1
|
C-Terminal Domain of Aquaporin-5 Is Required to Pass Its Protein Quality Control and Ensure Its Trafficking to Plasma Membrane. Int J Mol Sci 2021; 22:ijms222413461. [PMID: 34948259 PMCID: PMC8707437 DOI: 10.3390/ijms222413461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 01/25/2023] Open
Abstract
Aquaporin-5 (AQP5) is selectively expressed in the apical membrane of exocrine glands, such as salivary, lacrimal, and submucosal glands. It is important for the secretory function of exocrine glands because mice with the knockout of AQP5 exhibit a significant reduction in secretion from these glands. Previous reports indicated that the AQP5 C-terminal domain is crucial for the localization of AQP5 at the plasma membrane, but it remains unclear which motif or amino acid residues in the C-terminal domain are essential for this. In this study, we examined the effects of various AQP5 C-terminal deletions or mutations on the expression of AQP5 on the cell surface. AQP5 C-terminal domain mutants did not localize on the plasma membrane, and Leu262 was shown to be crucial for AQP5′s plasma membrane localization. The mutants localized in the autophagosome or lysosome and showed decreased protein stability via lysosomal degradation. Taking these findings together, our study suggests that the C-terminal domain is required for AQP5 to pass protein quality control and be trafficked to the plasma membrane.
Collapse
|
2
|
Noda Y, Sasaki S. Updates and Perspectives on Aquaporin-2 and Water Balance Disorders. Int J Mol Sci 2021; 22:ijms222312950. [PMID: 34884753 PMCID: PMC8657825 DOI: 10.3390/ijms222312950] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Ensuring the proper amount of water inside the body is essential for survival. One of the key factors in the maintenance of body water balance is water reabsorption in the collecting ducts of the kidney, a process that is regulated by aquaporin-2 (AQP2). AQP2 is a channel that is exclusively selective for water molecules and impermeable to ions or other small molecules. Impairments of AQP2 result in various water balance disorders, including nephrogenic diabetes insipidus (NDI), which is a disease characterized by a massive loss of water through the kidney and consequent severe dehydration. Dysregulation of AQP2 is also a cause of water retention with hyponatremia in heart failure, hepatic cirrhosis, and syndrome of inappropriate antidiuretic hormone secretion (SIADH). Antidiuretic hormone vasopressin is an upstream regulator of AQP2. Its binding to the vasopressin V2 receptor promotes AQP2 targeting to the apical membrane and thus enables water reabsorption. Tolvaptan, a vasopressin V2 receptor antagonist, is effective and widely used for water retention with hyponatremia. However, there are no studies showing improvement in hard outcomes or long-term prognosis. A possible reason is that vasopressin receptors have many downstream effects other than AQP2 function. It is expected that the development of drugs that directly target AQP2 may result in increased treatment specificity and effectiveness for water balance disorders. This review summarizes recent progress in studies of AQP2 and drug development challenges for water balance disorders.
Collapse
Affiliation(s)
- Yumi Noda
- Department of Nephrology, Nitobe Memorial Nakano General Hospital, Tokyo 164-8607, Japan
- Department of Nephrology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Correspondence: ; Tel.: +81-3-3382-1231; Fax: +81-3-3382-1588
| | - Sei Sasaki
- Department of Nephrology, Cellular and Structural Physiology Laboratory, Tokyo Medical and Dental University, Tokyo 113-8519, Japan;
| |
Collapse
|
3
|
Sorting Nexin 27 Regulates the Lysosomal Degradation of Aquaporin-2 Protein in the Kidney Collecting Duct. Cells 2020; 9:cells9051208. [PMID: 32413996 PMCID: PMC7290579 DOI: 10.3390/cells9051208] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Sorting nexin 27 (SNX27), a PDZ (Postsynaptic density-95/Discs large/Zonula occludens 1) domain-containing protein, cooperates with a retromer complex, which regulates intracellular trafficking and the abundance of membrane proteins. Since the carboxyl terminus of aquaporin-2 (AQP2c) has a class I PDZ-interacting motif (X-T/S-X-Φ), the role of SNX27 in the regulation of AQP2 was studied. Co-immunoprecipitation assay of the rat kidney demonstrated an interaction of SNX27 with AQP2. Glutathione S-transferase (GST) pull-down assays revealed an interaction of the PDZ domain of SNX27 with AQP2c. Immunocytochemistry of HeLa cells co-transfected with FLAG-SNX27 and hemagglutinin (HA)-AQP2 also revealed co-localization throughout the cytoplasm. When the PDZ domain was deleted, punctate HA-AQP2 labeling was localized in the perinuclear region. The labeling was intensively overlaid by Lysotracker staining but not by GM130 labeling, a cis-Golgi marker. In rat kidneys and primary cultured inner medullary collecting duct cells, the subcellular redistribution of SNX27 was similar to AQP2 under 1-deamino-8-D-arginine vasopressin (dDAVP) stimulation/withdrawal. Cell surface biotinylation assay showed that dDAVP-induced AQP2 translocation to the apical plasma membrane was unaffected after SNX27 knockdown in mpkCCD cells. In contrast, the dDAVP-induced AQP2 protein abundance was significantly attenuated without changes in AQP2 mRNA expression. Moreover, the AQP2 protein abundance was markedly declined during the dDAVP withdrawal period after stimulation under SNX27 knockdown, which was inhibited by lysosome inhibitors. Autophagy was induced after SNX27 knockdown in mpkCCD cells. Lithium-induced nephrogenic diabetes insipidus in rats revealed a significant downregulation of SNX27 in the kidney inner medulla. Taken together, the PDZ domain-containing SNX27 interacts with AQP2 and depletion of SNX27 contributes to the autophagy-lysosomal degradation of AQP2.
