1
|
Gao L, Hu Y, Smith N, Uvarov A, Peyret T, Gosselin NH, Kong R. No QT interval prolongation effect of sepiapterin: a concentration-QTc analysis of pooled data from phase 1 and phase 3 studies in healthy volunteers and patients with phenylketonuria. J Pharmacokinet Pharmacodyn 2025; 52:12. [PMID: 39820984 PMCID: PMC11739178 DOI: 10.1007/s10928-024-09948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/06/2024] [Indexed: 01/19/2025]
Abstract
Sepiapterin is an exogenously synthesized new chemical entity that is structurally equivalent to endogenous sepiapterin, a biological precursor of tetrahydrobiopterin (BH4), which is a cofactor for phenylalanine hydroxylase. Sepiapterin is being developed for the treatment of hyperphenylalaninemia in pediatric and adult patients with phenylketonuria (PKU). This study employed concentration-QT interval analysis to assess QT prolongation risk following sepiapterin treatment. Data from three phase 1 studies and one phase 3 study were pooled for this analysis. Pediatric and adult PKU patients ≥ 2 years received multiple doses at 60 mg/kg and adult healthy volunteers received a single or multiple doses at 20 or 60 mg/kg. Time-matched triplicate ECG measurements and plasma samples for pharmacokinetic analysis were collected. Prespecified linear mixed models relating ΔQTcF to concentrations of sepiapterin and the major active circulating metabolite BH4 were developed for the analysis. The analysis demonstrated that there is no QTcF prolongation risk in patients with PKU following sepiapterin dosing at the highest therapeutic dose, 60 mg/kg/day. The final model showed a marginal but negligible QTcF reduction with increasing sepiapterin and BH4 concentrations. The effect on ΔQTcF was estimated to -2.72 [-3.72, -1.71] and - 1.25 [-2.75, 0.25] ms at mean baseline adjusted BH4 Cmax of 332 ng/mL (therapeutic exposure) and 675 ng/mL (supratherapeutic exposure) at dose 60 mg/kg, respectively, in PKU patients with food and in healthy volunteers with a high fat diet. Various covariates, such as clinical study ID, age, sex, food effect, race, body weight, and disease status, on QTcF interval were investigated and were found insignificant, except for food effect and age. This study concludes that there is no QTcF prolongation risk in patients with PKU following sepiapterin dosing up to 60 mg/kg/day, and BH4 and sepiapterin concentrations minimally affect ΔQTcF after adjustment for time, sex, and meal.
Collapse
Affiliation(s)
- Lan Gao
- PTC Therapeutics, Warren, NJ, USA
| | | | | | - Artem Uvarov
- Certara Drug Development Solutions, Princeton, NJ, USA
| | - Thomas Peyret
- Certara Drug Development Solutions, Princeton, NJ, USA
| | | | | |
Collapse
|
2
|
Qu Y, Henderson KA, Harper TA, Vargas HM. Scientific Review of the Proarrhythmic Risks of Oligonucleotide Therapeutics: Are Dedicated ICH S7B/E14 Studies Needed for Low-Risk Modalities? Clin Pharmacol Ther 2024; 116:96-105. [PMID: 38362953 DOI: 10.1002/cpt.3204] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Oligonucleotide therapeutics (ONTs) represent a new modality with unique pharmacological and chemical properties that modulate gene expression with a high degree of target specificity mediated by complementary Watson-Crick base pair hybridization. To date, the proarrhythmic assessment of ONTs has been influenced by International Conference on Harmonization (ICH) E14 and S7B guidance. To document current hERG/QTc evaluation practices, we reviewed US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) Approval Packages (source: PharmaPendium.com) and collated preclinical and clinical studies for 17 marketed ONTs. In addition, clinical QTc data from 12 investigational ONTs were obtained from the literature. Of the marketed ONTs, eight were tested in the hERG assay with no inhibitory effect identified at the top concentration (range: 34-3,000 μM) tested. Fourteen of the ONTs were evaluated in nonhuman primate cardiovascular studies with 11 of them in dedicated telemetry studies. No effect on QTc intervals were observed (at high exposure multiples) in all studies. Clinically, four ONTs were evaluated in TQT studies; an additional six ONTs were assessed by concentration-QTc interval analysis, and six by routine safety electrocardiogram monitoring. None of the clinical studies identified a QTc prolongation risk; the same was true for the 12 investigational ONTs. A search of the FDA Adverse Event Database indicated no association between approved ONTs and proarrhythmias. Overall, the collective weight of evidence from 29 ONTs demonstrate no clinical proarrhythmic risk based on data obtained from ICH S7B/E14 studies. Thus, new ONTs may benefit from reduced testing strategies because they have no proarrhythmic risk, a similar cardiac safety profile as monoclonal antibodies, proteins, and peptides.
Collapse
Affiliation(s)
- Yusheng Qu
- Amgen Research, Translational Safety & Bioanalytical Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Kim A Henderson
- Amgen Research, Translational Safety & Bioanalytical Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Tod A Harper
- Amgen Research, Translational Safety & Bioanalytical Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Hugo M Vargas
- Amgen Research, Translational Safety & Bioanalytical Sciences, Amgen Inc., Thousand Oaks, California, USA
| |
Collapse
|
3
|
Bétat AM, Delaunois A, Delpy E, Loiseau M, Maurin A, Poizat G, Possémé C, Weinelt F, Drieu la Rochelle C, Martel E, Valentin JP. Results from a Joined Prospective Study to Evaluate the Sensitivity of the In Vivo Dog QT Assay in Line with the ICH E14/S7B Q&A Best Practices. Clin Pharmacol Ther 2024; 116:106-116. [PMID: 38709223 DOI: 10.1002/cpt.3283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
The ICH E14/S7B Q&As highlighted the need for best practices concerning the design, execution, analysis, interpretation, and reporting of the in vivo non-rodent QT assay as a component of the integrated risk assessment to potentially support a TQT waiver or substitute. We conducted a dog telemetry study to assess the effects on QTc of six reference compounds (five positive and one negative) previously evaluated by Darpo et al. (2015) in humans. The sensitivity of the assay to detect QTc increases was determined, and exposure-response analysis was performed, as done in clinical practice. By-timepoint analysis showed QTc prolongation induced by moxifloxacin, dofetilide, dolasetron, ondansetron, and quinine within human relevant plasma exposures ranges. Moreover, a hysteresis was observed for quinine. As expected, levocetirizine showed no statistically significant effect on QTc across a range of exposure, well exceeding the therapeutic Cmax. Power analyses confirmed the study ability to detect statistically significant QTc changes of less than 10 milliseconds with 80% probability, even with a sample size as low as n = 4 animals. Finally, concentration-QTc modeling enabled to predict the minimal plasma concentration needed to detect a 10 milliseconds QTc prolongation, including for quinine. The comparison with clinical available data supported the relevance of dogs under these experimental conditions as a robust translational predictor of drug-induced QTc prolongation in humans as a key pillar of the integrated risk assessment.
Collapse
Affiliation(s)
| | - Annie Delaunois
- Early Clinical Development & Translational Science Department, UCB Biopharma SRL, Braine-l'Alleud, Belgium
| | - Eric Delpy
- Non-Clinical Department, Biotrial Pharmacology, Rennes, France
| | | | - Anne Maurin
- Non-Clinical Department, Biotrial Pharmacology, Rennes, France
| | | | - Celine Possémé
- Non-Clinical Department, Biotrial Pharmacology, Rennes, France
| | - Ferdinand Weinelt
- Department of Drug Discovery Sciences-PKPD Modeling, Boehringer Ingelheim Pharma, Biberach/Riss, Germany
| | | | - Eric Martel
- Department of Drug Discovery Sciences-General Pharmacology, Boehringer Ingelheim Pharma, Biberach/Riss, Germany
| | - Jean-Pierre Valentin
- Early Clinical Development & Translational Science Department, UCB Biopharma SRL, Braine-l'Alleud, Belgium
| |
Collapse
|
4
|
Leishman DJ, Brimecombe J, Crumb W, Hebeisen S, Jenkinson S, Kilfoil PJ, Matsukawa H, Melliti K, Qu Y. Supporting an integrated QTc risk assessment using the hERG margin distributions for three positive control agents derived from multiple laboratories and on multiple occasions. J Pharmacol Toxicol Methods 2024; 128:107524. [PMID: 38852689 DOI: 10.1016/j.vascn.2024.107524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Determination of a drug's potency in blocking the hERG channel is an established safety pharmacology study. Best practice guidelines have been published for reliable assessment of hERG potency. In addition, a set of plasma concentration and plasma protein binding fraction data were provided as denominators for margin calculations. The aims of the current analysis were five-fold: provide data allowing creation of consistent denominators for the hERG margin distributions of the key reference agents, explore the variation in hERG margins within and across laboratories, provide a hERG margin to 10 ms QTc prolongation based on several newer studies, provide information to use these analyses for reference purposes, and provide recommended hERG margin 'cut-off' values. METHODS The analyses used 12 hERG IC50 'best practice' data sets (for the 3 reference agents). A group of 5 data sets came from a single laboratory. The other 7 data sets were collected by 6 different laboratories. RESULTS The denominator exposure distributions were consistent with the ICH E14/S7B Training Materials. The inter-occasion and inter-laboratory variability in hERG IC50 values were comparable. Inter-drug differences were most important in determining the pooled margin variability. The combined data provided a robust hERG margin reference based on best practice guidelines and consistent exposure denominators. The sensitivity of hERG margin thresholds were consistent with the sensitivity described over the course of the last two decades. CONCLUSION The current data provide further insight into the sensitivity of the 30-fold hERG margin 'cut-off' used for two decades. Using similar hERG assessments and these analyses, a future researcher can use a hERG margin threshold to support a negative QTc integrated risk assessment.
Collapse
Affiliation(s)
| | | | - William Crumb
- Nova Research Laboratories, New Orleans, Louisiana, USA
| | | | | | - Peter J Kilfoil
- Pfizer Global Research & Development, Groton, Conneticut, USA
| | | | - Karim Melliti
- Labcorp Early Development Laboratories Inc., Harrogate, UK
| | - Yusheng Qu
- Amgen Research, Thousand Oaks, California, USA
| |
Collapse
|
5
|
Wu WW, Choe M, Johannesen L, Vicente J, Bende G, Stockbridge NL, Strauss DG, Garnett C. ICH S7B In Vitro Assays Do Not Address Mechanisms of QT C Prolongation for Peptides and Proteins - Data in Support of Not Needing Dedicated QT C Studies. Clin Pharmacol Ther 2023; 114:1332-1341. [PMID: 37702218 DOI: 10.1002/cpt.3047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Current cardiac safety testing focuses on detecting drug-induced QTC prolongation as a surrogate for risk of Torsade de Pointes. The nonclinical strategy, described in International Conference on Harmonization (ICH) S7B, includes in vitro assessment of hERG block or ventricular repolarization delay and in vivo QT prolongation. Several studies have reported predictive values of ICH S7B results for clinical QTC outcomes for small molecules; none has examined peptides and proteins other than monoclonal antibodies. To address this knowledge gap, information for peptides and proteins submitted to the US Food and Drug Administration (FDA) was collected. Results of hERG assays, ventricular repolarization assays, and in vivo QT assessment were compared with clinical QTC study outcomes. The results show that 14% clinical QTC studies for approved and investigational products failed to exclude 10-ms QTC prolongation. Clinical QTC prolongation for these molecules lacked concentration-dependence which is expected for hERG block-mediated mechanism or QTC prolongation could not be excluded due to characterization in the clinical study. The hERG and ventricular repolarization assays do not identify clinical QTC prolongation potential for peptides and proteins. Lack of alignment between hERG and ventricular repolarization assay results and clinical QTC outcomes suggests that the mechanisms of QTC prolongation by some peptides and proteins are unrelated to direct cardiac ion channel block. Similar to large targeted proteins and monoclonal antibodies, peptides and proteins regardless of size have a low likelihood of direct cardiac ion channel interactions. This characteristic supports waiving the requirement for thorough QT assessment for products comprised of naturally occurring amino acids unless proarrhythmia potential is suggested by nonclinical or clinical data.
