1
|
Whitmire JM, Windham IH, Makobongo MO, Westland MD, Tran SC, Piñol J, Hui Y, Raheem Alkarkoushi R, Pich OQ, McGee DJ, Piazuelo MB, Melton-Celsa A, Testerman TL, Cover TL, Merrell DS. A unique Helicobacter pylori strain to study gastric cancer development. Microbiol Spectr 2025; 13:e0216324. [PMID: 39641575 PMCID: PMC11705839 DOI: 10.1128/spectrum.02163-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/20/2024] [Indexed: 12/07/2024] Open
Abstract
Helicobacter pylori colonizes a majority of the human population worldwide and can trigger development of a variety of gastric diseases. Since the bacterium is classified as a carcinogen, elucidation of the characteristics of H. pylori that influence gastric carcinogenesis is a high priority. To this end, the Mongolian gerbil infection model has proven to be an important tool to study gastric cancer progression. However, only a small number of H. pylori strains have been evaluated in the gerbil model. Thus, to identify additional strains able to colonize and induce disease in this model, several H. pylori strains were used to infect Mongolian gerbils, and stomachs were harvested at multiple timepoints to assess colonization and gastric pathology. The USU101 strain reproducibly colonized Mongolian gerbils and induced gastric inflammation in the majority of the animals 1 month after infection. Adenocarcinoma or dysplasia was observed in the majority of gerbils by 2 months post-infection. To define the contribution of key virulence factors to this process, isogenic strains lacking cagA or vacA, along with restorant strains containing a wild-type (WT) copy of the genes, were studied. The ΔcagA USU101 strain colonized gerbils at levels similar to WT, but did not induce comparable levels of inflammation or disease. In contrast, the ΔvacA USU101 strain did not colonize gerbils, and the stomach pathology resembled that of the mock-infected animals. The restorant USU101 strains expressed the CagA and VacA proteins in vitro, and in vivo experiments with Mongolian gerbils showed a restoration of colonization levels and inflammation scores comparable to those observed in WT USU101. Our studies indicate that the USU101 strain is a valuable tool to study H. pylori-induced disease.IMPORTANCEGastric cancer is the fifth leading cause of cancer-related death globally; the majority of gastric cancers are associated with Helicobacter pylori infection. Infection of Mongolian gerbils with H. pylori has been shown to result in induction of gastric cancer, but few H. pylori strains have been studied in this model; this limits our ability to fully understand gastric cancer pathogenesis in humans because H. pylori strains are notoriously heterogenous. Our studies reveal that USU101 represents a unique H. pylori strain that can be added to our repertoire of strains to study gastric cancer development in the Mongolian gerbil model.
Collapse
Affiliation(s)
| | - Ian H. Windham
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Morris O. Makobongo
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | | | | | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Yvonne Hui
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | | | - Oscar Q. Pich
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Hospital Universitari Parc Taulí, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - David J. McGee
- Department of Microbiology and Immunology, LSU Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | | | - Angela Melton-Celsa
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Traci L. Testerman
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Timothy L. Cover
- Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - D. Scott Merrell
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
2
|
O’Brien VP, Jackson LK, Frick JP, Rodriguez Martinez AE, Jones DS, Johnston CD, Salama NR. Helicobacter pylori Chronic Infection Selects for Effective Colonizers of Metaplastic Glands. mBio 2023; 14:e0311622. [PMID: 36598261 PMCID: PMC9973278 DOI: 10.1128/mbio.03116-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Chronic gastric infection with Helicobacter pylori can lead to progressive tissue changes that culminate in cancer, but how H. pylori adapts to the changing tissue environment during disease development is not fully understood. In a transgenic mouse gastric metaplasia model, we found that strains from unrelated individuals differed in their ability to infect the stomach, to colonize metaplastic glands, and to alter the expression of the metaplasia-associated protein TFF3. H. pylori isolates from different stages of disease from a single individual had differential ability to colonize healthy and metaplastic gastric glands. Exposure to the metaplastic environment selected for high gastric colonization by one of these strains. Complete genome sequencing revealed a unique alteration in the frequency of a variant allele of the putative adhesin sabB, arising from a recombination event with the related sialic acid binding adhesin (SabA) gene. Mutation of sabB in multiple H. pylori strain backgrounds strongly reduced adherence to both normal and metaplastic gastric tissue, and highly attenuated stomach colonization in mice. Thus, the changing gastric environment during disease development promotes bacterial adhesin gene variation associated with enhanced gastric colonization. IMPORTANCE Chronic infection with Helicobacter pylori is the primary risk factor for developing stomach cancer. As disease progresses H. pylori must adapt to a changing host tissue environment that includes induction of new cell fates in the cells that line the stomach. We tested representative H. pylori isolates collected from the same patient during early and later stages of disease in a mouse model where we can rapidly induce disease-associated tissue changes. Only the later-stage H. pylori strains could robustly colonize the diseased stomach environment. We also found that the ability to colonize the diseased stomach was associated with genetic variation in a putative cell surface adhesin gene called sabB. Additional experiments revealed that SabB promotes binding to stomach tissue and is critical for stomach colonization by the late-stage strains. Thus, H. pylori diversifies its genome during disease progression and these genomic changes highlight critical factors for bacterial persistence.
Collapse
Affiliation(s)
- V. P. O’Brien
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - L. K. Jackson
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - J. P. Frick
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | - D. S. Jones
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - C. D. Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - N. R. Salama
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Yang H, Huang X, Zhang X, Zhang X, Xu X, She F, Wen Y. AI-2 Induces Urease Expression Through Downregulation of Orphan Response Regulator HP1021 in Helicobacter pylori. Front Med (Lausanne) 2022; 9:790994. [PMID: 35433748 PMCID: PMC9010608 DOI: 10.3389/fmed.2022.790994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Helicobacter pylori causes gastric infections in more than half of the world's population. The bacterium's survival in the stomach is mediated by the abundant production of urease to enable acid acclimation. In this study, our transcriptomic analysis demonstrated that the expression of urease structural proteins, UreA and UreB, is induced by the autoinducer AI-2 in H. pylori. We also found that the orphan response regulator HP1021 is downregulated by AI-2, resulting in the induction of urease expression. HP1021 represses the expression of urease by directly binding to the promoter region of ureAB, ranging from −47 to +3 with respect to the transcriptional start site. The study findings suggest that quorum sensing via AI-2 enhances acid acclimation when bacterial density increases, and might enable bacterial dispersal to other sites when entering gastric acid.