Collapse
|
4
|
Holst MR, Nejsum LN. A versatile aquaporin-2 cell system for quantitative temporal expression and live cell imaging. Am J Physiol Renal Physiol 2019; 317:F124-F132. [PMID: 31091121 DOI: 10.1152/ajprenal.00150.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aquaporin-2 (AQP2) fine tunes urine concentration in response to the antidiuretic hormone vasopressin. In addition, AQP2 has been suggested to promote cell migration and epithelial morphogenesis. A cell system allowing temporal and quantitative control of expression levels of AQP2 and phospho-mimicking mutants has been missing, as has a system allowing expression of fluorescently tagged AQP2 for time-lapse imaging. In the present study, we generated and validated a Flp-In T-REx Madin-Darby canine kidney cell system for temporal and quantitative control of AQP2 and phospho-mimicking mutants. We verified that expression levels can be temporally and quantitatively controlled and that AQP2 translocated to the plasma membrane in response to elevated cAMP, which also induced S256 phosphorylation. The phospho-mimicking mutants AQP2-S256A and AQP2-S256D localized as previously described, primarily intracellular and to the plasma membrane, respectively. Induction of AQP2 expression in combination with transient, low expression of enhanced green fluorescent protein-tagged AQP2 enabled expression without aggregation and correct translocation in response to elevated cAMP. Interestingly, time-lapse imaging revealed AQP2-containing tubulating endosomes and that tubulation significantly decreased 30 min after cAMP elevation. This was mirrored by the phospho-mimicking mutants AQP2-S256A and AQP2-S256D, where AQP2-S256A-containing endosomes tubulated, whereas AQP2-S256D-containing endosomes did not. Thus, this cell system enables a multitude of cell-based assays warranted to provide deeper insights into the mechanisms of AQP2 regulation and effects on cell migration and epithelial morphogenesis.
Collapse
Affiliation(s)
- Mikkel R Holst
- Department of Clinical Medicine, Aarhus University , Aarhus , Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University , Aarhus , Denmark
| |
Collapse
|
5
|
Schrade K, Tröger J, Eldahshan A, Zühlke K, Abdul Azeez KR, Elkins JM, Neuenschwander M, Oder A, Elkewedi M, Jaksch S, Andrae K, Li J, Fernandes J, Müller PM, Grunwald S, Marino SF, Vukićević T, Eichhorst J, Wiesner B, Weber M, Kapiloff M, Rocks O, Daumke O, Wieland T, Knapp S, von Kries JP, Klussmann E. An AKAP-Lbc-RhoA interaction inhibitor promotes the translocation of aquaporin-2 to the plasma membrane of renal collecting duct principal cells. PLoS One 2018; 13:e0191423. [PMID: 29373579 PMCID: PMC5786306 DOI: 10.1371/journal.pone.0191423] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/04/2018] [Indexed: 01/13/2023] Open
Abstract
Stimulation of renal collecting duct principal cells with antidiuretic hormone (arginine-vasopressin, AVP) results in inhibition of the small GTPase RhoA and the enrichment of the water channel aquaporin-2 (AQP2) in the plasma membrane. The membrane insertion facilitates water reabsorption from primary urine and fine-tuning of body water homeostasis. Rho guanine nucleotide exchange factors (GEFs) interact with RhoA, catalyze the exchange of GDP for GTP and thereby activate the GTPase. However, GEFs involved in the control of AQP2 in renal principal cells are unknown. The A-kinase anchoring protein, AKAP-Lbc, possesses GEF activity, specifically activates RhoA, and is expressed in primary renal inner medullary collecting duct principal (IMCD) cells. Through screening of 18,431 small molecules and synthesis of a focused library around one of the hits, we identified an inhibitor of the interaction of AKAP-Lbc and RhoA. This molecule, Scaff10-8, bound to RhoA, inhibited the AKAP-Lbc-mediated RhoA activation but did not interfere with RhoA activation through other GEFs or activities of other members of the Rho family of small GTPases, Rac1 and Cdc42. Scaff10-8 promoted the redistribution of AQP2 from intracellular vesicles to the periphery of IMCD cells. Thus, our data demonstrate an involvement of AKAP-Lbc-mediated RhoA activation in the control of AQP2 trafficking.