Collapse
Affiliation(s)
- Wendy W Wu
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Moran Choe
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
- Division of Hematology, Oncology, Toxicology, Office of Oncologic Diseases, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lars Johannesen
- Division of Cardiology and Nephrology, Office of Cardiology, Hematology, Endocrinology and Nephrology, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jose Vicente
- Division of Cardiology and Nephrology, Office of Cardiology, Hematology, Endocrinology and Nephrology, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Girish Bende
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, USA
| | - Norman L Stockbridge
- Division of Cardiology and Nephrology, Office of Cardiology, Hematology, Endocrinology and Nephrology, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - David G Strauss
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Christine Garnett
- Division of Cardiology and Nephrology, Office of Cardiology, Hematology, Endocrinology and Nephrology, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
6
|
Capitani C, Chioccioli Altadonna G, Santillo M, Lastraioli E. Ion channels in lung cancer: biological and clinical relevance. Front Pharmacol 2023; 14:1283623. [PMID: 37942486 PMCID: PMC10627838 DOI: 10.3389/fphar.2023.1283623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
Despite improvements in treatment, lung cancer is still a major health problem worldwide. Among lung cancer subtypes, the most frequent is represented by adenocarcinoma (belonging to the Non-Small Cell Lung Cancer class) although the most challenging and harder to treat is represented by Small Cell Lung Cancer, that occurs at lower frequency but has the worst prognosis. For these reasons, the standard of care for these patients is represented by a combination of surgery, radiation therapy and chemotherapy. In this view, searching for novel biomarkers that might help both in diagnosis and therapy is mandatory. In the last 30 years it was demonstrated that different families of ion channels are overexpressed in both lung cancer cell lines and primary tumours. The altered ion channel profile may be advantageous for diagnostic and therapeutic purposes since most of them are localised on the plasma membrane thus their detection is quite easy, as well as their block with specific drugs and antibodies. This review focuses on ion channels (Potassium, Sodium, Calcium, Chloride, Anion and Nicotinic Acetylcholine receptors) in lung cancer (both Non-Small Cell Lung Cancer and Small Cell Lung Cancer) and recapitulate the up-to-date knowledge about their role and clinical relevance for a potential use in the clinical setting, for lung cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Chiara Capitani
- General Pathology Laboratory, Department of Experimental and Clinical Medicine, Internal Medicine Section, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ginevra Chioccioli Altadonna
- General Pathology Laboratory, Department of Experimental and Clinical Medicine, Internal Medicine Section, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Michele Santillo
- General Pathology Laboratory, Department of Experimental and Clinical Medicine, Internal Medicine Section, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elena Lastraioli
- General Pathology Laboratory, Department of Experimental and Clinical Medicine, Internal Medicine Section, University of Florence, Florence, Italy
| |
Collapse
|
7
|
Valentin JP, Sibony A, Rosseels ML, Delaunois A. "Appraisal of state-of-the-art" The 2021 Distinguished Service Award of the Safety Pharmacology Society: Reflecting on the past to tackle challenges ahead. J Pharmacol Toxicol Methods 2023; 123:107269. [PMID: 37149063 DOI: 10.1016/j.vascn.2023.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
This appraisal of state-of-the-art manuscript highlights and expands upon the thoughts conveyed in the lecture of Dr. Jean-Pierre Valentin, recipient of the 2021 Distinguished Service Award of the Safety Pharmacology Society, given on the 2nd December 2021. The article reflects on the strengths, weaknesses, opportunities, and threats that surrounded the evolution of safety and secondary pharmacology over the last 3 decades with a particular emphasis on pharmaceutical drug development delivery, scientific and technological innovation, complexities of regulatory framework and people leadership and development. The article further built on learnings from past experiences to tackle constantly emerging issues and evolving landscape whilst being cognizant of the challenges facing these disciplines in the broader drug development and societal context.
Collapse
Affiliation(s)
- Jean-Pierre Valentin
- UCB-Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine L'Alleud, Belgium.
| | - Alicia Sibony
- UCB-Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine L'Alleud, Belgium
| | - Marie-Luce Rosseels
- UCB-Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine L'Alleud, Belgium
| | - Annie Delaunois
- UCB-Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine L'Alleud, Belgium
| |
Collapse
|
8
|
Pognan F, Beilmann M, Boonen HCM, Czich A, Dear G, Hewitt P, Mow T, Oinonen T, Roth A, Steger-Hartmann T, Valentin JP, Van Goethem F, Weaver RJ, Newham P. The evolving role of investigative toxicology in the pharmaceutical industry. Nat Rev Drug Discov 2023; 22:317-335. [PMID: 36781957 PMCID: PMC9924869 DOI: 10.1038/s41573-022-00633-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 02/15/2023]
Abstract
For decades, preclinical toxicology was essentially a descriptive discipline in which treatment-related effects were carefully reported and used as a basis to calculate safety margins for drug candidates. In recent years, however, technological advances have increasingly enabled researchers to gain insights into toxicity mechanisms, supporting greater understanding of species relevance and translatability to humans, prediction of safety events, mitigation of side effects and development of safety biomarkers. Consequently, investigative (or mechanistic) toxicology has been gaining momentum and is now a key capability in the pharmaceutical industry. Here, we provide an overview of the current status of the field using case studies and discuss the potential impact of ongoing technological developments, based on a survey of investigative toxicologists from 14 European-based medium-sized to large pharmaceutical companies.
Collapse
Affiliation(s)
- Francois Pognan
- Discovery and Investigative Safety, Novartis Pharma AG, Basel, Switzerland.
| | - Mario Beilmann
- Nonclinical Drug Safety Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Harrie C M Boonen
- Drug Safety, Dept of Exploratory Toxicology, Lundbeck A/S, Valby, Denmark
| | | | - Gordon Dear
- In Vitro In Vivo Translation, GlaxoSmithKline David Jack Centre for Research, Ware, UK
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Tomas Mow
- Safety Pharmacology and Early Toxicology, Novo Nordisk A/S, Maaloev, Denmark
| | - Teija Oinonen
- Preclinical Safety, Orion Corporation, Espoo, Finland
| | - Adrian Roth
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | | | - Freddy Van Goethem
- Predictive, Investigative & Translational Toxicology, Nonclinical Safety, Janssen Research & Development, Beerse, Belgium
| | - Richard J Weaver
- Innovation Life Cycle Management, Institut de Recherches Internationales Servier, Suresnes, France
| | - Peter Newham
- Clinical Pharmacology and Safety Sciences, AstraZeneca R&D, Cambridge, UK.
| |
Collapse
|
9
|
Delaunois A, Mathy F, Cornet M, Gryshkova V, Korlowski C, Bonfitto F, Koch J, Schlit A, Hebeisen S, Passini E, Rodriguez B, Valentin J. Testing the nonclinical Comprehensive In Vitro Proarrhythmia Assay (CiPA) paradigm with an established anti-seizure medication: Levetiracetam case study. Pharmacol Res Perspect 2023; 11:e01059. [PMID: 36748725 PMCID: PMC9903303 DOI: 10.1002/prp2.1059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/08/2023] Open
Abstract
Levetiracetam (LEV), a well-established anti-seizure medication (ASM), was launched before the original ICH S7B nonclinical guidance assessing QT prolongation potential and the introduction of the Comprehensive In Vitro Proarrhythmia Assay (CiPA) paradigm. No information was available on its effects on cardiac channels. The goal of this work was to "pressure test" the CiPA approach with LEV and check the concordance of nonclinical core and follow-up S7B assays with clinical and post-marketing data. The following experiments were conducted with LEV (0.25-7.5 mM): patch clamp assays on hERG (acute or trafficking effects), NaV 1.5, CaV 1.2, Kir 2.1, KV 7.1/mink, KV 1.5, KV 4.3, and HCN4; in silico electrophysiology modeling (Virtual Assay® software) in control, large-variability, and high-risk human ventricular cell populations; electrophysiology measurements in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and dog Purkinje fibers; ECG measurements in conscious telemetered dogs after single oral administration (150, 300, and 600 mg/kg). Except a slight inhibition (<10%) of hERG and KV 7.1/mink at 7.5 mM, that is, 30-fold the free therapeutic plasma concentration (FTPC) at 1500 mg, LEV did not affect any other cardiac channels or hERG trafficking. In both virtual and real human cardiomyocytes, and in dog Purkinje fibers, LEV induced no relevant changes in electrophysiological parameters or arrhythmia. No QTc prolongation was noted up to 2.7 mM unbound plasma levels in conscious dogs, corresponding to 10-fold the FTPC. Nonclinical assessment integrating CiPA assays shows the absence of QT prolongation and proarrhythmic risk of LEV up to at least 10-fold the FTPC and the good concordance with clinical and postmarketing data, although this does not exclude very rare occurrence of QT prolongation cases in patients with underlying risk factors.
Collapse
Affiliation(s)
| | | | - Miranda Cornet
- Development SciencesUCB Biopharma SRLBraine‐l'AlleudBelgium
| | | | | | | | - Juliane Koch
- Patient Safety, UCB Biosciences GmbHMonheimGermany
| | | | | | - Elisa Passini
- Department of Computer ScienceUniversity of OxfordOxfordUK
| | | | | |
Collapse
|
10
|
King TI, Indapurkar A, Tariq I, DePalma R, Mistry S, Alvarez-Baron C, Ismaiel OA, Wu W, Chiu K, Patel V, Rouse R, Strauss DG, Matta MK. Determination of five positive control drugs in hERG external solution (buffer) by LC-MS/MS to support in vitro hERG assay as recommended by ICH S7B. J Pharmacol Toxicol Methods 2022; 118:107229. [DOI: 10.1016/j.vascn.2022.107229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/30/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022]
|
11
|
Baron CA, Thiebaud N, Ren M, Viatchenko-Karpinski S, Indapurkar A, King T, Matta MK, Ismaiel OA, Patel V, Mashaee M, Vicente J, Wu WW. hERG block potencies for 5 positive control drugs obtained per ICH E14/S7B Q&As best practices: Impact of recording temperature and drug loss. J Pharmacol Toxicol Methods 2022; 117:107193. [DOI: 10.1016/j.vascn.2022.107193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/22/2022] [Accepted: 06/25/2022] [Indexed: 12/14/2022]
|
12
|
Valentin JP, Hoffmann P, Ortemann-Renon C, Koerner J, Pierson J, Gintant G, Willard J, Garnett C, Skinner M, Vargas HM, Wisialowski T, Pugsley MK. The Challenges of Predicting Drug-Induced QTc Prolongation in Humans. Toxicol Sci 2022; 187:3-24. [PMID: 35148401 PMCID: PMC9041548 DOI: 10.1093/toxsci/kfac013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The content of this article derives from a Health and Environmental Sciences Institute (HESI) consortium with a focus to improve cardiac safety during drug development. A detailed literature review was conducted to evaluate the concordance between nonclinical repolarization assays and the clinical thorough QT (TQT) study. Food and Drug Administration and HESI developed a joint database of nonclinical and clinical data, and a retrospective analysis of 150 anonymized drug candidates was reviewed to compare the performance of 3 standard nonclinical assays with clinical TQT study findings as well as investigate mechanism(s) potentially responsible for apparent discrepancies identified. The nonclinical assays were functional (IKr) current block (Human ether-a-go-go related gene), action potential duration, and corrected QT interval in animals (in vivo corrected QT). Although these nonclinical assays demonstrated good specificity for predicting negative clinical QT prolongation, they had relatively poor sensitivity for predicting positive clinical QT prolongation. After review, 28 discordant TQT-positive drugs were identified. This article provides an overview of direct and indirect mechanisms responsible for QT prolongation and theoretical reasons for lack of concordance between clinical TQT studies and nonclinical assays. We examine 6 specific and discordant TQT-positive drugs as case examples. These were derived from the unique HESI/Food and Drug Administration database. We would like to emphasize some reasons for discordant data including, insufficient or inadequate nonclinical data, effects of the drug on other cardiac ion channels, and indirect and/or nonelectrophysiological effects of drugs, including altered heart rate. We also outline best practices that were developed based upon our evaluation.
