1
|
Khater Y, Barakat N, Shokeir A, Hamed M, Samy A, Karrouf G. Synergy of zinc oxide nanoparticles to losartan attenuates kidney injury induced by unilateral ureteral obstruction through modulation of the TNF-α/IL6 and BAX/BCL2 signaling pathways. Int Urol Nephrol 2025:10.1007/s11255-024-04331-y. [PMID: 39810058 DOI: 10.1007/s11255-024-04331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
AIM Although the relief of ureteral obstruction seems to be a radical treatment for obstructive uropathy (OU), progressive kidney damage is the result because of the associated increased apoptosis and fibrosis. Therefore, it is urgent to find a complementary renoprotective therapy against partially obstructed uropathy cascades. Thus, this study investigated the renoprotective effects of both losartan (LOS) and zinc oxide nanoparticles (ZnONPs) in partial unilateral ureteral obstruction (PUUO). MAIN METHODS In controlled (n = 16) and shamed (n = 16) study, 64 healthy male Sprague-Dawley rats, both PUUO and right nephrectomy (RNX) were induced. The rats were equally allocated into four groups according to treatment protocol: (1) PUUO group (no treatment), (2) ZnONPs group, (3) LOS group and (4) ZnONPs/LOS group. Antioxidant status and gene expression were assessed in renal tissues. Moreover, histologic and immunohistochemical examinations were performed. KEY FINDINGS LOS and ZnONPs significantly mitigated the PUUO-induced renal injury, by significant (P < 0.0001) suppressing of oxidative stress (MDA and TOS), upregulating of antioxidant gene (SOD) and antiapoptotic gene (BCL2), and downregulating the expression of inflammatory cytokines (TNF-α, and IL6), apoptotic gene (Bax) and fibrotic marker (β-Catenin). The combination of both agents offered a more powerful renoprotective effect with additional significant upregulation of the antioxidant marker (TAC, P < 0.0001). SIGNIFICANCE Both losartan and ZnONPs and specially their combination have synergistic action in protecting the kidney against PUUO-induced chronic renal cascades through improvement the renal function tests, amelioration of oxidative stress, inhibition of induced apoptosis and fibrosis with marked renal regeneration which highlights the possible application of these drugs as a complementary therapies for different chronic renal degenerative diseases.
Collapse
Affiliation(s)
- Yomna Khater
- Medical Experimental Research Centre, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Shokeir
- Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
- Centre of Excellence of Genome and Cancer Research, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Hamed
- Department of Pathology, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, 35516, Egypt
| | - Alaa Samy
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, 35516, Egypt
| | - Gamal Karrouf
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, 35516, Egypt.
| |
Collapse
|
2
|
Bi J, Zhou W, Tang Z. Pathogenesis of diabetic complications: Exploring hypoxic niche formation and HIF-1α activation. Biomed Pharmacother 2024; 172:116202. [PMID: 38330707 DOI: 10.1016/j.biopha.2024.116202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Hypoxia is a common feature of diabetic tissues, which highly correlates to the progression of diabetes. The formation of hypoxic context is induced by disrupted oxygen homeostasis that is predominantly driven by vascular remodeling in diabetes. While different types of vascular impairments have been reported, the specific features and underlying mechanisms are yet to be fully understood. Under hypoxic condition, cells upregulate hypoxia-inducible factor-1α (HIF-1α), an oxygen sensor that coordinates oxygen concentration and cell metabolism under hypoxic conditions. However, diabetic context exploits this machinery for pathogenic functions. Although HIF-1α protects cells from diabetic insult in multiple tissues, it also jeopardizes cell function in the retina. To gain a deeper understanding of hypoxia in diabetic complications, we focus on the formation of tissue hypoxia and the outcomes of HIF-1α dysregulation under diabetic context. Hopefully, this review can provide a better understanding on hypoxia biology in diabetes.
Collapse
Affiliation(s)
- Jingjing Bi
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education,Southwest Medical University, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Wenhao Zhou
- Yucebio Technology Co., Ltd., Shenzhen, China
| | - Zonghao Tang
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education,Southwest Medical University, Ministry of Education, Southwest Medical University, Luzhou, China; Baylor College of Medicine, Department of Molecular and Cellular Biology, Houston, TX, USA.
| |
Collapse
|
3
|
Sinha SK, Nicholas SB. Pathomechanisms of Diabetic Kidney Disease. J Clin Med 2023; 12:7349. [PMID: 38068400 PMCID: PMC10707303 DOI: 10.3390/jcm12237349] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 03/15/2024] Open
Abstract
The worldwide occurrence of diabetic kidney disease (DKD) is swiftly rising, primarily attributed to the growing population of individuals affected by type 2 diabetes. This surge has been transformed into a substantial global concern, placing additional strain on healthcare systems already grappling with significant demands. The pathogenesis of DKD is intricate, originating with hyperglycemia, which triggers various mechanisms and pathways: metabolic, hemodynamic, inflammatory, and fibrotic which ultimately lead to renal damage. Within each pathway, several mediators contribute to the development of renal structural and functional changes. Some of these mediators, such as inflammatory cytokines, reactive oxygen species, and transforming growth factor β are shared among the different pathways, leading to significant overlap and interaction between them. While current treatment options for DKD have shown advancement over previous strategies, their effectiveness remains somewhat constrained as patients still experience residual risk of disease progression. Therefore, a comprehensive grasp of the molecular mechanisms underlying the onset and progression of DKD is imperative for the continued creation of novel and groundbreaking therapies for this condition. In this review, we discuss the current achievements in fundamental research, with a particular emphasis on individual factors and recent developments in DKD treatment.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- College of Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
4
|
Chen BH, Lu XQ, Liang XH, Wang P. Serpin E1 mediates the induction of renal tubular degeneration and premature senescence upon diabetic insult. Sci Rep 2023; 13:16210. [PMID: 37758806 PMCID: PMC10533493 DOI: 10.1038/s41598-023-43411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023] Open
Abstract
As a leading cause of chronic kidney disease, diabetic kidney disease (DKD) involves insidious but progressive impairments of renal tubules, and is associated with premature renal aging. The underlying pathomechanisms remain elusive. Post hoc analyses of the publicly-available renal transcriptome revealed that TGFβ1 is overexpressed in renal tubulointerstitia in patients with DKD and positively correlated with kidney aging signaling. This finding was validated in kidney biopsy specimens collected from patients with DKD, associated with renal tubular senescence and degenerative changes. In vitro in renal tubular epithelial cells, exposure to a diabetic milieu, stimulated with high ambient glucose and TGFβ1, elicited premature senescence, as evidenced by staining for senescence-associated β-galactosidase activity and increased expression of p16INK4A, and p53. This coincided with Serpin E1 induction, in parallel with increased fibronectin accumulation and reduced expression of the epithelial marker E-cadherin, all indicative of degenerative changes. Reminiscent of the action of typical senolytics, a small molecule inhibitor of Serpin E1 substantially mitigated the pro-senescent and degenerating effects of the diabetic milieu, suggesting an essential role of Serpin E1 in mediating renal tubular senescence upon diabetic insult. Moreover, inhibition of Serpin E1 abolished the diabetic insult-triggered paracrine senescence of renal tubular cells. In consistency, in patients with DKD, renal tubular expression of Serpin E1 was upregulated and positively correlated with tubular senescence and fibrosis in renal tubulointerstitia. Collectively, diabetic insult induces renal tubular degeneration and premature senescence via, at least in part, Serpin E1 signaling.
Collapse
Affiliation(s)
- Bo Han Chen
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Xiao Qing Lu
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xian Hui Liang
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pei Wang
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.
- Blood Purification Center, Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
5
|
Kourtidou C, Tziomalos K. The Role of Histone Modifications in the Pathogenesis of Diabetic Kidney Disease. Int J Mol Sci 2023; 24:6007. [PMID: 36983082 PMCID: PMC10051814 DOI: 10.3390/ijms24066007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease. The pathogenesis of DKD is multifactorial, with several molecular pathways implicated. Recent data suggest that histone modification plays an important role in the development and progression of DKD. Histone modification appears to induce oxidative stress, inflammation and fibrosis in the diabetic kidney. In the present review, we summarize the current knowledge on the association between histone modification and DKD.
Collapse
Affiliation(s)
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
6
|
Di Camillo B, Puricelli L, Iori E, Toffolo GM, Tessari P, Arrigoni G. Modeling SILAC Data to Assess Protein Turnover in a Cellular Model of Diabetic Nephropathy. Int J Mol Sci 2023; 24:ijms24032811. [PMID: 36769128 PMCID: PMC9917874 DOI: 10.3390/ijms24032811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Protein turnover rate is finely regulated through intracellular mechanisms and signals that are still incompletely understood but that are essential for the correct function of cellular processes. Indeed, a dysfunctional proteostasis often impacts the cell's ability to remove unfolded, misfolded, degraded, non-functional, or damaged proteins. Thus, altered cellular mechanisms controlling protein turnover impinge on the pathophysiology of many diseases, making the study of protein synthesis and degradation rates an important step for a more comprehensive understanding of these pathologies. In this manuscript, we describe the application of a dynamic-SILAC approach to study the turnover rate and the abundance of proteins in a cellular model of diabetic nephropathy. We estimated protein half-lives and relative abundance for thousands of proteins, several of which are characterized by either an altered turnover rate or altered abundance between diabetic nephropathic subjects and diabetic controls. Many of these proteins were previously shown to be related to diabetic complications and represent therefore, possible biomarkers or therapeutic targets. Beside the aspects strictly related to the pathological condition, our data also represent a consistent compendium of protein half-lives in human fibroblasts and a rich source of important information related to basic cell biology.
Collapse
Affiliation(s)
- Barbara Di Camillo
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
- Correspondence: (B.D.C.); (G.A.)
| | - Lucia Puricelli
- Department of Medicine, University of Padova, 35128 Padova, Italy
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, 35128 Padova, Italy
| | - Elisabetta Iori
- Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Gianna Maria Toffolo
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Paolo Tessari
- Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Giorgio Arrigoni
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, 35128 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Correspondence: (B.D.C.); (G.A.)
| |
Collapse
|
7
|
Tanaka K, Harada H, Kamuro H, Sakai H, Yamamoto A, Tomimatsu M, Ikeda A, Chosokabe R, Tanaka S, Okada Y, Fujio Y, Obana M. Arid5a/IL-6/PAI-1 Signaling Is Involved in the Pathogenesis of Lipopolysaccharide-Induced Kidney Injury. Biol Pharm Bull 2023; 46:1753-1760. [PMID: 38044094 DOI: 10.1248/bpb.b23-00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A systemic inflammatory response leads to widespread organ dysfunction, such as kidney dysfunction. Plasminogen activator inhibitor-1 (PAI-1) is involved in the pathogenesis of inflammatory kidney injury; however, the regulatory mechanism of PAI-1 in injured kidneys remains unclear. PAI-1 is induced by interleukin (IL)-6 in patients with sepsis. In addition, the stabilization of IL-6 is regulated by the adenine-thymine-rich interactive domain-containing protein 5a (Arid5a). Therefore, the aim of the present study was to examine the involvement of Arid5a/IL-6/PAI-1 signaling in lipopolysaccharide (LPS)-induced inflammatory kidney injury. LPS treatment to C57BL/6J mice upregulated Pai-1 mRNA in the kidneys. Enzyme-linked immunosorbent assay (ELISA) revealed that PAI-1 expression was induced in the culture supernatants of LPS-treated human umbilical vein endothelial cells, but not in those of LPS-treated human kidney 2 (HK-2) cells, a tubular cell line. Combined with single-cell analysis, endothelial cells were found to be responsible for PAI-1 elevation in LPS-treated kidneys. Administration of TM5441, a PAI-1 inhibitor, reduced the urinary albumin/creatinine ratio, concomitant with downregulation of Il-6 and Arid5a mRNA expressions. IL-6 treatment in LPS model mice further upregulated Pai-1 mRNA expression compared with LPS alone, accompanied by renal impairment. Furthermore, the expression of Il-6 and Pai-1 mRNA was lower in Arid5a knockout mice than in wild-type mice after LPS treatment. Taken together, the vicious cycle of Arid5a/IL-6/PAI-1 signaling is involved in LPS-induced kidney injury.