Collapse
Affiliation(s)
- Katharina Schrade
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin, Germany
| | - Jessica Tröger
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin, Germany
| | - Adeeb Eldahshan
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin, Germany
| | - Kerstin Zühlke
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin, Germany
| | | | - Jonathan M. Elkins
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| | | | - Andreas Oder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Mohamed Elkewedi
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin, Germany
| | - Sarah Jaksch
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin, Germany
| | | | - Jinliang Li
- University of Miami Miller School of Medicine, Miami, United States of America
| | - Joao Fernandes
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin, Germany
| | - Paul Markus Müller
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin, Germany
| | - Stephan Grunwald
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin, Germany
| | - Stephen F. Marino
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin, Germany
| | - Tanja Vukićević
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin, Germany
| | - Jenny Eichhorst
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Burkhard Wiesner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | | - Michael Kapiloff
- University of Miami Miller School of Medicine, Miami, United States of America
| | - Oliver Rocks
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin, Germany
| | - Oliver Daumke
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin, Germany
| | - Thomas Wieland
- Institute of Experimental Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Stefan Knapp
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
- Institute for Pharmaceutical Chemistry and Buchmann Institute, Goethe University, Frankfurt, Germany
- DKTK (German Cancer Center Network), partner site Frankfurt/Main, Germany
| | | | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- * E-mail:
| |
Collapse
|
6
|
Lee MS, Choi HJ, Park EJ, Park HJ, Kwon TH. Depletion of vacuolar protein sorting-associated protein 35 is associated with increased lysosomal degradation of aquaporin-2. Am J Physiol Renal Physiol 2016; 311:F1294-F1307. [PMID: 27733367 DOI: 10.1152/ajprenal.00307.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/22/2016] [Accepted: 10/07/2016] [Indexed: 11/22/2022] Open
Abstract
The carboxyl terminus of aquaporin-2 (AQP2c) undergoes posttranslational modifications, including phosphorylation and ubiquitination, in the process of regulating aquaporin-2 (AQP2) translocation and protein abundance. We aimed to identify novel proteins interacting with AQP2c. Recombinant AQP2c protein was made in Escherichia coli BL21 (DE3) cells by exploiting the pET32 TrxA fusion system. Lysates of rat kidney inner medullary collecting duct (IMCD) tubule suspensions interacted with rat AQP2c bound to Ni2+-resin were subjected to LC-MS/MS proteomic analysis. Potential interacting proteins were identified, including vacuolar protein sorting-associated protein 35 (Vps35). Coimmunoprecipitation assay demonstrated that Vps35 interacted with AQP2c. Immunohistochemistry of rat kidney revealed that AQP2 and Vps35 were partly colocalized at the intracellular vesicles in collecting duct cells. The role of Vps35 in AQP2 regulation induced by 1-deamino-8D-arginine vasopressin (dDAVP) was examined in mpkCCDc14 cells. Cell surface biotinylation assay demonstrated that dDAVP-induced apical translocation of AQP2 was significantly decreased under siRNA-mediated Vps35 knockdown. dDAVP-induced AQP2 upregulation was less prominent in the cells with Vps35 knockdown. Moreover, AQP2 protein abundance was decreased to a greater extent during the withdrawal period after dDAVP stimulation under Vps35 knockdown, which was significantly inhibited by chloroquine (a blocker of the lysosomal pathway) but not by MG132 (a proteasome inhibitor). Immunocytochemistry demonstrated that internalized AQP2 was more associated with lysosomal-associated membrane protein 1 (LAMP-1) in primary cultured IMCD cells under a Vps35 knockdown situation. Taken together, our results show that Vps35 interacts with AQP2c, and depletion of Vps35 is likely to be associated with decreased AQP2 trafficking and increased lysosomal degradation of AQP2 protein.
