solution to disrupt caveolae-dependent signalling each attenuated PKA-mediated modulation of the Kv current. These findings highlight a novel, caveolae-dependent, tonic modulatory role of PKA on Kv channels providing new insight into mechanisms and the potential for pharmacological manipulation of vascular tone.
Collapse
|
14
|
Savoia CP, Liu QH, Zheng YM, Yadav V, Zhang Z, Wu LG, Wang YX. Calcineurin upregulates local Ca(2+) signaling through ryanodine receptor-1 in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2014; 307:L781-90. [PMID: 25239916 DOI: 10.1152/ajplung.00149.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Local Ca(2+) signals (Ca(2+) sparks) play an important role in multiple cellular functions in airway smooth muscle cells (ASMCs). Protein kinase Cϵ is known to downregulate ASMC Ca(2+) sparks and contraction; however, no complementary phosphatase has been shown to produce opposite effects. Here, we for the first time report that treatment with a specific calcineurin (CaN) autoinhibitory peptide (CAIP) to block CaN activity decreases, whereas application of nickel to activate CaN increases, Ca(2+) sparks in both the presence and absence of extracellular Ca(2+). Treatment with xestospogin-C to eliminate functional inositol 1,4,5-trisphosphate receptors does not prevent CAIP from inhibiting local Ca(2+) signaling. However, high ryanodine treatment almost completely blocks spark formation and prevents the nickel-mediated increase in sparks. Unlike CAIP, the protein phosphatase 2A inhibitor endothall has no effect. Local Ca(2+) signaling is lower in CaN catalytic subunit Aα gene knockout (CaN-Aα(-/-)) mouse ASMCs. The effects of CAIP and nickel are completely lost in CaN-Aα(-/-) ASMCs. Neither CAIP nor nickel produces an effect on Ca(2+) sparks in type 1 ryanodine receptor heterozygous knockout (RyR1(-/+)) mouse ASMCs. However, their effects are not altered in RyR2(-/+) or RyR3(-/-) mouse ASMCs. CaN inhibition decreases methacholine-induced contraction in isolated RyR1(+/+) but not RyR1(-/+) mouse tracheal rings. Supportively, muscarinic contractile responses are also reduced in CaN-Aα(-/+) mouse tracheal rings. Taken together, these results provide novel evidence that CaN regulates ASMC Ca(2+) sparks specifically through RyR1, which plays an important role in the control of Ca(2+) signaling and contraction in ASMCs.
Collapse
Affiliation(s)
- Carlo P Savoia
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | - Qing-Hua Liu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Yun-Min Zheng
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | - Vishal Yadav
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | - Zhen Zhang
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Ling-Gang Wu
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Yong-Xiao Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York;
| |
Collapse
|
15
|
Tinker A, Aziz Q, Thomas A. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Br J Pharmacol 2014; 171:12-23. [PMID: 24102106 DOI: 10.1111/bph.12407] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/30/2013] [Accepted: 08/26/2013] [Indexed: 12/14/2022] Open
Abstract
ATP-sensitive potassium channels (K(ATP)) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified mice and genomic studies in patients have implicated K(ATP) channels in a number of physiological and pathological processes. In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system.
