1
|
Kamarajugadda S, Becker JR, Hanse EA, Mashek DG, Mashek MT, Hendrickson AM, Mullany LK, Albrecht JH. Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation. Oncotarget 2018; 7:47674-47686. [PMID: 27351284 PMCID: PMC5216970 DOI: 10.18632/oncotarget.10274] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/04/2016] [Indexed: 01/27/2023] Open
Abstract
Cyclin D1 is a cell cycle protein that promotes proliferation by mediating progression through key checkpoints in G1 phase. It is also a proto-oncogene that is commonly overexpressed in human cancers. In addition to its canonical role in controlling cell cycle progression, cyclin D1 affects other aspects of cell physiology, in part through transcriptional regulation. In this study, we find that cyclin D1 inhibits the activity of a key metabolic transcription factor, peroxisome proliferator-activated receptor α (PPARα), a member of nuclear receptor family that induces fatty acid oxidation and may play an anti-neoplastic role. In primary hepatocytes, cyclin D1 inhibits PPARα transcriptional activity and target gene expression in a cdk4-independent manner. In liver and breast cancer cells, knockdown of cyclin D1 leads to increased PPARα transcriptional activity, expression of PPARα target genes, and fatty acid oxidation. Similarly, cyclin D1 depletion enhances binding of PPARα to target sequences by chromatin immunoprecipitation. In proliferating hepatocytes and regenerating liver in vivo, induction of endogenous cyclin D1 is associated with diminished PPARα activity. Cyclin D1 expression is both necessary and sufficient for growth factor-mediated repression of fatty acid oxidation in proliferating hepatocytes. These studies indicate that in addition to playing a pivotal role in cell cycle progression, cyclin D1 represses PPARα activity and inhibits fatty acid oxidation. Our findings establish a new link between cyclin D1 and metabolism in both tumor cells and physiologic hepatocyte proliferation.
Collapse
Affiliation(s)
- Sushama Kamarajugadda
- Gastroenterology Division, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| | - Jennifer R Becker
- Minneapolis Medical Research Foundation, Minneapolis, MN, 55404, USA
| | - Eric A Hanse
- Minneapolis Medical Research Foundation, Minneapolis, MN, 55404, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mara T Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Lisa K Mullany
- Minneapolis Medical Research Foundation, Minneapolis, MN, 55404, USA
| | - Jeffrey H Albrecht
- Gastroenterology Division, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| |
Collapse
|
2
|
Vacca M, D'Amore S, Graziano G, D'Orazio A, Cariello M, Massafra V, Salvatore L, Martelli N, Murzilli S, Sasso GL, Mariani-Costantini R, Moschetta A. Clustering nuclear receptors in liver regeneration identifies candidate modulators of hepatocyte proliferation and hepatocarcinoma. PLoS One 2014; 9:e104449. [PMID: 25116592 PMCID: PMC4130532 DOI: 10.1371/journal.pone.0104449] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022] Open
Abstract
Background & Aims Liver regeneration (LR) is a valuable model for studying mechanisms modulating hepatocyte proliferation. Nuclear receptors (NRs) are key players in the control of cellular functions, being ideal modulators of hepatic proliferation and carcinogenesis. Methods & Results We used a previously validated RT-qPCR platform to profile modifications in the expression of all 49 members of the NR superfamily in mouse liver during LR. Twenty-nine NR transcripts were significantly modified in their expression during LR, including fatty acid (peroxisome proliferator-activated receptors, PPARs) and oxysterol (liver X receptors, Lxrs) sensors, circadian masters RevErbα and RevErbβ, glucocorticoid receptor (Gr) and constitutive androxane receptor (Car). In order to detect the NRs that better characterize proliferative status vs. proliferating liver, we used the novel Random Forest (RF) analysis to selected a trio of down-regulated NRs (thyroid receptor alpha, Trα; farsenoid X receptor beta, Fxrβ; Pparδ) as best discriminators of the proliferating status. To validate our approach, we further studied PPARδ role in modulating hepatic proliferation. We first confirmed the suppression of PPARδ both in LR and human hepatocellular carcinoma at protein level, and then demonstrated that PPARδ agonist GW501516 reduces the proliferative potential of hepatoma cells. Conclusions Our data suggest that NR transcriptome is modulated in proliferating liver and is a source of biomarkers and bona fide pharmacological targets for the management of liver disease affecting hepatocyte proliferation.
