1
|
Zhong BL, Zhang YF, Zheng HY, Chen Q, Lu HD, Chen XP. SP600125, a selective JNK inhibitor, is a potent inhibitor of NAD(P)H: quinone oxidoreductase 1 (NQO1). Acta Pharmacol Sin 2025; 46:1137-1144. [PMID: 39587283 PMCID: PMC11950408 DOI: 10.1038/s41401-024-01418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024]
Abstract
The c-Jun N-terminal kinases (JNKs) has been identified as a critical modulator in multiple cellular processes, including stress stimulus, inflammation, cell proliferation, apoptosis, etc. SP600125 is a widely used ATP-competitive reversible JNKs inhibitor. NAD(P)H: quinone oxidoreductase 1 (NQO1) is a flavoprotein mediated two or four electron-reduction of quinones. Here, we showed that SP600125 bind to the active pocket of NQO1 and inhibit NQO1 activity. SP600125 exhibits comparable inhibitory effects on NQO1-mediated quinone bioactivation, H2O2 generation, and cell death, as the specific NQO1 inhibitor dicoumarol (DIC). Importantly, the inhibitory effects of SP600125 on NQO1 are independent of JNKs inhibition. These results suggested that SP600125 is a novel NQO1 inhibitor, which provides new insights into the mechanism of action of SP600125. Furthermore, SP600125 should be used more cautiously as a JNKs inhibitor, especially when NQO1 is highly expressed. SP600125 competed with β-Lap (NQO1-bioactivated drugs) for binding to NQO1, and inhibited NQO1-dependent cell death.
Collapse
Affiliation(s)
- Bing-Ling Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yi-Fei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hao-Yi Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qiang Chen
- Faculty of Health Sciences, University of Macau, Macao, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, China
| | - Hua-Dong Lu
- Department of Pathology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China.
| | - Xiu-Ping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Faculty of Health Sciences, University of Macau, Macao, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, China.
| |
Collapse
|
2
|
Torquato HFV, Junior MTR, Lima CS, Júnior RTDA, Talhati F, Dias DA, Justo GZ, Ferreira AT, Pilli RA, Paredes-Gamero EJ. A canthin-6-one derivative induces cell death by apoptosis/necroptosis-like with DNA damage in acute myeloid cells. Biomed Pharmacother 2022; 145:112439. [PMID: 34808555 DOI: 10.1016/j.biopha.2021.112439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Natural products have long been considered a relevant source of new antitumor agents. Despite advances in the treatment of younger patients with acute myeloid leukemia (AML), the prognosis of elderly patients remains poor, with a high frequency of relapse. The cytotoxicity of canthin-6-one alkaloids has been extensively studied in different cell types, including leukemic strains. Among the canthin-6-one analogs tested, 10-methoxycanthin-6-one (Mtx-C) showed the highest cytotoxicity in the malignant AML cells Kasumi-1 and KG-1. Thus, we evaluated the cytotoxicity and cell death mechanisms related to Mtx-C using the EC50 (80 µM for Kasumi-1 and 36 µM for KG-1) treatment for 24 h. Our results identify reactive oxygen species production, mitochondrial depolarization, annexin V-FITC/7-AAD double staining, caspase cleave and upregulation of mitochondria-dependent apoptosis proteins (Bax, Bim, Bik, Puma and phosphorylation of p53) for both cell lineages. However, downregulation of Bcl-2 and the simultaneous execution of the apoptotic and necroptotic programs associated with the phosphorylation of the proteins receptor-interacting serine/threonine-protein kinase 3 and mixed lineage kinase domain-like pseudokinase occurred only in Kasumi-1 cells. About the lasted events, Kasumi-1 cell death was inhibited by pharmacological agents such as Zvad-FMK and necrostatin-1. The underlying molecular mechanisms of Mtx-C still include participation in the DNA damage and stress-signaling pathways involving p38 and c-Jun N-terminal mitogen-activated protein kinases and interaction with DNA. Thus, Mtx-C represents a promising tool for the development of new antileukemic molecules.