Collapse
Affiliation(s)
- Jean-Pierre Valentin
- Department of Investigative Toxicology, UCB Biopharma SRL, Braine-l’Alleud B-1420, Belgium
| | | | | | - John Koerner
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland 20993, USA
| | - Jennifer Pierson
- Health and Environmental Sciences Institute, Washington, District of Columbia 20005, USA
| | | | - James Willard
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland 20993, USA
| | - Christine Garnett
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland 20993, USA
| | | | - Hugo M Vargas
- Department of Safety Pharmacology & Animal Research Center, Amgen, Thousand Oaks, California 91320, USA
| | - Todd Wisialowski
- Department of Safety Pharmacology, Pfizer, Groton, Connecticut 06340, USA
| | - Michael K Pugsley
- Department of Toxicology, Cytokinetics, South San Francisco, California 94080, USA
| |
Collapse
|
13
|
Lam CK, Wu JC. Clinical Trial in a Dish: Using Patient-Derived Induced Pluripotent Stem Cells to Identify Risks of Drug-Induced Cardiotoxicity. Arterioscler Thromb Vasc Biol 2021; 41:1019-1031. [PMID: 33472401 PMCID: PMC11006431 DOI: 10.1161/atvbaha.120.314695] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced cardiotoxicity is a significant clinical issue, with many drugs in the market being labeled with warnings on cardiovascular adverse effects. Treatments are often prematurely halted when cardiotoxicity is observed, which limits their therapeutic potential. Moreover, cardiotoxicity is a major reason for abandonment during drug development, reducing available treatment options for diseases and creating a significant financial burden and disincentive for drug developers. Thus, it is important to minimize the cardiotoxic effects of medications that are in use or in development. To this end, identifying patients at a higher risk of developing cardiovascular adverse effects for the drug of interest may be an effective strategy. The discovery of human induced pluripotent stem cells has enabled researchers to generate relevant cell types that retain a patient's own genome and examine patient-specific disease mechanisms, paving the way for precision medicine. Combined with the rapid development of pharmacogenomic analysis, the ability of induced pluripotent stem cell-derivatives to recapitulate patient-specific drug responses provides a powerful platform to identify subsets of patients who are particularly vulnerable to drug-induced cardiotoxicity. In this review, we will discuss the current use of patient-specific induced pluripotent stem cells in identifying populations who are at risk to drug-induced cardiotoxicity and their potential applications in future precision medicine practice. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
14
|
Strauss DG, Wu WW, Li Z, Koerner J, Garnett C. Translational Models and Tools to Reduce Clinical Trials and Improve Regulatory Decision Making for QTc and Proarrhythmia Risk (ICH E14/S7B Updates). Clin Pharmacol Ther 2021; 109:319-333. [PMID: 33332579 PMCID: PMC7898549 DOI: 10.1002/cpt.2137] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023]
Abstract
After multiple drugs were removed from the market secondary to drug-induced torsade de pointes (TdP) risk, the International Council for Harmonisation (ICH) released guidelines in 2005 that focused on the nonclinical (S7B) and clinical (E14) assessment of surrogate biomarkers for TdP. Recently, Vargas et al. published a pharmaceutical-industry perspective making the case that "double-negative" nonclinical data (negative in vitro hERG and in vivo heart-rate corrected QT (QTc) assays) are associated with such low probability of clinical QTc prolongation and TdP that potentially all double-negative drugs would not need detailed clinical QTc evaluation. Subsequently, the ICH released a new E14/S7B Draft Guideline containing Questions and Answers (Q&As) that defined ways that double-negative nonclinical data could be used to reduce the number of "Thorough QT" (TQT) studies and reach a low-risk determination when a TQT or equivalent could not be performed. We review the Vargas et al. proposal in the context of what was contained in the ICH E14/S7B Draft Guideline and what was proposed by the ICH E14/S7B working group for a "stage 2" of updates (potential expanded roles for nonclinical data and details for assessing TdP risk of QTc-prolonging drugs). Although we do not agree with the exact probability statistics in the Vargas et al. paper because of limitations in the underlying datasets, we show how more modest predictive value of individual assays could still result in low probability for TdP with double-negative findings. Furthermore, we expect that the predictive value of the nonclinical assays will improve with implementation of the new ICH E14/S7B Draft Guideline.
Collapse
Affiliation(s)
- David G. Strauss
- Division of Applied Regulatory ScienceOffice of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Wendy W. Wu
- Division of Applied Regulatory ScienceOffice of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Zhihua Li
- Division of Applied Regulatory ScienceOffice of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - John Koerner
- Division of Pharm/Tox for Cardiology, Hematology, Endocrinology and NephrologyOffice of Cardiology, Hematology, Endocrinology and NephrologyOffice of New DrugsCenter for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Christine Garnett
- Division of Cardiology and NephrologyOffice of Cardiology, Hematology, Endocrinology and NephrologyOffice of New DrugsCenter for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
15
|
Ovics P, Regev D, Baskin P, Davidor M, Shemer Y, Neeman S, Ben-Haim Y, Binah O. Drug Development and the Use of Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Disease Modeling and Drug Toxicity Screening. Int J Mol Sci 2020; 21:E7320. [PMID: 33023024 PMCID: PMC7582587 DOI: 10.3390/ijms21197320] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
: Over the years, numerous groups have employed human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) as a superb human-compatible model for investigating the function and dysfunction of cardiomyocytes, drug screening and toxicity, disease modeling and for the development of novel drugs for heart diseases. In this review, we discuss the broad use of iPSC-CMs for drug development and disease modeling, in two related themes. In the first theme-drug development, adverse drug reactions, mechanisms of cardiotoxicity and the need for efficient drug screening protocols-we discuss the critical need to screen old and new drugs, the process of drug development, marketing and Adverse Drug reactions (ADRs), drug-induced cardiotoxicity, safety screening during drug development, drug development and patient-specific effect and different mechanisms of ADRs. In the second theme-using iPSC-CMs for disease modeling and developing novel drugs for heart diseases-we discuss the rationale for using iPSC-CMs and modeling acquired and inherited heart diseases with iPSC-CMs.
Collapse
Affiliation(s)
- Paz Ovics
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Danielle Regev
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Polina Baskin
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Mor Davidor
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Yuval Shemer
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Shunit Neeman
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Yael Ben-Haim
- Institute of Molecular and Clinical Sciences, St. George’s University of London, London SW17 0RE, UK;
- Cardiology Clinical Academic Group, St. George’s University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| |
Collapse
|
16
|
Vargas HM, Rolf MG, Wisialowski TA, Achanzar W, Bahinski A, Bass A, Benson CT, Chaudhary KW, Couvreur N, Dota C, Engwall MJ, Michael Foley C, Gallacher D, Greiter-Wilke A, Guillon JM, Guth B, Himmel HM, Hegele-Hartung C, Ito M, Jenkinson S, Chiba K, Lagrutta A, Levesque P, Martel E, Okai Y, Peri R, Pointon A, Qu Y, Teisman A, Traebert M, Yoshinaga T, Gintant GA, Leishman DJ, Valentin JP. Time for a Fully Integrated Nonclinical-Clinical Risk Assessment to Streamline QT Prolongation Liability Determinations: A Pharma Industry Perspective. Clin Pharmacol Ther 2020; 109:310-318. [PMID: 32866317 PMCID: PMC7891594 DOI: 10.1002/cpt.2029] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/13/2020] [Indexed: 02/03/2023]
Abstract
Defining an appropriate and efficient assessment of drug‐induced corrected QT interval (QTc) prolongation (a surrogate marker of torsades de pointes arrhythmia) remains a concern of drug developers and regulators worldwide. In use for over 15 years, the nonclinical International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) S7B and clinical ICH E14 guidances describe three core assays (S7B: in vitro hERG current & in vivo QTc studies; E14: thorough QT study) that are used to assess the potential of drugs to cause delayed ventricular repolarization. Incorporating these assays during nonclinical or human testing of novel compounds has led to a low prevalence of QTc‐prolonging drugs in clinical trials and no new drugs having been removed from the marketplace due to unexpected QTc prolongation. Despite this success, nonclinical evaluations of delayed repolarization still minimally influence ICH E14‐based strategies for assessing clinical QTc prolongation and defining proarrhythmic risk. In particular, the value of ICH S7B‐based “double‐negative” nonclinical findings (low risk for hERG block and in vivo QTc prolongation at relevant clinical exposures) is underappreciated. These nonclinical data have additional value in assessing the risk of clinical QTc prolongation when clinical evaluations are limited by heart rate changes, low drug exposures, or high‐dose safety considerations. The time has come to meaningfully merge nonclinical and clinical data to enable a more comprehensive, but flexible, clinical risk assessment strategy for QTc monitoring discussed in updated ICH E14 Questions and Answers. Implementing a fully integrated nonclinical/clinical risk assessment for compounds with double‐negative nonclinical findings in the context of a low prevalence of clinical QTc prolongation would relieve the burden of unnecessary clinical QTc studies and streamline drug development.
Collapse
Affiliation(s)
- Hugo M Vargas
- Translational Safety & Bioanalytical Sciences, Amgen Research, Thousand Oaks, California, USA
| | - Michael G Rolf
- Research & Development, Clinical Pharmacology & Safety Sciences, AstraZeneca, Gothenburg, Sweden
| | - Todd A Wisialowski
- Global Safety Pharmacology, Pfizer Global Research and Development, Groton, Connecticut, USA
| | | | | | - Alan Bass
- Merck & Co., Inc., Boston, Massachusetts, USA
| | | | | | - Nicolas Couvreur
- Safety Pharmacology, Institute de Recherches Servier, Suresnes, France
| | - Corina Dota
- Research & Development, Chief Medical Officer Organization, AstraZeneca, Gothenburg, Sweden
| | - Michael J Engwall
- Translational Safety & Bioanalytical Sciences, Amgen Research, Thousand Oaks, California, USA
| | - C Michael Foley
- Integrative Pharmacology, Abbvie, Inc, North Chicago, Illinois, USA
| | - David Gallacher
- Global Safety Pharmacology, Janssen Research & Development, Beerse, Belgium
| | | | | | - Brian Guth
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | | | - Maki Ito
- Japan Pharmaceutical Manufacturers Association, Tokyo, Japan
| | - Stephen Jenkinson
- Global Safety Pharmacology, Pfizer Global Research and Development, San Diego, California, USA
| | - Katsuyoshi Chiba
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | - Paul Levesque
- BMS Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Eric Martel
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Yoshiko Okai
- Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Ravikumar Peri
- Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | - Amy Pointon
- Research & Development, Clinical Pharmacology & Safety Sciences, AstraZeneca, Cambridge, UK
| | - Yusheng Qu
- Translational Safety & Bioanalytical Sciences, Amgen Research, Thousand Oaks, California, USA
| | - Ard Teisman
- Global Safety Pharmacology, Janssen Research & Development, Beerse, Belgium
| | - Martin Traebert
- Safety Pharmacology, Novartis Institute of Biomedical Research, Basel, Switzerland
| | | | - Gary A Gintant
- Integrative Pharmacology, Abbvie, Inc, North Chicago, Illinois, USA
| | | | | |
Collapse
|
17
|
Revisiting the hERG safety margin after 20 years of routine hERG screening. J Pharmacol Toxicol Methods 2020; 105:106900. [DOI: 10.1016/j.vascn.2020.106900] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
|
18
|
Authier S, Abernathy MM, Correll K, Chui RW, Dalton J, Foley CM, Friedrichs GS, Koerner JE, Kallman MJ, Pannirselvam M, Redfern WS, Urmaliya V, Valentin JP, Wisialowski T, Zabka TS, Pugsley MK. An Industry Survey With Focus on Cardiovascular Safety Pharmacology Study Design and Data Interpretation. Int J Toxicol 2020; 39:274-293. [DOI: 10.1177/1091581820921338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction: The Safety Pharmacology Society (SPS) conducted a membership survey to examine industry practices related mainly to cardiovascular (CV) safety pharmacology (SP). Methods: Questions addressed nonclinical study design, data analysis methods, drug-induced effects, and conventional and novel CV assays. Results: The most frequent therapeutic area targeted by drugs developed by the companies/institutions that employ survey responders was oncology. The most frequently observed drug-mediated effects included an increased heart rate, increased arterial blood pressure, hERG (IKr) block, decreased arterial blood pressure, decreased heart rate, QTc prolongation, and changes in body temperature. Broadly implemented study practices included Latin square crossover study design with n = 4 for nonrodent CV studies, statistical analysis of data (eg, analysis of variance), use of arrhythmia detection software, and the inclusion of data from all study animals when integrating SP studies into toxicology studies. Most responders frequently used individual animal housing conditions. Responders commonly evaluated drug effects on multiple ion channels, but in silico modeling methods were used much less frequently. Most responders rarely measured the J-Tpeak interval in CV studies. Uncertainties relative to Standard for Exchange of Nonclinical Data applications for data derived from CV SP studies were common. Although available, the use of human induced pluripotent stem cell cardiomyocytes remains rare. The respiratory SP study was rarely involved with identifying drug-induced functional issues. Responders indicated that the study-derived no observed effect level was more frequently determined than the no observed adverse effect level in CV SP studies; however, a large proportion of survey responders used neither.
