1
|
Hu R, Liu Z, Hou H, Li J, Yang M, Feng P, Wang X, Xu D. Identification of key necroptosis-related genes and immune landscape in patients with immunoglobulin A nephropathy. BMC Nephrol 2024; 25:459. [PMID: 39696012 PMCID: PMC11653910 DOI: 10.1186/s12882-024-03885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is a major cause of chronic kidney disease (CKD) and kidney failure. Necroptosis is a novel type of programmed cell death that has been proved to be associated with the pathogenesis of infectious disease, cardiovascular disease, neurological disorders and so on. However, the role of necroptosis in IgAN remains unclear. METHODS In this study, we explored the role of necroptosis-related genes in the pathogenesis of IgAN using a comprehensive bioinformatics method. Microarray datasets GSE93798 and GSE115857 were downloaded from Gene Expression Omnibus (GEO). "limma" package of R software was employed to identify necroptosis-related differentially expressed genes (NRDEGs) between IgAN and healthy controls. GO and KEGG functional enrichment analysis was performed by Clusterprofiler. Least absolute shrinkage and selection operator (LASSO) regression analysis identified hub NRDEGs. We further established a diagnostic model consisting of 7 diagnostic hub NRDEGs and validated the efficacy by an external dataset. The expression of hub genes was confirmed in sc-RNA dataset GSE171314. Immune infiltration, gene set enrichment analysis and transcription factor binding motifs enrichment analysis were conducted to further uncover their roles. RESULTS 1076 differentially expressed genes were identified between healthy individuals and IgAN patients from RNA-seq dataset GSE9379. Then we cross-linked them with necroptosis-related genes to obtain 9 NRDEGs. LASSO regression analysis screened out 7 hub genes (JUN, CD274, SERTAD1, NFKBIA, H19, UCHL1 and EZH2) of IgAN. We further conducted functional enrichment analysis and constructed the diagnostic model based on dataset GSE93798. GSE115857 was used as the independent validation cohort and indicated a great predictive efficacy. Immune infiltration, gene set enrichment analysis and transcription factor binding motifs enrichment analysis revealed their potential function. Finally, we screened out four drugs that were predicted to have therapeutic value of IgAN. CONCLUSIONS In summary, we identified 7 hub necroptosis-associated genes, which can be used as potential genetic biomarkers for IgAN prediction and treatment. Four drugs were predicted as the potential therapeutic solutions. Collectively, we provided insights into the necroptosis-related mechanisms and treatment of IgAN at the transcriptome level.
Collapse
Affiliation(s)
- Ruikun Hu
- Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Ziyu Liu
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Huihui Hou
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Jingyu Li
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ming Yang
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Panfeng Feng
- Department of Pharmacy, The First People's Hospital of Nantong city, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Xiaorong Wang
- Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Dechao Xu
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
2
|
Ren H, Lv W, Shang Z, Li L, Shen Q, Li S, Song Z, Cheng X, Meng X, Chen R, Zhang R. Identifying functional subtypes of IgA nephropathy based on three machine learning algorithms and WGCNA. BMC Med Genomics 2024; 17:61. [PMID: 38395835 PMCID: PMC10893719 DOI: 10.1186/s12920-023-01702-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/14/2023] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is one of the most common primary glomerulonephritis, which is a significant cause of renal failure. At present, the classification of IgAN is often limited to pathology, and its molecular mechanism has not been established. Therefore we aim to identify subtypes of IgAN at the molecular level and explore the heterogeneity of subtypes in terms of immune cell infiltration, functional level. METHODS Two microarray datasets (GSE116626 and GSE115857) were downloaded from GEO. Differential expression genes (DEGs) for IgAN were screened with limma. Three unsupervised clustering algorithms (hclust, PAM, and ConsensusClusterPlus) were combined to develop a single-sample subtype random forest classifier (SSRC). Functional subtypes of IgAN were defined based on functional analysis and current IgAN findings. Then the correlation between IgAN subtypes and clinical features such as eGFR and proteinuria was evaluated by using Pearson method. Subsequently, subtype heterogeneity was verified by subtype-specific modules identification based on weighted gene co-expression network analysis(WGCNA) and immune cell infiltration analysis based on CIBERSORT algorithm. RESULTS We identified 102 DEGs as marker genes for IgAN and three functional subtypes namely: viral-hormonal, bacterial-immune and mixed type. We screened seventeen genes specific to viral hormonal type (ATF3, JUN and FOS etc.), and seven genes specific to bacterial immune type (LIF, C19orf51 and SLPI etc.). The subtype-specific genes showed significantly high correlation with proteinuria and eGFR. The WGCNA modules were in keeping with functions of the IgAN subtypes where the MEcyan module was specific to the viral-hormonal type and the MElightgreen module was specific to the bacterial-immune type. The results of immune cell infiltration revealed subtype-specific cell heterogeneity which included significant differences in T follicular helper cells, resting NK cells between viral-hormone type and control group; significant differences in eosinophils, monocytes, macrophages, mast cells and other cells between bacterial-immune type and control. CONCLUSION In this study, we identified three functional subtypes of IgAN for the first time and specific expressed genes for each subtype. Then we constructed a subtype classifier and classify IgAN patients into specific subtypes, which may be benefit for the precise treatment of IgAN patients in future.