Collapse
Affiliation(s)
- Heron F V Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil; Faculdade de Farmácia, Centro Universitário Braz Cubas, 08773-380 Mogi das Cruzes, SP, Brazil; Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil
| | | | - Cauê Santos Lima
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Roberto Theodoro de Araujo Júnior
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil; Faculdade de Farmácia, Centro Universitário Braz Cubas, 08773-380 Mogi das Cruzes, SP, Brazil
| | - Fernanda Talhati
- Faculdade de Farmácia, Centro Universitário Braz Cubas, 08773-380 Mogi das Cruzes, SP, Brazil
| | - Dhebora Albuquerque Dias
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil
| | - Giselle Zenker Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Alice Teixeira Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Ronaldo Aloise Pilli
- Instituto de Química, Universidade Estadual de Campinas, 13084-971 Campinas, SP, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil; Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil.
| |
Collapse
|
3
|
Ma HY, Wang CQ, He H, Yu ZY, Tong Y, Liu G, Yang YQ, Li L, Pang L, Qi HY. Ethyl acetate extract of Caesalpinia sappan L. inhibited acute myeloid leukemia via ROS-mediated apoptosis and differentiation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153142. [PMID: 32045840 DOI: 10.1016/j.phymed.2019.153142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/01/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The dried heartwood of Caesalpinia sappan L. is traditionally prescribed in the formula of traditional Chinese medicine (TCM) for the treatment of acute myeloid leukemia (AML), while nothing is yet known of the active fractions and the underlying mechanisms. PURPOSE This study aims to investigate the effect of the ethyl acetate extract of the dried heartwood of Caesalpinia sappan L. (C-A-E) on induction of apoptosis and promotion of differentiation in vitro and anti-AML activity in vivo. STUDY DESIGN/METHODS The aqueous extract was sequentially separated with solvents of increasing polarity and the active fraction was determined through the inhibition potency. The inhibition of the active fraction on cell viability, proliferation and colony formation was performed in different AML cells. Induction of apoptosis and the promotion of differentiation were further determined. Then, the level of the reactive oxygen species (ROS) and its potential role were assessed. Finally, anti-AML activity was evaluated in NOD/SCID mice. RESULTS C-A-E exhibited the highest inhibition on the cell viability of HL-60 cells. Meanwhile, C-A-E significantly suppressed the proliferation and the colony formation ability of HL-60 and Kasumi-1 cells. Moreover, C-A-E significantly induced the apoptosis, which was partially reversed by Z-VAD-FMK. C-A-E also reduced the level of mitochondrial membrane potential, promoted the release of cytochrome C, decreased the Bcl-2/Bax ratio, and promoted the cleavage of caspase-9 and -3. In addition, Mdivi-1 (mitochondrial fission blocker) remarkably reduced the apoptosis caused by C-A-E. Meanwhile, C-A-E also induced the expression of Mff and Fis1 and increased the location of Drp1 in mitochondria. Furthermore, C-A-E obviously promoted the differentiation of AML cells characterized by the typic morphological changes, the increased NBT positive cells, as well as the increased CD11b and CD14 levels. Notably, C-A-E significantly enhanced the intracellular ROS level. Moreimportantly, C-A-E-mediated apoptosis and differentiation of HL-60 cells was significantly mitigated by NAC. Additionally, C-A-E also exhibited an obvious anti-AML effect in NOD/SCID mice with the injection of HL-60 cells. CONCLUSIONS C-A-E exhibited an inhibitory effect on AML cells by inducing mitochondrial apoptosis and promoting differentiation, both of which were highly correlated to the activation of ROS.
Collapse
MESH Headings
- Acetates/chemistry
- Animals
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- CD11b Antigen/metabolism
- Caesalpinia/chemistry
- Cell Differentiation/drug effects
- HL-60 Cells
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Lipopolysaccharide Receptors/metabolism
- Membrane Potential, Mitochondrial/drug effects
- Mice, Inbred NOD
- Mice, SCID
- Plant Extracts/pharmacology
- Reactive Oxygen Species/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hao-Yue Ma
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Cheng-Qiang Wang
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Hui He
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Zan-Yang Yu
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Yao Tong
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Gen Liu
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Yu-Qi Yang
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Li Li
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Lei Pang
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Hong-Yi Qi
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China.