Collapse
Affiliation(s)
- Andrew Tinker
- William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, London, UK
| | | | | |
Collapse
|
16
|
Brunt VE, Fujii N, Minson CT. No independent, but an interactive, role of calcium-activated potassium channels in human cutaneous active vasodilation. J Appl Physiol (1985) 2013; 115:1290-6. [PMID: 23970531 DOI: 10.1152/japplphysiol.00358.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In human cutaneous microvasculature, endothelium-derived hyperpolarizing factors (EDHFs) account for a large portion of vasodilation associated with local stimuli. Thus we sought to determine the role of EDHFs in active vasodilation (AVD) to passive heating in two protocols. Whole body heating was achieved using water-perfused suits (core temperature increase of 0.8-1.0°C), and skin blood flow was measured using laser-Doppler flowmetry. In the first protocol, four sites were perfused continuously via microdialysis with: 1) control; 2) tetraethylammonium (TEA) to block calcium-activated potassium (KCa) channels, and thus the actions of EDHFs; 3) N-nitro-l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase (NOS); and 4) TEA + l-NAME (n = 8). Data are presented as percent maximal cutaneous vascular conductance (CVC). TEA had no effect on AVD (CVC during heated plateau: control 57.4 ± 4.9% vs. TEA 63.2 ± 5.2%, P = 0.27), indicating EDHFs are not obligatory. l-NAME attenuated plateau CVC to 33.7 ± 5.4% (P < 0.01 vs. control); while TEA + l-NAME augmented plateau CVC compared with l-NAME alone (49.7 ± 5.3%, P = 0.02). From these data, it appears combined blockade of EDHFs and NOS necessitates dilation through other means, possibly through inward rectifier (KIR) and/or ATP-sensitive (KATP) potassium channels. To test this second hypothesis, we measured AVD at the following sites (n = 8): 1) control, 2) l-NAME, 3) l-NAME + TEA, and 4) l-NAME + TEA + barium chloride (BaCl2; KIR and KATP blocker). The addition of BaCl2 to l-NAME + TEA reduced plateau CVC to 32.7 ± 6.6% (P = 0.02 vs. l-NAME + TEA), which did not differ from the l-NAME site. These data combined demonstrate a complex interplay between vasodilatory pathways, with cross-talk between NO, KCa channels, and KIR and/or KATP channels.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | | | |
Collapse
|
17
|
Physical interaction between calcineurin and Cav3.2 T‐type Ca
2
+
channel modulates their functions. FEBS Lett 2013; 587:1723-30. [DOI: 10.1016/j.febslet.2013.04.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 11/23/2022]
|
18
|
Danielsen AA, Parker MD, Lee S, Boron WF, Aalkjaer C, Boedtkjer E. Splice cassette II of Na+,HCO3(-) cotransporter NBCn1 (slc4a7) interacts with calcineurin A: implications for transporter activity and intracellular pH control during rat artery contractions. J Biol Chem 2013; 288:8146-8155. [PMID: 23382378 PMCID: PMC3605633 DOI: 10.1074/jbc.m113.455386] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Indexed: 11/06/2022] Open
Abstract
Activation of Na(+),HCO3(-) cotransport in vascular smooth muscle cells (VSMCs) contributes to intracellular pH (pH(i)) control during artery contraction, but the signaling pathways involved have been unknown. We investigated whether physical and functional interactions between the Na(+),HCO3(-) cotransporter NBCn1 (slc4a7) and the Ca(2+)/calmodulin-activated serine/threonine phosphatase calcineurin exist and play a role for pHi control in VSMCs. Using a yeast two-hybrid screen, we found that splice cassette II from the N terminus of NBCn1 interacts with calcineurin Aβ. When cassette II was truncated or mutated to disrupt the putative calcineurin binding motif PTVVIH, the interaction was abolished. Native NBCn1 and calcineurin Aβ co-immunoprecipitated from A7r5 rat VSMCs. A peptide (acetyl-DDIPTVVIH-amide), which mimics the putative calcineurin binding motif, inhibited the co-immunoprecipitation whereas a mutated peptide (acetyl-DDIATAVAA-amide) did not. Na(+),HCO3(-) cotransport activity was investigated in VSMCs of mesenteric arteries after an NH4(+) prepulse. During depolarization with 50 mM extracellular K(+) to raise intracellular [Ca(2+)], Na(+),HCO3(-) cotransport activity was inhibited 20-30% by calcineurin inhibitors (FK506 and cyclosporine A). FK506 did not affect Na(+),HCO3(-) cotransport activity in VSMCs when cytosolic [Ca(2+)] was lowered by buffering, nor did it disrupt binding between NBCn1 and calcineurin Aβ. FK506 augmented the intracellular acidification of VSMCs during norepinephrine-induced artery contractions. No physical or functional interactions between calcineurin Aβ and the Na(+)/H(+) exchanger NHE1 were observed in VSMCs. In conclusion, we demonstrate a physical interaction between calcineurin Aβ and cassette II of NBCn1. Intracellular Ca(2+) activates Na(+),HCO3(-) cotransport activity in VSMCs in a calcineurin-dependent manner which is important for protection against intracellular acidification.