Collapse
Affiliation(s)
- Huang Yang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoxing Huang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaochuan Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoyan Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaohong Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Feifei She
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
- *Correspondence: Feifei She
| | - Yancheng Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
- Yancheng Wen
| |
Collapse
|
4
|
Helicobacter pylori FabX contains a [4Fe-4S] cluster essential for unsaturated fatty acid synthesis. Nat Commun 2021; 12:6932. [PMID: 34836944 PMCID: PMC8626469 DOI: 10.1038/s41467-021-27148-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022] Open
Abstract
Unsaturated fatty acids (UFAs) are essential for functional membrane phospholipids in most bacteria. The bifunctional dehydrogenase/isomerase FabX is an essential UFA biosynthesis enzyme in the widespread human pathogen Helicobacter pylori, a bacterium etiologically related to 95% of gastric cancers. Here, we present the crystal structures of FabX alone and in complexes with an octanoyl-acyl carrier protein (ACP) substrate or with holo-ACP. FabX belongs to the nitronate monooxygenase (NMO) flavoprotein family but contains an atypical [4Fe-4S] cluster absent in all other family members characterized to date. FabX binds ACP via its positively charged α7 helix that interacts with the negatively charged α2 and α3 helices of ACP. We demonstrate that the [4Fe-4S] cluster potentiates FMN oxidation during dehydrogenase catalysis, generating superoxide from an oxygen molecule that is locked in an oxyanion hole between the FMN and the active site residue His182. Both the [4Fe-4S] and FMN cofactors are essential for UFA synthesis, and the superoxide is subsequently excreted by H. pylori as a major resource of peroxide which may contribute to its pathogenic function in the corrosion of gastric mucosa.
Collapse
|
5
|
Li M, Qin J, Xiong K, Jiang B, Zhang T. Review of arginase as a promising biocatalyst: characteristics, preparation, applications and future challenges. Crit Rev Biotechnol 2021; 42:651-667. [PMID: 34612104 DOI: 10.1080/07388551.2021.1947962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As a committed step in the urea cycle, arginase cleaves l-arginine to form l-ornithine and urea. l-Ornithine is essential to: cell proliferation, collagen formation and other physiological functions, while the urea cycle itself converts highly toxic ammonia to urea for excretion. Recently, arginase was exploited as an efficient catalyst for the environmentally friendly synthesis of l-ornithine, an abundant nonprotein amino acid that is widely employed as a food supplement and nutrition product. It was also proposed as an arginine-reducing agent in order to treat arginase deficiency and to be a means of depleting arginine to treat arginine auxotrophic tumors. Targeting arginase inhibitors of the arginase/ornithine pathway offers great promise as a therapy for: cardiovascular, central nervous system diseases and cancers with high arginase expression. In this review, recent advances in the characteristics, structure, catalytic mechanism and preparation of arginase were summarized, with a focus being placed on the biotechnical and medical applications of arginase. In particular, perspectives have been presented on the challenges and opportunities for the environmentally friendly utilization of arginase during l-ornithine production and in therapies.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kai Xiong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Taylor JA, Bratton BP, Sichel SR, Blair KM, Jacobs HM, DeMeester KE, Kuru E, Gray J, Biboy J, VanNieuwenhze MS, Vollmer W, Grimes CL, Shaevitz JW, Salama NR. Distinct cytoskeletal proteins define zones of enhanced cell wall synthesis in Helicobacter pylori. eLife 2020; 9:52482. [PMID: 31916938 PMCID: PMC7012605 DOI: 10.7554/elife.52482] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Helical cell shape is necessary for efficient stomach colonization by Helicobacter pylori, but the molecular mechanisms for generating helical shape remain unclear. The helical centerline pitch and radius of wild-type H. pylori cells dictate surface curvatures of considerably higher positive and negative Gaussian curvatures than those present in straight- or curved-rod H. pylori. Quantitative 3D microscopy analysis of short pulses with either N-acetylmuramic acid or D-alanine metabolic probes showed that cell wall growth is enhanced at both sidewall curvature extremes. Immunofluorescence revealed MreB is most abundant at negative Gaussian curvature, while the bactofilin CcmA is most abundant at positive Gaussian curvature. Strains expressing CcmA variants with altered polymerization properties lose helical shape and associated positive Gaussian curvatures. We thus propose a model where CcmA and MreB promote PG synthesis at positive and negative Gaussian curvatures, respectively, and that this patterning is one mechanism necessary for maintaining helical shape. Round spheres, straight rods, and twisting corkscrews, bacteria come in many different shapes. The shape of bacteria is dictated by their cell wall, the strong outer barrier of the cell. As bacteria grow and multiply, they must add to their cell wall while keeping the same basic shape. The cells walls are made from long chain-like molecules via processes that are guided by protein scaffolds within the cell. Many common antibiotics, including penicillin, stop bacterial infections by interrupting the growth of cell walls. Helicobacter pylori is a common bacterium that lives in the gut and, after many years, can cause stomach ulcers and stomach cancer. H. pylori are shaped in a twisting helix, much like a corkscrew. This shape helps H. pylori to take hold and colonize the stomach. It remains unclear how H. pylori creates and maintains its helical shape. The helix is much more curved than other bacteria, and H. pylori does not have the same helpful proteins that other curved bacteria do. If H. pylori grows asymmetrically, adding more material to the cell wall on its long outer side to create a twisting helix, what controls the process? To find out, Taylor et al. grew H. pylori cells and watched how the cell walls took shape. First, a fluorescent dye was attached to the building blocks of the cell wall or to underlying proteins that were thought to help direct its growth. The cells were then imaged in 3D, and images from hundreds of cells were reconstructed to analyze the growth patterns of the bacteria’s cell wall. A protein called CcmA was found most often on the long side of the twisting H. pylori. When the CcmA protein was isolated in a dish, it spontaneously formed sheets and helical bundles, confirming its role as a structural scaffold for the cell wall. When CcmA was absent from the cell of H. pylori, Taylor et al. observed that the pattern of cell growth changed substantially. This work identifies a key component directing the growth of the cell wall of H. pylori and therefore, a new target for antibiotics. Its helical shape is essential for H. pylori to infect the gut, so blocking the action of the CcmA protein may interrupt cell wall growth and prevent stomach infections.