Collapse
Affiliation(s)
- Koki Tanaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Hiroki Harada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Hiroyasu Kamuro
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Hibiki Sakai
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Ayaha Yamamoto
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Masashi Tomimatsu
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Akari Ikeda
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Renya Chosokabe
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Shota Tanaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Yoshiaki Okada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
- Center for Infectious Disease Education and Research (CiDER), Osaka University
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
- Center for Infectious Disease Education and Research (CiDER), Osaka University
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
- Center for Infectious Disease Education and Research (CiDER), Osaka University
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University
- Global Center for Medical Engineering and Informatics (MEI), Osaka University
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University
| |
Collapse
|
8
|
Mok H, Al-Jumaily A, Lu J. Plasmacytoma Variant Translocation 1 (PVT1) Gene as a Potential Novel Target for the Treatment of Diabetic Nephropathy. Biomedicines 2022; 10:2711. [PMID: 36359234 PMCID: PMC9687488 DOI: 10.3390/biomedicines10112711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/21/2022] [Indexed: 01/29/2024] Open
Abstract
Introduction: Diabetic nephropathy (DN), a severe microvascular complication in patients with diabetes, is clinically characterized by progressive decline in glomerular filtration rate (GFR). DN is the most common cause of end-stage renal disease (ESRD), and has a consistently high mortality rate. Despite the fact that the prevalence of DN is increasing worldwide, the molecular mechanism underlying the pathogenesis of DN is not fully understood. Previous studies indicated PVT1 as a key determinant of ESRD as well as a mediator of extracellular matrix (ECM) accumulation in vitro. More investigations into the role of PVT1 in DN development are needed. Objectives: To study the effect of PVT1 silencing on progression of DN in diabetic male C57BL/6 mice at early, intermediate and relatively advanced ages. Methods: Diabetic mice were treated with either scramble-siRNA (DM + siRNA (scramble)) or PVT1-siRNA (DM + siRNA (PVT1)), whereas the control mice were normal mice without siRNA injection (Control). Blood, urine and kidney were collected at the age of 9 (young), 16 (middle-aged) or 24 (old) weeks old. Kidney function, histology and molecular gene expression were evaluated. Results: Our findings showed that silencing of PVT1 reduced kidney hypertrophy, proteinuria (UAE, UACR, UPE, UPCR), serum creatinine, serum TGF-β1, serum insulin decline, glomerular and mesangial areas, and increased creatinine clearance in diabetic mice to levels closer to the age-matched controls. Also, silencing of PVT1 markedly suppressed the upregulation of PAI-1, TGF-β1, FN1, COL4A1, and downregulation of BMP7. Conclusion: Silencing of PVT1 ameliorates DN in terms of kidney function and histology in diabetic mice. The renoprotection is attributed to the reduction in ECM accumulation, TGF-β1 elevation and insulin decline. PVT1 is suggested to play an important role in ECM accumulation which makes it a possible target for the treatment of DN.
Collapse
Affiliation(s)
- Helen Mok
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
| | - Ahmed Al-Jumaily
- School of Engineering, Computer and Mathematical Sciences, Faculty of Design and Creative Technologies, Auckland University of Technology, Auckland 1142, New Zealand
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Discovery, Auckland 1142, New Zealand
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi’an 710119, China
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
9
|
Fan Z, Gao Y, Jiang N, Zhang F, Liu S, Li Q. Immune-related SERPINA3 as a biomarker involved in diabetic nephropathy renal tubular injury. Front Immunol 2022; 13:979995. [PMID: 36304455 PMCID: PMC9592916 DOI: 10.3389/fimmu.2022.979995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/27/2022] [Indexed: 04/20/2025] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease and has become a serious medical issue globally. Although it is known to be associated with glomerular injury, tubular injury has been found to participate in DN in recent years. However, mechanisms of diabetic renal tubular injury remain unclear. Here, we investigated the differentially expressed genes in the renal tubules of patients with DN by analyzing three RNA-seq datasets downloaded from the Gene Expression Omnibus database. Gene set enrichment analysis and weighted gene co-expression network analysis showed that DN is highly correlated with the immune system. The immune-related gene SERPINA3 was screened out with lasso regression and Kaplan-Meier survival analyses. Considering that SERPINA3 is an inhibitor of mast cell chymase, we examined the expression level of SERPINA3 and chymase in human renal tubular biopsies and found that SERPINA3 was upregulated in DN tubules, which is consistent with the results of the differential expression analysis. Besides, the infiltration and degranulation rates of mast cells are augmented in DN. By summarizing the biological function of SERPINA3, chymase, and mast cells in DN based on our results and those of previous studies, we speculated that SERPINA3 is a protective immune-related molecule that prevents renal tubular injury by inhibiting the proliferation and activation of mast cells and downregulating the activity of chymase.
Collapse
Affiliation(s)
- Zuyan Fan
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Yan Gao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Nan Jiang
- Department of Nephrology, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fengxia Zhang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shuangxin Liu
- Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Quhuan Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Liao TH, Wu HC, Liao MT, Hu WC, Tsai KW, Lin CC, Lu KC. The Perspective of Vitamin D on suPAR-Related AKI in COVID-19. Int J Mol Sci 2022; 23:10725. [PMID: 36142634 PMCID: PMC9500944 DOI: 10.3390/ijms231810725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has claimed the lives of millions of people around the world. Severe vitamin D deficiency can increase the risk of death in people with COVID-19. There is growing evidence that acute kidney injury (AKI) is common in COVID-19 patients and is associated with poorer clinical outcomes. The kidney effects of SARS-CoV-2 are directly mediated by angiotensin 2-converting enzyme (ACE2) receptors. AKI is also caused by indirect causes such as the hypercoagulable state and microvascular thrombosis. The increased release of soluble urokinase-type plasminogen activator receptor (suPAR) from immature myeloid cells reduces plasminogen activation by the competitive inhibition of urokinase-type plasminogen activator, which results in low plasmin levels and a fibrinolytic state in COVID-19. Frequent hypercoagulability in critically ill patients with COVID-19 may exacerbate the severity of thrombosis. Versican expression in proximal tubular cells leads to the proliferation of interstitial fibroblasts through the C3a and suPAR pathways. Vitamin D attenuates the local expression of podocyte uPAR and decreases elevated circulating suPAR levels caused by systemic inflammation. This decrease preserves the function and structure of the glomerular barrier, thereby maintaining renal function. The attenuated hyperinflammatory state reduces complement activation, resulting in lower serum C3a levels. Vitamin D can also protect against COVID-19 by modulating innate and adaptive immunity, increasing ACE2 expression, and inhibiting the renin-angiotensin-aldosterone system. We hypothesized that by reducing suPAR levels, appropriate vitamin D supplementation could prevent the progression and reduce the severity of AKI in COVID-19 patients, although the data available require further elucidation.
Collapse
Affiliation(s)
- Tzu-Hsien Liao
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Hsien-Chang Wu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City 300, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology and Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Ching-Chieh Lin
- Department of Chest Medicine, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City 300, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
11
|
Sinha SK, Sun L, Didero M, Martins D, Norris KC, Lee JE, Meng YX, Sung JH, Sayre M, Carpio MB, Nicholas SB. Vitamin D3 Repletion Improves Vascular Function, as Measured by Cardiorenal Biomarkers in a High-Risk African American Cohort. Nutrients 2022; 14:3331. [PMID: 36014837 PMCID: PMC9414215 DOI: 10.3390/nu14163331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background: 25-hydroxy vitamin D (Vit D)-deficiency is common among patients with chronic kidney disease (CKD) and contributes to cardiovascular disease (CVD). African Americans (AAs) suffer disproportionately from CKD and CVD, and 80% of AAs are Vit D-deficient. The impact of Vit D repletion on cardio-renal biomarkers in AAs is unknown. We examined Vit D repletion on full-length osteopontin (flOPN), c-terminal fibroblast growth factor-23 (FGF-23), and plasminogen activator inhibitor-1 (PAI-1), which are implicated in vascular and kidney pathology. Methods: We performed a randomized, placebo-controlled study of high-risk AAs with Vit D deficiency, treated with 100,000 IU Vit D3 (cholecalciferol; n = 65) or placebo (n = 65) every 4 weeks for 12 weeks. We measured kidney function (CKD-EPI eGFR), protein-to-creatinine ratio, vascular function (pulse wave velocity; PWV), augmentation index, waist circumference, sitting, and 24-h-ambulatory blood pressure (BP), intact parathyroid hormone (iPTH) and serum calcium at baseline and study end, and compared Vit D levels with laboratory variables. We quantified plasma FGF-23, PAI-1, and flOPN by enzyme-linked immunosorbent assay. Multiple regression analyzed the relationship between log flOPN, FGF-23, and PAI-1 with vascular and renal risk factors. Results: Compared to placebo, Vit D3 repletion increased Vit D3 2-fold (p < 0.0001), decreased iPTH by 12% (p < 0.01) and was significantly correlated with PWV (p < 0.009). Log flOPN decreased (p = 0.03), log FGF-23 increased (p = 0.04), but log PAI-1 did not change. Multiple regression indicated association between log flOPN and PWV (p = 0.04) and diastolic BP (p = 0.02), while log FGF-23 was associated with diastolic BP (p = 0.05), and a trend with eGFR (p = 0.06). Conclusion: Vit D3 repletion may reduce flOPN and improve vascular function in high risk AAs with Vit D deficiency.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Ling Sun
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Michelle Didero
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - David Martins
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Keith C. Norris
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Jae Eun Lee
- Department of Epidemiology and Biostatistics, School of Health, Jackson State University, Jackson, MS 39217, USA
| | - Yuan-Xiang Meng
- Department of Family Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Jung Hye Sung
- Department of Epidemiology and Biostatistics, School of Health, Jackson State University, Jackson, MS 39217, USA
| | - Michael Sayre
- National Institute of Health, National Institute of Minority Health and Health Disparities, Bethesda, MD 20892, USA
| | - Maria Beatriz Carpio
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
Li Z, Yang W, Yang Y, Wu J, Luo P, Liu Y. The Astragaloside IV Derivative LS-102 Ameliorates Obesity-Related Nephropathy. Drug Des Devel Ther 2022; 16:647-664. [PMID: 35308255 PMCID: PMC8932932 DOI: 10.2147/dddt.s346546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022] Open
Abstract
Background Astragaloside IV is the most important bioactive component of Radix Astragali. Previous studies have shown that astragaloside IV plays an important role in the control of early- and mid-stage diabetes and late diabetic nephropathy. However, it is disappointing that the in vivo solubility of astragaloside IV and its bioavailability after oral administration are very low. We recently obtained a new water-soluble derivative of astragaloside IV-astragaloside formic acid (LS-102), which has higher bioavailability than the parent compound. In our previous study, we found that there was a significant inflammatory response in the perirenal adipose tissue of mice with obesity-related nephropathy induced by a high-fat diet (HFD), which was related to macrophage infiltration. We hypothesized that in model mice with obesity-related nephropathy, LS-102 effectively regulated the inflammatory response and pathological changes in obesity-related nephropathy through macrophages in perirenal adipose tissue. If this hypothesis is true, the effects of LS-102 and astragaloside IV on TGF-β1/Smad signal transduction will be further investigated. Methods In this study, adipose stem cells and an HFD-induced obesity-related nephropathy mouse model were used to observe the regulatory effect of LS-102 on perirenal fat inflammation and the mechanism. Adipose mesenchymal stem cells were extracted from mice that were fed a normal diet and those with obesity-related nephropathy. The effects of LS-102 on the proliferation of two kinds of cells were measured by the CCK-8 method. The levels of tumor necrosis factor-α (TNF-a) and plasminogen activator inhibitor-1 (PAI-1) were measured by ELISA. Obesity-related nephropathy mice were randomly divided into five groups: the HFD group, the LAS group (HFD+low concentration of astragaloside IV [10 mg/kg], intragastrically [ig]), the HAS group (HFD+high concentration of astragaloside IV [40 mg/kg], ig), the L102 group (HFD+low concentration of LS-102 [10 mg/kg], ig) and the H102 group (HFD+high concentration of LS-102 [40 mg/kg], ig). Body weight was measured, and the levels of serum glucose, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglyceride (TG), total cholesterol (TC), serum creatinine (Crea) and blood urea were measured. The kidneys were stained with HE, PAS and Masson's trichrome. Perirenal adipose tissue was harvested to examine the expression of CD68, LCA, CD11C, TNF-a, TGF-β1, Fn1, Smad2, Smad3, Smad4, and Smad7 