Collapse
Affiliation(s)
- Hongbiao Ren
- College of Bioinformatics Science and Technology, Harbin Medical University, 150086, Harbin, China
| | - Wenhua Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, 150086, Harbin, China
| | - Zhenwei Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, 150086, Harbin, China
| | - Liangshuang Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 150086, Harbin, China
| | - Qi Shen
- College of Bioinformatics Science and Technology, Harbin Medical University, 150086, Harbin, China
| | - Shuai Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 150086, Harbin, China
| | - Zerun Song
- College of Bioinformatics Science and Technology, Harbin Medical University, 150086, Harbin, China
| | - Xiangshu Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, 150086, Harbin, China
| | - Xin Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, 150086, Harbin, China
| | - Rui Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, 150086, Harbin, China
| | - Ruijie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 150086, Harbin, China.
| |
Collapse
|
3
|
Xu J, Shen X, Wei X, Ding J, Yuan J, Weng Z, He Y. Identification of blood-based key biomarker and immune infiltration in Immunoglobulin A nephropathy by comprehensive bioinformatics analysis and a cohort validation. J Transl Med 2022; 20:145. [PMID: 35351150 PMCID: PMC8966267 DOI: 10.1186/s12967-022-03330-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/03/2022] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
To identify the critical genes in the onset and progression of Immunoglobulin A nephropathy (IgAN) and to explore its immune cell infiltration feature.
Methods
Differentially expressed genes (DEGs) were firstly screened from 1 blood-derived dataset GSE73953 and a glomerulus derived dataset GSE93798 through limma analysis, overlap genes omitting and weighted gene correlation network analysis (WGCNA) and further reduced according to expression pattern and correlation with the clinical features: eGFR and proteinuria, followed by external validation using the GSE37460 dataset and an IgAN cohort. In addition, the CIBERSORT tool for immune cell infiltration analysis, ceRNA network construction and Connectivity Map (CMAP) were also performed.
Results
A total of 195 DEGs were found, and among them, 3 upregulated (ORMDL2, NRP1, and COL4A1) and 3 downregulated genes (ST13, HSPA8 and PKP4) are verified to correlate clinically, and finally ORMDL2, NRP1 and COL4A1 were validated in patient cohort and with the ability of IgAN discrimination (highest AUC was COL4A1: 97.14%). The immune cell infiltration results revealed that significant differences could be found on resting memory CD4 T cells, activated NK cells, and M2 macrophages between control and IgAN.
Conclusions
Our results demonstrated here that significantly upregulated DEGs: ORMDL2, NRP1 and COL4A1, could be served as the diagnostic marker for IgAN, and dysregulated immune cell infiltration hinted possible the immune system intervention point in the setting of IgAN.
Collapse
|
4
|
Sallustio F, Curci C, Di Leo V, Gallone A, Pesce F, Gesualdo L. A New Vision of IgA Nephropathy: The Missing Link. Int J Mol Sci 2019; 21:189. [PMID: 31888082 PMCID: PMC6982283 DOI: 10.3390/ijms21010189] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
IgA Nephropathy (IgAN) is a primary glomerulonephritis problem worldwide that develops mainly in the 2nd and 3rd decade of life and reaches end-stage kidney disease after 20 years from the biopsy-proven diagnosis, implying a great socio-economic burden. IgAN may occur in a sporadic or familial form. Studies on familial IgAN have shown that 66% of asymptomatic relatives carry immunological defects such as high IgA serum levels, abnormal spontaneous in vitro production of IgA from peripheral blood mononuclear cells (PBMCs), high serum levels of aberrantly glycosylated IgA1, and an altered PBMC cytokine production profile. Recent findings led us to focus our attention on a new perspective to study the pathogenesis of this disease, and new studies showed the involvement of factors driven by environment, lifestyle or diet that could affect the disease. In this review, we describe the results of studies carried out in IgAN patients derived from genomic and epigenomic studies. Moreover, we discuss the role of the microbiome in the disease. Finally, we suggest a new vision to consider IgA Nephropathy as a disease that is not disconnected from the environment in which we live but influenced, in addition to the genetic background, also by other environmental and behavioral factors that could be useful for developing precision nephrology and personalized therapy.