Collapse
Affiliation(s)
- Andreas A Danielsen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark; Water and Salt Research Center, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mark D Parker
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Soojung Lee
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark; Water and Salt Research Center, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark; Water and Salt Research Center, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark; Water and Salt Research Center, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
19
|
Butler T, Paul J, Europe-Finner N, Smith R, Chan EC. Role of serine-threonine phosphoprotein phosphatases in smooth muscle contractility. Am J Physiol Cell Physiol 2013; 304:C485-504. [PMID: 23325405 DOI: 10.1152/ajpcell.00161.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The degree of phosphorylation of myosin light chain 20 (MLC20) is a major determinant of force generation in smooth muscle. Myosin phosphatases (MPs) contain protein phosphatase (PP) 1 as catalytic subunits and are the major enzymes that dephosphorylate MLC20. MP regulatory targeting subunit 1 (MYPT1), the main regulatory subunit of MP in all smooth muscles, is a key convergence point of contractile and relaxatory pathways. Combinations of regulatory mechanisms, including isoform splicing, multiple phosphorylation sites, and scaffolding proteins, modulate MYPT1 activity with tissue and agonist specificities to affect contraction and relaxation. Other members of the PP1 family that do not target myosin, as well as PP2A and PP2B, dephosphorylate a range of proteins that affect smooth muscle contraction. This review discusses the role of phosphatases in smooth muscle contractility with a focus on MYPT1 in uterine smooth muscle. Myometrium shares characteristics of vascular and other visceral smooth muscles yet, during healthy pregnancy, undergoes hypertrophy, hyperplasia, quiescence, and labor as physiological processes. Myometrium presents an accessible model for the study of normal and pathological smooth muscle function, and a better understanding of myometrial physiology may allow the development of novel therapeutics for the many disorders of myometrial physiology from preterm labor to dysmenorrhea.
Collapse
Affiliation(s)
- Trent Butler
- Mothers and Babies Research Centre, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | |
Collapse
|
20
|
Yu L, Jin X, Cui N, Wu Y, Shi Z, Zhu D, Jiang C. Rosiglitazone selectively inhibits K(ATP) channels by acting on the K(IR) 6 subunit. Br J Pharmacol 2013; 167:26-36. [PMID: 22394376 DOI: 10.1111/j.1476-5381.2012.01934.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Rosiglitazone is an anti-diabetic drug acting as an insulin sensitizer. We recently found that rosiglitazone also inhibits the vascular isoform of ATP-sensitive K(+) channels and compromises vasodilatory effects of β-adrenoceptor activation and pinacidil. As its potency for the channel inhibition is in the micromolar range, rosiglitazone may be used as an effective K(ATP) channel inhibitor for research and therapeutic purposes. Therefore, we performed experiments to determine whether other isoforms of K(ATP) channels are also sensitive to rosiglitazone and what their sensitivities are. EXPERIMENTAL APPROACH K(IR) 6.1/SUR2B, K(IR) 6.2/SUR1, K(IR) 6.2/SUR2A, K(IR) 6.2/SUR2B and K(IR) 6.2ΔC36 channels were expressed in HEK293 cells and were studied using patch-clamp techniques. KEY RESULTS Rosiglitazone inhibited all isoforms of K(ATP) channels in excised patches and in the whole-cell configuration. Its IC(50) was 10 µmol·L(-1) for the K(IR) 6.1/SUR2B channel and ∼45 µmol·L(-1) for K(IR) 6.2/SURx channels. Rosiglitazone also inhibited K(IR) 6.2ΔC36 channels in the absence of the sulphonylurea receptor (SUR) subunit, with potency (IC(50) = 45 µmol·L(-1) ) almost identical to that for K(IR) 6.2/SURx channels. Single-channel kinetic analysis showed that the channel inhibition was mediated by augmentation of the long-lasting closures without affecting the channel open state and unitary conductance. In contrast, rosiglitazone had no effect on K(IR) 1.1, K(IR) 2.1 and K(IR) 4.1 channels, suggesting that the channel inhibitory effect is selective for K(IR) 6.x channels. CONCLUSIONS AND IMPLICATIONS These results suggest a novel K(ATP) channel inhibitor that acts on the pore-forming K(IR) 6.x subunit, affecting the channel gating.