by immunohistochemical staining, and F4/80 was examined by immunofluorescence staining. Results LS-102 significantly inhibited the in vitro secretion of TNF-a and PAI-1 by adipose stem cells in a concentration-dependent manner (P < 0.05). In vivo, the body weights in the LAS group, HAS group, L102 group and H102 group were significantly lower than those in the HFD group (P < 0.05). Except for that in the HFD group, the volume of perirenal adipocytes in the other groups was small and uniform (P < 0.05). Compared with the LAS, HAS, L102 and H102 groups, the HFD group had a larger glomerular cross-sectional area, proliferation of mesangial cells and the mesangial matrix, and increased matrix area/glomerular area (P < 0.05). The effect of LS-102 was better than that of astragaloside IV at the same concentration (P < 0.05). Compared with those in the HFD group, glucose, HDL-C, LDL-C and urea levels in the LAS group, HAS group, L102 group and H102 group were significantly decreased (P < 0.05). The expression of F4/80, CD68, LCA, TNF-a, CD11C, and PAI-1 in perirenal adipose tissue in the HFD group was significantly higher than that in the LAS group, HAS group, L102 group and H102 group (P < 0.05). Compared with those in the HFD group, the expression levels of TGF-β1 and Fn1 in the HAS group, L102 group and H102 group were significantly increased (P < 0.05). Compared with the HFD group, the HAS group, L102 group and H102 group had decreased immunopositive rates of Smad2, Smad3 and Smad4 (P < 0.05). At the same concentration, the effect of LS-102 was better than that of astragaloside IV (P < 0.05). There was no significant difference in the expression of Smad7 among the different experimental groups (P > 0.05). Conclusion Astragaloside IV and LS-102 improved the inflammatory reaction in perirenal adipose tissue and renal pathological changes in obesity-related nephropathy model mice and inhibited the TGF-β1/Smad signaling cascade. At the same concentration, the effect of LS-102 was better than that of astragaloside IV. These results suggest that LS-102 has a better protective effect against obesity-related nephropathy. LS-102 may be a new type of traditional Chinese medicine for the clinical treatment of obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Ziyu Li
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Wei Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yong Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jianbo Wu
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Yong Liu
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Medical Equipment Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
13
|
Park JS, Jung IA, Choi HS, Kim DH, Choi HI, Bae EH, Ma SK, Kim SW. Anti-fibrotic effect of 6-bromo-indirubin-3'-oxime (6-BIO) via regulation of activator protein-1 (AP-1) and specificity protein-1 (SP-1) transcription factors in kidney cells. Biomed Pharmacother 2022; 145:112402. [PMID: 34773763 DOI: 10.1016/j.biopha.2021.112402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
PAI-1 and CTGF are overexpressed in kidney diseases and cause fibrosis of the lungs, liver, and kidneys. We used a rat model of unilateral ureteral obstruction (UUO) to investigate whether 6-BIO, a glycogen synthase kinase-3β inhibitor, attenuated fibrosis by inhibiting PAI-1 and CTGF in vivo. Additionally, TGFβ-induced cellular fibrosis was observed in vitro using the human kidney proximal tubular epithelial cells (HK-2), and rat interstitial fibroblasts (NRK49F). Expression of fibrosis-related proteins and signaling molecules such as PAI-1, CTGF, TGFβ, αSMA, SMAD, and MAPK were determined in HK-2 and NRK49F cells using immunoblotting. To identify the transcription factors that regulate the expression of PAI-1 and CTGF the promoter activities of AP-1 and SP-1 were analyzed using luciferase assays. Confocal microscopy was used to observe the co-localization of AP-1 and SP-1 to PAI-1 and CTGF. Expression of PAI-1, CTGF, TGFβ, and α-SMA increased in UUO model as well as in TGFβ-treated HK-2 and NRK49F cells. Furthermore, UUO and TGFβ treatment induced the activation of P-SMAD2/3, SMAD4, P-ERK 1/2, P-P38, and P-JNK MAPK signaling pathways. PAI-1, CTGF, AP-1 and SP-1 promoter activity increased in response to TGFβ treatment. However, treatment with 6-BIO decreased the expression of proteins and signaling pathways associated with fibrosis in UUO model as well as in TGFβ-treated HK-2 and NRK49F cells. Moreover, 6-BIO treatment attenuated the expression of PAI-1 and CTGF as well as the promoter activities of AP-1 and SP-1, thereby regulating the SMAD and MAPK signaling pathways, and subsequently exerting anti-fibrotic effects on kidney cells.
Collapse
Affiliation(s)
- Jung Sun Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - In Ae Jung
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Dong-Hyun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Hoon In Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea.
| |
Collapse
|
14
|
Juin SK, Pushpakumar S, Sen U. GYY4137 Regulates Extracellular Matrix Turnover in the Diabetic Kidney by Modulating Retinoid X Receptor Signaling. Biomolecules 2021; 11:biom11101477. [PMID: 34680110 PMCID: PMC8533431 DOI: 10.3390/biom11101477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic kidney is associated with an accumulation of extracellular matrix (ECM) leading to renal fibrosis. Dysregulation of retinoic acid metabolism involving retinoic acid receptors (RARs) and retinoid X receptors (RXRs) has been shown to play a crucial role in diabetic nephropathy (DN). Furthermore, RARs and peroxisome proliferator-activated receptor γ (PPARγ) are known to control the RXR-mediated transcriptional regulation of several target genes involved in DN. Recently, RAR and RXR have been shown to upregulate plasminogen activator inhibitor-1 (PAI-1), a major player involved in ECM accumulation and renal fibrosis during DN. Interestingly, hydrogen sulfide (H2S) has been shown to ameliorate adverse renal remodeling in DN. We investigated the role of RXR signaling in the ECM turnover in diabetic kidney, and whether H2S can mitigate ECM accumulation by modulating PPAR/RAR-mediated RXR signaling. We used wild-type (C57BL/6J), diabetic (C57BL/6-Ins2Akita/J) mice and mouse mesangial cells (MCs) as experimental models. GYY4137 was used as a H2S donor. Results showed that in diabetic kidney, the expression of PPARγ was decreased, whereas upregulations of RXRα, RXRβ, and RARγ1 expression were observed. The changes were associated with elevated PAI-1, MMP-9 and MMP-13. In addition, the expressions of collagen IV, fibronectin and laminin were increased, whereas elastin expression was decreased in the diabetic kidney. Excessive collagen deposition was observed predominantly in the peri-glomerular and glomerular regions of the diabetic kidney. Immunohistochemical localization revealed elevated expression of fibronectin and laminin in the glomeruli of the diabetic kidney. GYY4137 reversed the pathological changes. Similar results were observed in in vitro experiments. In conclusion, our data suggest that RXR signaling plays a significant role in ECM turnover, and GYY4137 modulates PPAR/RAR-mediated RXR signaling to ameliorate PAI-1-dependent adverse ECM turnover in DN.
Collapse
Affiliation(s)
| | | | - Utpal Sen
- Correspondence: ; Tel.: +1-502-852-2030; Fax: +1-502-852-6239
| |
Collapse
|
15
|
Gifford CC, Lian F, Tang J, Costello A, Goldschmeding R, Samarakoon R, Higgins PJ. PAI-1 induction during kidney injury promotes fibrotic epithelial dysfunction via deregulation of klotho, p53, and TGF-β1-receptor signaling. FASEB J 2021; 35:e21725. [PMID: 34110636 DOI: 10.1096/fj.202002652rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/05/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Renal fibrosis leads to chronic kidney disease, which affects over 15% of the U.S. population. PAI-1 is highly upregulated in the tubulointerstitial compartment in several common nephropathies and PAI-1 global ablation affords protection from fibrogenesis in mice. The precise contribution of renal tubular PAI-1 induction to disease progression, however, is unknown and surprisingly, appears to be independent of uPA inhibition. Human renal epithelial (HK-2) cells engineered to stably overexpress PAI-1 underwent dedifferentiation (E-cadherin loss, gain of vimentin), G2/M growth arrest (increased p-Histone3, p21), and robust induction of fibronectin, collagen-1, and CCN2. These cells are also susceptible to apoptosis (elevated cleaved caspase-3, annexin-V positivity) compared to vector controls, demonstrating a previously unknown role for PAI-1 in tubular dysfunction. Persistent PAI-1 expression results in a loss of klotho expression, p53 upregulation, and increases in TGF-βRI/II levels and SMAD3 phosphorylation. Ectopic restoration of klotho in PAI-1-transductants attenuated fibrogenesis and reversed the proliferative defects, implicating PAI-1 in klotho loss in renal disease. Genetic suppression of p53 reversed the PA1-1-driven maladaptive repair, moreover, confirming a pathogenic role for p53 upregulation in this context and uncovering a novel role for PAI-1 in promoting renal p53 signaling. TGF-βRI inhibition also attenuated PAI-1-initiated epithelial dysfunction, independent of TGF-β1 ligand synthesis. Thus, PAI-1 promotes tubular dysfunction via klotho reduction, p53 upregulation, and activation of the TGF-βRI-SMAD3 axis. Since klotho is an upstream regulator of both PAI-1-mediated p53 induction and SMAD3 signaling, targeting tubular PAI-1 expression may provide a novel, multi-level approach to the therapy of CKD.
Collapse
Affiliation(s)
- Cody C Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, USA
| | - Fei Lian
- Division of Urology, Albany Medical College, Albany, NY, USA
| | - Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, USA
| | - Angelica Costello
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, USA
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, USA
| | - Paul J Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, USA.,Division of Urology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
16
|
Higgins CE, Tang J, Higgins SP, Gifford CC, Mian BM, Jones DM, Zhang W, Costello A, Conti DJ, Samarakoon R, Higgins PJ. The Genomic Response to TGF-β1 Dictates Failed Repair and Progression of Fibrotic Disease in the Obstructed Kidney. Front Cell Dev Biol 2021; 9:678524. [PMID: 34277620 PMCID: PMC8284093 DOI: 10.3389/fcell.2021.678524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Tubulointerstitial fibrosis is a common and diagnostic hallmark of a spectrum of chronic renal disorders. While the etiology varies as to the causative nature of the underlying pathology, persistent TGF-β1 signaling drives the relentless progression of renal fibrotic disease. TGF-β1 orchestrates the multifaceted program of kidney fibrogenesis involving proximal tubular dysfunction, failed epithelial recovery or re-differentiation, capillary collapse and subsequent interstitial fibrosis eventually leading to chronic and ultimately end-stage disease. An increasing complement of non-canonical elements function as co-factors in TGF-β1 signaling. p53 is a particularly prominent transcriptional co-regulator of several TGF-β1 fibrotic-response genes by complexing with TGF-β1 receptor-activated SMADs. This cooperative p53/TGF-β1 genomic cluster includes genes involved in cellular proliferative control, survival, apoptosis, senescence, and ECM remodeling. While the molecular basis for this co-dependency remains to be determined, a subset of TGF-β1-regulated genes possess both p53- and SMAD-binding motifs. Increases in p53 expression and phosphorylation, moreover, are evident in various forms of renal injury as well as kidney allograft rejection. Targeted reduction of p53 levels by pharmacologic and genetic approaches attenuates expression of the involved genes and mitigates the fibrotic response confirming a key role for p53 in renal disorders. This review focuses on mechanisms underlying TGF-β1-induced renal fibrosis largely in the context of ureteral obstruction, which mimics the pathophysiology of pediatric unilateral ureteropelvic junction obstruction, and the role of p53 as a transcriptional regulator within the TGF-β1 repertoire of fibrosis-promoting genes.
Collapse
Affiliation(s)
- Craig E. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Stephen P. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Cody C. Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Badar M. Mian
- The Urological Institute of Northeastern New York, Albany, NY, United States
- Division of Urology, Department of Surgery, Albany Medical College, Albany, NY, United States
| | - David M. Jones
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY, United States
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Angelica Costello
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - David J. Conti
- Division of Transplantation Surgery, Department of Surgery, Albany Medical College, Albany, NY, United States
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
- The Urological Institute of Northeastern New York, Albany, NY, United States
- Division of Urology, Department of Surgery, Albany Medical College, Albany, NY, United States
| |
Collapse
|
17
|
Wang WJ, Chen XM, Cai GY. Cellular senescence and the senescence-associated secretory phenotype: Potential therapeutic targets for renal fibrosis. Exp Gerontol 2021; 151:111403. [PMID: 33984448 DOI: 10.1016/j.exger.2021.111403] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022]
Abstract
Renal fibrosis plays a crucial role in the progression of chronic kidney disease and end-stage renal disease. However, because the aetiology of this pathological process is complex and remains unclear, there is still no effective treatment. Cellular senescence and the senescence-associated secretory phenotype (SASP) have been reported to lead to renal fibrosis. This review first discusses the relationships among cellular senescence, the SASP and renal fibrosis. Then, the key role of the SASP in irreversible renal fibrosis, including fibroblast activation and abnormal extracellular matrix accumulation, is discussed, with the results of studies having indicated that inhibiting cellular senescence and the SASP might be a potential preventive and therapeutic strategy for renal fibrosis. Finally, we summarize promising therapeutic strategies revealed by existing research on senescent cells and the SASP, including emerging interventions targeting the SASP, caloric restriction and mimetics, and novel regeneration therapies with stem cells.