Collapse
Affiliation(s)
- Jennifer A Taylor
- Department of Microbiology, University of Washington, Seattle, United States.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Benjamin P Bratton
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States
| | - Sophie R Sichel
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular Medicine and Mechanisms of Disease Graduate Program, University of Washington, Seattle, United States
| | - Kris M Blair
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, United States
| | - Holly M Jacobs
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, United States
| | - Kristen E DeMeester
- Department of Chemistry and Biochemistry, University of Delaware, Newark, United States
| | - Erkin Kuru
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Joe Gray
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, United States.,Department of Biological Sciences, University of Delaware, Newark, United States
| | - Joshua W Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States.,Department of Physics, Princeton University, Princeton, United States
| | - Nina R Salama
- Department of Microbiology, University of Washington, Seattle, United States.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular Medicine and Mechanisms of Disease Graduate Program, University of Washington, Seattle, United States.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, United States
| |
Collapse
|
7
|
The Cyclopropane Fatty Acid Synthase Mediates Antibiotic Resistance and Gastric Colonization of Helicobacter pylori. J Bacteriol 2019; 201:JB.00374-19. [PMID: 31358615 DOI: 10.1128/jb.00374-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/24/2019] [Indexed: 01/08/2023] Open
Abstract
Cyclopropane fatty acids (CFAs) are synthetized by the addition of a methylene group from S-adenosyl-l-methionine across the carbon-carbon double bonds of unsaturated fatty acid chains of membrane phospholipids. This fatty acid cyclopropanation, catalyzed by the CFA synthase (CfaS) enzyme, occurs in many bacteria, including the human pathogen Helicobacter pylori Although the cyclopropane modification was reported to play a key role in the adaptation in response to environmental stress, its role in H. pylori remains unknown. In this study, we showed that H. pylori HP0416 encodes a functional CfaS. The enzyme was demonstrated to be required for acid resistance, antibiotic resistance, intracellular survival and mouse gastric colonization, and cell membrane integrity. Moreover, the tool compound dioctylamine, which acts as a substrate mimic, directly inhibits the CfaS function of H. pylori, resulting into sensitivity to acid stress, increased antibiotic susceptibility, and attenuated abilities to avoid macrophage killing and to colonize mouse stomachs. These results validate CfaS as a promising antibiotic target and provide new potentials for this recognized target in future anti-H. pylori drug discovery efforts.IMPORTANCE The increasing prevalence of multidrug-resistant Helicobacter pylori strains has created an urgent need for alternative therapeutic regimens that complement the current antibiotic treatment strategies for H. pylori eradication; however, this is greatly hampered due to a lack of "druggable" targets. Although the CFAs are present in H. pylori cytoplasmic membranes at high levels, their physiological role has not been established. In this report, deletion of the CFA synthase CfaS was shown to attenuate acid and drug resistance, immune escape, and gastric colonization of H. pylori These findings were validated by inhibition of the CfaS activity with the tool compound dioctylamine. These studies identify this enzyme as an attractive target for further drug discovery efforts against H. pylori.
Collapse
|
8
|
A Genome-Wide Helicobacter pylori Morphology Screen Uncovers a Membrane-Spanning Helical Cell Shape Complex. J Bacteriol 2019; 201:JB.00724-18. [PMID: 31036730 DOI: 10.1128/jb.00724-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/26/2019] [Indexed: 12/16/2022] Open
Abstract
Evident in its name, the gastric pathogen Helicobacter pylori has a helical cell morphology which facilitates efficient colonization of the human stomach. An improved light-focusing strategy allowed us to robustly distinguish even subtle perturbations of H. pylori cell morphology by deviations in light-scattering properties measured by flow cytometry. Profiling of an arrayed genome-wide deletion library identified 28 genes that influence different aspects of cell shape, including properties of the helix, cell length or width, cell filament formation, cell shape heterogeneity, and cell branching. Included in this mutant collection were two that failed to form any helical cells, a soluble lytic transglycosylase and a previously uncharacterized putative multipass inner membrane protein HPG27_0728, renamed Csd7. A combination of cell fractionation, mutational, and immunoprecipitation experiments show that Csd7 and Csd2 collaborate to stabilize the Csd1 peptidoglycan (PG) endopeptidase. Thus, both csd2 and csd7 mutants show the same enhancement of PG tetra-pentapeptide cross-linking as csd1 mutants. Csd7 also links Csd1 with the bactofilin CcmA via protein-protein interactions. Although Csd1 is stable in ccmA mutants, these mutants show altered PG tetra-pentapeptide cross-linking, suggesting that Csd7 may directly or indirectly activate as well as stabilize Csd1. These data begin to illuminate a highly orchestrated program to regulate PG modifications that promote helical shape, which includes nine nonessential nonredundant genes required for helical shape and 26 additional genes that further modify H. pylori's cell morphology.IMPORTANCE The stomach ulcer and cancer-causing pathogen Helicobacter pylori has a helical cell shape which facilitates stomach infection. Using light scattering to measure perturbations of cell morphology, we identified 28 genes that influence different aspects of cell shape. A mutant in a previously uncharacterized protein renamed Csd7 failed to form any helical cells. Biochemical analyses showed that Csd7 collaborates with other proteins to stabilize the cell wall-degrading enzyme Csd1. Csd7 also links Csd1 with a putative filament-forming protein via protein-protein interactions. These data suggest that helical cell shape arises from a highly orchestrated program to regulate cell wall modifications. Targeting of this helical cell shape-promoting program could offer new ways to block infectivity of this important human pathogen.