Collapse
Affiliation(s)
- Michele Vacca
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
- Unit of General Pathology, Aging Research Center (Ce.S.I.), “Gabriele D'Annunzio” University and Foundation, Chieti, Italy
- Interdisciplinary Department of Medicine, “Aldo Moro” University of Bari, Bari, Italy
| | - Simona D'Amore
- National Cancer Institute, IRCCS Oncologico “Giovanni Paolo II”, Bari, Italy
| | - Giusi Graziano
- National Cancer Institute, IRCCS Oncologico “Giovanni Paolo II”, Bari, Italy
| | - Andria D'Orazio
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
| | - Marica Cariello
- National Cancer Institute, IRCCS Oncologico “Giovanni Paolo II”, Bari, Italy
| | - Vittoria Massafra
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
| | - Lorena Salvatore
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
| | - Nicola Martelli
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
| | - Stefania Murzilli
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
| | - Giuseppe Lo Sasso
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
| | - Renato Mariani-Costantini
- Unit of General Pathology, Aging Research Center (Ce.S.I.), “Gabriele D'Annunzio” University and Foundation, Chieti, Italy
| | - Antonio Moschetta
- Interdisciplinary Department of Medicine, “Aldo Moro” University of Bari, Bari, Italy
- National Cancer Institute, IRCCS Oncologico “Giovanni Paolo II”, Bari, Italy
- * E-mail:
| |
Collapse
|
3
|
Liu HX, Fang Y, Hu Y, Gonzalez FJ, Fang J, Wan YJY. PPARβ Regulates Liver Regeneration by Modulating Akt and E2f Signaling. PLoS One 2013; 8:e65644. [PMID: 23823620 PMCID: PMC3688817 DOI: 10.1371/journal.pone.0065644] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/25/2013] [Indexed: 12/14/2022] Open
Abstract
The current study tests the hypothesis that peroxisome proliferator-activated receptor β (PPARβ) has a role in liver regeneration due to its effect in regulating energy homeostasis and cell proliferation. The role of PPARβ in liver regeneration was studied using two-third partial hepatectomy (PH) in Wild-type (WT) and PPARβ-null (KO) mice. In KO mice, liver regeneration was delayed and the number of Ki-67 positive cells reached the peak at 60 hr rather than at 36-48 hr after PH shown in WT mice. RNA-sequencing uncovered 1344 transcriptomes that were differentially expressed in regenerating WT and KO livers. About 70% of those differentially expressed genes involved in glycolysis and fatty acid synthesis pathways failed to induce during liver regeneration due to PPARβ deficiency. The delayed liver regeneration in KO mice was accompanied by lack of activation of phosphoinositide-dependent kinase 1 (PDK1)/Akt. In addition, cell proliferation-associated increase of genes encoding E2f transcription factor (E2f) 1-2 and E2f7-8 as well as their downstream target genes were not noted in KO livers 36-48 hr after PH. E2fs have dual roles in regulating metabolism and proliferation. Moreover, transient steatosis was only found in WT, but not in KO mice 36 hr after PH. These data suggested that PPARβ-regulated PDK1/Akt and E2f signaling that controls metabolism and proliferation is involved in the normal progression of liver regeneration.
Collapse
Affiliation(s)
- Hui-Xin Liu
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, California, United States of America
| | | | | | | | | | | |
Collapse
|
4
|
Vacca M, Degirolamo C, Massafra V, Polimeno L, Mariani-Costantini R, Palasciano G, Moschetta A. Nuclear receptors in regenerating liver and hepatocellular carcinoma. Mol Cell Endocrinol 2013; 368:108-19. [PMID: 22789748 DOI: 10.1016/j.mce.2012.06.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 12/22/2022]
Abstract
A comprehensive understanding of the pathways underlying hepatocyte turnover and liver regeneration is essential for the development of innovative and effective therapies in the management of chronic liver disease, and the prevention of hepatocellular carcinoma (HCC) in cirrhosis. Nuclear receptors (NRs) are master transcriptional regulators of liver development, differentiation and function. NRs have been implicated in the modulation of hepatocyte priming and proliferation in regenerating liver, chronic hepatitis and HCC development. In this review, we focus on NRs and their pathways regulating hepatocyte proliferation and liver regeneration, with a perspective view on NRs as candidate biomarkers and novel pharmacological targets in the management of liver disease and HCC.