| |
Collapse
|
4
|
Rapanone, a naturally occurring benzoquinone, inhibits mitochondrial respiration and induces HepG2 cell death. Toxicol In Vitro 2019; 63:104737. [PMID: 31756542 DOI: 10.1016/j.tiv.2019.104737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/26/2023]
Abstract
Rapanone is a natural occurring benzoquinone with several biological effects including unclear cytotoxic mechanisms. Here we addressed if mitochondria are involved in the cytotoxicity of rapanone towards cancer cells by employing hepatic carcinoma (HepG2) cells and isolated rat liver mitochondria. In the HepG2, rapanone (20-40 μM) induced a concentration-dependent mitochondrial membrane potential dissipation, ATP depletion, hydrogen peroxide generation and, phosphatidyl serine externalization; the latter being indicative of apoptosis induction. Rapanone toxicity towards primary rats hepatocytes (IC50 = 35.58 ± 1.50 μM) was lower than that found for HepG2 cells (IC50 = 27.89 ± 0.75 μM). Loading of isolated mitochondria with rapanone (5-20 μM) caused a concentration-dependent inhibition of phosphorylating and uncoupled respirations supported by complex I (glutamate and malate) or the complex II (succinate) substrates, being the latter eliminated by complex IV substrate (TMPD/ascorbate). Rapanone also dissipated mitochondrial membrane potential, depleted ATP content, released Ca2+ from Ca2+-loaded mitochondria, increased ROS generation, cytochrome c release and membrane fluidity. Further analysis demonstrated that rapanone prevented the cytochrome c reduction in the presence of decylbenzilquinol, identifying complex III as the site of its inhibitory action. Computational docking results of rapanone to cytochrome bc1 (Cyt bc1) complex from the human sources found spontaneous thermodynamic processes for the quinone-Qo and Qi binding interactions, supporting the experimental in vitro assays. Collectively, these observations suggest that rapanone impairs mitochondrial respiration by inhibiting electron transport chain at Complex III and promotes mitochondrial dysfunction. This property is potentially involved in rapanone toxicity on cancer cells.
Collapse
|
5
|
Kuciauskas D, Dreize N, Ger M, Kaupinis A, Zemaitis K, Stankevicius V, Suziedelis K, Cicenas J, Graves LM, Valius M. Proteomic Analysis of Breast Cancer Resistance to the Anticancer Drug RH1 Reveals the Importance of Cancer Stem Cells. Cancers (Basel) 2019; 11:E972. [PMID: 31336714 PMCID: PMC6678540 DOI: 10.3390/cancers11070972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
Antitumor drug resistance remains a major challenge in cancer chemotherapy. Here we investigated the mechanism of acquired resistance to a novel anticancer agent RH1 designed to be activated in cancer cells by the NQO1 enzyme. Data show that in some cancer cells RH1 may act in an NQO1-independent way. Differential proteomic analysis of breast cancer cells with acquired resistance to RH1 revealed changes in cell energy, amino acid metabolism and G2/M cell cycle transition regulation. Analysis of phosphoproteomics and protein kinase activity by multiplexed kinase inhibitor beads showed an increase in the activity of protein kinases involved in the cell cycle and stemness regulation and downregulation of proapoptotic kinases such as JNK in RH1-resistant cells. Suppression of JNK leads to the increase of cancer cell resistance to RH1. Moreover, resistant cells have enhanced expression of stem cell factor (SCF) and stem cell markers. Inhibition of SCF receptor c-KIT resulted in the attenuation of cancer stem cell enrichment and decreased amounts of tumor-initiating cells. RH1-resistant cells also acquire resistance to conventional therapeutics while remaining susceptible to c-KIT-targeted therapy. Data show that RH1 can be useful to treat cancers in the NQO1-independent way, and targeting of the cancer stem cells might be an effective approach for combating resistance to RH1 therapy.
Collapse
Affiliation(s)
- Dalius Kuciauskas
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Nadezda Dreize
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Marija Ger
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Algirdas Kaupinis
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Kristijonas Zemaitis
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Vaidotas Stankevicius
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| | - Kestutis Suziedelis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| | - Jonas Cicenas
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
- MAP Kinase Resource, 3027 Bern, Switzerland
| | - Lee M Graves
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania.