Collapse
|
9
|
Nonhelical Helicobacter pylori Mutants Show Altered Gland Colonization and Elicit Less Gastric Pathology than Helical Bacteria during Chronic Infection. Infect Immun 2019; 87:IAI.00904-18. [PMID: 31061142 DOI: 10.1128/iai.00904-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Half of all humans harbor Helicobacter pylori in their stomachs. Helical cell shape is thought to facilitate H. pylori's ability to bore into the protective mucus layer in a corkscrew-like motion, thereby enhancing colonization of the stomach. H. pylori cell shape mutants show impaired colonization of the mouse stomach, highlighting the importance of cell shape in infection. To gain a deeper understanding of how helical cell morphology promotes host colonization by H. pylori, we used three-dimensional confocal microscopy to visualize the clinical isolate PMSS1 and an isogenic straight-rod mutant (Δcsd6) within thick longitudinal mouse stomach sections. We also performed volumetric image analysis to quantify the number of bacteria residing within corpus and antral glands in addition to measuring total CFU. We found that straight rods show attenuation during acute colonization of the stomach (1 day or 1 week postinfection) as measured by total CFU. Our quantitative imaging revealed that wild-type bacteria extensively colonized antral glands at 1 week postinfection, while csd6 mutants showed variable colonization of the antrum at this time point. During chronic infection (1 or 3 months postinfection), total CFU were highly variable but similar for wild-type and straight rods. Both wild-type and straight rods persisted and expanded in corpus glands during chronic infection. However, the straight rods showed reduced inflammation and disease progression. Thus, helical cell shape contributes to tissue interactions that promote inflammation during chronic infection, in addition to facilitating niche acquisition during acute infection.
Collapse
|
10
|
Arcanobacterium haemolyticum Phospholipase D Enzymatic Activity Promotes the Hemolytic Activity of the Cholesterol-Dependent Cytolysin Arcanolysin. Toxins (Basel) 2018; 10:toxins10060213. [PMID: 29882842 PMCID: PMC6024514 DOI: 10.3390/toxins10060213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
Arcanolysin, produced by the human pathogen Arcanobacterium haemolyticum, is a cholesterol-dependent cytolysin. To mediate the pore-formation process, arcanolysin is secreted by A. haemolyticum and then must interact with cholesterol embedded within a host membrane. However, arcanolysin must compete with membrane components, such as the phospholipid sphingomyelin, to interact with cholesterol and form pores. Cholesterol forms transient hydrogen bonds with the extracellular portion of sphingomyelin, shielding cholesterol from extracellular factors, including arcanolysin. A. haemolyticum also produces a sphingomyelin-specific phospholipase D, which removes the choline head from sphingomyelin, leaving cyclic-ceramide phosphate and eliminating the potential for cholesterol sequestration. We hypothesized that the enzymatic activity of phospholipase D decreases sphingomyelin-mediated cholesterol sequestration and increases cholesterol accessibility for arcanolysin. Using purified arcanolysin and phospholipase D, we demonstrate that the enzymatic activity of phospholipase D is necessary to promote arcanolysin-mediated hemolysis in both time- and concentration-dependent manners. Phospholipase D promotion of arcanolysin-mediated cytotoxicity was confirmed in Detroit 562 epithelial cells. Furthermore, we determined that incubating phospholipase D with erythrocytes corresponds with an increase in the amount of arcanolysin bound to host membranes. This observation suggests that phospholipase D promotes arcanolysin-mediated cytotoxicity by increasing the ability of arcanolysin to bind to a host membrane.
Collapse
|
11
|
Gall A, Gaudet RG, Gray-Owen SD, Salama NR. TIFA Signaling in Gastric Epithelial Cells Initiates the cag Type 4 Secretion System-Dependent Innate Immune Response to Helicobacter pylori Infection. mBio 2017; 8:e01168-17. [PMID: 28811347 PMCID: PMC5559637 DOI: 10.1128/mbio.01168-17] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori is a bacterial pathogen that colonizes the human stomach, causing inflammation which, in some cases, leads to gastric ulcers and cancer. The clinical outcome of infection depends on a complex interplay of bacterial, host genetic, and environmental factors. Although H. pylori is recognized by both the innate and adaptive immune systems, this rarely results in bacterial clearance. Gastric epithelial cells are the first line of defense against H. pylori and alert the immune system to bacterial presence. Cytosolic delivery of proinflammatory bacterial factors through the cag type 4 secretion system (cag-T4SS) has long been appreciated as the major mechanism by which gastric epithelial cells detect H. pylori Classically attributed to the peptidoglycan sensor NOD1, recent work has highlighted the role of NOD1-independent pathways in detecting H. pylori; however, the bacterial and host factors involved have remained unknown. Here, we show that bacterially derived heptose-1,7-bisphosphate (HBP), a metabolic precursor in lipopolysaccharide (LPS) biosynthesis, is delivered to the host cytosol through the cag-T4SS, where it activates the host tumor necrosis factor receptor-associated factor (TRAF)-interacting protein with forkhead-associated domain (TIFA)-dependent cytosolic surveillance pathway. This response, which is independent of NOD1, drives robust NF-κB-dependent inflammation within hours of infection and precedes NOD1 activation. We also found that the CagA toxin contributes to the NF-κB-driven response subsequent to TIFA and NOD1 activation. Taken together, our results indicate that the sequential activation of TIFA, NOD1, and CagA delivery drives the initial inflammatory response in gastric epithelial cells, orchestrating the subsequent recruitment of immune cells and leading to chronic gastritis.IMPORTANCEH. pylori is a globally prevalent cause of gastric and duodenal ulcers and cancer. H. pylori antibiotic resistance is rapidly increasing, and a vaccine remains elusive. The earliest immune response to H. pylori is initiated by gastric epithelial cells and sets the stage for the subsequent immunopathogenesis. This study revealed that host TIFA and H. pylori-derived HBP are critical effectors of innate immune signaling that account for much of the inflammatory response to H. pylori in gastric epithelial cells. HBP is delivered to the host cell via the cag-T4SS at a time point that precedes activation of the previously described NOD1 and CagA inflammatory pathways. Manipulation of the TIFA-driven immune response in the host and/or targeting of ADP-heptose biosynthesis enzymes in H. pylori may therefore provide novel strategies that may be therapeutically harnessed to achieve bacterial clearance.