Collapse
Affiliation(s)
- Fabio Sallustio
- Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, 70124 Bari, Italy
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Claudia Curci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy;
- Nephrology, Dialysis and Transplantation Unit, DETO, University “Aldo Moro”, 70124 Bari, Italy; (V.D.L.); (F.P.); (L.G.)
| | - Vincenzo Di Leo
- Nephrology, Dialysis and Transplantation Unit, DETO, University “Aldo Moro”, 70124 Bari, Italy; (V.D.L.); (F.P.); (L.G.)
| | - Anna Gallone
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Francesco Pesce
- Nephrology, Dialysis and Transplantation Unit, DETO, University “Aldo Moro”, 70124 Bari, Italy; (V.D.L.); (F.P.); (L.G.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, DETO, University “Aldo Moro”, 70124 Bari, Italy; (V.D.L.); (F.P.); (L.G.)
| |
Collapse
|
5
|
Aksenova AV, Shostak NA, Guseva OA. [The post-streptococcal diseases in the clinical practice]. Vestn Otorinolaringol 2016; 81:39-43. [PMID: 27213654 DOI: 10.17116/otorino201681239-43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The authors describe various clinical forms of streptococcal infections, the pathogenetic mechanisms underlying these conditions, and peculiarities of their clinical picture. Also considered are the modern methods employed for laboratory diagnostics of streptococcal infections. The probability of the risk of development of post-streptococcal diseases in the children is evaluated. Measures for the prevention of these conditions are proposed.
Collapse
Affiliation(s)
- A V Aksenova
- N.I. Pirogov Russian National Research Medical University, Russian Ministry of Health, Moscow, Russia, 117997
| | - N A Shostak
- N.I. Pirogov Russian National Research Medical University, Russian Ministry of Health, Moscow, Russia, 117997
| | - O A Guseva
- N.I. Pirogov Russian National Research Medical University, Russian Ministry of Health, Moscow, Russia, 117997
| |
Collapse
|
6
|
Iwata Y, Furuichi K, Sakai N, Yamauchi H, Shinozaki Y, Zhou H, Kurokawa Y, Toyama T, Kitajima S, Okumura T, Yamada S, Maruyama I, Matsushima K, Kaneko S, Wada T. Dendritic cells contribute to autoimmune kidney injury in MRL-Faslpr mice. J Rheumatol 2009; 36:306-14. [PMID: 19208562 DOI: 10.3899/jrheum.080318] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Dendritic cells (DC) contribute to autoimmune disease progression and pathogenesis. Mature DC have been reported to secrete high mobility group box protein (HMGB-1), a novel inflammatory cytokine, via p38 mitogen-activated protein kinase (MAPK) activation. We investigated whether DC are involved in progression of autoimmune diseases followed by secretion of HMGB-1 via p38 MAPK activation in a lupus-prone mouse model. METHODS FR167653, a specific inhibitor of p38 MAPK, was given orally from 3 months of age in MRL-Fas(lpr) mice. Cultured DC, treated with or without FR167653, were stimulated with tumor necrosis factor-alpha. RESULTS Inhibition of p38 MAPK led to a reduction in the number of CD11c-positive cells, including those with the mature phenotype, in the diseased kidney and spleen, which resulted in improvement of kidney pathology in MRL-Fas(lpr) mice. The number of CD11c-positive cells in circulation was also reduced. HMGB-1 protein and transcripts detected in the diseased kidney, and the number of cells dual-positive for HMGB-1 and CD11c, were reduced by inhibition of p38 MAPK. Maturation of cultured DC and increased cytokines, including HMGB-1, in the supernatant were inhibited by FR167653 treatment. These results suggest that DC are involved in the progression of autoimmune kidney diseases in MRL-Fas(lpr) mice followed by HMGB-1 secretion via p38 MAPK activation. CONCLUSION Our results indicated that DC secrete HMGB-1 via p38 MAPK activation to participate in autoimmunity in MRL-Fas(lpr) mice.