Collapse
Affiliation(s)
| | | | | | - Ray W. Chui
- Amgen Research, Safety Pharmacology & Animal Research Center, Amgen, Inc, Thousand Oaks, CA, USA
| | | | - C. Michael Foley
- Department of Safety Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, USA
| | | | - John E. Koerner
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | | | | | | | - Vijay Urmaliya
- Global Safety Pharmacology, Janssen Research & Development, Beerse, Belgium
| | | | | | - Tanja S. Zabka
- Development Sciences Safety Assessment, Genentech, South San Francisco, CA, USA
| | | |
Collapse
|
19
|
Koshman YE, Wilsey AS, Bird BM, Endemann AL, Sadilek S, Treadway J, Martin RL, Polakowski JS, Gintant GA, Mittelstadt SW. Drug-induced QT prolongation: Concordance of preclinical anesthetized canine model in relation to published clinical observations for ten CiPA drugs. J Pharmacol Toxicol Methods 2020; 103:106871. [PMID: 32360993 DOI: 10.1016/j.vascn.2020.106871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative differentiates torsadogenic risk of 28 drugs affecting ventricular repolarization based on multiple in vitro human derived ionic currents. However, a standardized prospective assessment of the electrophysiologic effects of these drugs in an integrated in vivo preclinical cardiovascular model is lacking. This study questioned whether QTc interval prolongation in a preclinical in vivo model could detect clinically reported QTc prolongation and assign torsadogenic risk for ten CiPA drugs. METHODS An acute intravenous administered ascending dose anesthetized dog cardiovascular model was used to assess QTc prolongation along with other electrocardiographic (PR, QRS intervals) and hemodynamic (heart rate, blood pressures, left ventricular contractility) parameters at plasma concentrations spanning and exceeding clinical exposures. hERG current block potency was characterized using IC50 values from automated patch clamp. RESULTS All eight drugs eliciting clinical QTc prolongation also delayed repolarization in anesthetized dogs at plasma concentrations within four-fold clinical exposures. In vitro QTc safety margins (defined based on clinical Cmax values/plasma concentrations eliciting statistically significant QTc prolongation in dogs) were lower for high vs intermediate torsadogenic risk drugs. In comparison, hERG IC10 values represented as total drug concentrations were better predictors of preclinical QTc prolongation than hERG IC50 values. CONCLUSION There was good concordance for QTc prolongation in the anesthetized dog model and clinical torsadogenic risk assignment. QTc assessment in the anesthetized dog remains a valuable part of a more comprehensive preclinical integrated risk assessment for delayed repolarization and torsadogenic risk as part of a global cardiovascular evaluation.
Collapse
Affiliation(s)
- Yevgeniya E Koshman
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America.
| | - Amanda S Wilsey
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Brandan M Bird
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Aimee L Endemann
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Sabine Sadilek
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Jessica Treadway
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Ruth L Martin
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - James S Polakowski
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Gary A Gintant
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Scott W Mittelstadt
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| |
Collapse
|
20
|
Kramer J, Himmel HM, Lindqvist A, Stoelzle-Feix S, Chaudhary KW, Li D, Bohme GA, Bridgland-Taylor M, Hebeisen S, Fan J, Renganathan M, Imredy J, Humphries ESA, Brinkwirth N, Strassmaier T, Ohtsuki A, Danker T, Vanoye C, Polonchuk L, Fermini B, Pierson JB, Gintant G. Cross-site and cross-platform variability of automated patch clamp assessments of drug effects on human cardiac currents in recombinant cells. Sci Rep 2020; 10:5627. [PMID: 32221320 PMCID: PMC7101356 DOI: 10.1038/s41598-020-62344-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/09/2020] [Indexed: 01/01/2023] Open
Abstract
Automated patch clamp (APC) instruments enable efficient evaluation of electrophysiologic effects of drugs on human cardiac currents in heterologous expression systems. Differences in experimental protocols, instruments, and dissimilar site procedures affect the variability of IC50 values characterizing drug block potency. This impacts the utility of APC platforms for assessing a drug's cardiac safety margin. We determined variability of APC data from multiple sites that measured blocking potency of 12 blinded drugs (with different levels of proarrhythmic risk) against four human cardiac currents (hERG [IKr], hCav1.2 [L-Type ICa], peak hNav1.5, [Peak INa], late hNav1.5 [Late INa]) with recommended protocols (to minimize variance) using five APC platforms across 17 sites. IC50 variability (25/75 percentiles) differed for drugs and currents (e.g., 10.4-fold for dofetilide block of hERG current and 4-fold for mexiletine block of hNav1.5 current). Within-platform variance predominated for 4 of 12 hERG blocking drugs and 4 of 6 hNav1.5 blocking drugs. hERG and hNav1.5 block. Bland-Altman plots depicted varying agreement across APC platforms. A follow-up survey suggested multiple sources of experimental variability that could be further minimized by stricter adherence to standard protocols. Adoption of best practices would ensure less variable APC datasets and improved safety margins and proarrhythmic risk assessments.
Collapse
Affiliation(s)
| | | | | | | | | | - Dingzhou Li
- Drug Safety Research & Development, Pfizer, Groton, CT, USA
| | - Georg Andrees Bohme
- Integrated Drug Discovery, High Content Biology Unit, Sanofi R&D, Vitry-Sur-Seine, France
| | | | | | - Jingsong Fan
- Discovery Toxicology, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | | | | | | | | | | | | | - Timm Danker
- Natural and Medical Science Institute at the University of Tübingen, Reutlingen, Germany
| | - Carlos Vanoye
- Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Liudmila Polonchuk
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | | | | |
Collapse
|
21
|
Ridder BJ, Leishman DJ, Bridgland-Taylor M, Samieegohar M, Han X, Wu WW, Randolph A, Tran P, Sheng J, Danker T, Lindqvist A, Konrad D, Hebeisen S, Polonchuk L, Gissinger E, Renganathan M, Koci B, Wei H, Fan J, Levesque P, Kwagh J, Imredy J, Zhai J, Rogers M, Humphries E, Kirby R, Stoelzle-Feix S, Brinkwirth N, Rotordam MG, Becker N, Friis S, Rapedius M, Goetze TA, Strassmaier T, Okeyo G, Kramer J, Kuryshev Y, Wu C, Himmel H, Mirams GR, Strauss DG, Bardenet R, Li Z. A systematic strategy for estimating hERG block potency and its implications in a new cardiac safety paradigm. Toxicol Appl Pharmacol 2020; 394:114961. [PMID: 32209365 PMCID: PMC7166077 DOI: 10.1016/j.taap.2020.114961] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/14/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022]
Abstract
Introduction hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed. Methods A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates. Results A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used. Discussion This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment. hERG potency/safety margin is a widely used nonclinical cardiac safety strategy. A new regulatory paradigm promotes the integration of nonclinical and clinical data. Lack of uncertainty quantification hindered using hERG potency in the new paradigm. A systematic method was established to address this limitation. Analysis supports using different safety margin thresholds in different context.
Collapse
Affiliation(s)
- Bradley J Ridder
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Derek J Leishman
- Department of Toxicology and Pathology, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Mohammadreza Samieegohar
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Xiaomei Han
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Wendy W Wu
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Aaron Randolph
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Phu Tran
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Jiansong Sheng
- CiPA LAB, 900 Clopper Rd, Suite 130, Gaithersburg, MD 20878, USA
| | - Timm Danker
- NMI-TT GmbH, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | | | - Daniel Konrad
- B'SYS GmbH, The Ion Channel Company, Benkenstrasse 254, CH-4108, Witterswil, Switzerland
| | - Simon Hebeisen
- B'SYS GmbH, The Ion Channel Company, Benkenstrasse 254, CH-4108, Witterswil, Switzerland
| | - Liudmila Polonchuk
- F. Hoffmann-La Roche AG, F. Hoffmann-La Roche Ltd Bldg. 73/R. 103b Grenzacherstrasse, 124, CH-4070 Basel, Switzerland
| | - Evgenia Gissinger
- F. Hoffmann-La Roche AG, F. Hoffmann-La Roche Ltd Bldg. 73/R. 103b Grenzacherstrasse, 124, CH-4070 Basel, Switzerland
| | | | - Bryan Koci
- Eurofins Scientific, Eurofins Discovery, 6 Research Park Drive, St. Charles, MO 63304, USA
| | - Haiyang Wei
- Eurofins Scientific, Eurofins Discovery, 6 Research Park Drive, St. Charles, MO 63304, USA
| | - Jingsong Fan
- Bristol-Myers Squibb Company, Discovery Toxicology, Bristol-Myers Squibb, 3551 Lawrenceville, Princeton Rd, Lawrence Township, NJ 08648, USA
| | - Paul Levesque
- Bristol-Myers Squibb Company, Discovery Toxicology, Bristol-Myers Squibb, 3551 Lawrenceville, Princeton Rd, Lawrence Township, NJ 08648, USA
| | - Jae Kwagh
- Bristol-Myers Squibb Company, Discovery Toxicology, Bristol-Myers Squibb, 3551 Lawrenceville, Princeton Rd, Lawrence Township, NJ 08648, USA
| | | | - Jin Zhai
- Merck & Co., Inc, Kenilworth, NJ, USA
| | - Marc Rogers
- Metrion Biosciences Limited, Riverside 3, Suite 1, Granta Park, Great Abington, Cambridge CB21, 6AD, United Kingdom
| | - Edward Humphries
- Metrion Biosciences Limited, Riverside 3, Suite 1, Granta Park, Great Abington, Cambridge CB21, 6AD, United Kingdom
| | - Robert Kirby
- Metrion Biosciences Limited, Riverside 3, Suite 1, Granta Park, Great Abington, Cambridge CB21, 6AD, United Kingdom
| | | | - Nina Brinkwirth
- Nanion Technologies Munich, Ganghoferstrasse 70A, 80339 Munich, Germany
| | | | - Nadine Becker
- Nanion Technologies Munich, Ganghoferstrasse 70A, 80339 Munich, Germany
| | - Søren Friis
- Nanion Technologies Munich, Ganghoferstrasse 70A, 80339 Munich, Germany
| | - Markus Rapedius
- Nanion Technologies Munich, Ganghoferstrasse 70A, 80339 Munich, Germany
| | - Tom A Goetze
- Nanion Technologies Munich, Ganghoferstrasse 70A, 80339 Munich, Germany
| | - Tim Strassmaier
- Nanion Technologies, USA, 1 Naylon Place, Suite C, Livingston, NJ 07039, USA
| | - George Okeyo
- Nanion Technologies, USA, 1 Naylon Place, Suite C, Livingston, NJ 07039, USA
| | - James Kramer
- Charles River Laboratories, 14656 Neo Parkway, Cleveland, OH 44128, USA
| | - Yuri Kuryshev
- Charles River Laboratories, 14656 Neo Parkway, Cleveland, OH 44128, USA
| | - Caiyun Wu
- Charles River Laboratories, 14656 Neo Parkway, Cleveland, OH 44128, USA
| | - Herbert Himmel
- Bayer AG, RD-TS-TOX-SP-SPL1, Aprather Weg 18a, 42096 Wuppertal, Germany
| | - Gary R Mirams
- Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David G Strauss
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Rémi Bardenet
- Université de Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL, Villeneuve d'Ascq, France
| | - Zhihua Li
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA.