Collapse
Affiliation(s)
- Alevtina Gall
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ryan G Gaudet
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Howard Hughes Medical Institute and Departments of Microbial Pathogenesis and of Immunobiology, Yale University, New Haven, Connecticut, USA
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nina R Salama
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
12
|
Fischer F, Robbe-Saule M, Turlin E, Mancuso F, Michel V, Richaud P, Veyrier FJ, De Reuse H, Vinella D. Characterization in Helicobacter pylori of a Nickel Transporter Essential for Colonization That Was Acquired during Evolution by Gastric Helicobacter Species. PLoS Pathog 2016; 12:e1006018. [PMID: 27923069 PMCID: PMC5140060 DOI: 10.1371/journal.ppat.1006018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/21/2016] [Indexed: 12/23/2022] Open
Abstract
Metal acquisition is crucial for all cells and for the virulence of many bacterial pathogens. In particular, nickel is a virulence determinant for the human gastric pathogen Helicobacter pylori as it is the cofactor of two enzymes essential for in vivo colonization, urease and a [NiFe] hydrogenase. To import nickel despite its scarcity in the human body, H. pylori requires efficient uptake mechanisms that are only partially defined. Indeed, alternative ways of nickel entry were predicted to exist in addition to the well-described NixA permease. Using a genetic screen, we identified an ABC transporter, that we designated NiuBDE, as a novel H. pylori nickel transport system. Unmarked mutants carrying deletions of nixA, niuD and/or niuB, were constructed and used to measure (i) tolerance to toxic nickel exposure, (ii) intracellular nickel content by ICP-OES, (iii) transport of radioactive nickel and (iv) expression of a reporter gene controlled by nickel concentration. We demonstrated that NiuBDE and NixA function separately and are the sole nickel transporters in H. pylori. NiuBDE, but not NixA, also transports cobalt and bismuth, a metal currently used in H. pylori eradication therapy. Both NiuBDE and NixA participate in nickel-dependent urease activation at pH 5 and survival under acidic conditions mimicking those encountered in the stomach. However, only NiuBDE is able to carry out this activity at neutral pH and is essential for colonization of the mouse stomach. Phylogenomic analyses indicated that both nixA and niuBDE genes have been acquired via horizontal gene transfer by the last common ancestor of the gastric Helicobacter species. Our work highlights the importance of this evolutionary event for the emergence of Helicobacter gastric species that are adapted to the hostile environment of the stomach where the capacity of Helicobacter to import nickel and thereby activate urease needs to be optimized.
Collapse
Affiliation(s)
- Frédéric Fischer
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, FRANCE
| | - Marie Robbe-Saule
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, FRANCE
| | - Evelyne Turlin
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, FRANCE
| | - Francesco Mancuso
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, FRANCE
| | - Valérie Michel
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, FRANCE
| | - Pierre Richaud
- CEA, DRF, BIAM SBVME and CNRS, UMR 7265, Saint-Paul-lez-Durance, Aix Marseille Université, Marseille, FRANCE
| | - Frédéric J. Veyrier
- INRS-Institut Armand-Frappier, Bacterial Symbionts Evolution, Laval, Quebec, CANADA
| | - Hilde De Reuse
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, FRANCE
- * E-mail:
| | - Daniel Vinella
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, FRANCE
| |
Collapse
|
13
|
Vinella D, Fischer F, Vorontsov E, Gallaud J, Malosse C, Michel V, Cavazza C, Robbe-Saule M, Richaud P, Chamot-Rooke J, Brochier-Armanet C, De Reuse H. Evolution of Helicobacter: Acquisition by Gastric Species of Two Histidine-Rich Proteins Essential for Colonization. PLoS Pathog 2015; 11:e1005312. [PMID: 26641249 PMCID: PMC4671568 DOI: 10.1371/journal.ppat.1005312] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/05/2015] [Indexed: 02/07/2023] Open
Abstract
Metal acquisition and intracellular trafficking are crucial for all cells and metal ions have been recognized as virulence determinants in bacterial pathogens. Virulence of the human gastric pathogen Helicobacter pylori is dependent on nickel, cofactor of two enzymes essential for in vivo colonization, urease and [NiFe] hydrogenase. We found that two small paralogous nickel-binding proteins with high content in Histidine (Hpn and Hpn-2) play a central role in maintaining non-toxic intracellular nickel content and in controlling its intracellular trafficking. Measurements of metal resistance, intracellular nickel contents, urease activities and interactomic analysis were performed. We observed that Hpn acts as a nickel-sequestration protein, while Hpn-2 is not. In vivo, Hpn and Hpn-2 form homo-multimers, interact with each other, Hpn interacts with the UreA urease subunit while Hpn and Hpn-2 interact with the HypAB hydrogenase maturation proteins. In addition, Hpn-2 is directly or indirectly restricting urease activity while Hpn is required for full urease activation. Based on these data, we present a model where Hpn and Hpn-2 participate in a common pathway of controlled nickel transfer to urease. Using bioinformatics and top-down proteomics to identify the predicted proteins, we established that Hpn-2 is only expressed by H. pylori and its closely related species Helicobacter acinonychis. Hpn was detected in every gastric Helicobacter species tested and is absent from the enterohepatic Helicobacter species. Our phylogenomic analysis revealed that Hpn acquisition was concomitant with the specialization of Helicobacter to colonization of the gastric environment and the duplication at the origin of hpn-2 occurred in the common ancestor of H. pylori and H. acinonychis. Finally, Hpn and Hpn-2 were found to be required for colonization of the mouse model by H. pylori. Our data show that during evolution of the Helicobacter genus, acquisition of Hpn and Hpn-2 by gastric Helicobacter species constituted a decisive evolutionary event to allow Helicobacter to colonize the hostile gastric environment, in which no other bacteria persistently thrives. This acquisition was key for the emergence of one of the most successful bacterial pathogens, H. pylori. Helicobacter pylori is a bacterium that persistently colonizes the stomach of half of the human population. Infection by H. pylori is associated with gastritis, peptic ulcer disease and adenocarcinoma. To resist gastric acidity and proliferate in the stomach, H. pylori relies on urease, an enzyme that contains a nickel-metallocenter at its active site. Thus, nickel is a virulence determinant for H. pylori. Our aim is to characterize how H. pylori controls the intracellular nickel concentration to avoid toxicity, which protein partners are involved, and how they impact urease activity and virulence. We characterized two H. pylori proteins, Hpn and Hpn-2 that are rich in Histidine residues. We demonstrated that Hpn is involved in nickel sequestration, that the two proteins interact with each other and that their combined activities participate in a nickel transfer pathway to urease. Hpn is only expressed in gastric Helicobacter species able to colonize the stomach and Hpn-2 is restricted to the H. pylori and its close relative H. acinonychis. We found that both proteins are essential for colonization of a mouse model by H. pylori. We conclude that during evolution, the acquisition of Hpn and Hpn-2 by gastric Helicobacter species was decisive for their capacity to colonize the stomach.