Collapse
Affiliation(s)
- Mi Suk Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Taegu, Korea
| | - Hyo-Jung Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and
| | - Eui-Jung Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Taegu, Korea
| | - Hye-Jeong Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Taegu, Korea
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and .,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Taegu, Korea
| |
Collapse
|
7
|
Dollerup P, Thomsen TM, Nejsum LN, Færch M, Österbrand M, Gregersen N, Rittig S, Christensen JH, Corydon TJ. Partial nephrogenic diabetes insipidus caused by a novel AQP2 variation impairing trafficking of the aquaporin-2 water channel. BMC Nephrol 2015; 16:217. [PMID: 26714855 PMCID: PMC4696136 DOI: 10.1186/s12882-015-0213-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 12/21/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Autosomal dominant inheritance of congenital nephrogenic diabetes insipidus (CNDI) is rare and usually caused by variations in the AQP2 gene. We have investigated the genetic and molecular background underlying symptoms of diabetes insipidus (DI) in a Swedish family with autosomal dominant inheritance of the condition. METHODS The proband and her father were subjected to water deprivation testing and direct DNA sequencing of the coding regions of the AQP2 and AVP genes. Madin-Darby canine kidney (MDCK) cells stably expressing AQP2 variant proteins were generated by lentiviral gene delivery. Localization of AQP2 variant proteins in the cells under stimulated and unstimulated conditions was analyzed by means of immunostaining and confocal laser scanning microscopy. Intracellular trafficking of AQP2 variant proteins was studied using transient expression of mutant dynamin2-K44A-GFP protein and AQP2 variant protein phosphorylation levels were assessed by Western blotting analysis. RESULTS Clinical and genetic data suggest that the proband and her father suffer from partial nephrogenic DI due to a variation (g.4807C > T) in the AQP2 gene. The variation results in substitution of arginine-254 to tryptophan (p.R254W) in AQP2. Analysis of MDCK cells stably expressing AQP2 variant proteins revealed disabled phosphorylation, impaired trafficking and intracellular accumulation of AQP2-R254W protein. Notably, blocking of the endocytic pathway demonstrated impairment of AQP2-R254W to reach the cell surface. CONCLUSIONS Partial CNDI in the Swedish family is caused by an AQP2 variation that seems to disable the encoded AQP2-R254W protein to reach the subapical vesicle population as well as impairing its phosphorylation at S256. The AQP2-R254W protein is thus unable to reach the plasma membrane to facilitate AVP mediated urine concentration.
Collapse
Affiliation(s)
- Pia Dollerup
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus, Denmark.
| | - Troels Møller Thomsen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus, Denmark.
| | - Lene N Nejsum
- Department of Molecular Biology and Genetics and iNANO, Aarhus University, Aarhus, Denmark.
| | - Mia Færch
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark.
| | - Martin Österbrand
- Department of Pediatrics, Queen Silvia Children's Hospital, Gothenburg, Sweden.
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Søren Rittig
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark.
| | - Jane H Christensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus, Denmark.
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus, Denmark.
| |
Collapse
|
8
|
Hiramatsu T, Hobo A, Hayasaki T, Kabu K, Furuta S. A Pilot Study Examining the Effects of Tolvaptan on Residual Renal Function in Peritoneal Dialysis for Diabetics. Perit Dial Int 2014; 35:552-8. [PMID: 25082843 DOI: 10.3747/pdi.2013.00290] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/18/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND For patients with end-stage renal disease (ESRD), peritoneal dialysis (PD) serves as a possible renal replacement therapy. However, most PD patients, particularly those with ESRD and diabetes mellitus, reportedly discontinue PD early, resulting in shorter survival periods and poorer prognosis because of overhydration. Recently, the vasopressin-2 receptor antagonist tolvaptan was approved for volume control in patients with heart failure. The present study aimed to identify the effects of tolvaptan in diabetic PD patients. METHODS In this pilot study, the tolvaptan group (n = 12) were treated with 15 mg/day of tolvaptan 2 weeks after PD initiation and were prospectively analyzed for 1 year, and patients in the control group (n = 12) did not receive tolvaptan and were retrospectively analyzed for 1 year. In addition to the biochemical tests, echocardiograms, serum atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) levels, peritoneal Kt/V, and creatinine clearance (CCr) were examined at baseline and at 6 and 12 months after PD initiation. RESULTS In the control group, the urine volume, renal Kt/V, and renal CCr levels consistently decreased; however, these parameters were stably maintained during the study period in the tolvaptan group. Atrial natriuretic peptide, CRP levels and the left ventricular mass index of the tolvaptan-treated group were significantly lower than those in the control group, whereas total protein and albumin levels were significantly higher at 6 and 12 months in the tolvaptan group. There were no obvious adverse effects. CONCLUSIONS These data suggest that tolvaptan may preserve residual renal function and improve volume control in PD patients with diabetes mellitus.