Collapse
Affiliation(s)
- Lei Yu
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Inhibition of vascular adenosine triphosphate-sensitive potassium channels by sympathetic tone during sepsis. Crit Care Med 2012; 40:1261-8. [PMID: 22425821 DOI: 10.1097/ccm.0b013e31823da98d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Excessive opening of the adenosine triphosphate-sensitive potassium channel in vascular smooth muscle is implicated in the vasodilation and vascular hyporeactivity underlying septic shock. Therapeutic channel inhibition using sulfonylurea agents has proved disappointing, although agents acting on its pore appear more promising. We thus investigated the hemodynamic effects of adenosine triphosphate-sensitive potassium channel pore inhibition in awake, fluid-resuscitated septic rats, and the extent to which these responses are modulated by the high sympathetic tone present in sepsis. Temporal changes in ex-vivo channel activity and subunit gene expression were also investigated. DESIGN In vivo and ex vivo animal study. SETTING University research laboratory. SUBJECTS Male adult Wistar rats. INTERVENTIONS AND MEASUREMENTS Fecal peritonitis was induced in conscious, fluid-resuscitated rats. Pressor responses to norepinephrine and PNU-37883A (a vascular adenosine triphosphate-sensitive potassium channel inhibitor acting on the Kir6.1 pore-forming subunit) were measured at 6 or 24 hrs, in the absence or presence of the autonomic ganglion blocker, pentolinium. The aorta and mesenteric artery were examined ex vivo for rubidium efflux as a marker of adenosine triphosphate-sensitive potassium channel activity, and for adenosine triphosphate-sensitive potassium channel subunit gene expression using quantitative reverse transcription-polymerase chain reaction. MAIN RESULTS A total of 120 rats (50 sham-operated controls, 70 septic) were included. Septic rats became hypotensive after 12 hrs, with a 24-hr mortality of 51.7% (0% in controls). At 6 hrs, there was an attenuated pressor response to norepinephrine (p < .01) despite blood pressure being elevated (p < .01). PNU-37883A had no pressor effect, except in the presence of pentolinium (p < .01). Kir6.1 subunit mRNA increased significantly in the mesenteric artery while rubidium efflux was increased in both the aorta and mesenteric artery at 24 hrs. CONCLUSIONS Despite evidence of increased adenosine triphosphate-sensitive potassium channel activity in sepsis, it appears to be inhibited in vivo by high sympathetic tone. This may explain, at least in part, the reduced efficacy of adenosine triphosphate-sensitive potassium channel blockers in human septic shock.
Collapse
|
22
|
Yu L, Jin X, Yang Y, Cui N, Jiang C. Rosiglitazone inhibits vascular KATP channels and coronary vasodilation produced by isoprenaline. Br J Pharmacol 2012; 164:2064-72. [PMID: 21671900 DOI: 10.1111/j.1476-5381.2011.01539.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Rosiglitazone is an anti-diabetic drug improving insulin sensitivity and glucose uptake in skeletal muscle and adipose tissues. However, several recent clinical trials suggest that rosiglitazone can increase the risk of cardiovascular ischaemia, although other studies failed to show such risks. Therefore, the effects of rosiglitazone on the coronary circulation and any potential vascular targets need to be elucidated. Here, we show that the vascular isoform of the ATP-sensitive K(+) (K(ATP) ) channel is inhibited by rosiglitazone, impairing physiological regulation of the coronary circulation. EXPERIMENTAL APPROACH The K(IR) 6.1/SUR2B channel was expressed in HEK293 cells and studied in whole-cell and inside-out patch configurations. The Langendorff heart preparation was used to evaluate rosiglitazone in the coronary circulation of wild-type (WT) and K(IR) 6.1-null (Kcnj8(-/-) ) mice. KEY RESULTS K(IR) 6.1/SUR2B channels in HEK cells were inhibited by rosiglitazone in a membrane-delimited manner. This effect was markedly enhanced by sub-micromolar concentrations of glibenclamide and the IC(50) for rosiglitazone fell to 2µM, a therapeutically achievable concentration. In the Langendorff heart preparation rosiglitazone inhibited, concentration-dependently, the coronary vasodilation induced by isoprenaline, without affecting basal coronary tone. Effects of rosiglitazone on coronary perfusion were attenuated by more than 50% in the Kcnj8(-/-) mice, supporting the involvement of K(ATP) channels in this effect of rosiglitazone on the coronary circulation. CONCLUSIONS AND IMPLICATIONS These results indicate that the vascular K(ATP) channel is one of the targets of rosiglitazone action, through which this drug may compromise coronary responses to circulating vasodilators and perhaps also to metabolic stress.