Collapse
Affiliation(s)
- Yasunori Iwata
- Department of Disease Control, Institute of Medical, Pharmaceutical and Health Sciences, Faculty of Medicine, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Suzuki H, Suzuki Y, Narita I, Aizawa M, Kihara M, Yamanaka T, Kanou T, Tsukaguchi H, Novak J, Horikoshi S, Tomino Y. Toll-like receptor 9 affects severity of IgA nephropathy. J Am Soc Nephrol 2008; 19:2384-95. [PMID: 18776126 DOI: 10.1681/asn.2007121311] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Environmental pathogens are suspected to aggravate renal injury in IgA nephropathy (IgAN), but neither underlying mechanisms nor specific exogenous antigens have been identified. In this study, a genome-wide scan of ddY mice, which spontaneously develop IgAN, was performed, and myeloid differentiation factor 88 (MyD88) was identified as a candidate gene for progression of renal injury (chi(2) = 21.103, P = 0.00017). For evaluation of the potential influence of environmental pathogens on progression of renal injury, ddY mice were housed in either conventional or specific pathogen-free conditions. Expression of genes encoding toll-like receptors (TLR) and the signaling molecule MyD88 were quantified by real-time reverse transcription-PCR in splenocytes. Although the housing conditions did not affect the prevalence of IgAN, the severity of renal injuries was higher in the conventionally housed group. Mice that had IgAN and were housed in conventional conditions had higher levels of TLR9 and MyD88 transcripts than mice that had IgAN and were housed in specific pathogen-free conditions. Furthermore, nasal challenge with CpG-oligodeoxynucleotides, which are ligands for TLR9, aggravated renal injury, led to strong Th1 polarization, and increased serum and mesangial IgA. For investigation of whether these results may be generalizable to humans, single-nucleotide polymorphisms in the TLR9 and MyD88 genes were analyzed in two cohorts of patients with IgAN; an association was observed between TLR9 polymorphisms and disease progression. In summary, these findings suggest that activation of the TLR9/MyD88 pathway by common antigens may affect the severity of IgAN.
Collapse
Affiliation(s)
- Hitoshi Suzuki
- Division of Nephrology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Eijgenraam JW, van Kooten C. IgA1 glycosylation in IgA nephropathy: as sweet as it can be. Kidney Int 2008; 73:1106-8. [PMID: 18449177 DOI: 10.1038/ki.2008.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abnormally O-glycosylated IgA1 is likely to be involved in the pathogenesis of IgA nephropathy (IgAN). Buck et al. show that the enzyme activity and gene expression of specific glycosyltransferases, in purified B cells isolated from peripheral blood and bone marrow, is not reduced in IgAN patients. As only a small fraction of IgA in IgAN patients is abnormally glycosylated, it is probable that a more detailed molecular analysis at the single cell level is required to unravel the cause of this abnormality.
Collapse
Affiliation(s)
- J W Eijgenraam
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
| | | |
Collapse
|
9
|
Suzuki H, Suzuki Y, Aizawa M, Yamanaka T, Kihara M, Pang H, Horikoshi S, Tomino Y. Th1 polarization in murine IgA nephropathy directed by bone marrow-derived cells. Kidney Int 2007; 72:319-27. [PMID: 17495863 DOI: 10.1038/sj.ki.5002300] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
IgA nephropathy is the most common form of progressive glomerulonephritis although the pathophysiology of this nephropathy is unclear. The ddY mouse is a spontaneous animal model with variable incidence and extent of glomerular injury mimicking human IgA nephropathy. Here, we transplanted bone marrow cells from 20-week-old ddY mice with beginning or quiescent IgA nephropathy into irradiated similar ddY mice, C57Bl/6 (Th1 prone) mice, or BALB/c (Th2 prone) mice. Serum IgA/IgG complex and Th1/Th2 polarization of spleen cells was determined by enzyme-linked immunosorbent assay and confirmed by fluorescent cytometric analysis. The ddY mice with commencing IgA nephropathy demonstrated strong polarization toward Th1, while those with quiescent disease were Th2 polarized. Serum levels of IgA/IgG2a immune complex significantly correlated with the severity of the glomerular lesions. Bone marrow taken from mice with commencing IgA nephropathy conferred IgA nephropathy with Th1 polarization in recipient-quiescent mice, while transplantation from the quiescent mice ablated glomerular injury and mesangial IgA/IgG deposition in those commencing IgA disease. However, adoptive transfer of CD4(+) T cells from those whose disease began failed to induce any IgA deposition or renal injury. Our study suggests that bone marrow cells, presuming IgA producing cells, may initiate this disease. Th1 cells may be involved in the pathophysiology of the disease after glomerular IgA deposition.
Collapse
Affiliation(s)
- H Suzuki
- Division of Nephrology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|