Collapse
Affiliation(s)
- Daniel Vinella
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
| | - Frédéric Fischer
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
| | - Egor Vorontsov
- Institut Pasteur, Département de Biologie Structurale et Chimie, Unité Spectrométrie de Masse Structurale et Protéomique, CNRS UMR 3528, Paris, France
| | - Julien Gallaud
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Christian Malosse
- Institut Pasteur, Département de Biologie Structurale et Chimie, Unité Spectrométrie de Masse Structurale et Protéomique, CNRS UMR 3528, Paris, France
| | - Valérie Michel
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
| | | | - Marie Robbe-Saule
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
| | - Pierre Richaud
- CEA, DSV, IBEB, SBVME and CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France and Aix Marseille Université, BVME UMR7265, Marseille, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Département de Biologie Structurale et Chimie, Unité Spectrométrie de Masse Structurale et Protéomique, CNRS UMR 3528, Paris, France
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Hilde De Reuse
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
- * E-mail:
| |
Collapse
|
14
|
Sycuro LK, Rule CS, Petersen TW, Wyckoff TJ, Sessler T, Nagarkar DB, Khalid F, Pincus Z, Biboy J, Vollmer W, Salama NR. Flow cytometry-based enrichment for cell shape mutants identifies multiple genes that influence Helicobacter pylori morphology. Mol Microbiol 2013; 90:869-83. [PMID: 24112477 PMCID: PMC3844677 DOI: 10.1111/mmi.12405] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2013] [Indexed: 12/17/2022]
Abstract
The helical cell shape of Helicobacter pylori is highly conserved and contributes to its ability to swim through and colonize the viscous gastric mucus layer. A multi-faceted peptidoglycan (PG) modification programme involving four recently characterized peptidases and two accessory proteins is essential for maintaining H. pylori's helicity. To expedite identification of additional shape-determining genes, we employed flow cytometry with fluorescence-activated cell sorting (FACS) to enrich a transposon library for bacterial cells with altered light scattering profiles that correlate with perturbed cell morphology. After a single round of sorting, 15% of our clones exhibited a stable cell shape defect, reflecting 37-fold enrichment. Sorted clones with straight rod morphology contained insertions in known PG peptidases, as well as an insertion in csd6, which we demonstrated has ld-carboxypeptidase activity and cleaves monomeric tetrapeptides in the PG sacculus, yielding tripeptides. Other mutants had only slight changes in helicity due to insertions in genes encoding MviN/MurJ, a protein possibly involved in initiating PG synthesis, and the hypothetical protein HPG27_782. Our findings demonstrate FACS robustly detects perturbations of bacterial cell shape and identify additional PG peptide modifications associated with helical cell shape in H. pylori.
Collapse
Affiliation(s)
- Laura K Sycuro
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Animal models are important tools for studies of human disease, but developing these models is a particular challenge with regard to organisms with restricted host ranges, such as the human stomach pathogen Helicobacter pylori. In most cases, H. pylori infects the stomach for many decades before symptoms appear, distinguishing it from many bacterial pathogens that cause acute infection. To model chronic infection in the mouse, a human clinical isolate was selected for its ability to survive for 2 months in the mouse stomach, and the resulting strain, MSD132, colonized the mouse stomach for at least 28 weeks. During selection, the cagY component of the Cag type IV secretion system was mutated, disrupting a key interaction with host cells. Increases in both bacterial persistence and bacterial burden occurred prior to this mutation, and a mixed population of cagY(+) and cagY mutant cells was isolated from a single mouse, suggesting that mutations accumulate during selection and that factors in addition to the Cag apparatus are important for murine adaptation. Diversity in both alleles and genes is common in H. pylori strains, and natural competence mediates a high rate of interstrain genetic exchange. Mutations of the Com apparatus, a membrane DNA transporter, and DprA, a cytosolic competence factor, resulted in reduced persistence, although initial colonization was normal. Thus, exchange of DNA between genetically heterogeneous H. pylori strains may improve chronic colonization. The strains and methods described here will be important tools for defining both the spectrum of mutations that promote murine adaptation and the genetic program of chronic infection.