Collapse
Affiliation(s)
- Lei Yu
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | | | | | | | | |
Collapse
|
23
|
Shi WW, Yang Y, Shi Y, Jiang C. K(ATP) channel action in vascular tone regulation: from genetics to diseases. SHENG LI XUE BAO : [ACTA PHYSIOLOGICA SINICA] 2012; 64:1-13. [PMID: 22348955 PMCID: PMC4132831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
ATP-sensitive potassium (K(ATP)) channels are widely distributed in vasculatures, and play an important role in the vascular tone regulation. The K(ATP) channels consist of 4 pore-forming inward rectifier K(+) channel (Kir) subunits and 4 regulatory sulfonylurea receptors (SUR). The major vascular isoform of K(ATP) channels is composed of Kir6.1/SUR2B, although low levels of other subunits are also present in vascular beds. The observation from transgenic mice and humans carrying Kir6.1/SUR2B channel mutations strongly supports that normal activity of the Kir6.1/SUR2B channel is critical for cardiovascular function. The Kir6.1/SUR2B channel is regulated by intracellular ATP and ADP. The channel is a common target of several vasodilators and vasoconstrictors. Endogenous vasopressors such as arginine vasopressin and α-adrenoceptor agonists stimulate protein kinase C (PKC) and inhibit the K(ATP) channels, while vasodilators such as β-adrenoceptor agonists and vasoactive intestinal polypeptide increase K(ATP) channel activity by activating the adenylate cyclase-cAMP-protein kinase A (PKA) pathway. PKC phosphorylates a cluster of 4 serine residues at C-terminus of Kir6.1, whereas PKA acts on Ser1387 in the nucleotide binding domain 2 of SUR2B. The Kir6.1/SUR2B channel is also inhibited by oxidants including reactive oxygen species allowing vascular regulation in oxidative stress. The molecular basis underlying such a channel inhibition is likely to be mediated by S-glutathionylation at a few cysteine residues, especially Cys176, in Kir6.1. Furthermore, the channel activity is augmented in endotoxemia or septic shock, as a result of the upregulation of Kir6.1/SUR2B expression. Activation of the nuclear factor-κB dependent transcriptional mechanism contributes to the Kir6.1/SUR2B channel upregulation by lipopolysaccharides and perhaps other toll-like receptor ligands as well. In this review, we summarize the vascular K(ATP) channel regulation under physiological and pathophysiological conditions, and discuss the importance of K(ATP) channel as a potentially useful target in the treatment and prevention of cardiovascular diseases.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/physiology
- Animals
- Endotoxemia/metabolism
- Endotoxemia/physiopathology
- Humans
- KATP Channels/genetics
- KATP Channels/physiology
- Mice
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/physiology
- Receptors, Drug/genetics
- Receptors, Drug/physiology
- Shock, Septic/metabolism
- Shock, Septic/physiopathology
- Sulfonylurea Receptors
- Vasoconstriction/physiology
- Vasodilation/physiology
- Vasomotor System/physiology
Collapse
Affiliation(s)
- Wei-Wei Shi
- Cardiothoracic Research Laboratory, Carlyle Fraser Heart Center, Emory University, Atlanta, GA 30308, USA.