Collapse
Affiliation(s)
- Wen-Juan Wang
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xiang-Mei Chen
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| | - Guang-Yan Cai
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| |
Collapse
|
18
|
PAI-1 in Diabetes: Pathophysiology and Role as a Therapeutic Target. Int J Mol Sci 2021; 22:ijms22063170. [PMID: 33804680 PMCID: PMC8003717 DOI: 10.3390/ijms22063170] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Hypofibrinolysis is a key abnormality in diabetes and contributes to the adverse vascular outcome in this population. Plasminogen activator inhibitor (PAI)-1 is an important regulator of the fibrinolytic process and levels of this antifibrinolytic protein are elevated in diabetes and insulin resistant states. This review describes both the physiological and pathological role of PAI-1 in health and disease, focusing on the mechanism of action as well as protein abnormalities in vascular disease with special focus on diabetes. Attempts at inhibiting protein function, using different techniques, are also discussed including direct and indirect interference with production as well as inhibition of protein function. Developing PAI-1 inhibitors represents an alternative approach to managing hypofibrinolysis by targeting the pathological abnormality rather than current practice that relies on profound inhibition of the cellular and/or acellular arms of coagulation, and which can be associated with increased bleeding events. The review offers up-to-date knowledge on the mechanisms of action of PAI-1 together with the role of altering protein function to improve hypofirbinolysis. Developing PAI-1 inhibitors may form for the basis of future new class of antithrombotic agents that reduce vascular complications in diabetes.
Collapse
|
19
|
Dastgheib SA, Najafi F, Shajari A, Bahrami R, Asadian F, Sadeghizadeh-Yazdi J, Akbarian E, Emarati SA, Neamatzadeh H. Association of plasminogen activator inhibitor-1 4G5G Polymorphism with risk of diabetic nephropathy and retinopathy: a systematic review and meta-analysis. J Diabetes Metab Disord 2020; 19:2005-2016. [PMID: 33520873 DOI: 10.1007/s40200-020-00675-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022]
Abstract
Background The 4G5G polymorphism of Plasminogen activator inhibitor-1 (PAI-1) gene is reported to be associated with diabetes nephropathy and retinopathy (DNR) risk. However, the findings are conflicting. Herein, we conducted a case-control and meta-analysis study to explore the association of PAI-1 4G5G polymorphism with risk of DNR. Methods We retrieved PubMed, EMBASE, Web of Knowledge, and CNKI databases and screened eligible studies up to August 15, 2020. The strength of associations was assessed by odd ratio (OR) and the corresponding 95% confidence interval (95% CI). Results A total of 27 case-control studies including 16 studies with 1,825 cases case and 1,731 controls on DN and eleven studies with 1,397 cases and 1,545 controls on DR were selected. Pooled data showed that the PAI-1 4G5G polymorphism was significantly associated with DN (allele model: OR = 0.674, 95% CI 0.524-0.865, p = 0.002; homozygote model: OR = 0.536, 95% CI 0.351-0.817, p = 0.004; heterozygote model: OR = 0.621, 95% CI 0.427-0.903, p = 0.013; dominant model: OR = 0.575, 95% CI 0.399-0.831, p = 0.003; and recessive model: OR = 0.711, 95% CI 0.515-0.981, p = 0.038) and DR (homozygote model: OR = 0.770, 95% CI 0.621-0.955, p = 0.0.017) risk. Stratified analyses by ethnicity indicated that PAI-1 4G5G polymorphism was associated with DN and DR risk in Asians and Caucasians, respectively. Conclusions The present meta-analysis revealed that the PAI-1 4G5G polymorphism was associated with increased risk of DN and DR risk. However, well-designed large-scale clinical studies are required to further validate our results.
Collapse
Affiliation(s)
- Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Najafi
- Department of Internal Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Shajari
- Department of Pediatrics, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Reza Bahrami
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Asadian
- Department of Medical Laboratory Sciences, School of Paramedical Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jalal Sadeghizadeh-Yazdi
- Department of Food Science and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elahe Akbarian
- Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Alireza Emarati
- Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
20
|
Rahman FA, Angus SA, Stokes K, Karpowicz P, Krause MP. Impaired ECM Remodeling and Macrophage Activity Define Necrosis and Regeneration Following Damage in Aged Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21134575. [PMID: 32605082 PMCID: PMC7369722 DOI: 10.3390/ijms21134575] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/28/2022] Open
Abstract
Regenerative capacity of skeletal muscle declines with age, the cause of which remains largely unknown. We investigated extracellular matrix (ECM) proteins and their regulators during early regeneration timepoints to define a link between aberrant ECM remodeling, and impaired aged muscle regeneration. The regeneration process was compared in young (three month old) and aged (18 month old) C56BL/6J mice at 3, 5, and 7 days following cardiotoxin-induced damage to the tibialis anterior muscle. Immunohistochemical analyses were performed to assess regenerative capacity, ECM remodeling, and the macrophage response in relation to plasminogen activator inhibitor-1 (PAI-1), matrix metalloproteinase-9 (MMP-9), and ECM protein expression. The regeneration process was impaired in aged muscle. Greater intracellular and extramyocellular PAI-1 expression was found in aged muscle. Collagen I was found to accumulate in necrotic regions, while macrophage infiltration was delayed in regenerating regions of aged muscle. Young muscle expressed higher levels of MMP-9 early in the regeneration process that primarily colocalized with macrophages, but this expression was reduced in aged muscle. Our results indicate that ECM remodeling is impaired at early time points following muscle damage, likely a result of elevated expression of the major inhibitor of ECM breakdown, PAI-1, and consequent suppression of the macrophage, MMP-9, and myogenic responses.
Collapse
Affiliation(s)
- Fasih Ahmad Rahman
- Department of Kinesiology, University of Windsor. Windsor, ON N9B 3P4, Canada; (F.A.R.); (S.A.A.)
| | - Sarah Anne Angus
- Department of Kinesiology, University of Windsor. Windsor, ON N9B 3P4, Canada; (F.A.R.); (S.A.A.)
| | - Kyle Stokes
- Department of Biomedical Sciences, University of Windsor. Windsor, ON N9B 3P4, Canada; (K.S.); (P.K.)
| | - Phillip Karpowicz
- Department of Biomedical Sciences, University of Windsor. Windsor, ON N9B 3P4, Canada; (K.S.); (P.K.)
| | - Matthew Paul Krause
- Department of Kinesiology, University of Windsor. Windsor, ON N9B 3P4, Canada; (F.A.R.); (S.A.A.)
- Correspondence: ; Tel.: +1-519-253-3000
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Diabetic kidney disease (DKD) is the leading cause of kidney failure in the USA, representing ~ 44% of all cases of kidney failure. Advancements in both glucose management and inhibitors of the renin-angiotensin system have significantly improved prognosis for individuals with DKD, yet DKD continues to affect 30-40% of people with type 2 diabetes and is still a major predictor of mortality in this population. Thus, new interventions are required to address this significant health burden. RECENT FINDINGS One potential target for intervention is cellular senescence. Senescence permanently arrests cell division in response to genotoxic, oncogenic, or metabolic stresses-coupled to the secretion of inflammatory cytokines, chemokines, growth factors, proteases, and other molecules that can have potent local and systemic effects. This senescence-associated secretory phenotype (SASP) explains how a relatively small number of senescent cells can promote pathology, and a growing number of degenerative conditions have been found to be caused or aggravated by senescent cells. Many SASP factors are also associated with loss of kidney function. Targeted elimination of senescent cells prevents the development of several degenerative pathologies. Since senescent cells appear in the proximal tubules and podocytes of patients with DKD, they are an appealing target for intervention in these disorders. Here, we review the current literature linking senescence to DKD and speculate on the likely routes to intervention in a clinical setting.
Collapse
Affiliation(s)
- Christopher D Wiley
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
22
|
Wang Q, Bian Z, Jiang Q, Wang X, Zhou X, Park KH, Hsueh W, Whitson BA, Haggard E, Li H, Chen K, Cai C, Tan T, Zhu H, Ma J. MG53 Does Not Manifest the Development of Diabetes in db/db Mice. Diabetes 2020; 69:1052-1064. [PMID: 32139593 PMCID: PMC7171965 DOI: 10.2337/db19-0807] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
MG53 is a member of the TRIM protein family that is predominantly expressed in striated muscles and participates in cell membrane repair. Controversy exists regarding MG53's role in insulin signaling and manifestation of diabetes. We generated db/db mice with either whole-body ablation or sustained elevation of MG53 in the bloodstream in order to evaluate the physiological function of MG53 in diabetes. To quantify the amount of MG53 protein in circulation, we developed a monoclonal antibody against MG53 with high specificity. Western blot using this antibody revealed lower or no change of serum MG53 levels in db/db mice or patients with diabetes compared with control subjects. Neither whole-body ablation of MG53 nor sustained elevation of MG53 in circulation altered insulin signaling and glucose handling in db/db mice. Instead, mice with ablation of MG53 were more susceptible to streptozotocin-induced dysfunctional handling of glucose compared with the wild-type littermates. Alkaline-induced corneal injury demonstrated delayed healing in db/db mice, which was restored by topical administration of recombinant human (rh)MG53. Daily intravenous administration of rhMG53 in rats at concentrations up to 10 mg/kg did not produce adverse effects on glucose handling. These findings challenge the hypothetical function of MG53 as a causative factor for the development of diabetes. Our data suggest that rhMG53 is a potentially safe and effective biologic to treat diabetic oculopathy in rodents.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Zehua Bian
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Qiwei Jiang
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Xiaoliang Wang
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Xinyu Zhou
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Ki Ho Park
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Willa Hsueh
- Diabetes and Metabolism Research Center, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Bryan A Whitson
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Erin Haggard
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Haichang Li
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Ken Chen
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Chuanxi Cai
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Tao Tan
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
- TRIM-edicine, Inc., Columbus, OH
| | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Jianjie Ma
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
23
|
Yao L, Wright MF, Farmer BC, Peterson LS, Khan AM, Zhong J, Gewin L, Hao CM, Yang HC, Fogo AB. Fibroblast-specific plasminogen activator inhibitor-1 depletion ameliorates renal interstitial fibrosis after unilateral ureteral obstruction. Nephrol Dial Transplant 2020; 34:2042-2050. [PMID: 31071225 DOI: 10.1093/ndt/gfz050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1) expression increases extracellular matrix deposition and contributes to interstitial fibrosis in the kidney after injury. While PAI-1 is ubiquitously expressed in the kidney, we hypothesized that interstitial fibrosis is strongly dependent on fibroblast-specific PAI-1 (fbPAI-1). METHODS Tenascin C Cre (TNC Cre) and fbPAI-1 knockdown (KD) mice with green fluorescent protein (GFP) expressed within the TNC construct underwent unilateral ureteral obstruction and were sacrificed 10 days later. RESULTS GFP+ cells in fbPAI-1 KD mice showed significantly reduced PAI-1 expression. Interstitial fibrosis, measured by Sirius red staining and collagen I western blot, was significantly decreased in fbPAI-1 KD compared with TNC Cre mice. There was no significant difference in transforming growth factor β (TGF-β) expression or its activation between the two groups. However, GFP+ cells from fbPAI-1 KD mice had lower TGF β and connective tissue growth factor (CTGF) expression. The number of fibroblasts was decreased in fbPAI-1 KD compared with TNC Cre mice, correlating with decreased alpha smooth muscle actin (α-SMA) expression and less fibroblast cell proliferation. TNC Cre mice had decreased E-cadherin, a marker of differentiated tubular epithelium, in contrast to preserved expression in fbPAI-1 KD. F4/80-expressing cells, mostly CD11c+/F4/80+ cells, were increased while M1 macrophage markers were decreased in fbPAI-1 KD compared with TNC Cre mice. CONCLUSION These findings indicate that fbPAI-1 depletion ameliorates interstitial fibrosis by decreasing fibroblast proliferation in the renal interstitium, with resulting decreased collagen I. This is linked to decreased M1 macrophages and preserved tubular epithelium.