Collapse
Affiliation(s)
- Takeyuki Hiramatsu
- Department of Nephrology, Aichi Welfare Cooperative Agricultural Federation, Konan-Kosei Hospital, Konan-city, Aichi, Japan
| | - Akinori Hobo
- Department of Nephrology, Aichi Welfare Cooperative Agricultural Federation, Konan-Kosei Hospital, Konan-city, Aichi, Japan
| | - Takahiro Hayasaki
- Department of Nephrology, Aichi Welfare Cooperative Agricultural Federation, Konan-Kosei Hospital, Konan-city, Aichi, Japan
| | | | - Shinji Furuta
- Department of Nephrology, Aichi Welfare Cooperative Agricultural Federation, Konan-Kosei Hospital, Konan-city, Aichi, Japan
| |
Collapse
|
9
|
Dynamic regulation and dysregulation of the water channel aquaporin-2: a common cause of and promising therapeutic target for water balance disorders. Clin Exp Nephrol 2013; 18:558-70. [DOI: 10.1007/s10157-013-0878-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/24/2013] [Indexed: 12/11/2022]
|
10
|
Bogum J, Faust D, Zühlke K, Eichhorst J, Moutty MC, Furkert J, Eldahshan A, Neuenschwander M, von Kries JP, Wiesner B, Trimpert C, Deen PMT, Valenti G, Rosenthal W, Klussmann E. Small-molecule screening identifies modulators of aquaporin-2 trafficking. J Am Soc Nephrol 2013; 24:744-58. [PMID: 23559583 DOI: 10.1681/asn.2012030295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the principal cells of the renal collecting duct, arginine vasopressin (AVP) stimulates the synthesis of cAMP, leading to signaling events that culminate in the phosphorylation of aquaporin-2 water channels and their redistribution from intracellular domains to the plasma membrane via vesicular trafficking. The molecular mechanisms that control aquaporin-2 trafficking and the consequent water reabsorption, however, are not completely understood. Here, we used a cell-based assay and automated immunofluorescence microscopy to screen 17,700 small molecules for inhibitors of the cAMP-dependent redistribution of aquaporin-2. This approach identified 17 inhibitors, including 4-acetyldiphyllin, a selective blocker of vacuolar H(+)-ATPase that increases the pH of intracellular vesicles and causes accumulation of aquaporin-2 in the Golgi compartment. Although 4-acetyldiphyllin did not inhibit forskolin-induced increases in cAMP formation and downstream activation of protein kinase A (PKA), it did prevent cAMP/PKA-dependent phosphorylation at serine 256 of aquaporin-2, which triggers the redistribution to the plasma membrane. It did not, however, prevent cAMP-induced changes to the phosphorylation status at serines 261 or 269. Last, we identified the fungicide fluconazole as an inhibitor of cAMP-mediated redistribution of aquaporin-2, but its target in this pathway remains unknown. In conclusion, our screening approach provides a method to begin dissecting molecular mechanisms underlying AVP-mediated water reabsorption, evidenced by our identification of 4-acetyldiphyllin as a modulator of aquaporin-2 trafficking.
Collapse
Affiliation(s)
- Jana Bogum
- Max Delbrueck Center for Molecular Medicine, Robert-Rössle Strasse, 10 D-13125, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bibee KP, Augustin R, Gazit V, Moley KH. The apical sorting signal for human GLUT9b resides in the N-terminus. Mol Cell Biochem 2013; 376:163-73. [PMID: 23361362 DOI: 10.1007/s11010-013-1564-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 01/18/2013] [Indexed: 12/11/2022]
Abstract
The two splice variants of human glucose transporter 9 (hGLUT9) are targeted to different polarized membranes. hGLUT9a traffics to the basolateral membrane, whereas hGLUT9b traffics to the apical region. This study examines the sorting mechanism of these variants, which differ only in their N-terminal domain. Mutating a di-leucine motif unique to GLUT9a did not affect targeting. Chimeric proteins were made using GLUT1, a basolaterally targeted transporter, and GLUT3, an apically targeted protein whose signal lies in the C-terminus. Overexpression of the chimeric proteins in polarized cells demonstrates that the N-terminus of hGLUT9b contains a signal capable of redirecting GLUT1 to the apical membrane. The N-terminus of hGLUT9a, however, does not contain a basolateral signal sufficient enough to redirect GLUT3. Portions of the GLUT9a N-terminus were substituted with corresponding portions of the GLUT9b N-terminus to determine the motif responsible for apical targeting. The first 16 amino acids were not found to be a sufficient apical signal. The last ten amino acids of the N-termini differ only in amino-acid class at one location. In the B-form, leucine, a hydrophobic residue, is substituted for lysine, a basic residue, found in the A-form. However, mutation of the leucine in hGLUT9b to a lysine resulted in retention of the apical signal. We therefore believe the apical signal exists as an interplay between the final ten amino acids of the N-terminus and another motif within the protein such as the intracellular loop or other motifs within the N-terminus.