| | | | | | | |
Collapse
|
24
|
Seiferth A, Ruhs S, Mildenberger S, Gekle M, Grossmann C. The phosphatase calcineurin PP2BAβ mediates part of mineralocorticoid receptor transcriptional activity. FASEB J 2012; 26:2327-37. [DOI: 10.1096/fj.11-199976] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Anja Seiferth
- Julius‐Bernstein‐Institut für PhysiologieUniversität Halle‐WittenbergHalleGermany
| | - Stefanie Ruhs
- Julius‐Bernstein‐Institut für PhysiologieUniversität Halle‐WittenbergHalleGermany
| | - Sigrid Mildenberger
- Julius‐Bernstein‐Institut für PhysiologieUniversität Halle‐WittenbergHalleGermany
| | - Michael Gekle
- Julius‐Bernstein‐Institut für PhysiologieUniversität Halle‐WittenbergHalleGermany
| | - Claudia Grossmann
- Julius‐Bernstein‐Institut für PhysiologieUniversität Halle‐WittenbergHalleGermany
| |
Collapse
|
25
|
Morgado M, Cairrão E, Santos-Silva AJ, Verde I. Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle. Cell Mol Life Sci 2012; 69:247-66. [PMID: 21947498 PMCID: PMC11115151 DOI: 10.1007/s00018-011-0815-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 08/21/2011] [Accepted: 08/23/2011] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle tone is controlled by a balance between the cellular signaling pathways that mediate the generation of force (vasoconstriction) and release of force (vasodilation). The initiation of force is associated with increases in intracellular calcium concentrations, activation of myosin light-chain kinase, increases in the phosphorylation of the regulatory myosin light chains, and actin-myosin crossbridge cycling. There are, however, several signaling pathways modulating Ca(2+) mobilization and Ca(2+) sensitivity of the contractile machinery that secondarily regulate the contractile response of vascular smooth muscle to receptor agonists. Among these regulatory mechanisms involved in the physiological regulation of vascular tone are the cyclic nucleotides (cAMP and cGMP), which are considered the main messengers that mediate vasodilation under physiological conditions. At least four distinct mechanisms are currently thought to be involved in the vasodilator effect of cyclic nucleotides and their dependent protein kinases: (1) the decrease in cytosolic calcium concentration ([Ca(2+)]c), (2) the hyperpolarization of the smooth muscle cell membrane potential, (3) the reduction in the sensitivity of the contractile machinery by decreasing the [Ca(2+)]c sensitivity of myosin light-chain phosphorylation, and (4) the reduction in the sensitivity of the contractile machinery by uncoupling contraction from myosin light-chain phosphorylation. This review focuses on each of these mechanisms involved in cyclic nucleotide-dependent relaxation of vascular smooth muscle under physiological conditions.
Collapse
Affiliation(s)
- Manuel Morgado
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Elisa Cairrão
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - António José Santos-Silva
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ignacio Verde
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
26
|
Sellers ZM, De Arcangelis V, Xiang Y, Best PM. Cardiomyocytes with disrupted CFTR function require CaMKII and Ca(2+)-activated Cl(-) channel activity to maintain contraction rate. J Physiol 2010; 588:2417-29. [PMID: 20442264 DOI: 10.1113/jphysiol.2010.188334] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The physiological role of the cystic fibrosis transmembrane conductance regulator (CFTR) in cardiomyocytes remains unclear. Using spontaneously beating neonatal ventricular cardiomyocytes from wild-type (WT) or CFTR knockout (KO) mice, we examined the role of CFTR in the modulation of cardiomyocyte contraction rate. Contraction rates of spontaneously beating myocytes were captured by video imaging. Real-time changes in intracellular ([Ca(2+)](i)) and protein kinase A (PKA) activity were measured by fura-2 and fluorescence resonance energy transfer, respectively. Acute inhibition of CFTR in WT cardiomyocytes using the CFTR inhibitor CFTR(inh)-172 transiently inhibited the contraction rate. By contrast, cardiomyocytes from CFTR KO mice displayed normal contraction rates. Further investigation revealed that acute inhibition of CFTR activity in WT cardiomyocytes activated L-type Ca(2+) channels, leading to a transient increase of [Ca(2+)](i) and inhibition of PKA activity. Additionally, we found that contraction rate normalization following acute CFTR inhibition in WT cardiomyocytes or chronic deletion in cardiomyocytes from CFTR KO mice requires the activation of Ca(2+)/calmodulin-dependent kinase II (CaMKII) and Ca(2+)-activated Cl(-) channels (CaCC) because simultaneous addition of myristoylated-autocamtide-2-related inhibitory peptide or niflumic acid and CFTR(inh)-172 to WT cardiomyocytes or treatment of cardiomyoctes from CFTR KO mice with these agents caused sustained attenuation of contraction rates. Our results demonstrate that regulation of cardiomyocyte contraction involves CFTR. They also reveal that activation of CaMKII and CaCC compensates for loss of CFTR function. Increased dependence on CaMKII upon loss of CFTR function might leave cystic fibrosis patients at increased risk of heart dysfunction and disease.