| |
Collapse
|
22
|
Pfeiffer-Kaushik ER, Smith GL, Cai B, Dempsey GT, Hortigon-Vinagre MP, Zamora V, Feng S, Ingermanson R, Zhu R, Hariharan V, Nguyen C, Pierson J, Gintant GA, Tung L. Electrophysiological characterization of drug response in hSC-derived cardiomyocytes using voltage-sensitive optical platforms. J Pharmacol Toxicol Methods 2019; 99:106612. [PMID: 31319140 DOI: 10.1016/j.vascn.2019.106612] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Voltage-sensitive optical (VSO) sensors offer a minimally invasive method to study the time course of repolarization of the cardiac action potential (AP). This Comprehensive in vitro Proarrhythmia Assay (CiPA) cross-platform study investigates protocol design and measurement variability of VSO sensors for preclinical cardiac electrophysiology assays. METHODS Three commercial and one academic laboratory completed a limited study of the effects of 8 blinded compounds on the electrophysiology of 2 commercial lines of human induced pluripotent stem-cell derived cardiomyocytes (hSC-CMs). Acquisition technologies included CMOS camera and photometry; fluorescent voltage sensors included di-4-ANEPPS, FluoVolt and genetically encoded QuasAr2. The experimental protocol was standardized with respect to cell lines, plating and maintenance media, blinded compounds, and action potential parameters measured. Serum-free media was used to study the action of drugs, but the exact composition and the protocols for cell preparation and drug additions varied among sites. RESULTS Baseline AP waveforms differed across platforms and between cell types. Despite these differences, the relative responses to four selective ion channel blockers (E-4031, nifedipine, mexiletine, and JNJ 303 blocking IKr, ICaL, INa, and IKs, respectively) were similar across all platforms and cell lines although the absolute changes differed. Similarly, four mixed ion channel blockers (flecainide, moxifloxacin, quinidine, and ranolazine) had comparable effects in all platforms. Differences in repolarisation time course and response to drugs could be attributed to cell type and experimental method differences such as composition of the assay media, stimulated versus spontaneous activity, and single versus cumulative compound addition. DISCUSSION In conclusion, VSOs represent a powerful and appropriate method to assess the electrophysiological effects of drugs on iPSC-CMs for the evaluation of proarrhythmic risk. Protocol considerations and recommendations are provided toward standardizing conditions to reduce variability of baseline AP waveform characteristics and drug responses.
Collapse
Affiliation(s)
| | - Godfrey L Smith
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Beibei Cai
- Vala Sciences Inc., 6370 Nancy Ridge Drive, Suite 106, San Diego, CA 92121, USA
| | - Graham T Dempsey
- Q-State Biosciences Inc., 179 Sidney Street, Cambridge, MA 02139, USA
| | - Maria P Hortigon-Vinagre
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Victor Zamora
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Shuyun Feng
- Vala Sciences Inc., 6370 Nancy Ridge Drive, Suite 106, San Diego, CA 92121, USA
| | - Randall Ingermanson
- Vala Sciences Inc., 6370 Nancy Ridge Drive, Suite 106, San Diego, CA 92121, USA
| | - Renjun Zhu
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Venkatesh Hariharan
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Cuong Nguyen
- Q-State Biosciences Inc., 179 Sidney Street, Cambridge, MA 02139, USA
| | - Jennifer Pierson
- Health and Environmental Sciences Institute, Washington, D.C. 20009, USA.
| | - Gary A Gintant
- AbbVie, 1 North Waukegan Road, Department ZR-13, Building AP-9A, North Chicago, IL 60064-6119, USA
| | - Leslie Tung
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Exposure-response analysis of drug-induced QT interval prolongation in telemetered monkeys for translational prediction to human. J Pharmacol Toxicol Methods 2019; 99:106606. [PMID: 31255745 DOI: 10.1016/j.vascn.2019.106606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The preclinical in vivo assay for QT prolongation is critical for predicting torsadogenic risk, but still difficult to extrapolate to humans. This study ran preclinical tests in cynomolgus monkeys on seven QT reference drugs containing the drugs used in the IQ-CSRC clinical trial and applied exposure-response (ER) analysis to the data to investigate the potential for translational information on the QT effect. METHODS In each of six participating facilities in the J-ICET project, telemetered monkeys were monitored for 24 h following administration of vehicle or 3 doses of test drugs, and pharmacokinetic profiles at the same doses were evaluated separately. An individual rate-corrected QT interval (QTca) was derived and the vehicle-adjusted change in QTca from baseline (∆∆QTca) was calculated. Then the relationship of concentration to QT effect was evaluated by ER analysis. RESULTS For QT-positive drugs in the IQ-CSRC study (dofetilide, dolasetron, moxifloxacin, ondansetron, and quinine) and levofloxacin, the slope of the total concentration-QTca effect was significantly positive, and the QT-prolonging effect, taken as the upper bound of the confidence interval for predicted ∆∆QTca, was confirmed to exceed 10 ms. The ER slope of the negative drug levocetirizine was not significantly positive and the QTca effect was below 10 ms at observed peak exposure. DISCUSSION Preclinical QT assessment in cynomolgus monkeys combined with ER analysis could identify the small QT effect induced by several QT drugs consistently with the outcomes in humans. Thus, the ER method should be regarded as useful for translational prediction of QT effects in humans.
Collapse
|
24
|
Real estate diagrams: A tool to quickly assess the utility of a new predictive technology. J Pharmacol Toxicol Methods 2019; 99:106603. [PMID: 31247306 DOI: 10.1016/j.vascn.2019.106603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Scientists are increasingly in a position to ask whether or not to adopt new technologies. We present a visualization tool to help scientists swiftly evaluate the worth of new assays. METHODS The parameters (prevalence, sensitivity and, specificity) relevant to use of a toxicity test have values between 0 and 1. The proper arrangement of the parameters can be used to define areas in a [0,1] × [0, 1] cross-space. Our analogy is a square plot of land subdivided into smaller lots. We call the resultant graphic a real estate diagram. RESULTS We use the well studied example of predicting prolongation of the QT interval of the electrocardiogram to illustrate the diagrams. The experience in human clinical Thorough QT (TQT) studies has been described (Park et al., 2013). Within the data we chose two chronological sets: 2 blocks of two years (2005-2006 and 2011-2012). In the first block 13 of 29 (45%) submitted compounds had positive TQT studies; in the second block the prevalence was 4 of 42 (10%). In other studies, the hERG channel patch-clamp assay used in predicting TQT outcome had an expected sensitivity of 0.70 and expected specificity of 0.72. Real estate diagrams were constructed to yield insight into the positive and negative predictive value (PPV and NPV, respectively) of the TQT prediction. The structure of the real estate diagrams revealed that increasing assay sensitivity in the face of declining prevalence would have a trivial effect on PPV and NPV. DISCUSSION Nonclinical safety scientists will be called upon to question whether a new technology has the potential to meaningfully increase the predictive value of testing regimens. The real-estate diagram is a useful tool in making that assessment.
Collapse
|
25
|
Abi-Gerges N, McMahon C, Vargas H, Sager P, Chui R, Stevens D, Davila J, Schaub JR, Wu JC, Del Rio C, Mathes C, Miller PE, Burns-Naas LA, Ghetti A. The West coast regional safety pharmacology society meeting update: Filling translational gaps in safety assessment. J Pharmacol Toxicol Methods 2019; 98:106582. [PMID: 31077805 DOI: 10.1016/j.vascn.2019.106582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
The Safety Pharmacology Society (SPS) held a West Coast Regional Meeting in Foster City, CA on November 14, 2018 at the Gilead Sciences Inc. site. The meeting was attended by scientists from the pharmaceutical and biotechnology industry, contract research organizations (CROs) and academia. A variety of scientific topics were presented by speakers, covering a broad variety of topics in the fields of safety risk assessment; from pro-arrhythmia and contractility risk evaluation, to models of heart failure and seizure in-a-dish; and discovery sciences; from stem cells and precision medicine, to models of inherited cardiomyopathy and precision cut tissue slices. The present review summarizes the highlights of the presentations and provides an overview of the high level of innovation currently underlying many frontiers in safety pharmacology.
Collapse
Affiliation(s)
| | | | | | - Philip Sager
- Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Ray Chui
- Amgen Inc., Thousand Oaks, CA 92320, USA
| | - Dale Stevens
- Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | - Joseph C Wu
- Stanford University School of Medicine, Stanford Cardiovascular Institute, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
26
|
Lesuisse D, Malanda A, Peyronel JF, Evanno Y, Lardenois P, De-Peretti D, Abécassis PY, Barnéoud P, Brunel P, Burgevin MC, Cegarra C, Auger F, Dommergue A, Lafon C, Even L, Tsi J, Luc TPH, Almario A, Olivier A, Castel MN, Taupin V, Rooney T, Vigé X. Development of a novel NURR1/NOT agonist from hit to lead and candidate for the potential treatment of Parkinson's disease. Bioorg Med Chem Lett 2019; 29:929-932. [DOI: 10.1016/j.bmcl.2019.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
|
27
|
Bhatt S, Northcott C, Wisialowski T, Li D, Steidl-Nichols J. Preclinical to Clinical Translation of Hemodynamic Effects in Cardiovascular Safety Pharmacology Studies. Toxicol Sci 2019; 169:272-279. [DOI: 10.1093/toxsci/kfz035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Siddhartha Bhatt
- Global Safety Pharmacology, Pfizer Worldwide Research and Development, Groton, Connecticut
| | - Carrie Northcott
- Global Safety Pharmacology, Pfizer Worldwide Research and Development, Groton, Connecticut
| | - Todd Wisialowski
- Global Safety Pharmacology, Pfizer Worldwide Research and Development, Groton, Connecticut
| | - Dingzhou Li
- Regulatory Strategy and Compliance, Pfizer Worldwide Research and Development, Groton, Connecticut
| | - Jill Steidl-Nichols
- Global Safety Pharmacology, Pfizer Worldwide Research and Development, Groton, Connecticut
| |
Collapse
|
28
|
CiPA challenges and opportunities from a non-clinical, clinical and regulatory perspectives. An overview of the safety pharmacology scientific discussion. J Pharmacol Toxicol Methods 2018; 93:15-25. [DOI: 10.1016/j.vascn.2018.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/23/2018] [Accepted: 06/19/2018] [Indexed: 01/22/2023]
|
29
|
Pollard CE, Skinner M, Lazic SE, Prior HM, Conlon KM, Valentin JP, Dota C. An Analysis of the Relationship Between Preclinical and Clinical QT Interval-Related Data. Toxicol Sci 2018; 159:94-101. [PMID: 28903488 DOI: 10.1093/toxsci/kfx125] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There has been significant focus on drug-induced QT interval prolongation caused by block of the human ether-a-go-go-related gene (hERG)-encoded potassium channel. Regulatory guidance has been implemented to assess QT interval prolongation risk: preclinical guidance requires a candidate drug's potency as a hERG channel blocker to be defined and also its effect on QT interval in a non-rodent species; clinical guidance requires a "Thorough QT Study" during development, although some QT prolonging compounds are identified earlier via a Phase I study. Clinical, heart rate-corrected QT interval (QTc) data on 24 compounds (13 positives; 11 negatives) were compared with their effect on dog QTc and the concentration of compound causing 50% inhibition (IC50) of hERG current. Concordance was assessed by calculating sensitivity and specificity across a range of decision thresholds, thus yielding receiver operating characteristic curves of sensitivity versus (1-specificity). The area under the curve of ROC curves (for which 0.5 and 1 indicate chance and perfect concordance, respectively) was used to summarize concordance. Three aspects of preclinical data were compared with the clinical outcome (receiver operating characteristic area under the curve values shown in brackets): absolute hERG IC50 (0.78); safety margin between hERG IC50 and clinical peak free plasma exposure (0.80); safety margin between QTc effects in dogs and clinical peak free plasma exposure (0.81). Positive and negative predictive values of absolute hERG IC50 indicated that from an early drug discovery perspective, low potency compounds can be progressed on the basis of a low risk of causing a QTc increase.