| |
Collapse
|
6
|
Induction of p53-mediated senescence is essential for the eventual anticancer therapeutic effect of RH1. Arch Pharm Res 2019; 42:815-823. [DOI: 10.1007/s12272-019-01132-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/11/2019] [Indexed: 11/25/2022]
|
7
|
Wu J, Li J, Wang H, Liu CB. Mitochondrial-targeted penetrating peptide delivery for cancer therapy. Expert Opin Drug Deliv 2018; 15:951-964. [PMID: 30173542 DOI: 10.1080/17425247.2018.1517750] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Mitochondria are promising targeting organelles for anticancer strategies; however, mitochondria are difficult for antineoplastic drugs to recognize and bind. Mitochondria-penetrating peptides (MPPs) are unique tools to gain access to the cell interior and deliver a bioactive cargo into mitochondria. MPPs have combined or delivered a variety of antitumor cargoes and obviously inhibited the tumor growth in vivo and in vitro. MPPs create new opportunities to develop new treatments for cancer. AREAS COVERED We review the target sites of mitochondria and the target-penetration mechanism of MPPs, different strategies, and various additional strategies decorated MPPs for tumor cell mitochondria targeting, the decorating mattes including metabolism molecules, RNA, DNA, and protein, which exploited considered as therapeutic combined with MPPs and target in human cancer treatment. EXPERT OPINION/COMMENTARY Therapeutic selectivity that preferentially targets the mitochondrial abnormalities in cancer cells without toxic impact on normal cells still need to be deepen. Moreover, it needs appropriate study designs for a correct evaluation of the target delivery outcome and the degradation rate of the drug in the cell. Generally, it is optimistic that the advances in mitochondrial targeting drug delivery by MPPs plasticity outlined here will ultimately help to the discovery of new approaches for the prevention and treatment of cancers.
Collapse
Affiliation(s)
- Jiao Wu
- a Affiliated Ren He Hospital of China Three Gorges University , Yichang , China
- b Hubei Key Lab. of Tumor Microenvironment and Immunotherapy , China Three Gorges University , Yichang , China
- c Medical School , China Three Gorges University , Yichang , China
| | - Jason Li
- d Institute for Cell Engineering , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Hu Wang
- b Hubei Key Lab. of Tumor Microenvironment and Immunotherapy , China Three Gorges University , Yichang , China
- c Medical School , China Three Gorges University , Yichang , China
- d Institute for Cell Engineering , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Chang-Bai Liu
- b Hubei Key Lab. of Tumor Microenvironment and Immunotherapy , China Three Gorges University , Yichang , China
- c Medical School , China Three Gorges University , Yichang , China
| |
Collapse
|
8
|
Mfouo-Tynga I, Houreld NN, Abrahamse H. Evaluation of cell damage induced by irradiated Zinc-Phthalocyanine-gold dendrimeric nanoparticles in a breast cancer cell line. Biomed J 2018; 41:254-264. [PMID: 30348269 PMCID: PMC6198017 DOI: 10.1016/j.bj.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/13/2017] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cancer is a non-communicable disease that occurs following a mutation in the genes which control cell growth. Breast cancer is the most diagnosed cancer among South African women and a major cause of cancer-related deaths worldwide. Photodynamic therapy (PDT) is an alternative cancer therapy that uses photochemotherapeutic agents, known as photosensitizers. Drug-delivery nanoparticles are commonly used in nanomedicine to enhance drug-therapeutic efficiency. This study evaluated the photodynamic effects following treatment with 0.3 μM multiple particles delivery complex (MPDC) and irradiated with a laser fluence of 10 J/cm2 using a 680 nm diode laser in a breast cancer cell line (MCF-7). METHODS Cell damage was assessed by inverted light microscopy for cell morphology; the Apoptox-Glo triple assay was used for cell viability, caspase activity and identification of cytodamage markers; flow cytometric analysis for cell death pathways and mitochondrial membrane potential; the enzyme linked immunosorbent assay (ELISA) for cytochrome C release; and real-time reverse transcriptase polymerase chain reaction (RT-PCR) array for gene expression. RESULTS Laser activated-MPDC induced a significant change in morphology of PDT-treated cells, with the appearance of apoptotic like morphological features. An increase in cytotoxicity, caspase activity, cell depolarization and cytochrome C release were identified in PDT-treated cells. Finally, the upregulation of BAX, BCL-2, CASP-2 and ULK-1 genes was observed. CONCLUSION The MPDC yielded a successful and stable hybrid agent with potent photodynamic abilities.
Collapse
Affiliation(s)
- Ivan Mfouo-Tynga
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, Gauteng, South Africa
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, Gauteng, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, Gauteng, South Africa.