Collapse
Affiliation(s)
- Zachary M Sellers
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | | | | | | |
Collapse
|
27
|
Maillet M, Davis J, Auger-Messier M, York A, Osinska H, Piquereau J, Lorenz JN, Robbins J, Ventura-Clapier R, Molkentin JD. Heart-specific deletion of CnB1 reveals multiple mechanisms whereby calcineurin regulates cardiac growth and function. J Biol Chem 2009; 285:6716-24. [PMID: 20037164 PMCID: PMC2825466 DOI: 10.1074/jbc.m109.056143] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Calcineurin is a protein phosphatase that is uniquely regulated by sustained increases in intracellular Ca2+ following signal transduction events. Calcineurin controls cellular proliferation, differentiation, apoptosis, and inducible gene expression following stress and neuroendocrine stimulation. In the adult heart, calcineurin regulates hypertrophic growth of cardiomyocytes in response to pathologic insults that are associated with altered Ca2+ handling. Here we determined that calcineurin signaling is directly linked to the proper control of cardiac contractility, rhythm, and the expression of Ca2+-handling genes in the heart. Our approach involved a cardiomyocyte-specific deletion using a CnB1-LoxP-targeted allele in mice and three different cardiac-expressing Cre alleles/transgenes. Deletion of calcineurin with the Nkx2.5-Cre knock-in allele resulted in lethality at 1 day after birth due to altered right ventricular morphogenesis, reduced ventricular trabeculation, septal defects, and valvular overgrowth. Slightly later deletion of calcineurin with the α-myosin heavy chain Cre transgene resulted in lethality in early mid adulthood that was characterized by substantial reductions in cardiac contractility, severe arrhythmia, and reduced myocyte content in the heart. Young calcineurin heart-deleted mice died suddenly after pressure overload stimulation or neuroendocrine agonist infusion, and telemetric monitoring of older mice showed arrhythmia leading to sudden death. Mechanistically, loss of calcineurin reduced expression of key Ca2+-handling genes that likely lead to arrhythmia and reduced contractility. Loss of calcineurin also directly impacted cellular proliferation in the postnatal developing heart. These results reveal multiple mechanisms whereby calcineurin regulates cardiac development and myocyte contractility.
Collapse
Affiliation(s)
- Marjorie Maillet
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Vascular ATP-sensitive potassium (K(ATP)) channels (Kir6.1/SUR2B) are regulated by both cell metabolism and chemical transmitters. They are the target for a number of vasodilators and vasoconstrictors whose mechanisms of action involve activation of protein kinase A (PKA) and protein kinase C (PKC), respectively. The article by Orie et al. in this issue of the BJP sheds new light on the (opposing) role of protein phosphatases in the regulation of this ion channel activity. Their data suggest that calcineurin, a Ca(2+)-dependent protein phosphatase, modulates Kir6.1/SUR2B by inhibiting PKA-dependent phosphorylation of the channel. This novel mechanism may provide a modulation opposing the action of vasodilators on the K(ATP) channel.
Collapse
Affiliation(s)
- Paolo Tammaro
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
29
|
Abstract
In this issue, BJP is proud to publish an Endothelium Themed Section to celebrate the life of Robert F. Furchgott, who died on May 19th 2009. It is 30 years since he discovered endothelium-derived relaxant factor and a decade since he was awarded the Nobel Prize for this work. His discovery has led to an array of new therapeutic targets. The themed section includes three reviews on the pathophysiology of the endothelium and the drug targets that this presents, four research papers and three commentaries on research. This themed section also forms the nucleus of an online Virtual Issue that collects in one place further reviews and research papers on the topic of the 'Endothelium' that BJP and our sister journal BJCP have published in the past year, and that should help researchers and students to find the latest work in this field.
Collapse
|