Collapse
Affiliation(s)
- Michele Vacca
- Laboratory of Lipid Metabolism and Cancer, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
5
|
Janevski M, Antonas KN, Sullivan-Gunn MJ, McGlynn MA, Lewandowski PA. The effect of cocoa supplementation on hepatic steatosis, reactive oxygen species and LFABP in a rat model of NASH. COMPARATIVE HEPATOLOGY 2011; 10:10. [PMID: 22081873 PMCID: PMC3227569 DOI: 10.1186/1476-5926-10-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 11/14/2011] [Indexed: 02/05/2023]
Abstract
Background Non alcoholic steatohepatitis is hypothesised to develop via a mechanism involving fat accumulation and oxidative stress. The current study aimed to investigate if an increase in oxidative stress was associated with changes in the expression of liver fatty acid binding protein in a rat model of non alcoholic steatohepatitis and whether cocoa supplementation attenuated those changes. Methods Female Sprague Dawley rats were fed a high fat control diet, a high fat methionine choline deficient diet, or one of four 12.5% cocoa supplementation regimes in combination with the high fat methionine choline deficient diet. Results Liver fatty acid binding protein mRNA and protein levels were reduced in the liver of animals with fatty liver disease when compared to controls. Increased hepatic fat content was accompanied by higher levels of oxidative stress in animals with fatty liver disease when compared to controls. An inverse association was found between the levels of hepatic liver fatty acid binding protein and the level of hepatic oxidative stress in fatty liver disease. Elevated NADPH oxidase protein levels were detected in the liver of animals with increased severity in inflammation and fibrosis. Cocoa supplementation was associated with partial attenuation of these pathological changes, although the severity of liver disease induced by the methionine choline deficient diet prevented complete reversal of any disease associated changes. Red blood cell glutathione was increased by cocoa supplementation, whereas liver glutathione was reduced by cocoa compared to methionine choline deficient diet fed animals. Conclusion These findings suggest a potential role for liver fatty acid binding protein and NADPH oxidase in the development of non alcoholic steatohepatitis. Furthermore, cocoa supplementation may have be of therapeutic benefit in less sever forms of NASH.
Collapse
Affiliation(s)
- Mile Janevski
- School of Medicine, Deakin University, Waurn Ponds, Australia.
| | | | | | | | | |
Collapse
|
6
|
Damrauer SM, Studer P, da Silva CG, Longo CR, Ramsey HE, Csizmadia E, Shrikhande GV, Scali ST, Libermann TA, Bhasin MK, Ferran C. A20 modulates lipid metabolism and energy production to promote liver regeneration. PLoS One 2011; 6:e17715. [PMID: 21437236 PMCID: PMC3060102 DOI: 10.1371/journal.pone.0017715] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 02/10/2011] [Indexed: 01/18/2023] Open
Abstract
Background Liver Regeneration is clinically of major importance in the setting of liver injury, resection or transplantation. We have demonstrated that the NF-κB inhibitory protein A20 significantly improves recovery of liver function and mass following extended liver resection (LR) in mice. In this study, we explored the Systems Biology modulated by A20 following extended LR in mice. Methodology and Principal Findings We performed transcriptional profiling using Affymetrix-Mouse 430.2 arrays on liver mRNA retrieved from recombinant adenovirus A20 (rAd.A20) and rAd.βgalactosidase treated livers, before and 24 hours after 78% LR. A20 overexpression impacted 1595 genes that were enriched for biological processes related to inflammatory and immune responses, cellular proliferation, energy production, oxidoreductase activity, and lipid and fatty acid metabolism. These pathways were modulated by A20 in a manner that favored decreased inflammation, heightened proliferation, and optimized metabolic control and energy production. Promoter analysis identified several transcriptional factors that implemented the effects of A20, including NF-κB, CEBPA, OCT-1, OCT-4 and EGR1. Interactive scale-free network analysis captured the key genes that delivered the specific functions of A20. Most of these genes were affected at basal level and after resection. We validated a number of A20's target genes by real-time PCR, including p21, the mitochondrial solute carriers SLC25a10 and SLC25a13, and the fatty acid metabolism regulator, peroxisome proliferator activated receptor alpha. This resulted in greater energy production in A20-expressing livers following LR, as demonstrated by increased enzymatic activity of cytochrome c oxidase, or mitochondrial complex IV. Conclusion This Systems Biology-based analysis unravels novel mechanisms supporting the pro-regenerative function of A20 in the liver, by optimizing energy production through improved lipid/fatty acid metabolism, and down-regulated inflammation. These findings support pursuit of A20-based therapies to improve patients’ outcomes in the context of extreme liver injury and extensive LR for tumor treatment or donation.