| |
Collapse
|
9
|
Khasiyatullina NR, Vazykhova AM, Voronina YK, Mironov VF. Reaction of 1,4-benzoquinones with PH-phosphonium salts. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217090079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Jarasiene-Burinskaja R, Alksne M, Bartuskiene V, Voisniene V, Burinskij J, Cenas N, Bukelskiene V. Study of the cytotoxic effects of 2,5-diaziridinyl-3,6-dimethyl-1,4-benzoquinone (MeDZQ) in mouse hepatoma cells. EXCLI JOURNAL 2017; 16:151-159. [PMID: 28435434 PMCID: PMC5379112 DOI: 10.17179/excli2016-783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/14/2017] [Indexed: 11/23/2022]
Abstract
A number of quinones have been shown to be efficient anticancer agents. However, some mechanisms of their action, in particular cell signaling are not well understood. The aim of this study was to partly fill this gap by characterizing the mode of cytotoxicity of 2,5-diaziridinyl-3,6-dimethyl-1,4-benzoquinone (MeDZQ) in malignant mouse hepatoma cells (MH-22A) with regard to the expression and activation of main molecules in MAPK cell signaling pathway. The study revealed unequal roles of MAP kinases in MeDZQ-induced cell death: the compound did not induce significant changes in ERK expression or its phosphorylation; JNK appeared to be responsible for cell survival, however, p38 kinase was shown to be involved in cell death. In order to assess the enzymatic activation mechanisms responsible for the action of MeDZQ, we have also found that the antioxidant N,N'-diphenyl-p-phenylene diamine, the iron-chelating agent desferrioxamine, and DT-diaphorase inhibitor, dicoumarol, partly protected the cells from MeDZQ cytotoxicity. It points to parallel oxidative stress and bioreductive alkylation modes of the cytotoxicity of MeDZQ.
Collapse
Affiliation(s)
- Rasa Jarasiene-Burinskaja
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10223 Vilnius, Lithuania
| | - Milda Alksne
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10223 Vilnius, Lithuania
| | - Violeta Bartuskiene
- Department of Anatomy, Histology and Anthropology, Faculty of Medicine, Vilnius University, M. K. Ciurlionio str. 21, LT-03101 Vilnius, Lithuania
| | - Violeta Voisniene
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio av. 11, LT-10223 Vilnius, Lithuania
| | - Jaroslav Burinskij
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10223 Vilnius, Lithuania
| | - Narimantas Cenas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10223 Vilnius, Lithuania
| | - Virginija Bukelskiene
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10223 Vilnius, Lithuania
| |
Collapse
|
11
|
Tang J, Zhang J, Guan F, Qiu J, Fang Y, Yu L, Li J, Yang F, Zhang X, Li J. Design, Synthesis, in vitro Antiproliferative Activity Evaluation of 2-Acylaminothiopene-3-carboxamide Derivatives. HETEROCYCLES 2016. [DOI: 10.3987/com-16-13558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Stulpinas A, Imbrasaitė A, Krestnikova N, Šarlauskas J, Čėnas N, Kalvelytė AV. Study of Bioreductive Anticancer Agent RH-1-Induced Signals Leading the Wild-Type p53-Bearing Lung Cancer A549 Cells to Apoptosis. Chem Res Toxicol 2015; 29:26-39. [DOI: 10.1021/acs.chemrestox.5b00336] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Aurimas Stulpinas
- Vilnius University Institute of Biochemistry, Mokslininku
st. 12, LT-08662 Vilnius, Lithuania
| | - Aušra Imbrasaitė
- Vilnius University Institute of Biochemistry, Mokslininku
st. 12, LT-08662 Vilnius, Lithuania
| | - Natalija Krestnikova
- Vilnius University Institute of Biochemistry, Mokslininku
st. 12, LT-08662 Vilnius, Lithuania
| | - Jonas Šarlauskas
- Vilnius University Institute of Biochemistry, Mokslininku
st. 12, LT-08662 Vilnius, Lithuania
| | - Narimantas Čėnas
- Vilnius University Institute of Biochemistry, Mokslininku
st. 12, LT-08662 Vilnius, Lithuania
| | | |
Collapse
|
13
|
Lee H, Oh ET, Choi BH, Park MT, Lee JK, Lee JS, Park HJ. NQO1-induced activation of AMPK contributes to cancer cell death by oxygen-glucose deprivation. Sci Rep 2015; 5:7769. [PMID: 25586669 PMCID: PMC4293602 DOI: 10.1038/srep07769] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/17/2014] [Indexed: 11/26/2022] Open
Abstract