Collapse
Affiliation(s)
- Kristin P Bibee
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
12
|
Liberatore Junior RD, Carneiro JG, Leidenz FB, Melilo-Carolino R, Sarubi HC, De Marco L. Novel compound aquaporin 2 mutations in nephrogenic diabetes insipidus. Clinics (Sao Paulo) 2012; 67:79-82. [PMID: 22249485 PMCID: PMC3248606 DOI: 10.6061/clinics/2012(01)13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Christov M, Alper SL. Tubular transport: core curriculum 2010. Am J Kidney Dis 2010; 56:1202-17. [PMID: 21035933 DOI: 10.1053/j.ajkd.2010.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 09/14/2010] [Indexed: 12/31/2022]
Affiliation(s)
- Marta Christov
- Renal Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | | |
Collapse
|
14
|
|
15
|
Involvement of aquaporin in thromboxane A2 receptor-mediated, G 12/13/RhoA/NHE-sensitive cell swelling in 1321N1 human astrocytoma cells. Cell Signal 2009; 22:41-6. [PMID: 19772916 DOI: 10.1016/j.cellsig.2009.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 09/09/2009] [Indexed: 11/22/2022]
Abstract
The physiological role of the thromboxane A(2) (TXA(2)) receptor expressed on glial cells remains unclear. We previously reported that 1321N1 human astrocytoma cells pretreated with dibutyryl cyclic AMP (dbcAMP) became swollen in response to U46619, a TXA(2) analogue. In the present study, we examined the detailed mechanisms of TXA(2) receptor-mediated cell swelling in 1321N1 cells. The cell swelling caused by U46619 was suppressed by expression of p115-RGS, an inhibitory peptide of G alpha(12/13) pathway and C3 toxin, an inhibitory protein for RhoA. The swelling was also inhibited by treatment with Y27632, a Rho kinase inhibitor and 5-(ethyl-N-isopropyl)amiloride (EIPA), a Na(+)/H(+)-exchanger inhibitor. Furthermore, cell swelling was suppressed by the pretreatment with aquaporin inhibitors mercury chloride or phloretin in a concentration-dependent manner, suggesting that aquaporins are involved in U46619-induced 1321N1 cell swelling. In fact, U46619 caused [(3)H]H(2)O influx into the cells, which was inhibited by p115-RGS, C3 toxin, EIPA, mercury chloride and phloretin. This is the first report that the TXA(2) receptor mediates water influx through aquaporins in astrocytoma cells via TXA(2) receptor-mediated activation of G alpha(12/13), Rho A, Rho kinase and Na(+)/H(+)-exchanger.
Collapse
|
16
|
Stenzel N, Fetzer CP, Heumann R, Erdmann KS. PDZ-domain-directed basolateral targeting of the peripheral membrane protein FRMPD2 in epithelial cells. J Cell Sci 2009; 122:3374-84. [PMID: 19706687 DOI: 10.1242/jcs.046854] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multi-PDZ (PSD-95/Discs large/Zonula-occludens-1) domain proteins play a crucial role in the establishment and maintenance of cell polarization. The novel multi-PDZ domain protein FRMPD2 is a potential scaffolding protein consisting of an N-terminal KIND domain, a FERM domain and three PDZ domains. Here we show that FRMPD2 is localized in a polarized fashion in epithelial cells at the basolateral membrane and partially colocalizes with the tight-junction marker protein Zonula-occludens-1. Downregulation of FRMPD2 protein in Caco-2 cells is associated with an impairment of tight junction formation. We find that the FERM domain of FRMPD2 binds phosphatidylinositols and is sufficient for membrane localization. Moreover, we demonstrate that recruitment of FRMPD2 to cell-cell junctions is strictly E-cadherin-dependent, which is in line with our identification of catenin family proteins as binding partners for FRMPD2. We demonstrate that the FERM domain and binding of the PDZ2 domain to the armadillo protein p0071 are required for basolateral restriction of FRMPD2. Moreover, the PDZ2 domain of FRMPD2 is sufficient to partially redirect an apically localized protein to the basolateral membrane. Our results provide novel insights into the molecular function of FRMPD2 and into the targeting mechanism of peripheral membrane proteins in polarized epithelial cells.