Collapse
Affiliation(s)
- Scott M. Damrauer
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter Studer
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cleide G. da Silva
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christopher R. Longo
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Haley E. Ramsey
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eva Csizmadia
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gautam V. Shrikhande
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Salvatore T. Scali
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Towia A. Libermann
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Manoj K. Bhasin
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (MKB) (MB); (CF) (CF)
| | - Christiane Ferran
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (MKB) (MB); (CF) (CF)
| |
Collapse
|
7
|
Ramsey HE, Da Silva CG, Longo CR, Csizmadia E, Studer P, Patel VI, Damrauer SM, Siracuse JJ, Daniel S, Ferran C. A20 protects mice from lethal liver ischemia/reperfusion injury by increasing peroxisome proliferator-activated receptor-alpha expression. Liver Transpl 2009; 15:1613-21. [PMID: 19877201 PMCID: PMC2976064 DOI: 10.1002/lt.21879] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The nuclear factor-kappaB inhibitory protein A20 demonstrates hepatoprotective abilities through combined antiapoptotic, anti-inflammatory, and pro-proliferative functions. Accordingly, overexpression of A20 in the liver protects mice from toxic hepatitis and lethal radical hepatectomy, whereas A20 knockout mice die prematurely from unfettered liver inflammation. The effect of A20 on oxidative liver damage, as seen in ischemia/reperfusion injury (IRI), is unknown. In this work, we evaluated the effects of A20 upon IRI using a mouse model of total hepatic ischemia. Hepatic overexpression of A20 was achieved by recombinant adenovirus (rAd.)-mediated gene transfer. Although only 10%-25% of control mice injected with saline or the control rAd.beta galactosidase survived IRI, the survival rate reached 67% in mice treated with rAd.A20. This significant survival advantage in rAd.A20-treated mice was associated with improved liver function, pathology, and repair potential. A20-treated mice had significantly lower bilirubin and aminotransferase levels, decreased hemorrhagic necrosis and steatosis, and increased hepatocyte proliferation. A20 protected against liver IRI by increasing hepatic expression of peroxisome proliferator-activated receptor alpha (PPARalpha), a regulator of lipid homeostasis and of oxidative damage. A20-mediated protection of hepatocytes from hypoxia/reoxygenation and H(2)O(2)-mediated necrosis was reverted by pretreatment with the PPARalpha inhibitor MK886. In conclusion, we demonstrate that PPARalpha is a novel target for A20 in hepatocytes, underscoring its novel protective effect against oxidative necrosis. By combining hepatocyte protection from necrosis and promotion of proliferation, A20-based therapies are well-poised to protect livers from IRI, especially in the context of small-for-size and steatotic liver grafts. Liver Transpl 15:1613-1621, 2009. (c) 2009 AASLD.
Collapse
Affiliation(s)
- Haley E. Ramsey
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Cleide G. Da Silva
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christopher R. Longo
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Eva Csizmadia
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Peter Studer
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Virendra I. Patel
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Scott M. Damrauer
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jeffrey J. Siracuse
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Soizic Daniel
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christiane Ferran
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, Transplant Center, Departments of Surgery and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Crump D, Chiu S, Egloff C, Kennedy SW. Effects of hexabromocyclododecane and polybrominated diphenyl ethers on mRNA expression in chicken (Gallus domesticus) hepatocytes. Toxicol Sci 2008; 106:479-87. [PMID: 18791181 DOI: 10.1093/toxsci/kfn196] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hexabromocyclododecane (HBCD) and polybrominated diphenyl ethers (PBDEs) are additive flame retardants used in a wide range of consumer products. Both compounds have been detected in free-living avian species, but toxicological and molecular end points of exposure are limited. An in vitro approach was used to compare concentration-dependent effects of HBCD and the commercial penta-brominated diphenyl ether mixture DE-71 on cytotoxicity and mRNA expression in cultured hepatocytes derived from embryonic chickens. Neither HBCD-alpha, HBCD-technical mixture (TM), nor DE-71 effected hepatocyte viability at the highest concentrations assessed (30-100 microM). Real-time RT-PCR assays were developed to quantify changes in mRNA abundance of genes associated with chicken xenobiotic-sensing orphan nuclear receptor activation, the thyroid hormone (TH) pathway, and lipid regulation. Exposure to >or= 1 microM HBCD-alpha and HBCD-TM resulted in significant upregulation of cytochrome P450 (CYP) 2H1 (fourfold to sevenfold) and CYP3A37 (5- to 30-fold) at 24 and 36 h. In contrast, 30 microM DE-71 caused a twofold increase of CYP2H1 only. UGT1A9 expression was only upregulated by HBCD-alpha to a maximum of fourfold at >or= 1 microM. Transthyretin, thyroid hormone-responsive spot 14-alpha, and liver fatty acid-binding protein were all significantly downregulated (up to sevenfold) for cells exposed to >or= 1 microM HBCD-alpha and HBCD-TM. DE-71 also downregulated these three target genes twofold to fivefold at concentrations >or= 3 microM. Taken together, our results indicate that xenobiotic-metabolizing enzymes and genes associated with the TH pathway and lipid regulation are vulnerable to HBCD and DE-71 administration in cultured avian hepatocytes and might be useful molecular markers of exposure.