Collapse
Affiliation(s)
- Lan Yao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Medical Healthcare Center, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | - M Frances Wright
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brandon C Farmer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biology, Western Kentucky University, Bowling Green, KY, USA
| | - Laura S Peterson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amir M Khan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Jianyong Zhong
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Leslie Gewin
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hai-Chun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
24
|
Abstract
Chronic kidney disease (CKD) is a devastating condition that is reaching epidemic levels owing to the increasing prevalence of diabetes mellitus, hypertension and obesity, as well as ageing of the population. Regardless of the underlying aetiology, CKD is slowly progressive and leads to irreversible nephron loss, end-stage renal disease and/or premature death. Factors that contribute to CKD progression include parenchymal cell loss, chronic inflammation, fibrosis and reduced regenerative capacity of the kidney. Current therapies have limited effectiveness and only delay disease progression, underscoring the need to develop novel therapeutic approaches to either stop or reverse progression. Preclinical studies have identified several approaches that reduce fibrosis in experimental models, including targeting cytokines, transcription factors, developmental and signalling pathways and epigenetic modulators, particularly microRNAs. Some of these nephroprotective strategies are now being tested in clinical trials. Lessons learned from the failure of clinical studies of transforming growth factor β1 (TGFβ1) blockade underscore the need for alternative approaches to CKD therapy, as strategies that target a single pathogenic process may result in unexpected negative effects on simultaneously occurring processes. Additional promising avenues include preventing tubular cell injury and anti-fibrotic therapies that target activated myofibroblasts, the main collagen-producing cells.
Collapse
|
25
|
Laboratory Parameters of Hemostasis, Adhesion Molecules, and Inflammation in Type 2 Diabetes Mellitus: Correlation with Glycemic Control. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17010300. [PMID: 31906326 PMCID: PMC6982208 DOI: 10.3390/ijerph17010300] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 12/25/2022]
Abstract
Background: Type 2 diabetes mellitus (T2DM) is characterized by a prothrombotic state, predisposing to vascular complications. Some related markers, linking thrombophilia to hemostasis and inflammation, however, have been poorly explored in relation to patients’ glycemia. We therefore investigated the association of laboratory hemostatic parameters, circulating adhesion molecules (ADMs), white blood cell (WBC) count, and neutrophil/lymphocyte ratio (NLR) with T2DM and glycemic control. Research design: In this study, 82 subjects, grouped into T2DM patients (n = 41) and healthy individuals (n = 41) were enrolled. To evaluate glycemic control, the T2DM cohort was expanded to 133 patients and sub-classified according to glycated hemoglobin (HbA1c) <7% and ≥ 7% (n = 58 and n = 75, respectively). We assessed glycemia, HbA1c, prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen, plasminogen activator inhibitor-1 (PAI-1), platelet and leukocyte parameters, vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and selectins (E-, P-, L-). Results: PT % activity, PAI-1, VCAM-1, WBC, and neutrophil counts were significantly higher in T2DM patients than in healthy subjects. Poor glycemic control (HbA1c ≥ 7%) was correlated with increased PT activity (p = 0.015), and higher levels of E-selectin (p = 0.009), P-selectin (p = 0.012), and NLR (p = 0.019). Conclusions: Both T2DM and poor glycemic control affect some parameters of hemostasis, inflammation, and adhesion molecules. Further studies are needed to establish their clinical utility as adjuvant markers for cardio-vascular risk in T2DM patients.
Collapse
|
26
|
Liu Y, Wang L, Luo M, Chen N, Deng X, He J, Zhang L, Luo P, Wu J. Inhibition of PAI-1 attenuates perirenal fat inflammation and the associated nephropathy in high-fat diet-induced obese mice. Am J Physiol Endocrinol Metab 2019; 316:E260-E267. [PMID: 30532990 DOI: 10.1152/ajpendo.00387.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is increasingly recognized as a mediator in extracellular matrix (ECM) accumulation in diabetic nephropathy. Previous studies have implicated PAI-1 in adipose tissue (AT) expansion, while also contributing to insulin resistance. As inflammation is also known to occur in perirenal AT during obesity, we hypothesized that in a high-fat diet (HFD)-induced obese mouse model, PAI-1 contributes to macrophage-mediated inflammation and diabetic nephropathy. The HFD mice showed increased expression of PAI-1 in perirenal fat and also displayed increased fat weight and macrophage numbers. We found that the macrophage polarization, proinflammatory macrophage-M1-phenotype, including CD11c, IL-6, and monocyte chemoattractant protein-1, were increased by an HFD and decreased by either the genetic depletion of PAI-1 or treatment with the PAI-1 inhibitor, PAI-039. Similarly, an enhanced anti-inflammatory M2-phenotype, including CD206 and IL-10, was accompanied by either the genetic deletion of PAI-1 or PAI-039 treatment. Furthermore, the inhibition of PAI-1 reduced HFD-induced renal histological lesions and abated profibrotic/extracellular-matrix protein. Collectively, our findings provide support that PAI-1 contributes to the development of inflammation in perirenal fat and correlates with the development of diabetic nephropathy in HFD-induced obesity.
Collapse
Affiliation(s)
- Yong Liu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, People's Republic of China
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
- Laboratory for Cardiovascular Pharmacology of the Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
| | - Lin Wang
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
- Laboratory for Cardiovascular Pharmacology of the Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
| | - Mao Luo
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
- Laboratory for Cardiovascular Pharmacology of the Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
| | - Ni Chen
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
- Laboratory for Cardiovascular Pharmacology of the Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
| | - Xin Deng
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
- Laboratory for Cardiovascular Pharmacology of the Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
| | - Jing He
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
- Laboratory for Cardiovascular Pharmacology of the Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
| | - Liping Zhang
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
- Laboratory for Cardiovascular Pharmacology of the Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
| | - Pei Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, People's Republic of China
| | - Jianbo Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, People's Republic of China
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
- Laboratory for Cardiovascular Pharmacology of the Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
- Department of Medicine and Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine and Research Service , Columbia, Missouri
- Harry S. Truman Memorial Veterans Hospital , Columbia, Missouri
| |
Collapse
|
27
|
Longo CM, Higgins PJ. Molecular biomarkers of Graves' ophthalmopathy. Exp Mol Pathol 2018; 106:1-6. [PMID: 30414981 DOI: 10.1016/j.yexmp.2018.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/15/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022]
Abstract
Graves' ophthalmopathy (GO), a complication of Graves' disease (GD), is typified by orbital inflammation, ocular tissue expansion and remodeling and, ultimately, fibrosis. Orbital fibroblasts are key effectors of GO pathogenesis exhibiting exaggerated inflammatory and fibroproliferative responses to cytokines released by infiltrating immune cells. Activated orbital fibroblasts also produce inflammatory mediators that contribute to disease progression, facilitate the orbital trafficking of monocytes and macrophages, promote differentiation of matrix-producing myofibroblasts and stimulate accumulation of a hyaluronan-rich stroma, which leads to orbital tissue edema and fibrosis. Proteomic and transcriptome profiling of the genomic response of ocular and non-ocular fibroblasts to INF-γ and TGF-β1 focused on identification of translationally-relevant therapeutic candidates. Induction of plasminogen activator inhibitor-1 (PAI-1, SERPINE1), a clade E member of the serine protease inhibitor (SERPIN) gene family and a prominent regulator of the pericellular proteolytic microenvironment, was one of the most highly up-regulated proteins in INF-γ- or TGF-β1-stimulated GO fibroblasts as well as in severe active GD compared to patients without thyroid disease. PAI-1 has multifunctional roles in inflammatory and fibrotic processes that impact tissue remodeling, immune cell trafficking and survival as well as signaling through several receptor systems. This review focuses on the pathophysiology of the GO fibroblast and possible targets for effective drug therapy.
Collapse
Affiliation(s)
- Christine M Longo
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York 12208, United States
| | - Paul J Higgins
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York 12208, United States.
| |
Collapse
|
28
|
Shioya S, Masuda T, Senoo T, Horimasu Y, Miyamoto S, Nakashima T, Iwamoto H, Fujitaka K, Hamada H, Hattori N. Plasminogen activator inhibitor-1 serves an important role in radiation-induced pulmonary fibrosis. Exp Ther Med 2018; 16:3070-3076. [PMID: 30214528 PMCID: PMC6125865 DOI: 10.3892/etm.2018.6550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022] Open
Abstract
Radiation-induced pulmonary fibrosis is a serious complication. Plasminogen activator inhibitor-1 (PAI-1) has been indicated to be a key factor in the progression of pulmonary fibrosis. In the present study, the effect of PAI-1 deficiency on radiation-induced pulmonary fibrosis was analyzed. Wild-type (WT) and PAI-1-deficient (PAI-1−/−) mice were treated with thoracic irradiation of 15 Gy to induce pulmonary fibrosis. Analyses of bronchoalveolar lavage (BAL) fluids were performed 0, 4, 12, 18, and 24 weeks after irradiation. The degree of pulmonary fibrosis was assessed according to the histology of lung tissues and hydroxyproline contents. The results demonstrated that the irradiation of WT mice increased PAI-1 expression in the lungs after 18 weeks and established lung fibrosis at 24 weeks. The number of total cells and transforming growth factor-β levels in BAL fluid were significantly lower at 24 weeks after irradiation in PAI-1−/− mice compared with WT mice. Furthermore, histological examination revealed that the extent of pulmonary fibrosis was attenuated in PAI-1−/− mice compared with that in WT mice. Hydroxyproline content was also significantly lower in PAI-1−/− mice compared with WT mice at 24 weeks after irradiation. In conclusion, PAI-1 serves an important role in the development of radiation-induced pulmonary fibrosis and may represent a novel therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Sachiko Shioya
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Takeshi Masuda
- Department of Respiratory Internal Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Tadashi Senoo
- Department of Clinical Oncology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Yasushi Horimasu
- Department of Respiratory Internal Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Shintaro Miyamoto
- Department of Respiratory Internal Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Taku Nakashima
- Department of Respiratory Internal Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
29
|
Milenković J, Miljković E, Milenković K, Bojanić N. PLASMINOGEN ACTIVATOR INHIBITOR 1 (PAI - 1) AS A POTENTIAL DIAGNOSTIC AND THERAPEUTIC TARGET. ACTA MEDICA MEDIANAE 2018. [DOI: 10.5633/amm.2018.0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Herba Artemisiae Capillaris Extract Prevents the Development of Streptozotocin-Induced Diabetic Nephropathy of Rat. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5180165. [PMID: 29636780 PMCID: PMC5832121 DOI: 10.1155/2018/5180165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/01/2017] [Accepted: 12/26/2017] [Indexed: 12/24/2022]
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease throughout the world; until now there is no specific drug available. In this work, we use herba artemisiae capillaris extract (HACE) to alleviate renal fibrosis characterized by the excessive accumulation of extracellular matrix (ECM) in rats, aiming to investigate the protective effect of the HACE on DN. We found that the intragastric treatment of high-dose HACE could reverse the effect of streptozotocin not only to decrease the level of blood glucose and blood lipid in different degree but also further to improve renal functions. It is worth mentioning that the effect of HACE treatment was comparable to the positive drug benazepril. Moreover, we found that HACE treatment could on one hand inhibit oxidative stress in DN rats through regulating enzymatic activity for scavenging reactive oxygen species and on the other hand increase the ECM degradation through regulating the activity of metalloproteinase-2 (MMP-2) and the expression of tissue transglutaminase (tTG), which explained why HACE treatment inhibited ECM accumulation. On the basis of above experimental results, we conclude that HACE prevents DN development in a streptozotocin-induced DN rat model, and HACE is a promising candidate to cure DN in clinic.
Collapse
|
31
|
Prabodha LBL, Sirisena ND, Dissanayake VHW. Susceptible and Prognostic Genetic Factors Associated with Diabetic Peripheral Neuropathy: A Comprehensive Literature Review. Int J Endocrinol 2018; 2018:8641942. [PMID: 29736170 PMCID: PMC5875044 DOI: 10.1155/2018/8641942] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a disorder of glucose metabolism. It is a complex process involving the regulation of insulin secretion, insulin sensitivity, gluconeogenesis, and glucose uptake at the cellular level. Diabetic peripheral neuropathy (DPN) is one of the debilitating complications that is present in approximately 50% of diabetic patients. It is the primary cause of diabetes-related hospital admissions and nontraumatic foot amputations. The pathogenesis of diabetic neuropathy is a complex process that involves hyperglycemia-induced oxidative stress and altered polyol metabolism that changes the nerve microvasculature, altered growth factor support, and deregulated lipid metabolism. Recent literature has reported that there are several heterogeneous groups of susceptible genetic loci which clearly contribute to the development of DPN. Several studies have reported that some patients with prediabetes develop neuropathic complications, whereas others demonstrated little evidence of neuropathy even after long-standing diabetes. There is emerging evidence that genetic factors may contribute to the development of DPN. This paper aims to provide an up-to-date review of the susceptible and prognostic genetic factors associated with DPN. An extensive survey of the scientific literature published in PubMed using the search terms "Diabetic peripheral neuropathy/genetics" and "genome-wide association study" was carried out, and the most recent and relevant literature were included in this review.