Collapse
Affiliation(s)
| | - Matthew Skinner
- Safety and ADME Translational Sciences, Drug Safety and Metabolism
| | - Stanley E Lazic
- Cardiovascular Centre of Excellence, Global Medicines Development, AstraZeneca R&D, Gothenburg 43183, Sweden
| | - Helen M Prior
- Safety and ADME Translational Sciences, Drug Safety and Metabolism
| | - Kelly M Conlon
- Safety and ADME Translational Sciences, Drug Safety and Metabolism
| | | | - Corina Dota
- Quantitative Biology, Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Cambridge CB4?0WG, UK
| |
Collapse
|
30
|
Jackson SJ, Prior H, Holmes A. The use of human tissue in safety assessment. J Pharmacol Toxicol Methods 2018; 93:29-34. [PMID: 29753134 DOI: 10.1016/j.vascn.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/10/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The safety-related failure of drugs during clinical phases of development is a significant contributor to drug attrition, wasting resources and preventing treatments from reaching patients. A lack of concordance between results from animal models and adverse events in the clinic has been identified as one potential cause of attrition. In vitro models using human tissue or cells have the potential to replace some animal models and improve predictivity to humans. METHODS To gauge the current use of human tissue models in safety pharmacology and the barriers to greater uptake, an electronic survey of the international safety assessment community was carried out and a Safety Pharmacology Society European Regional Meeting was organised entitled 'The Use of Human Tissue in Safety Assessment'. RESULTS A greater range of human tissue models is in use in safety assessment now than four years ago, although data is still not routinely included in regulatory submissions. The barriers to increased uptake of the models have not changed over that time, with inadequate supply and characterisation of tissue being the most cited blocks. DISCUSSION Supporting biobanking, the development of new human tissue modelling technology, and raising awareness in the scientific and regulatory communities are key ways in which the barriers to greater uptake of human tissue models can be overcome. The development of infrastructure and legislation in the UK to support the use of post-mortem or surgical discard tissue will allow scientists to locally source tissue for research.
Collapse
Affiliation(s)
- Samuel J Jackson
- The National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London NW1 2BE, United Kingdom.
| | - Helen Prior
- The National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London NW1 2BE, United Kingdom.
| | - Anthony Holmes
- The National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London NW1 2BE, United Kingdom.
| |
Collapse
|
31
|
Mulder P, de Korte T, Dragicevic E, Kraushaar U, Printemps R, Vlaming MLH, Braam SR, Valentin JP. Predicting cardiac safety using human induced pluripotent stem cell-derived cardiomyocytes combined with multi-electrode array (MEA) technology: A conference report. J Pharmacol Toxicol Methods 2018; 91:36-42. [PMID: 29355722 DOI: 10.1016/j.vascn.2018.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/21/2017] [Accepted: 01/10/2018] [Indexed: 12/20/2022]
Abstract
Safety pharmacology studies that evaluate drug candidates for potential cardiovascular liabilities remain a critical component of drug development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have recently emerged as a new and promising tool for preclinical hazard identification and risk assessment of drugs. Recently, Pluriomics organized its first User Meeting entitled 'Combining Pluricyte® Cardiomyocytes & MEA for Safety Pharmacology applications', consisting of scientific sessions and live demonstrations, which provided the opportunity to discuss the application of hiPSC-CMs (Pluricyte® Cardiomyocytes) in cardiac safety assessment to support early decision making in safety pharmacology. This report summarizes the outline and outcome of this Pluriomics User Meeting, which took place on November 24-25, 2016 in Leiden (The Netherlands). To reflect the content of the communications presented at this meeting we have cited key scientific articles and reviews.
Collapse
Affiliation(s)
- Petra Mulder
- Pluriomics BV, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | - Tessa de Korte
- Pluriomics BV, Galileiweg 8, 2333 BD Leiden, The Netherlands.
| | - Elena Dragicevic
- Nanion Technologies GmbH, Ganghoferstraße 70a, D-80339 Munich, Germany
| | - Udo Kraushaar
- NMI Natural and Medical Sciences Institute, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | | | | | - Stefan R Braam
- Pluriomics BV, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | - Jean-Pierre Valentin
- Investigative Toxicology, Non-Clinical Development, UCB-Biopharma, Chemin du Foriest, 1420 Braine l'Alleud, Belgium
| |
Collapse
|
32
|
Pridgeon CS, Schlott C, Wong MW, Heringa MB, Heckel T, Leedale J, Launay L, Gryshkova V, Przyborski S, Bearon RN, Wilkinson EL, Ansari T, Greenman J, Hendriks DFG, Gibbs S, Sidaway J, Sison-Young RL, Walker P, Cross MJ, Park BK, Goldring CEP. Innovative organotypic in vitro models for safety assessment: aligning with regulatory requirements and understanding models of the heart, skin, and liver as paradigms. Arch Toxicol 2018; 92:557-569. [PMID: 29362863 PMCID: PMC5818581 DOI: 10.1007/s00204-018-2152-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/27/2017] [Indexed: 01/02/2023]
Abstract
The development of improved, innovative models for the detection of toxicity of drugs, chemicals, or chemicals in cosmetics is crucial to efficiently bring new products safely to market in a cost-effective and timely manner. In addition, improvement in models to detect toxicity may reduce the incidence of unexpected post-marketing toxicity and reduce or eliminate the need for animal testing. The safety of novel products of the pharmaceutical, chemical, or cosmetics industry must be assured; therefore, toxicological properties need to be assessed. Accepted methods for gathering the information required by law for approval of substances are often animal methods. To reduce, refine, and replace animal testing, innovative organotypic in vitro models have emerged. Such models appear at different levels of complexity ranging from simpler, self-organized three-dimensional (3D) cell cultures up to more advanced scaffold-based co-cultures consisting of multiple cell types. This review provides an overview of recent developments in the field of toxicity testing with in vitro models for three major organ types: heart, skin, and liver. This review also examines regulatory aspects of such models in Europe and the UK, and summarizes best practices to facilitate the acceptance and appropriate use of advanced in vitro models.
Collapse
Affiliation(s)
- Chris S Pridgeon
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE, UK
| | - Constanze Schlott
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE, UK
| | - Min Wei Wong
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE, UK
| | - Minne B Heringa
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Tobias Heckel
- Dr. Johannes Heidenhain GmbH, Dr.-Johannes-Heidenhain-Straße 5, 83301, Traunreut, Germany
| | - Joe Leedale
- Department of Mathematical Sciences, University of Liverpool, Liverpool, L69 7ZL, UK
| | | | - Vitalina Gryshkova
- Investigative Toxicology, Department of Non-Clinical Development, UCB Biopharma SPRL, 1420, Braine L'Alleud, Belgium
| | | | - Rachel N Bearon
- Department of Mathematical Sciences, University of Liverpool, Liverpool, L69 7ZL, UK
| | - Emma L Wilkinson
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE, UK
| | - Tahera Ansari
- Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospital, Middlesex, HA1 3UJ, UK
| | - John Greenman
- School of Life Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Delilah F G Hendriks
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sue Gibbs
- Department of Dermatology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands
| | | | - Rowena L Sison-Young
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE, UK
| | - Paul Walker
- Cyprotex Discovery Ltd, Cheshire, SK10 4TG, UK
| | - Mike J Cross
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE, UK
| | - B Kevin Park
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE, UK
| | - Chris E P Goldring
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE, UK.
| |
Collapse
|
33
|
miR-21-5p as a potential biomarker of inflammatory infiltration in the heart upon acute drug-induced cardiac injury in rats. Toxicol Lett 2018; 286:31-38. [PMID: 29355689 DOI: 10.1016/j.toxlet.2018.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 01/09/2023]
Abstract
Investigation of genomic changes in cardiotoxicity can provide novel biomarkers and insights into molecular mechanisms of drug-induced cardiac injury (DICI). The main objective of this study was to identify and characterize dysregulated microRNAs (miRNAs) in the heart associated with cardiotoxicity. Wistar rats were dosed once with either isoproterenol (1.5 mg/kg, i.p), allylamine (100 mg/kg, p.o.) or the respective vehicle controls. Heart tissue was collected at 24 h, 48 h and 72 h post-drug administration and used for histopathological assessment, miRNA profiling, immunohistochemical analysis and in situ hybridization. Multiplex analysis of 68 miRNAs in the heart revealed a significant upregulation of several miRNAs (miR-19a-3p, miR-142-3p, miR-155-5p, miR-208b-3p, miR-21-5p) after isoproterenol and one miRNA (miR-21-5p) after allylamine administration. Localization of miR-21-5p was specific to inflammatory cell infiltrates in the heart after both treatments. Immunohistochemical analysis of Stat3, a known miR-21-5p regulator, also confirmed its upregulation in cardiomyocytes and inflammatory cell infiltrates. The toxicity signatures based on miRNA networks, identified in vivo, can potentially be used as mechanistic biomarkers as well as to study cardiotoxicity in vitro in order to develop sensitive tools for early hazard identification and risk assessment.
Collapse
|
34
|
Park E, Gintant GA, Bi D, Kozeli D, Pettit SD, Pierson JB, Skinner M, Willard J, Wisialowski T, Koerner J, Valentin JP. Can non-clinical repolarization assays predict the results of clinical thorough QT studies? Results from a research consortium. Br J Pharmacol 2018; 175:606-617. [PMID: 29181850 PMCID: PMC5786459 DOI: 10.1111/bph.14101] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/12/2017] [Accepted: 11/13/2017] [Indexed: 01/06/2023] Open
Abstract
Background and Purpose Translation of non‐clinical markers of delayed ventricular repolarization to clinical prolongation of the QT interval corrected for heart rate (QTc) (a biomarker for torsades de pointes proarrhythmia) remains an issue in drug discovery and regulatory evaluations. We retrospectively analysed 150 drug applications in a US Food and Drug Administration database to determine the utility of established non‐clinical in vitro IKr current human ether‐à‐go‐go‐related gene (hERG), action potential duration (APD) and in vivo (QTc) repolarization assays to detect and predict clinical QTc prolongation. Experimental Approach The predictive performance of three non‐clinical assays was compared with clinical thorough QT study outcomes based on free clinical plasma drug concentrations using sensitivity and specificity, receiver operating characteristic (ROC) curves, positive (PPVs) and negative predictive values (NPVs) and likelihood ratios (LRs). Key Results Non‐clinical assays demonstrated robust specificity (high true negative rate) but poor sensitivity (low true positive rate) for clinical QTc prolongation at low‐intermediate (1×–30×) clinical exposure multiples. The QTc assay provided the most robust PPVs and NPVs (ability to predict clinical QTc prolongation). ROC curves (overall test accuracy) and LRs (ability to influence post‐test probabilities) demonstrated overall marginal performance for hERG and QTc assays (best at 30× exposures), while the APD assay demonstrated minimal value. Conclusions and Implications The predictive value of hERG, APD and QTc assays varies, with drug concentrations strongly affecting translational performance. While useful in guiding preclinical candidates without clinical QT prolongation, hERG and QTc repolarization assays provide greater value compared with the APD assay.