Collapse
Affiliation(s)
- Doug Crump
- Environment Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
9
|
Sidorkiewicz M, Jais JP, Tralhao G, Morosan S, Giannini C, Brezillon N, Soussan P, Delpuech O, Kremsdorf D. Gene modulation associated with inhibition of liver regeneration in hepatitis B virus X transgenic mice. World J Gastroenterol 2008; 14:574-81. [PMID: 18203290 PMCID: PMC2681149 DOI: 10.3748/wjg.14.574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the modulation of gene expression profile associated with inhibition of liver regeneration in hepatitis B X (HBx)-expressing transgenic mice.
METHODS: Microarray technology was performed on liver tissue obtained from 4 control (LacZ) and 4 transgenic mice (HBx-LacZ), 48 h after partial hepatectomy. The significance of the normalized log-ratios was assessed for each gene, using robust t-tests under an empirical Bayes approach. Microarray hybridization data was verified on selected genes by quantitative PCR.
RESULTS: The comparison of gene expression patterns showed a consistent modulation of the expression of 26 genes, most of which are implicated in liver regeneration. Up-regulated genes included DNA repair proteins (Rad-52, MSH6) and transmembrane proteins (syndecan 4, tetraspanin), while down-regulated genes were connected to the regulation of transcription (histone deacetylase, Zfp90, MyoD1) and were involved in the cholesterol metabolic pathway and isoprenoid biosynthesis (farnesyl diphosphate synthase, Cyp7b1, geranylgeranyl diphosphate synthase, SAA3).
CONCLUSION: Our results provide a novel insight into the biological activities of HBx, implicated in the inhibition of liver regeneration.
Collapse
|
10
|
Zabielski P, Baranowski M, Zendzian-Piotrowska M, Błachnio-Zabielska A, Górski J. Bezafibrate decreases growth stimulatory action of the sphingomyelin signaling pathway in regenerating rat liver. Prostaglandins Other Lipid Mediat 2007; 85:17-25. [PMID: 18024222 DOI: 10.1016/j.prostaglandins.2007.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 09/17/2007] [Accepted: 09/26/2007] [Indexed: 11/25/2022]
Abstract
Liver regeneration after partial hepatectomy (PH) is achieved through proliferation of hepatocytes and non-parenchymal cells. The nuclear peroxisome proliferator-activated receptor alpha (PPARalpha) is involved in regulation of lipid metabolism and proliferation of hepatic cells. The sphingomyelin signal transduction pathway is involved in the regulation of the cell cycle in eukaryotic organisms. Sphingosine-1-phosphate (S1P) and ceramide (CER)-- the intermediates of the pathway--are known to stimulate and to inhibit cellular proliferation. The aim of the present study was to investigate the effect of PPARalpha activation by bezafibrate on the sphingomyelin signaling pathway during the first 24h of liver regeneration after PH in the rat. The content of sphingomyelin, ceramide, sphingosine, sphinganine, sphingosine-1-phosphate and the activity of sphingomyelinases and ceramidases were determined at various time points after PH. It has been found that the activity of neutral Mg(2+)-dependent sphingomyelinase (nSMase) increased, whereas the activity of acidic sphingomyelinase (aSMase) decreased in the regenerating liver. Activation of PPARalpha by bezafibrate lower the activity of nSMase and increased the activity of aSMase in the regenerating rat liver. The content of ceramide was higher in bezafibrate-treated rats, whereas the content of sphingosine-1-phosphate was markedly lower as compared to the untreated rats. Therefore, it is concluded that activation of PPARalpha by bezafibrate decreases the growth-stimulatory activity of the sphingomyelin pathway in regenerating rat liver.