Collapse
|
16
|
Kim SH, Sierra RA, McGee DJ, Zabaleta J. Transcriptional profiling of gastric epithelial cells infected with wild type or arginase-deficient Helicobacter pylori. BMC Microbiol 2012; 12:175. [PMID: 22889111 PMCID: PMC3438056 DOI: 10.1186/1471-2180-12-175] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 07/18/2012] [Indexed: 12/23/2022] Open
Abstract
Background Helicobacter pylori causes acute and chronic gastric inflammation induced by proinflammatory cytokines and chemokines secreted by cells of the gastric mucosa, including gastric epithelial cells. Previous studies have demonstrated that the bacterial arginase, RocF, is involved in inhibiting T cell proliferation and CD3ζ expression, suggesting that arginase could be involved in a more general dampening of the immune response, perhaps by down-regulation of certain pro-inflammatory mediators. Results Global transcriptome analysis was performed on AGS gastric epithelial cells infected for 16 hours with a wild type Helicobacter pylori strain 26695, an arginase mutant (rocF-) or a rocF+ complemented strain. H. pylori infection triggered altered host gene expression in genes involved in cell movement, death/growth/proliferation, and cellular function and maintenance. While the wild type strain stimulates host inflammatory pathways, the rocF- mutant induced significantly more expression of IL-8. The results of the microarray were verified using real-time PCR, and the differential levels of protein expression were confirmed by ELISA and Bioplex analysis. MIP-1B was also significantly secreted by AGS cells after H. pylori rocF- mutant infection, as determined by Bioplex. Even though not explored in this manuscript, the impact that the results presented here may have on the development of gastritis, warrant further research to understand the underlying mechanisms of the relationship between H. pylori RocF and IL-8 induction. Conclusions We conclude that H. pylori arginase modulates multiple host signaling and metabolic pathways of infected gastric epithelial cells. Arginase may play a critical role in anti-inflammatory host responses that could contribute to the ability of H. pylori to establish chronic infections.
Collapse
Affiliation(s)
- Songhee H Kim
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | | | | | | |
Collapse
|
17
|
Debowski AW, Carnoy C, Verbrugghe P, Nilsson HO, Gauntlett JC, Fulurija A, Camilleri T, Berg DE, Marshall BJ, Benghezal M. Xer recombinase and genome integrity in Helicobacter pylori, a pathogen without topoisomerase IV. PLoS One 2012; 7:e33310. [PMID: 22511919 PMCID: PMC3325230 DOI: 10.1371/journal.pone.0033310] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/07/2012] [Indexed: 12/13/2022] Open
Abstract
In the model organism E. coli, recombination mediated by the related XerC and XerD recombinases complexed with the FtsK translocase at specialized dif sites, resolves dimeric chromosomes into free monomers to allow efficient chromosome segregation at cell division. Computational genome analysis of Helicobacter pylori, a slow growing gastric pathogen, identified just one chromosomal xer gene (xerH) and its cognate dif site (difH). Here we show that recombination between directly repeated difH sites requires XerH, FtsK but not XerT, the TnPZ transposon associated recombinase. xerH inactivation was not lethal, but resulted in increased DNA per cell, suggesting defective chromosome segregation. The xerH mutant also failed to colonize mice, and was more susceptible to UV and ciprofloxacin, which induce DNA breakage, and thereby recombination and chromosome dimer formation. xerH inactivation and overexpression each led to a DNA segregation defect, suggesting a role for Xer recombination in regulation of replication. In addition to chromosome dimer resolution and based on the absence of genes for topoisomerase IV (parC, parE) in H. pylori, we speculate that XerH may contribute to chromosome decatenation, although possible involvement of H. pylori's DNA gyrase and topoisomerase III homologue are also considered. Further analyses of this system should contribute to general understanding of and possibly therapy development for H. pylori, which causes peptic ulcers and gastric cancer; for the closely related, diarrheagenic Campylobacter species; and for unrelated slow growing pathogens that lack topoisomerase IV, such as Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Aleksandra W. Debowski
- Ondek Pty Ltd and Helicobacter pylori Research Laboratory, School of Pathology & Laboratory Medicine, M504, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Washington,
| | - Christophe Carnoy
- United States of America Center for Infection and Immunity of Lille, INSERM U 1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Phebe Verbrugghe
- Ondek Pty Ltd and Helicobacter pylori Research Laboratory, School of Pathology & Laboratory Medicine, M504, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Washington,
| | - Hans-Olof Nilsson
- Ondek Pty Ltd and Helicobacter pylori Research Laboratory, School of Pathology & Laboratory Medicine, M504, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Washington,
| | - Jonathan C. Gauntlett
- Ondek Pty Ltd and Helicobacter pylori Research Laboratory, School of Pathology & Laboratory Medicine, M504, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Washington,
| | - Alma Fulurija
- Ondek Pty Ltd and Helicobacter pylori Research Laboratory, School of Pathology & Laboratory Medicine, M504, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Washington,
| | - Tania Camilleri
- Ondek Pty Ltd and Helicobacter pylori Research Laboratory, School of Pathology & Laboratory Medicine, M504, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Washington,
| | - Douglas E. Berg
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Barry J. Marshall
- Ondek Pty Ltd and Helicobacter pylori Research Laboratory, School of Pathology & Laboratory Medicine, M504, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Washington,
| | - Mohammed Benghezal
- Ondek Pty Ltd and Helicobacter pylori Research Laboratory, School of Pathology & Laboratory Medicine, M504, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Washington,
- * E-mail:
| |
Collapse
|
18
|
Kim SH, Langford ML, Boucher JL, Testerman TL, McGee DJ. Helicobacter pylori arginase mutant colonizes arginase II knockout mice. World J Gastroenterol 2011; 17:3300-9. [PMID: 21876618 PMCID: PMC3160534 DOI: 10.3748/wjg.v17.i28.3300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/19/2011] [Accepted: 02/26/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of host and bacterial arginases in the colonization of mice by Helicobacter pylori (H. pylori).
METHODS: H. pylori produces a very powerful urease that hydrolyzes urea to carbon dioxide and ammonium, which neutralizes acid. Urease is absolutely essential to H. pylori pathogenesis; therefore, the urea substrate must be in ample supply for urease to work efficiently. The urea substrate is most likely provided by arginase activity, which hydrolyzes L-arginine to L-ornithine and urea. Previous work has demonstrated that H. pylori arginase is surprisingly not required for colonization of wild-type mice. Hence, another in vivo source of the critical urea substrate must exist. We hypothesized that the urea source was provided by host arginase II, since this enzyme is expressed in the stomach, and H. pylori has previously been shown to induce the expression of murine gastric arginase II. To test this hypothesis, wild-type and arginase (rocF) mutant H. pylori strain SS1 were inoculated into arginase II knockout mice.