Collapse
Affiliation(s)
- Eunjung Park
- Center for Drug Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Gary A Gintant
- Department of Integrative Pharmacology, AbbVie, North Chicago, IL, USA
| | - Daoqin Bi
- Center for Drug Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Devi Kozeli
- Center for Drug Evaluation and Research, US FDA, Silver Spring, MD, USA
| | | | | | - Matthew Skinner
- Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire, UK
| | - James Willard
- Center for Drug Evaluation and Research, US FDA, Silver Spring, MD, USA
| | | | - John Koerner
- Center for Drug Evaluation and Research, US FDA, Silver Spring, MD, USA
| | | |
Collapse
|
35
|
Magdy T, Schuldt AJT, Wu JC, Bernstein D, Burridge PW. Human Induced Pluripotent Stem Cell (hiPSC)-Derived Cells to Assess Drug Cardiotoxicity: Opportunities and Problems. Annu Rev Pharmacol Toxicol 2018; 58:83-103. [PMID: 28992430 PMCID: PMC7386286 DOI: 10.1146/annurev-pharmtox-010617-053110] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Billions of US dollars are invested every year by the pharmaceutical industry in drug development, with the aim of introducing new drugs that are effective and have minimal side effects. Thirty percent of in-pipeline drugs are excluded in an early phase of preclinical and clinical screening owing to cardiovascular safety concerns, and several lead molecules that pass the early safety screening make it to market but are later withdrawn owing to severe cardiac side effects. Although the current drug safety screening methodologies can identify some cardiotoxic drug candidates, they cannot accurately represent the human heart in many aspects, including genomics, transcriptomics, and patient- or population-specific cardiotoxicity. Despite some limitations, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful and evolving technology that has been shown to recapitulate many attributes of human cardiomyocytes and their drug responses. In this review, we discuss the potential impact of the inclusion of the hiPSC-CM platform in premarket candidate drug screening.
Collapse
Affiliation(s)
- Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Adam J T Schuldt
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniel Bernstein
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
36
|
Passini E, Britton OJ, Lu HR, Rohrbacher J, Hermans AN, Gallacher DJ, Greig RJH, Bueno-Orovio A, Rodriguez B. Human In Silico Drug Trials Demonstrate Higher Accuracy than Animal Models in Predicting Clinical Pro-Arrhythmic Cardiotoxicity. Front Physiol 2017; 8:668. [PMID: 28955244 PMCID: PMC5601077 DOI: 10.3389/fphys.2017.00668] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
Early prediction of cardiotoxicity is critical for drug development. Current animal models raise ethical and translational questions, and have limited accuracy in clinical risk prediction. Human-based computer models constitute a fast, cheap and potentially effective alternative to experimental assays, also facilitating translation to human. Key challenges include consideration of inter-cellular variability in drug responses and integration of computational and experimental methods in safety pharmacology. Our aim is to evaluate the ability of in silico drug trials in populations of human action potential (AP) models to predict clinical risk of drug-induced arrhythmias based on ion channel information, and to compare simulation results against experimental assays commonly used for drug testing. A control population of 1,213 human ventricular AP models in agreement with experimental recordings was constructed. In silico drug trials were performed for 62 reference compounds at multiple concentrations, using pore-block drug models (IC50/Hill coefficient). Drug-induced changes in AP biomarkers were quantified, together with occurrence of repolarization/depolarization abnormalities. Simulation results were used to predict clinical risk based on reports of Torsade de Pointes arrhythmias, and further evaluated in a subset of compounds through comparison with electrocardiograms from rabbit wedge preparations and Ca2+-transient recordings in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). Drug-induced changes in silico vary in magnitude depending on the specific ionic profile of each model in the population, thus allowing to identify cell sub-populations at higher risk of developing abnormal AP phenotypes. Models with low repolarization reserve (increased Ca2+/late Na+ currents and Na+/Ca2+-exchanger, reduced Na+/K+-pump) are highly vulnerable to drug-induced repolarization abnormalities, while those with reduced inward current density (fast/late Na+ and Ca2+ currents) exhibit high susceptibility to depolarization abnormalities. Repolarization abnormalities in silico predict clinical risk for all compounds with 89% accuracy. Drug-induced changes in biomarkers are in overall agreement across different assays: in silico AP duration changes reflect the ones observed in rabbit QT interval and hiPS-CMs Ca2+-transient, and simulated upstroke velocity captures variations in rabbit QRS complex. Our results demonstrate that human in silico drug trials constitute a powerful methodology for prediction of clinical pro-arrhythmic cardiotoxicity, ready for integration in the existing drug safety assessment pipelines.
Collapse
Affiliation(s)
- Elisa Passini
- Computational Cardiovascular Science Group, Department of Computer Science, University of OxfordOxford, United Kingdom
| | - Oliver J Britton
- Computational Cardiovascular Science Group, Department of Computer Science, University of OxfordOxford, United Kingdom
| | - Hua Rong Lu
- Global Safety, Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NVBeerse, Belgium
| | - Jutta Rohrbacher
- Global Safety, Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NVBeerse, Belgium
| | - An N Hermans
- Global Safety, Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NVBeerse, Belgium
| | - David J Gallacher
- Global Safety, Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NVBeerse, Belgium
| | | | - Alfonso Bueno-Orovio
- Computational Cardiovascular Science Group, Department of Computer Science, University of OxfordOxford, United Kingdom
| | - Blanca Rodriguez
- Computational Cardiovascular Science Group, Department of Computer Science, University of OxfordOxford, United Kingdom
| |
Collapse
|
37
|
Dubois VFS, Danhof M, Della Pasqua O. Characterizing QT interval prolongation in early clinical development: a case study with methadone. Pharmacol Res Perspect 2017; 5:e00284. [PMID: 28596836 PMCID: PMC5461648 DOI: 10.1002/prp2.284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 11/18/2016] [Indexed: 11/09/2022] Open
Abstract
Recently, we have shown how pharmacokinetic–pharmacodynamic (PKPD) modeling can be used to assess the probability of QT interval prolongation both in dogs and humans. A correlation between species has been identified for a drug‐specific parameter, making it possible to prospectively evaluate nonclinical signals. Here, we illustrate how nonclinical data on methadone can be used to support the evaluation of dromotropic drug effects in humans. ECG and drug concentration data from a safety pharmacology study in dogs were analyzed using nonlinear mixed effects modeling. The slope of the PKPD model describing the probability of QT interval prolongation was extrapolated from dogs to humans and subsequently combined with methadone pharmacokinetic data as input for clinical trial simulations. Concentration versus time profiles were simulated for doses between 5 and 500 mg. Predicted peak concentrations in humans were then used as reference value to assess the probability of an increase in QT interval of ≥5 and ≥10 ms. Point estimates for the slope in dogs suggested low probability of ≥10 ms prolongation in humans, whereas an effect of approximately 5 ms increase is predicted when accounting for the 90% credible intervals of the drug‐specific parameter in dogs. Interspecies differences in drug disposition appear to explain the discrepancies between predicted and observed QT prolonging effects in humans. Extrapolation of the effects of racemic compound may not be sufficient to describe the increase in QT interval observed after administration of methadone to patients. Assessment of the contribution of enantioselective metabolism and active metabolites is critical.
Collapse
Affiliation(s)
- Vincent F S Dubois
- Division of Pharmacology Leiden Academic Centre for Drug Research Leiden University Leidenthe Netherlands
| | - Meindert Danhof
- Division of Pharmacology Leiden Academic Centre for Drug Research Leiden University Leidenthe Netherlands
| | - Oscar Della Pasqua
- Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline Stockley Park Uxbridge United Kingdom.,Clinical Pharmacology & Therapeutics University College London London United Kingdom
| |
Collapse
|
38
|
Authier S, Pugsley MK, Koerner JE, Fermini B, Redfern WS, Valentin JP, Vargas HM, Leishman DJ, Correll K, Curtis MJ. Proarrhythmia liability assessment and the comprehensive in vitro Proarrhythmia Assay (CiPA): An industry survey on current practice. J Pharmacol Toxicol Methods 2017; 86:34-43. [PMID: 28223123 DOI: 10.1016/j.vascn.2017.02.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The Safety Pharmacology Society (SPS) has conducted a survey of its membership to identify industry practices related to testing considered in the Comprehensive In vitro Proarrhythmia Assay (CiPA). METHODS Survey topics included nonclinical approaches to address proarrhythmia issues, conduct of in silico studies, in vitro ion channel testing methods used, drugs used as positive controls during the conduct of cardiac ion channel studies, types of arrhythmias observed in non-clinical studies and use of the anticipated CiPA ion channel assay. RESULTS In silico studies were used to evaluate effects on ventricular action potentials by only 15% of responders. In vitro assays were used mostly to assess QT prolongation (95%), cardiac Ca2+ and Na+ channel blockade (82%) and QT shortening or QRS prolongation (53%). For de-risking of candidate drugs for proarrhythmia, those assays most relevant to CiPA including cell lines stably expressing ion channels used to determine potency of drug block were most frequently used (89%) and human stem cell-derived or induced pluripotent stem cell cardiomyocytes (46%). Those in vivo assays related to general proarrhythmia derisking include ECG recording using implanted telemetry technology (88%), jacketed external telemetry (62%) and anesthetized animal models (53%). While the CiPA initiative was supported by 92% of responders, there may be some disconnect between current practice and future expectations, as explained. DISCUSSION Proarrhythmia liability assessment in drug development presently includes study types consistent with CiPA. It is anticipated that CiPA will develop into a workable solution to the concern that proarrhythmia liability testing remains suboptimal.
Collapse
Affiliation(s)
- Simon Authier
- CiToxLAB North America, 445, Armand-Frappier Boul, Laval, QC H7V 4B3, Canada.
| | - Michael K Pugsley
- Department of Toxicology & PKDM, Purdue Pharma L.P., Cranbury, NJ 08512, USA
| | - John E Koerner
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Bernard Fermini
- Safety & Toxicology Assessment, Coyne Scientific, Atlanta, GA 30303, USA
| | | | | | - Hugo M Vargas
- Integrated Discovery and Safety Pharmacology, Amgen, Inc., Thousand Oaks, CA, USA
| | | | | | - Michael J Curtis
- Cardiovascular Division, Faculty of Life Sciences & Medicine, King's College London, Rayne Institute, St Thomas' Hospital, London SE17EH, UK
| |
Collapse
|
39
|
Interaction among hERG channel blockers is a potential mechanism of death in caffeine overdose. Eur J Pharmacol 2017; 800:23-33. [PMID: 28216052 DOI: 10.1016/j.ejphar.2017.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 11/22/2022]
Abstract
Caffeine overdose death is due to cardiac arrest, but its mechanism has not been explored in detail. In this study, our data showed that caffeine significantly prolonged the heart rate-corrected QT interval (QTc) of rabbits in vivo (P<0.05; n=7). Caffeine was also found to be a hERG channel blocker with an IC50 of 5.04mM (n=5). Although these two findings likely link caffeine overdose death with hERG channel blockade, the amount of caffeine consumption needed to reach the IC50 is very high. Further study demonstrated that addition another hERG blocker could lower the consumption of caffeine significantly, no matter whether two hERG blockers share the same binding sites. Our data does not rule out other possibility, however, it suggests that there is a potential causal relationship between caffeine overdose death with hERG channel and the interaction among these hERG blockers.
Collapse
|
40
|
Didziapetris R, Lanevskij K. Compilation and physicochemical classification analysis of a diverse hERG inhibition database. J Comput Aided Mol Des 2016; 30:1175-1188. [DOI: 10.1007/s10822-016-9986-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
|
41
|
Dubois VFS, Casarotto E, Danhof M, Della Pasqua O. Pharmacokinetic-pharmacodynamic modelling of drug-induced QTc interval prolongation in man: prediction from in vitro human ether-à-go-go-related gene binding and functional inhibition assays and conscious dog studies. Br J Pharmacol 2016; 173:2819-32. [PMID: 27427789 DOI: 10.1111/bph.13558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 06/23/2016] [Accepted: 06/30/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Functional measures of human ether-à-go-go-related gene (hERG; Kv 11.1) channel inhibition have been prioritized as an in vitro screening tool for candidate molecules. However, it is unclear how these results can be translated to humans. Here, we explore how data on drug binding and functional inhibition in vitro relate to QT prolongation in vivo. Using cisapride, sotalol and moxifloxacin as paradigm compounds, we assessed the relationship between drug concentrations, binding, functional measures and in vivo effects in preclinical species and humans. EXPERIMENTAL APPROACH Pharmacokinetic-pharmacodynamic modelling was used to characterize the drug effects in hERG functional patch clamp, hERG radio-labelled dofetilide displacement experiments and QT interval in conscious dogs. Data were analysed in parallel to identify potential correlations between pharmacological activity in vitro and in vivo. KEY RESULTS An Emax model could not be used due to large variability in the functional patch clamp assay. Dofetilide displacement revealed that binding curves are unrelated to the in vivo potency estimates for QTc prolongation in dogs and humans. Mean in vitro potency estimates ranged from 99.9 nM for cisapride to 1030 μM for moxifloxacin. CONCLUSIONS AND IMPLICATIONS The lack of standardized protocols for in vitro assays leads to significant differences in experimental conditions, making the assessment of in vitro-in vivo correlations unreliable. Identification of an accurate safety window during the screening of candidate molecules requires a quantitative framework that disentangles system- from drug-specific properties under physiological conditions, enabling translation of the results to humans. Similar considerations will be relevant for the comprehensive in vitro pro-arrhythmia assay initiative.