Collapse
Affiliation(s)
- Piotr Zabielski
- Department of Physiology, Medical University of Białystok, Mickiewicza 2c, 15-089 Białystok, Poland.
| | | | | | | | | |
Collapse
|
11
|
Bockhorn M, Frilling A, Benko T, Best J, Sheu SY, Trippler M, Schlaak JF, Broelsch CE. Tri-iodothyronine as a stimulator of liver regeneration after partial and subtotal hepatectomy. Eur Surg Res 2007; 39:58-63. [PMID: 17213727 DOI: 10.1159/000098443] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Accepted: 11/14/2006] [Indexed: 01/07/2023]
Abstract
BACKGROUND Tri-iodothyronine (T3) has been shown to be a hepatic mitogen. We investigated whether exogenous application of T3 improves liver regeneration after 70% partial hepatectomy (PH) and confers a survival advantage after 90% subtotal hepatectomy (SH) in rats and whether this is associated with the stimulation of angiogenesis. METHODS Rats were subjected to PH or SH 10 days after injection of a single dose of T3. Liver body weight ratio (LBR), hepatic proliferation (Ki-67), biochemical markers as well as vascular endothelial growth factor (VEGF) expression were assessed by immunohistochemistry. Gene expression of pathogenic relevant genes was determined by customized cDNA arrays and quantitative RT-PCR. RESULTS T3-treated rats showed an increased LBR and Ki-67 index after PH and SH, which reached statistical significance compared to placebo-treated rats (p < 0.05). On the transcriptional level, T3-treated rats had an increased expression of VEGF as demonstrated by immunohistochemistry, which was associated with a higher expression of its receptor Flt-1. CONCLUSIONS Exogenous administration of T3 ameliorates liver regeneration after 70% PH and 90% SH, possibly due to stimulation of angiogenesis. Therefore, its clinical use might be of interest due to its excellent general practicability.
Collapse
Affiliation(s)
- M Bockhorn
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hernández-Nazará A, Curiel-López F, Martínez-López E, Hernández-Nazará Z, Panduro A. Genetic predisposition of cholesterol gallstone disease. Ann Hepatol 2006; 5:140-149. [PMID: 17060869 DOI: 10.1016/s1665-2681(19)31997-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
Gallstone disease (GSD) is the result of the interaction between genetic and environmental factors and it is a major disease cause of surgery with high costs to health systems. Worldwide prevalence varies according to the ethnic population suggesting that high prevalence of GSD in certain ethnic groups is due to the presence of genetic factors implicated in different metabolic pathways. However, environmental factors play a determinant role in gene expression. This review summarizes the genes involved in biliary salt and cholesterol synthesis, lipids transport and the Lith genes. Future studies should be focused on the study of interactions between genetic and environmental factors which could be specific for each population.
Collapse
Affiliation(s)
- Alejandro Hernández-Nazará
- Department of Molecular Biology in Medicine, Old Civil Hospital of Guadalajara Fray Antonio Alcalde University Center of Health Sciences CUCS, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | | | | |
Collapse
|
13
|
Michalik L, Wahli W. Involvement of PPAR nuclear receptors in tissue injury and wound repair. J Clin Invest 2006; 116:598-606. [PMID: 16511592 PMCID: PMC1386118 DOI: 10.1172/jci27958] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tissue damage resulting from chemical, mechanical, and biological injury, or from interrupted blood flow and reperfusion, is often life threatening. The subsequent tissue response involves an intricate series of events including inflammation, oxidative stress, immune cell recruitment, and cell survival, proliferation, migration, and differentiation. In addition, fibrotic repair characterized by myofibroblast transdifferentiation and the deposition of ECM proteins is activated. Failure to initiate, maintain, or stop this repair program has dramatic consequences, such as cell death and associated tissue necrosis or carcinogenesis. In this sense, inflammation and oxidative stress, which are beneficial defense processes, can become harmful if they do not resolve in time. This repair program is largely based on rapid and specific changes in gene expression controlled by transcription factors that sense injury. PPARs are such factors and are activated by lipid mediators produced after wounding. Here we highlight advances in our understanding of PPAR action during tissue repair and discuss the potential for these nuclear receptors as therapeutic targets for tissue injury.
Collapse
Affiliation(s)
- Liliane Michalik
- Center for Integrative Genomics, National Research Centre Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|