Collapse
Affiliation(s)
- Nina Stenzel
- Department of Biochemistry II, Ruhr-University Bochum, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
17
|
Mistry AC, Mallick R, Klein JD, Weimbs T, Sands JM, Fröhlich O. Syntaxin specificity of aquaporins in the inner medullary collecting duct. Am J Physiol Renal Physiol 2009; 297:F292-300. [PMID: 19515809 DOI: 10.1152/ajprenal.00196.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proper targeting of the aquaporin-2 (AQP2) water channel to the collecting duct apical plasma membrane is critical for the urine concentrating mechanism and body water homeostasis. However, the trafficking mechanisms that recruit AQP2 to the plasma membrane are still unclear. Snapin is emerging as an important mediator in the initial interaction of trafficked proteins with target soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (t-SNARE) proteins, and this interaction is functionally important for AQP2 regulation. We show that in AQP2-Madin-Darby canine kidney cells subjected to adenoviral-mediated expression of both snapin and syntaxins, the association of AQP2 with both syntaxin-3 and syntaxin-4 is highly enhanced by the presence of snapin. In pull-down studies, snapin detected AQP2, syntaxin-3, syntaxin-4, and SNAP23 from the inner medullary collecting duct. AQP2 transport activity, as probed by AQP2's urea permeability, was greatly enhanced in oocytes that were coinjected with cRNAs of SNARE components (snapin+syntaxin-3+SNAP23) over those injected with AQP2 cRNA alone. It was not enhanced when syntaxin-3 was replaced by syntaxin-4 (snapin+syntaxin-4+SNAP23). On the other hand, the latter combination significantly enhanced the transport activity of the related AQP3 water channel while the presence of syntaxin-3 did not. This AQP-syntaxin interaction agrees with the polarity of these proteins' expression in the inner medullary collecting duct epithelium. Thus our findings suggest a selectivity of interactions between different aquaporin and syntaxin isoforms, and thus in the regulation of AQP2 and AQP3 activities in the plasma membrane. Snapin plays an important role as a linker between the water channel and the t-SNARE complex, leading to the fusion event, and the pairing with specific t-SNAREs is essential for the specificity of membrane recognition and fusion.
Collapse
Affiliation(s)
- Abinash C Mistry
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Aquaporin-2 is an aquaporin water channel protein present at the apical membrane of kidney collecting duct cells and plays a key role in urine concentrating ability. Like other membrane proteins, aquaporin-2 undergoes dynamic processes within the cells: synthesized, targeted to the subapical region, exocytosed to the apical membrane, endocytosed, recycled and finally degraded. The understanding of the molecular and cellular mechanisms of these events is advancing rapidly, and recent new findings characterizing such processes are reviewed. RECENT FINDINGS Hypertonicity itself stimulates aquaporin-2 expression through the tonicity-responsive enhancer and its transcription factors. Gene targeted mouse models for human nephrogenic diabetes insipidus show the importance of the C-terminus of aquaporin-2 in apical sorting and provide mechanistic insights. Evidence for the importance of actin cytoskelton in exocytosis of aquaporin-2 to the apical membrane is accumulating. Actin and other proteins bind to aquaporin-2 and make a multiprotein complex. New proteomic analyses indicate the involvement of a large series of proteins in aquaporin-2 dynamics. SUMMARY The protein-level understanding of aquaporin-2 dynamics has advanced considerably over the past few years, and continuing studies will open a new way in developing new manoeuvres or drugs to manipulate kidney water homeostasis.
Collapse
Affiliation(s)
- Sei Sasaki
- Department of Nephrology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
| | | |
Collapse
|
19
|
Kim D, Wang M, Cai Q, Brooks H, Dressler GR. Pax transactivation-domain interacting protein is required for urine concentration and osmotolerance in collecting duct epithelia. J Am Soc Nephrol 2007; 18:1458-65. [PMID: 17429055 PMCID: PMC2129125 DOI: 10.1681/asn.2006060625] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Pax transactivation-domain interacting protein (PTIP) is a widely expressed nuclear protein that is essential for early embryonic development. PTIP was first identified on the basis of its interactions with the developmental regulator Pax2 but can also bind to other nuclear transcription factors. The Pax2 protein is essential for development of the renal epithelia and for regulating the response of mature collecting ducts to hyperosmotic stress. For determination of whether PTIP also functions in more differentiated cell types, the Cre-LoxP system was used to delete the ptip gene in the renal collecting ducts using Ksp-Cre driver mice. Collecting duct-specific ptip knockout mice were viable with little discernible phenotype under normal physiologic conditions. However, collecting duct-specific ptip mutants were unable to concentrate urine after the treatment of desamino-cis, D-arginine vasopressin, an antidiuretic hormone. Furthermore, aquaporin-2 (AQP2) expression in the inner medulla of the ptip knockout mice was decreased approximately 10-fold compared with that of wild-type littermates. Expression level of tonicity responsive enhancer binding protein, a transcription factor of AQP2, is not altered in the mutant mice, but its nuclear localization in the inner medulla is unresponsive after treatment with vasopressin agonists. This was due, at least in part, to decreased expression of the arginine vasopressin receptor 2 in ptip mutants. Furthermore, ptip null inner medullary collecting duct cells were sensitive to hyperosmolality in vitro. Thus, ptip is required for the urine concentration mechanism by modulating arginine vasopressin receptor 2 and AQP2 expression in the inner medulla. The data suggest an essential role for ptip in regulating urine concentration and in controlling survival of collecting duct epithelial cells in high osmolality.