Collapse
Affiliation(s)
- V F S Dubois
- Leiden Academic Centre for Drug Research, Division of Pharmacology, Leiden University, Leiden, The Netherlands
| | - E Casarotto
- Leiden Academic Centre for Drug Research, Division of Pharmacology, Leiden University, Leiden, The Netherlands
| | - M Danhof
- Leiden Academic Centre for Drug Research, Division of Pharmacology, Leiden University, Leiden, The Netherlands
| | - O Della Pasqua
- Leiden Academic Centre for Drug Research, Division of Pharmacology, Leiden University, Leiden, The Netherlands. .,Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, Uxbridge, UK. .,Clinical Pharmacology and Therapeutics, School of Life and Medical Sciences, University College London, London, UK.
| |
Collapse
|
42
|
Zhang X, Guo L, Zeng H, White SL, Furniss M, Balasubramanian B, Lis E, Lagrutta A, Sannajust F, Zhao LL, Xi B, Wang X, Davis M, Abassi YA. Multi-parametric assessment of cardiomyocyte excitation-contraction coupling using impedance and field potential recording: A tool for cardiac safety assessment. J Pharmacol Toxicol Methods 2016; 81:201-16. [DOI: 10.1016/j.vascn.2016.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/29/2016] [Accepted: 06/04/2016] [Indexed: 11/17/2022]
|
43
|
Kang J, Luo Y, Searles M, Rampe D. Observations on conducting whole-cell patch clamping of the hERG cardiac K + channel in pure human serum. J Appl Toxicol 2016; 37:445-453. [PMID: 27553911 DOI: 10.1002/jat.3377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/06/2016] [Accepted: 07/22/2016] [Indexed: 01/01/2023]
Abstract
Inhibition of the human ether-a-go-go-related gene (hERG) K+ channel by drugs leads to QT prolongation on the electrocardiogram and can result in serious cardiac arrhythmia. For this reason, screening of drugs on hERG is mandatory during the drug development process. Patch clamp electrophysiology in a defined physiological saline solution (PSS) represents the standard method for assaying drug effects on the channel. To make the assay more translatable to clinical studies, we have conducted whole-cell patch clamping of hERG using pure human serum as the extracellular medium. Pure human serum had little effect on the hERG channel waveform or the current-voltage relationship when compared to PSS. hERG current recordings were highly stable in serum at room temperature, but prolonged recordings at the physiological temperature required prior heat inactivation of the serum. Compared to PSS, the IC50 values, conducted at room temperature, of the classic hERG blocking drugs cisapride, moxifloxacin, and terfenadine were shifted to the right by an extent predicted by their known plasma protein binding, but we did not detect any differences in IC50 s between male and female serum. Total plasma levels of these drugs associated with clinical QT prolongation corresponded to small (<15%) inhibition of hERG current in pure serum suggesting that minor inhibition of the channel leads to observable pharmacodynamic effects. Conducting whole-cell patch clamping of hERG in human serum has the potential to make the assay more translatable to clinical studies and improve its predictive value for safety testing. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jiesheng Kang
- Departments of Disposition, Safety, and Animal Research Sanofi, Inc., Waltham, Massachusetts, USA
| | - Yongyi Luo
- Departments of Disposition, Safety, and Animal Research Sanofi, Inc., Waltham, Massachusetts, USA
| | - Michelle Searles
- Departments of Disposition, Safety, and Animal Research Sanofi, Inc., Framingham, Massachusetts, USA
| | - David Rampe
- Departments of Disposition, Safety, and Animal Research Sanofi, Inc., Bridgewater, New Jersey, USA
| |
Collapse
|
44
|
Pfeiffer ER, Vega R, McDonough PM, Price JH, Whittaker R. Specific prediction of clinical QT prolongation by kinetic image cytometry in human stem cell derived cardiomyocytes. J Pharmacol Toxicol Methods 2016; 81:263-73. [PMID: 27095424 DOI: 10.1016/j.vascn.2016.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A priority in the development and approval of new drugs is assessment of cardiovascular risk. Current methodologies for screening compounds (e.g. HERG testing) for proarrhythmic risk lead to many false positive and false negative results, resulting in the attrition of potentially therapeutic compounds in early development, and the advancement of other candidates that cause adverse effects. With improvements in the technologies of high content imaging and human stem cell differentiation, it is now possible to directly screen compounds for arrhythmogenic tendencies in human stem cell derived cardiomyocytes (hSC-CMs). METHODS A training panel of 90 compounds consisting of roughly equal numbers of QT-prolonging and negative control (non-QT-prolonging) compounds, and a follow-up blinded study of 35 compounds including 16 from the 90 compound panel and 2 duplicates, were evaluated for prolongation of the calcium transient in hSC-CMs using kinetic image cytometry (KIC), a specialized form of high content analysis. RESULTS The KIC-hSC-CM assay identified training compounds that prolong the calcium transient with 98% specificity, 97% precision, 80% sensitivity, and 89% accuracy in predicting clinical QT prolongation by these compounds. The follow-up study of 35 blinded compounds confirmed the reproducibility and strong diagnostic accuracy of the assay. DISCUSSION The correlation of the KIC-hSC-CM results to clinical observations met or surpassed traditional preclinical assessment of cardiac risk utilizing animal models. Thus, the KIC-hSC-CM assay, which can be accomplished in high throughput and at relatively low cost, is an effective new model system for testing chemicals for cardiovascular risk.
Collapse
Affiliation(s)
| | - Raquel Vega
- Vala Sciences, Inc., San Diego, CA 92121, United States
| | | | | | | |
Collapse
|
45
|
|
46
|
Harris K. A Human Induced Pluripotent Stem Cell−Derived Cardiomyocyte (hiPSC‐CM) Multielectrode Array Assay for Preclinical Cardiac Electrophysiology Safety Screening. ACTA ACUST UNITED AC 2015; 71:11.18.1-11.18.15. [DOI: 10.1002/0471141755.ph1118s71] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kate Harris
- Safety Pharmacology, GlaxoSmithKline, David Jack Centre for R&D, Ware Hertfordshire United Kingdom
| |
Collapse
|
47
|
Kremer JJ, Bills AJ, Hanke NJ, Chen H, Meier WA, Osinski MA, Foley CM. Evaluation of cardiovascular changes in dogs administered three positive controls using jacketed external telemetry-blood pressure (JET-BP). J Pharmacol Toxicol Methods 2015; 75:27-37. [DOI: 10.1016/j.vascn.2015.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/14/2015] [Accepted: 05/14/2015] [Indexed: 12/17/2022]
|
48
|
Gotta V, Cools F, van Ammel K, Gallacher DJ, Visser SAG, Sannajust F, Morissette P, Danhof M, van der Graaf PH. Inter-study variability of preclinical in vivo safety studies and translational exposure-QTc relationships--a PKPD meta-analysis. Br J Pharmacol 2015; 172:4364-79. [PMID: 26076100 DOI: 10.1111/bph.13218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/07/2015] [Accepted: 06/05/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Preclinical cardiovascular safety studies (CVS) have been compared between facilities with respect to their sensitivity to detect drug-induced QTc prolongation (ΔQTc). Little is known about the consistency of quantitative ΔQTc predictions that are relevant for translation to humans. EXPERIMENTAL APPROACH We derived typical ΔQTc predictions at therapeutic exposure (ΔQTcTHER ) with 95% confidence intervals (95%CI) for 3 Kv 11.1 (hERG) channel blockers (moxifloxacin, dofetilide and sotalol) from a total of 14 CVS with variable designs in the conscious dog. Population pharmacokinetic-pharmacodynamic (PKPD) analysis of each study was followed by a meta-analysis (pooling 2-6 studies including 10-32 dogs per compound) to derive meta-predictions of typical ΔQTcTHER . Meta-predictions were used as a reference to evaluate the consistency of study predictions and to relate results to those found in the clinical literature. KEY RESULTS The 95%CIs of study-predicted ΔQTcTHER comprised in 13 out of 14 cases the meta-prediction. Overall inter-study variability (mean deviation from meta-prediction at upper level of therapeutic exposure) was 30% (range: 1-69%). Meta-ΔQTcTHER predictions for moxifloxacin, dofetilide and sotalol overlapped with reported clinical QTc prolongation when expressed as %-prolongation from baseline. CONCLUSIONS AND IMPLICATIONS Consistent exposure-ΔQTc predictions were obtained from single preclinical dog studies of highly variable designs by systematic PKPD analysis, which is suitable for translational purposes. The good preclinical-clinical pharmacodynamic correlations obtained suggest that such an analysis should be more routinely applied to increase the informative and predictive value of results obtained from animal experiments.
Collapse
Affiliation(s)
- V Gotta
- Systems Pharmacology, Leiden Academic Center of Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - F Cools
- Global Safety Pharmacology, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - K van Ammel
- Global Safety Pharmacology, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - D J Gallacher
- Global Safety Pharmacology, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - S A G Visser
- Quantitative Pharmacology and Pharmacometrics/Merck Research Laboratories, Merck & Co., Inc., Upper Gwynedd, PA, USA
| | - F Sannajust
- SALAR-Safety and Exploratory Pharmacology Department/Merck Research Laboratories, Merck & Co., Inc., Westpoint, PA, USA
| | - P Morissette
- SALAR-Safety and Exploratory Pharmacology Department/Merck Research Laboratories, Merck & Co., Inc., Westpoint, PA, USA
| | - M Danhof
- Systems Pharmacology, Leiden Academic Center of Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - P H van der Graaf
- Systems Pharmacology, Leiden Academic Center of Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| |
Collapse
|
49
|
Arcangeli A, Becchetti A. Novel perspectives in cancer therapy: Targeting ion channels. Drug Resist Updat 2015; 21-22:11-9. [DOI: 10.1016/j.drup.2015.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/24/2015] [Accepted: 06/27/2015] [Indexed: 01/04/2023]
|
50
|
The STEP database through the end-users eyes--USABILITY STUDY. Int J Pharm 2015; 492:316-31. [PMID: 26117188 DOI: 10.1016/j.ijpharm.2015.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The user-designed database of Safety and Toxicity of Excipients for Paediatrics ("STEP") is created to address the shared need of drug development community to access the relevant information of excipients effortlessly. Usability testing was performed to validate if the database satisfies the need of the end-users. METHOD Evaluation framework was developed to assess the usability. The participants performed scenario based tasks and provided feedback and post-session usability ratings. Failure Mode Effect Analysis (FMEA) was performed to prioritize the problems and improvements to the STEP database design and functionalities. RESULT The study revealed several design vulnerabilities. Tasks such as limiting the results, running complex queries, location of data and registering to access the database were challenging. The three critical attributes identified to have impact on the usability of the STEP database included (1) content and presentation (2) the navigation and search features (3) potential end-users. CONCLUSION Evaluation framework proved to be an effective method for evaluating database effectiveness and user satisfaction. This study provides strong initial support for the usability of the STEP database. Recommendations would be incorporated into the refinement of the database to improve its usability and increase user participation towards the advancement of the database.
Collapse
|