Collapse
Affiliation(s)
- L. B. L. Prabodha
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - N. D. Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - V. H. W. Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
32
|
Higgins SP, Tang Y, Higgins CE, Mian B, Zhang W, Czekay RP, Samarakoon R, Conti DJ, Higgins PJ. TGF-β1/p53 signaling in renal fibrogenesis. Cell Signal 2017; 43:1-10. [PMID: 29191563 DOI: 10.1016/j.cellsig.2017.11.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 01/04/2023]
Abstract
Fibrotic disorders of the renal, pulmonary, cardiac, and hepatic systems are associated with significant morbidity and mortality. Effective therapies to prevent or curtail the advancement to organ failure, however, remain a major clinical challenge. Chronic kidney disease, in particular, constitutes an increasing medical burden affecting >15% of the US population. Regardless of etiology (diabetes, hypertension, ischemia, acute injury, urologic obstruction), persistently elevated TGF-β1 levels are causatively linked to the activation of profibrotic signaling networks and disease progression. TGF-β1 is the principal driver of renal fibrogenesis, a dynamic pathophysiologic process that involves tubular cell injury/apoptosis, infiltration of inflammatory cells, interstitial fibroblast activation and excess extracellular matrix synthesis/deposition leading to impaired kidney function and, eventually, to chronic and end-stage disease. TGF-β1 activates the ALK5 type I receptor (which phosphorylates SMAD2/3) as well as non-canonical (e.g., src kinase, EGFR, JAK/STAT, p53) pathways that collectively drive the fibrotic genomic program. Such multiplexed signal integration has pathophysiological consequences. Indeed, TGF-β1 stimulates the activation and assembly of p53-SMAD3 complexes required for transcription of the renal fibrotic genes plasminogen activator inhibitor-1, connective tissue growth factor and TGF-β1. Tubular-specific ablation of p53 in mice or pifithrin-α-mediated inactivation of p53 prevents epithelial G2/M arrest, reduces the secretion of fibrotic effectors and attenuates the transition from acute to chronic renal injury, further supporting the involvement of p53 in disease progression. This review focuses on the pathophysiology of TGF-β1-initiated renal fibrogenesis and the role of p53 as a regulator of profibrotic gene expression.
Collapse
Affiliation(s)
- Stephen P Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Yi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Craig E Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Badar Mian
- Department of Surgery, Albany Medical College, Albany, NY 12208, United States; The Urological Institute of Northeastern New York, Albany Medical College, Albany, NY 12208, United States.
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Ralf-Peter Czekay
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - David J Conti
- Department of Surgery, Albany Medical College, Albany, NY 12208, United States; Division of Transplantation Surgery, Albany Medical College, Albany, NY 12208, United States.
| | - Paul J Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States; Department of Surgery, Albany Medical College, Albany, NY 12208, United States; The Urological Institute of Northeastern New York, Albany Medical College, Albany, NY 12208, United States.
| |
Collapse
|
33
|
Svenningsen P, Hinrichs GR, Zachar R, Ydegaard R, Jensen BL. Physiology and pathophysiology of the plasminogen system in the kidney. Pflugers Arch 2017; 469:1415-1423. [DOI: 10.1007/s00424-017-2014-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022]
|
34
|
Dhanesha N, Doddapattar P, Chorawala MR, Nayak MK, Kokame K, Staber JM, Lentz SR, Chauhan AK. ADAMTS13 Retards Progression of Diabetic Nephropathy by Inhibiting Intrarenal Thrombosis in Mice. Arterioscler Thromb Vasc Biol 2017; 37:1332-1338. [PMID: 28495930 DOI: 10.1161/atvbaha.117.309539] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/01/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type I repeats-13) prevents microvascular thrombosis by cleaving prothrombogenic ultralarge von Willebrand factor (VWF) multimers. Clinical studies have found association between reduced ADAMTS13-specific activity, ultralarge VWF multimers, and thrombotic angiopathy in patients with diabetic nephropathy. It remains unknown, however, whether ADAMTS13 deficiency or ultralarge VWF multimers have a causative effect in diabetic nephropathy. APPROACH AND RESULTS The extent of renal injury was evaluated in wild-type (WT), Adamts13-/- and Adamts13-/-Vwf-/- mice after 26 weeks of streptozotocin-induced diabetic nephropathy. We found that WT diabetic mice exhibited low plasma ADAMTS13-specific activity and increased VWF levels (P<0.05 versus WT nondiabetic mice). Adamts13-/- diabetic mice exhibited deterioration of kidney function (increased albuminuria, plasma creatinine, and urea; P<0.05 versus WT diabetic mice), independent of hyperglycemia and hypertension. Deterioration of kidney function in Adamts13-/- diabetic mice was concomitant with aggravated intrarenal thrombosis (assessed by plasminogen activator inhibitor, VWF, fibrin(ogen), and CD41-positive microthrombi), increased mesangial cell expansion, and extracellular matrix deposition (P<0.05 versus WT diabetic mice). Genetic deletion of VWF in Adamts13-/- diabetic mice improved kidney function, inhibited intrarenal thrombosis, and alleviated histological changes in glomeruli, suggesting that exacerbation of diabetic nephropathy in the setting of ADAMTS13 deficiency is VWF dependent. CONCLUSIONS ADAMTS13 retards progression of diabetic nephropathy, most likely by inhibiting VWF-dependent intrarenal thrombosis. Alteration in ADAMTS13-VWF balance may be one of the key pathophysiological mechanisms of thrombotic angiopathy in diabetes mellitus.
Collapse
Affiliation(s)
- Nirav Dhanesha
- From the Department of Internal Medicine (N.D., P.D., M.R.C., M.K.N., S.R.L., A.K.C.) and Stead Family Department of Pediatrics (J.M.S.), University of Iowa; and Department of Molecular Pathogenesis, National Cardiovascular Centre Research Institute, Suita, Osaka, Japan (K.K.)
| | - Prakash Doddapattar
- From the Department of Internal Medicine (N.D., P.D., M.R.C., M.K.N., S.R.L., A.K.C.) and Stead Family Department of Pediatrics (J.M.S.), University of Iowa; and Department of Molecular Pathogenesis, National Cardiovascular Centre Research Institute, Suita, Osaka, Japan (K.K.)
| | - Mehul R Chorawala
- From the Department of Internal Medicine (N.D., P.D., M.R.C., M.K.N., S.R.L., A.K.C.) and Stead Family Department of Pediatrics (J.M.S.), University of Iowa; and Department of Molecular Pathogenesis, National Cardiovascular Centre Research Institute, Suita, Osaka, Japan (K.K.)
| | - Manasa K Nayak
- From the Department of Internal Medicine (N.D., P.D., M.R.C., M.K.N., S.R.L., A.K.C.) and Stead Family Department of Pediatrics (J.M.S.), University of Iowa; and Department of Molecular Pathogenesis, National Cardiovascular Centre Research Institute, Suita, Osaka, Japan (K.K.)
| | - Koichi Kokame
- From the Department of Internal Medicine (N.D., P.D., M.R.C., M.K.N., S.R.L., A.K.C.) and Stead Family Department of Pediatrics (J.M.S.), University of Iowa; and Department of Molecular Pathogenesis, National Cardiovascular Centre Research Institute, Suita, Osaka, Japan (K.K.)
| | - Janice M Staber
- From the Department of Internal Medicine (N.D., P.D., M.R.C., M.K.N., S.R.L., A.K.C.) and Stead Family Department of Pediatrics (J.M.S.), University of Iowa; and Department of Molecular Pathogenesis, National Cardiovascular Centre Research Institute, Suita, Osaka, Japan (K.K.)
| | - Steven R Lentz
- From the Department of Internal Medicine (N.D., P.D., M.R.C., M.K.N., S.R.L., A.K.C.) and Stead Family Department of Pediatrics (J.M.S.), University of Iowa; and Department of Molecular Pathogenesis, National Cardiovascular Centre Research Institute, Suita, Osaka, Japan (K.K.)
| | - Anil K Chauhan
- From the Department of Internal Medicine (N.D., P.D., M.R.C., M.K.N., S.R.L., A.K.C.) and Stead Family Department of Pediatrics (J.M.S.), University of Iowa; and Department of Molecular Pathogenesis, National Cardiovascular Centre Research Institute, Suita, Osaka, Japan (K.K.).
| |
Collapse
|
35
|
Kaji H. Adipose Tissue‐Derived Plasminogen Activator Inhibitor‐1 Function and Regulation. Compr Physiol 2016; 6:1873-1896. [DOI: 10.1002/cphy.c160004] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Gu C, Zhang J, Noble NA, Peng XR, Huang Y. An additive effect of anti-PAI-1 antibody to ACE inhibitor on slowing the progression of diabetic kidney disease. Am J Physiol Renal Physiol 2016; 311:F852-F863. [PMID: 27511457 DOI: 10.1152/ajprenal.00564.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 07/05/2016] [Indexed: 02/03/2023] Open
Abstract
While angiotensin II blockade slows the progression of diabetic nephropathy, current data suggest that it alone cannot stop the disease process. New therapies or drug combinations will be required to further slow or halt disease progression. Inhibition of plasminogen activator inhibitor type 1 (PAI-1) aimed at enhancing ECM degradation has shown therapeutic potential in diabetic nephropathy. Here, using a mouse model of type diabetes, the maximally therapeutic dose of the PAI-1-neutralizing mouse monoclonal antibody (MEDI-579) was determined and compared with the maximally effective dose of enalapril. We then examined whether addition of MEDI-579 to enalapril would enhance the efficacy in slowing the progression of diabetic nephropathy. Untreated uninephrectomized diabetic db/db mice developed progressive albuminuria and glomerulosclerosis associated with increased expression of transforming growth factor (TGF)-β1, PAI-1, type IV collagen, and fibronectin from weeks 18 to 22, which were reduced by MEDI-579 at 3 mg/kg body wt, similar to enalapril given alone from weeks 12 to 22 Adding MEDI-579 to enalapril from weeks 18 to 22 resulted in further reduction in albuminuria and markers of renal fibrosis. Renal plasmin generation was dramatically reduced by 57% in diabetic mice, a decrease that was partially reversed by MEDI-579 or enalapril given alone but was further restored by these two treatments given in combination. Our results suggest that MEDI-579 is effective in slowing the progression of diabetic nephropathy in db/db mice and that the effect is additive to ACEI. While enalapril is renal protective, the add-on PAI-1 antibody may offer additional renoprotection in progressive diabetic nephropathy via enhancing ECM turnover.
Collapse
Affiliation(s)
- Chunyan Gu
- Department of Pathology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China.,Division of Nephrology, University of Utah, Salt Lake City, Utah; and
| | - Jiandong Zhang
- Division of Nephrology, University of Utah, Salt Lake City, Utah; and
| | - Nancy A Noble
- Division of Nephrology, University of Utah, Salt Lake City, Utah; and
| | - Xiao-Rong Peng
- Bioscience, AstraZeneca R&D, Pepparredsleden 1, Molndal SE-43183, Sweden
| | - Yufeng Huang
- Division of Nephrology, University of Utah, Salt Lake City, Utah; and
| |
Collapse
|
37
|
Novel Plasminogen Activator Inhibitor-1 Inhibitors Prevent Diabetic Kidney Injury in a Mouse Model. PLoS One 2016; 11:e0157012. [PMID: 27258009 PMCID: PMC4892642 DOI: 10.1371/journal.pone.0157012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/22/2016] [Indexed: 01/13/2023] Open
Abstract
Diabetic nephropathy is the leading cause of end-stage renal disease worldwide, but no effective therapeutic strategy is available. Because plasminogen activator inhibitor-1 (PAI-1) is increasingly recognized as a key factor in extracellular matrix (ECM) accumulation in diabetic nephropathy, this study examined the renoprotective effects of TM5275 and TM5441, two novel orally active PAI-1 inhibitors that do not trigger bleeding episodes, in streptozotocin (STZ)-induced diabetic mice. TM5275 (50 mg/kg) and TM5441 (10 mg/kg) were administered orally for 16 weeks to STZ-induced diabetic and age-matched control mice. Relative to the control mice, the diabetic mice showed significantly increased (p < 0.05) plasma glucose and creatinine levels, urinary albumin excretion, kidney-to-bodyweight ratios, glomerular volume, and fractional mesangial area. Markers of fibrosis and inflammation along with PAI-1 were also upregulated in the kidney of diabetic mice, and treatment with TM5275 and TM5441 effectively inhibited albuminuria, mesangial expansion, ECM accumulation, and macrophage infiltration in diabetic kidneys. Furthermore, in mouse proximal tubular epithelial (mProx24) cells, both TM5275 and TM5441 effectively inhibited PAI-1-induced mRNA expression of fibrosis and inflammation markers and also reversed PAI-1-induced inhibition of plasmin activity, which confirmed the efficacy of the TM compounds as PAI-1 inhibitors. These data suggest that TM compounds could be used to prevent diabetic kidney injury.