Oxygen and glucose deprivation (OGD) due to insufficient blood circulation can decrease cancer cell survival and proliferation in solid tumors. OGD increases the intracellular [AMP]/[ATP] ratio, thereby activating the AMPK. In this study, we have investigated the involvement of NQO1 in OGD-mediated AMPK activation and cancer cell death. We found that OGD activates AMPK in an NQO1-dependent manner, suppressing the mTOR/S6K/4E-BP1 pathway, which is known to control cell survival. Thus, the depletion of NQO1 prevents AMPK-induced cancer cell death in OGD. When we blocked OGD-induced Ca2+/CaMKII signaling, the NQO1-induced activation of AMPK was attenuated. In addition, when we blocked the RyR signaling, the accumulation of intracellular Ca2+ and subsequent activation of CaMKII/AMPK signaling was decreased in NQO1-expressing cells under OGD. Finally, siRNA-mediated knockdown of CD38 abrogated the OGD-induced activation of Ca2+/CaMKII/AMPK signaling. Taken together, we conclude that NQO1 plays a key role in the AMPK-induced cancer cell death in OGD through the CD38/cADPR/RyR/Ca2+/CaMKII signaling pathway.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Microbiology, Inha Research Institute for Medical Sciences, College of Medicine, Inha University, Incheon, Korea
| | - Eun-Taex Oh
- 1] Department of Microbiology, Inha Research Institute for Medical Sciences, College of Medicine, Inha University, Incheon, Korea [2] Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon, Korea
| | - Bo-Hwa Choi
- 1] Department of Microbiology, Inha Research Institute for Medical Sciences, College of Medicine, Inha University, Incheon, Korea [2] Pohang Center for Evaluation of Biomaterials, Pohang Technopark, Pohang, Gyeongbuk, Korea
| | - Moon-Taek Park
- 1] Department of Microbiology, Inha Research Institute for Medical Sciences, College of Medicine, Inha University, Incheon, Korea [2] Research Center, Dongnam Institute of Radiological &Medical Sciences (DIRAMS), Busan, Korea
| | - Ja-Kyeong Lee
- 1] Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon, Korea [2] Department of Anatomy, College of Medicine, Inha University, Incheon, Korea
| | - Jae-Seon Lee
- 1] Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon, Korea [2] Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
| | - Heon Joo Park
- 1] Department of Microbiology, Inha Research Institute for Medical Sciences, College of Medicine, Inha University, Incheon, Korea [2] Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon, Korea
| |
Collapse
|
14
|
Park MT, Oh ET, Song MJ, Lee H, Choi EK, Park HJ. NQO1 prevents radiation-induced aneuploidy by interacting with Aurora-A. Carcinogenesis 2013; 34:2470-85. [PMID: 23803694 DOI: 10.1093/carcin/bgt225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aneuploidy is the most common characteristic of human cancer cells. It also causes genomic instability, which is involved in the initiation of cancer development. Various lines of evidence indicate that nicotinamide adenine dinucleotide(P)H quinone oxidoreductase 1 (NQO1) plays an important role in cancer prevention, but the molecular mechanisms underlying this effect have not yet been fully elucidated. Here, we report that ionizing radiation (IR) induces substantial aneuploidy and centrosome amplification in NQO1-deficient cancer cells, suggesting that NQO1 plays a crucial role in preventing aneuploidy. NQO1 deficiency markedly increased the protein stability of Aurora-A in irradiated cancer cells. Small interfering RNA targeting Aurora-A effectively attenuated IR-induced centrosome amplification concerned with aneuploidy in NQO1-deficient cancer cells. Furthermore, we found that NQO1 specifically binds to Aurora-A via competing with the microtubule-binding protein, TPX2 (targeting protein for Xklp2), and contributes to the degradation of Aurora-A. Our results collectively demonstrate that NQO1 plays a key role in suppressing IR-induced centrosome amplification and aneuploidy through a direct interaction with Aurora-A.
Collapse
Affiliation(s)
- Moon-Taek Park
- Department of Microbiology, Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Incheon 400-712, Republic of Korea
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Mitochondria are double membrane-enveloped organelles that play a central role in cellular metabolism, calcium homeostasis, redox signaling and cell fates. They function as main generators of ATP, metabolites for the construction of macromolecules and reactive oxygen species. In many cancer cells, mitochondria seem dysfunctional, manifested by a shift of energy metabolism from oxidative phosphorylation to active glycolysis and an increase in reactive oxygen species generation. These metabolic changes are often associated with upregulation of NAD(P)H oxidase. Importantly, the metabolic reprogramming in a cancer cell is mechanistically linked to oncogenic signals. Targeting mitochondria as a cancer therapeutic strategy has attracted much attention in the recent years and multiple review articles in this area have been published. This article attempts to provide an update on recent progress in identification of mitochondria-associated molecules as potential anticancer targets and the respective targeting compounds.
Collapse
|