Collapse
Affiliation(s)
- Doyeob Kim
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Min Wang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Qi Cai
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Heddwen Brooks
- Department of Physiology, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
20
|
Hodson CA, Ambrogi IG, Scott RO, Mohler PJ, Milgram SL. Polarized apical sorting of guanylyl cyclase C is specified by a cytosolic signal. Traffic 2006; 7:456-64. [PMID: 16536743 DOI: 10.1111/j.1600-0854.2006.00398.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Receptor guanylyl cyclases respond to ligand stimulation by increasing intracellular cGMP, thereby initiating a variety of cell-signaling pathways. Furthermore, these proteins are differentially localized at the apical and basolateral membranes of epithelial cells. We have identified a region of 11 amino acids in the cytosolic COOH terminus of guanylyl cyclase C (GCC) required for normal apical localization in Madin-Darby canine kidney (MDCK) cells. These amino acids share no significant sequence homology with previously identified cytosolic apical sorting determinants. However, these amino acids are highly conserved and are sufficient to confer apical polarity to the interleukin-2 receptor alpha-chain (Tac). Additionally, we find two molecular weight species of GCC in lysates prepared from MDCK cells over-expressing GCC but observe only the fully mature species on the cell surface. Using pulse-chase analysis in polarized MDCK cells, we followed the generation of this mature species over time finding it to be detectable only at the apical cell surface. These data support the hypothesis that selective apical sorting can be determined using short, cytosolic amino acid motifs and argue for the existence of apical sorting machinery comparable with the machinery identified for basolateral protein traffic.
Collapse
Affiliation(s)
- Caleb A Hodson
- Graduate Program in Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
21
|
Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA. Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci U S A 2006; 103:7159-64. [PMID: 16641100 PMCID: PMC1459033 DOI: 10.1073/pnas.0600895103] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein phosphorylation plays a key role in vasopressin signaling in the renal-collecting duct. Large-scale identification and quantification of phosphorylation events triggered by vasopressin is desirable to gain a comprehensive systems-level understanding of this process. We carried out phosphoproteomic analysis of rat inner medullary collecting duct cells by using a combination of phosphopeptide enrichment by immobilized metal affinity chromatography and phosphorylation site identification by liquid chromatography-mass spectrometry(n) neutral loss scanning. A total of 714 phosphorylation sites on 223 unique phosphoproteins were identified from inner medullary collecting duct samples treated short-term with either calyculin A or vasopressin. A number of proteins involved in cytoskeletal reorganization, vesicle trafficking, and transcriptional regulation were identified. Previously unidentified phosphorylation sites were found for membrane proteins essential to collecting duct physiology, including eight sites among aquaporin-2 (AQP2), aquaporin-4, and urea transporter isoforms A1 and A3. Through label-free quantification of phosphopeptides, we identified a number of proteins that significantly changed phosphorylation state in response to short-term vasopressin treatment: AQP2, Bclaf1, LRRC47, Rgl3, and SAFB2. In the presence of vasopressin, AQP2 monophosphorylated at S256 and diphosphorylated AQP2 (pS256/261) increased in abundance, whereas AQP2 monophosphorylated at S261 decreased, raising the possibility that both sites are involved in vasopressin-dependent AQP2 trafficking. This study reveals the practicality of liquid chromatography-mass spectrometry(n) neutral loss scanning for large-scale identification and quantification of protein phosphorylation in the analysis of cell signaling in a native mammalian system.
Collapse
Affiliation(s)
| | | | - Guanghui Wang
- National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Rong-Fong Shen
- National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Mark A. Knepper
- National Heart, Lung, and Blood Institute, Bethesda, MD 20892
- *To whom correspondence should be addressed at:
National Institutes of Health, Building 10, Room 6N260, 10 Center Drive, MSC 1603, Bethesda, MD 20892-1603.
E-mail:
| |
Collapse
|