Collapse
|
38
|
Lang H, Dai C. Effects of Bone Marrow Mesenchymal Stem Cells on Plasminogen Activator Inhibitor-1 and Renal Fibrosis in Rats with Diabetic Nephropathy. Arch Med Res 2016; 47:71-7. [PMID: 27018336 DOI: 10.1016/j.arcmed.2016.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS We undertook this study to observe the effects of bone marrow mesenchymal stem cells (BMSCs) on plasminogen activator inhibitor-1 (PAI-1) and renal fibrosis in rats with diabetic nephropathy and to explore its main mechanism. METHODS Thirty male Sprague Dawley rats were randomly divided into three groups: normal control group (NC group, n = 10), diabetic nephropathy group (DN group, n = 10), stem cell transplantation group (MSC group, n = 10). BMSCs were transplanted to rats in the MSC group via caudal vein infusion (2 × 10(6)/mL). At the end of 12 weeks, blood glucose, 24-h urinary protein, serum creatinine and renal mass index were measured. Morphology and collagen deposition in rat kidney were observed by HE and Masson staining, respectively. Expressions of PAI-1, transforming growth factor β1 (TGF-β1) and Smad3 in rat kidney were detected by immunohistochemistry and Western blot. RESULTS Compared with DN group, 24-h protein, serum creatinine and renal mass index decreased significantly in MSC group. No significant changes in blood glucose (p >0.05) were shown. Immunohistochemistry and Western blot showed that expressions of PAI-1, TGF-β1 and Smad3 in NC group were lower than DN group. Expression of each protein in MSC group was between two groups (p <0.05). Correlation analysis revealed that PAI-1 and TGF-β1 (r = 0.987, p <0.05) and Smad3 (r = 0.974, p <0.05) showed a significant positive correlation. TGF-β1 and Smad3 (r = 0.962, p <0.05) were positively correlated. CONCLUSIONS BMSCs significantly inhibited renal fibrosis in rats with DN. The mechanism may be related to inhibition of TGF-β1/Smad3 pathway, decreasing the expression of PAI-1 protein and reducing the accumulation of extracellular matrix, thereby balancing the fibrinolytic system.
Collapse
Affiliation(s)
- Hong Lang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical College, Hospital of Xuzhou Medical College, xuzhou, China
| | - Chun Dai
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical College, Hospital of Xuzhou Medical College, xuzhou, China.
| |
Collapse
|
39
|
Inhibition of Plasminogen Activator Inhibitor-1 Attenuates Transforming Growth Factor-β-Dependent Epithelial Mesenchymal Transition and Differentiation of Fibroblasts to Myofibroblasts. PLoS One 2016; 11:e0148969. [PMID: 26859294 PMCID: PMC4747467 DOI: 10.1371/journal.pone.0148969] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 01/26/2016] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is central during the pathogenesis of pulmonary fibrosis, in which the plasminogen activator inhibitor-1 (PAI-1) also has an established role. TGF-β is also known to be the strongest inducer of PAI-1. To investigate the link between PAI-1 and TGF-β in fibrotic processes, we evaluated the effect of SK-216, a PAI-1-specific inhibitor, in TGF-β-dependent epithelial-mesenchymal transition (EMT) and fibroblast to myofibroblast differentiation. In human alveolar epithelial A549 cells, treatment with TGF-β induced EMT, whereas co-treatment with SK-216 attenuated the occurrence of EMT. The inhibition of TGF-β-induced EMT by SK-216 was also confirmed in the experiment using murine epithelial LA-4 cells. Blocking EMT by SK-216 inhibited TGF-β-induced endogenous production of PAI-1 and TGF-β in A549 cells as well. These effects of SK-216 were not likely mediated by suppressing either Smad or ERK pathways. Using human lung fibroblast MRC-5 cells, we demonstrated that SK-216 inhibited TGF-β-dependent differentiation of fibroblasts to myofibroblasts. We also observed this inhibition by SK-216 in human primary lung fibroblasts. Following these in vitro results, we tested oral administration of SK-216 into mice injected intratracheally with bleomycin. We found that SK-216 reduced the degree of bleomycin-induced pulmonary fibrosis in mice. Although the precise mechanisms underlying the link between TGF-β and PAI-1 regarding fibrotic process were not determined, PAI-1 seems to act as a potent downstream effector on the pro-fibrotic property of TGF-β. In addition, inhibition of PAI-1 activity by a PAI-1 inhibitor exerts an antifibrotic effect even in vivo. These data suggest that targeting PAI-1 as a downstream effector of TGF-β could be a promising therapeutic strategy for pulmonary fibrosis.
Collapse
|
40
|
Plasminogen activator inhibitor-1 and type 2 diabetes: a systematic review and meta-analysis of observational studies. Sci Rep 2016; 6:17714. [PMID: 26813008 PMCID: PMC4728395 DOI: 10.1038/srep17714] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/04/2015] [Indexed: 01/22/2023] Open
Abstract
An emerging body of evidence has implicated plasminogen activator inhibitor-1 (PAI-1) in the development of type 2 diabetes (T2D), though findings have not always been consistent. We systematically reviewed epidemiological studies examining the association of PAI-1 with T2D. EMBASE, PubMed, Web of Science, and the Cochrane Library were searched to identify studies for inclusion. Fifty-two studies (44 cross-sectional with 47 unique analytical comparisons and 8 prospective) were included. In pooled random-effects analyses of prospective studies, a comparison of the top third vs. bottom third of baseline PAI-1 values generated a RR of T2D of 1.67 (95% CI 1.28–2.18) with moderate heterogeneity (I2 = 38%). Additionally, of 47 cross-sectional comparisons, 34(72%) reported significantly elevated PAI-1 among diabetes cases versus controls, 2(4%) reported significantly elevated PAI-1 among controls, and 11(24%) reported null effects. Results from pooled analyses of prospective studies did not differ substantially by study design, length of follow-up, adjustment for various putative confounding factors, or study quality, and were robust to sensitivity analyses. Findings from this systematic review of the available epidemiological literature support a link between PAI-1 and T2D, independent of established diabetes risk factors. Given the moderate size of the association and heterogeneity across studies, future prospective studies are warranted.
Collapse
|
41
|
Xu F, Liu H, Sun Y. Association of plasminogen activator inhibitor-1 gene polymorphism and type 2 diabetic nephropathy. Ren Fail 2015; 38:157-62. [DOI: 10.3109/0886022x.2015.1089464] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Madhusudhan T, Kerlin BA, Isermann B. The emerging role of coagulation proteases in kidney disease. Nat Rev Nephrol 2015; 12:94-109. [PMID: 26592189 DOI: 10.1038/nrneph.2015.177] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A role of coagulation proteases in kidney disease beyond their function in normal haemostasis and thrombosis has long been suspected, and studies performed in the past 15 years have provided novel insights into the mechanisms involved. The expression of protease-activated receptors (PARs) in renal cells provides a molecular link between coagulation proteases and renal cell function and revitalizes research evaluating the role of haemostasis regulators in renal disease. Renal cell-specific expression and activity of coagulation proteases, their regulators and their receptors are dynamically altered during disease processes. Furthermore, renal inflammation and tissue remodelling are not only associated, but are causally linked with altered coagulation activation and protease-dependent signalling. Intriguingly, coagulation proteases signal through more than one receptor or induce formation of receptor complexes in a cell-specific manner, emphasizing context specificity. Understanding these cell-specific signalosomes and their regulation in kidney disease is crucial to unravelling the pathophysiological relevance of coagulation regulators in renal disease. In addition, the clinical availability of small molecule targeted anticoagulants as well as the development of PAR antagonists increases the need for in-depth knowledge of the mechanisms through which coagulation proteases might regulate renal physiology.
Collapse
Affiliation(s)
- Thati Madhusudhan
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Leipziger Strasse 44, Magdeburg D-39120, Germany
| | - Bryce A Kerlin
- Center for Clinical and Translational Research, Nationwide Children's Hospital, 700 Children's Drive, W325 Columbus, Ohio 43205, USA
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Leipziger Strasse 44, Magdeburg D-39120, Germany
| |
Collapse
|
43
|
Sun H, Mi X, Gao N, Yan C, Yu FS. Hyperglycemia-suppressed expression of Serpine1 contributes to delayed epithelial wound healing in diabetic mouse corneas. Invest Ophthalmol Vis Sci 2015; 56:3383-92. [PMID: 26024123 DOI: 10.1167/iovs.15-16606] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Patients with diabetes mellitus (DM) are at an increased risk for developing corneal complications, including delayed wound healing. The purpose of this study was to characterize the expression and the function of Serpine1 and other components of urokinase plasminogen activator (uPA)-proteolytic system in delayed epithelial wound healing in diabetic mouse corneas. METHODS Mice of the strain C57BL/6 were induced to develop diabetes by streptozotocin, and wound-healing assays were performed 10 weeks afterward. Gene expression and/or distribution were assessed by real-time PCR, Western blotting, and/or immunohistochemistry. The role of Serpine1 in mediating epithelial wound closure was determined by subconjunctival injections of neutralizing antibodies in either normal or recombinant protein in diabetic corneas. Enzyme assay for matrix metalloproteinase (MMP)-3 was also performed. RESULTS The expressions of Serpine1 (PAI-1), Plau (uPA), and Plaur (uPA receptor) were upregulated in response to wounding, and these upregulations were significantly suppressed by hyperglycemia. In healing epithelia, Plau and Serpine1 were abundantly expressed at the leading edge of the healing epithelia of normal and, to a lesser extent, diabetic corneas. Inhibition of Serpine1 delayed epithelial wound closure in normal corneas, whereas recombinant Serpine1 accelerated it in diabetic corneas. The Plau and MMP-3 mRNA levels and MMP-3 enzymatic activities were correlated to Serpine1 levels and/or the rates of epithelial wound closure. CONCLUSIONS Serpine1 plays a role in mediating epithelial wound healing and its impaired expression may contribute to delayed wound healing in DM corneas. Hence, modulating uPA proteolytic pathway may represent a new approach for treating diabetic keratopathy.
Collapse
|
44
|
Rebalka IA, Raleigh MJ, D'Souza DM, Coleman SK, Rebalka AN, Hawke TJ. Inhibition of PAI-1 Via PAI-039 Improves Dermal Wound Closure in Diabetes. Diabetes 2015; 64:2593-602. [PMID: 25754958 DOI: 10.2337/db14-1174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/02/2015] [Indexed: 11/13/2022]
Abstract
Diabetes impairs the ability to heal cutaneous wounds, leading to hospitalization, amputations, and death. Patients with diabetes experience elevated levels of plasminogen activator inhibitor 1 (PAI-1), regardless of their glycemic control. It has been demonstrated that PAI-1-deficient mice exhibit improved cutaneous wound healing, and that PAI-1 inhibition improves skeletal muscle repair in mice with type 1 diabetes mellitus, leading us to hypothesize that pharmacologically mediated reductions in PAI-1 using PAI-039 would normalize cutaneous wound healing in streptozotocin (STZ)-induced diabetic (STZ-diabetic) mice. To simulate the human condition of variations in wound care, wounds were aggravated or minimally handled postinjury. Following cutaneous injury, PAI-039 was orally administered twice daily for 10 days. Compared with nondiabetic mice, wounds in STZ-diabetic mice healed more slowly. Wound site aggravation exacerbated this deficit. PAI-1 inhibition had no effect on dermal collagen levels or wound bed size. PAI-039 treatment failed to improve angiogenesis in the wounds of STZ-diabetic mice and blunted angiogenesis in the wounds of nondiabetic mice. Importantly, PAI-039 treatment significantly improved epidermal cellular migration and wound re-epithelialization compared with vehicle-treated STZ-diabetic mice. These findings support the use of PAI-039 as a novel therapeutic agent to improve diabetic wound closure and demonstrate the primary mechanism of its action to be related to epidermal closure.
Collapse
Affiliation(s)
- Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Matthew J Raleigh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Donna M D'Souza
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Samantha K Coleman
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alexandra N Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
45
|
Stæhr M, Buhl KB, Andersen RF, Svenningsen P, Nielsen F, Hinrichs GR, Bistrup C, Jensen BL. Aberrant glomerular filtration of urokinase-type plasminogen activator in nephrotic syndrome leads to amiloride-sensitive plasminogen activation in urine. Am J Physiol Renal Physiol 2015; 309:F235-41. [PMID: 25972510 DOI: 10.1152/ajprenal.00138.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/07/2015] [Indexed: 01/11/2023] Open
Abstract
In nephrotic syndrome, aberrant glomerular filtration of plasminogen and conversion to active plasmin in preurine are thought to activate proteolytically epithelial sodium channel (ENaC) and contribute to sodium retention and edema. The ENaC blocker amiloride is an off-target inhibitor of urokinase-type plasminogen activator (uPA) in vitro. It was hypothesized that uPA is abnormally filtered to preurine and is inhibited in urine by amiloride in nephrotic syndrome. This was tested by determination of Na(+) balance, uPA protein and activity, and amiloride concentration in urine from rats with puromycin aminonucleoside (PAN)-induced nephrotic syndrome. Urine samples from 6 adult and 18 pediatric patients with nephrotic syndrome were analyzed for uPA activity and protein. PAN treatment induced significant proteinuria in rats which coincided with increased urine uPA protein and activity, increased urine protease activity, and total plasminogen/plasmin concentration and Na(+) retention. Amiloride (2 mg·kg(-1)·24 h(-1)) concentration in urine was in the range 10-20 μmol/l and reduced significantly urine uPA activity, plasminogen activation, protease activity, and sodium retention in PAN rats, while proteinuria was not altered. In paired urine samples, uPA protein was significantly elevated in urine from children with active nephrotic syndrome compared with remission phase. In six adult nephrotic patients, urine uPA protein and activity correlated positively with 24 h urine protein excretion. In conclusion, nephrotic syndrome is associated with aberrant filtration of uPA across the injured glomerular barrier. Amiloride inhibits urine uPA activity which attenuates plasminogen activation and urine protease activity in vivo. Urine uPA is a relevant target for amiloride in vivo.
Collapse
Affiliation(s)
- Mette Stæhr
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kristian B Buhl
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - René F Andersen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Flemming Nielsen
- Clinical Pharmacology, Institute of Public Health, University of Southern Denmark, Odense, Denmark; and
| | | | - Claus Bistrup
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark;
| |
Collapse
|
46
|
Abstract
Wnt/β-catenin signaling is an evolutionarily conserved, highly complex, key developmental pathway that regulates cell fate, organ development, tissue homeostasis, as well as injury and repair. Although relatively silent in normal adult kidney, Wnt/β-catenin signaling is re-activated after renal injury in a wide variety of animal models and in human kidney disorders. Whereas some data point to a protective role of this signaling in healing and repair after acute kidney injury, increasing evidence suggests that sustained activation of Wnt/β-catenin is associated with the development and progression of renal fibrotic lesions. In kidney cells, Wnt/β-catenin promotes the expression of numerous fibrosis-related genes such as Snail1, plasminogen activator inhibitor-1, and matrix metalloproteinase-7. Recent studies also indicate that multiple components of the renin-angiotensin system are the direct downstream targets of Wnt/β-catenin. Consistently, inhibition of Wnt/β-catenin signaling by an assortment of strategies ameliorates kidney injury and mitigates renal fibrotic lesions in various models of chronic kidney disease, suggesting that targeting this signaling could be a plausible strategy for therapeutic intervention. In this mini review, we will briefly discuss the regulation, downstream targets, and mechanisms of Wnt/β-catenin signaling in the pathogenesis of kidney fibrosis.
Collapse
Affiliation(s)
- Roderick J Tan
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lili Zhou
- Division of Nephrology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
47
|
Riser BL, Najmabadi F, Garchow K, Barnes JL, Peterson DR, Sukowski EJ. Treatment with the matricellular protein CCN3 blocks and/or reverses fibrosis development in obesity with diabetic nephropathy. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2908-21. [PMID: 25193594 DOI: 10.1016/j.ajpath.2014.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 06/28/2014] [Accepted: 07/02/2014] [Indexed: 01/14/2023]
Abstract
Fibrosis is at the core of the high morbidity and mortality rates associated with the complications of diabetes and obesity, including diabetic nephropathy (DN), without any US Food and Drug Administration-approved drugs with this specific target. We recently provided the first evidence that the matricellular protein CCN3 (official symbol NOV) functions in a reciprocal manner, acting on the profibrotic family member CCN2 to inhibit fibrosis in a mesangial cell model of DN. Herein, we used the BT/BR ob/ob mouse as a best model of human obesity and DN progression to determine whether recombinant human CCN3 could be used therapeutically, and the mechanisms involved. Eight weeks of thrice-weekly i.p. injections (0.604 and 6.04 μg/kg of recombinant human CCN3) beginning in early-stage DN completely blocked and/or reversed the up-regulation of mRNA expression of kidney cortex fibrosis genes (CCN2, Col1a2, TGF-β1, and PAI-1) seen in placebo-treated diabetic mice. The treatment completely blocked glomerular fibrosis, as determined by altered mesangial expansion and deposition of laminin. Furthermore, it protected against, or reversed, podocyte loss and kidney function reduction (rise in plasma creatinine concentration); albuminuria was also greatly reduced. This study demonstrates the potential efficacy of recombinant human CCN3 treatment in DN and points to mechanisms operating at multiple levels or pathways, upstream (eg, protecting against cell injury) and downstream (eg, regulating CCN2 activity and extracellular matrix metabolism).
Collapse
Affiliation(s)
- Bruce L Riser
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois; Department of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois; BLR Bio LLC, Kenosha, Wisconsin.
| | - Feridoon Najmabadi
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Kendra Garchow
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Jeffrey L Barnes
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Darryl R Peterson
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois; Department of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Ernest J Sukowski
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
48
|
Cheng H, Chen C, Wang S. Effects of uPA on mesangial matrix changes in the kidney of diabetic rats. Ren Fail 2014; 36:1322-7. [PMID: 25010090 DOI: 10.3109/0886022x.2014.934694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the effect of urokinase-type plasminogen activator (uPA) on mesangial matrix in the kidney of diabetic rats and its related mechanisms. METHODS Diabetic Sprague-Dawley (SD) rats induced by intraperitoneal injection of streptozotocin (STZ) were randomly and evenly divided into two groups: DM + vehicle, and DM + uPA (2500 U kg(-1) uPA via tail vein once a day for four weeks). The normal SD rats without diabetes were considered as control group. Rats in the three groups were executed and the heart blood was sampled for determination of blood glucose and serum creatinine. Meanwhile, kidney tissues of rats were also harvest for measurement of glomerular area, volume, and mesangial area by periodic acid silver methenamine (PASA) staining. The expression of urokinase-type plasminogen activator receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1), and collagen IV in renal tissues was tested with immunohistochemistry. RESULTS Compared with control, the DM rats had obvious albuminuria, significantly (p < 0.01) increased glomerular volume and mesangial matrix area, and significantly (p < 0.05) higher expression of uPAR, PAI-1 and collagen IV in mesangial matrix, significantly up-regulated (p < 0.05) glomerular uPAR, PAI-1, and collagen IV expression. After treated with uPA, the diabetic rats had significantly (p < 0.05) reduced albuminuria, significantly (p < 0.01) improved glomerular volume and mesangial matrix, significantly (p < 0.05) down-regulated PAI-1 and collagen IV expression in mesangial matrix. However, the uPAR expression in renal tissues were unchangeable (p > 0.05) and PAI-1 and collagen IV expression were significantly (p < 0.05) reduced when diabetic rats were treated with uPA. CONCLUSION uPA can down-regulate glomerular PAI-1 expression in the DM rats but not significantly influence uPAR expression, suggesting that uPA might regulate the mesangial cell (MC) and its matrix expression and improve diseased diabetic mesangial matrix via its combination with uPAR to uptake PAI-1 and accelerate its degradation.
Collapse
Affiliation(s)
- Hui Cheng
- Division of Nephrology, Wuhan University, Renmin Hospital , Wuhan , People's Republic of China
| | | | | |
Collapse
|
49
|
Zhang J, Gu C, Lawrence DA, Cheung AK, Huang Y. A plasminogen activator inhibitor type 1 mutant retards diabetic nephropathy in db/db mice by protecting podocytes. Exp Physiol 2014; 99:802-15. [PMID: 24443353 DOI: 10.1113/expphysiol.2013.077610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A mutant non-inhibiting plasminogen activator inhibitor type 1 (PAI-1), termed PAI-1R, which reduces endogenous PAI-1 activity, has been shown to inhibit albuminuria and reduce glomerulosclerosis in experimental diabetes. The mechanism of the reduction of albuminuria is unclear. This study sought to determine whether the administration of PAI-1R protected podocytes from injury directly, thereby reducing albuminuria in the db/db mouse, a model of type 2 diabetes. Untreated uninephrectomized db/db mice developed significant mesangial matrix expansion and albuminuria at week 22 of age, associated with segmental podocyte foot-process effacement, reduction of renal nephrin, podocin and zonula occludin-1 production and induction of renal desmin and B7-1 generation. In contrast, treatment with PAI-1R at 0.5 mg (kg body weight)(-1) i.p., twice daily from week 20 to 22, reduced glomerular matrix accumulation, fibronectin and collagen production and albuminuria by 36, 62, 65 and 31%, respectively (P < 0.05), without affecting blood glucose level or body weight. Podocyte morphology and protein markers were also significantly attenuated by PAI-1R administration. Importantly, recombinant PAI-1 downregulated nephrin and zonula occludin-1 but increased desmin and B7-1 mRNA expression and protein production by podocytes in vitro, similar to the effects of transforming growth factor-β1. These observations provide evidence that PAI-1, in a manner similar to transforming growth factor-β1, directly induces podocyte injury, particularly in the setting of diabetes, where elevated PAI-1 may contribute to the progression of albuminuria. Reducing the increased PAI-1 activity by administration of PAI-1R, in fact, reduces podocyte injury, thereby reducing albuminuria. Therefore, PAI-1R provides an additional therapeutic effect in slowing the progression of diabetic nephropathy via the protection of podocytes.
Collapse
Affiliation(s)
- Jiandong Zhang
- Division of Nephrology & Hypertension, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Chunyan Gu
- Division of Nephrology & Hypertension, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Daniel A Lawrence
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Alfred K Cheung
- Division of Nephrology & Hypertension, University of Utah School of Medicine, Salt Lake City, UT, USA Medical Care Center, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Yufeng Huang
- Division of Nephrology & Hypertension, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
50
|
Kitamura H, Kimura S, Shimamoto Y, Okabe J, Ito M, Miyamoto T, Naoe Y, Kikuguchi C, Meek B, Toda C, Okamoto S, Kanehira K, Hase K, Watarai H, Ishizuka M, El-Osta A, Ohara O, Miyoshi I. Ubiquitin-specific protease 2-69 in macrophages potentially modulates metainflammation. FASEB J 2013; 27:4940-53. [PMID: 24005904 DOI: 10.1096/fj.13-233528] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Macrophages play a critical role in chronic inflammation and metabolic diseases. We identified a longer splice variant of ubiquitin specific protease (USP) 2-69 as a novel molecule that modulates pathways implicated in metabolic disorders. Expression levels of aP2/FABP4 and PAI-1/SERPINE1 genes were increased by 4- and 1.8-fold, respectively, after short hairpin RNA-mediated knockdown (KD) of the USP2 gene, and such expression was alleviated by overexpression of USP2-69 in human myeloid cell lines. Supernatants derived from USP2-KD cells induced IL6 (∼6-fold) and SAA3 (∼15-fold) in 3T3-L1 adipocytes to suggest the anti-inflammatory properties of USP2. In addition, we observed a 30% decrease in the number of macrophages in mesenteric adipose tissue derived from USP2-69 transgenic mice fed a high-fat diet for 14 wk compared with that in their C57BL/6 littermates (P<0.01), which was consistent with a ∼40% decrease in transcription of aP2 and PAI-1. The aP2 locus exhibited elevated chromatin accessibility (>2.1-fold), methylation of histone H3 lysine 4 (>4.5-fold), and acetylation of histone H4 (>2.5-fold) in USP2-KD cells. Transfection of isopeptidase-mutated USP2-69 did not alter chromatin conformation on the aP2 locus in USP2-KD cells. Our results suggest that USP2-69 suppresses meta-inflammatory molecules involved in the development of type-2 diabetes.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- 1Department of Comparative and Experimental Medicine, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|