RESULTS: Surprisingly, both the wild-type and rocF mutant bacteria still colonized arginase II knockout mice. Moreover, feeding arginase II knockout mice the host arginase inhibitor S-(2-boronoethyl)-L-cysteine (BEC), while inhibiting > 50% of the host arginase I activity in several tissues, did not block the ability of the rocF mutant H. pylori to colonize. In contrast, BEC poorly inhibited H. pylori arginase activity.
CONCLUSION: The in vivo source for the essential urea utilized by H. pylori urease is neither bacterial arginase nor host arginase II; instead, either residual host arginase I or agmatinase is probably responsible.
Collapse
|
19
|
Kim J, Kim SW, Jang S, Merrell DS, Cha JH. Complementation system for Helicobacter pylori. J Microbiol 2011; 49:481-6. [PMID: 21717336 DOI: 10.1007/s12275-011-1196-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 04/19/2011] [Indexed: 12/12/2022]
Abstract
Previously Langford et al. (2006) developed the pIR203C04 complementation system for Helicobacter pylori, which can be used to complement and restore phenotypic effects in H. pylori mutant, and furthermore they used the complementation system in vivo experiments to animals without altering the ability of strain SSI to colonize mice. In their previous study, the pIR203C04 was able to transform 26695, SSI, J99, and 43504 H. pylori strains by an electroporation method. However, in the present study using a natural transformation the pIR203C04 transformed only 26695 H. pylori but not SSI, J99, 7.13, and G27 H. pylori strains. Since the useful complementation system has a limitation of narrow selection among H. pylori strains, we redesigned the complementation system for the improvement. The same intergenic chromosomal site between hp0203 and hp0204 was utilized for the new complementation system because the insertion at the intergenic site didn't show any polar effects and disruption of other H. pylori genes. The genome sequence analysis showed that the intergenic regions among H. pylori strains may have too low homology to each others to do a homologous recombination. Thus, in addition to the short intergenic region, the fragments of the new complementation system included 3' conserved parts of hp0203 and hp0204 coding regions. Between the fragments there are a chloramphenicol acetyltransferase cassette and multicloning sites, resulting in pKJMSH. DNA fragment of the interest can be cloned into the multicloning sites of pKJMSH and the fragment can be integrated at the intergenic region of H. pylori chromosome by the homologous recombination. Indeed, by the natural transformation, pKJMSH was able to transform all five H. pylori strains of 26695, SSI, J99, 7.13, and G27, which are common for the investigation of molecular pathogenesis. Thus, the new pKJMSH complementation system is applicable to most H. pylori wild-type stains.
Collapse
Affiliation(s)
- Jinmoon Kim
- Department of Oral Biology, Oral Science Research Center, BK21 Project, Research Center for Orofacial Hard Tissue Regeneration, Yonsei University College of Dentistry, Seoul, 120-752, Republic of Korea
| | | | | | | | | |
Collapse
|
20
|
Helicobacter pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils. Infect Immun 2011; 79:3106-16. [PMID: 21576328 DOI: 10.1128/iai.01275-10] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori persistently colonizes humans, causing gastritis, ulcers, and gastric cancer. Adherence to the gastric epithelium has been shown to enhance inflammation, yet only a few H. pylori adhesins have been paired with targets in host tissue. The alpAB locus has been reported to encode adhesins involved in adherence to human gastric tissue. We report that abrogation of H. pylori AlpA and AlpB reduces binding of H. pylori to laminin while expression of plasmid-borne alpA or alpB confers laminin-binding ability to Escherichia coli. An H. pylori strain lacking only AlpB is also deficient in laminin binding. Thus, we conclude that both AlpA and AlpB contribute to H. pylori laminin binding. Contrary to expectations, the H. pylori SS1 mutant deficient in AlpA and AlpB causes more severe inflammation than the isogenic wild-type strain in gerbils. Identification of laminin as the target of AlpA and AlpB will facilitate future investigations of host-pathogen interactions occurring during H. pylori infection.
Collapse
|
21
|
Humbert O, Dorer MS, Salama NR. Characterization of Helicobacter pylori factors that control transformation frequency and integration length during inter-strain DNA recombination. Mol Microbiol 2010; 79:387-401. [PMID: 21219459 DOI: 10.1111/j.1365-2958.2010.07456.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Helicobacter pylori is a genetically diverse bacterial species, owing in part to its natural competence for DNA uptake that facilitates recombination between strains. Inter-strain DNA recombination occurs during human infection and the H. pylori genome is in linkage equilibrium worldwide. Despite this high propensity for DNA exchange, little is known about the factors that limit the extent of recombination during natural transformation. Here, we identify restriction-modification (R-M) systems as a barrier to transformation with homeologous DNA and find that R-M systems and several components of the recombination machinery control integration length. Type II R-M systems, the nuclease nucT and resolvase ruvC reduced integration length whereas the helicase recG increased it. In addition, we characterized a new factor that promotes natural transformation in H. pylori, dprB. Although free recombination has been widely observed in H. pylori, our study suggests that this bacterium uses multiple systems to limit inter-strain recombination.
Collapse
Affiliation(s)
- Olivier Humbert
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | |
Collapse
|
22
|
Role of the HefC efflux pump in Helicobacter pylori cholesterol-dependent resistance to ceragenins and bile salts. Infect Immun 2010; 79:88-97. [PMID: 20974830 DOI: 10.1128/iai.00974-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The human gastric pathogen Helicobacter pylori modifies host cholesterol via glycosylation and incorporates the glycosylated cholesterol into its membrane; however, the benefits of cholesterol to H. pylori are largely unknown. We speculated that cholesterol in the H. pylori membrane might alter the susceptibility of these organisms to membrane-disrupting antibacterial compounds. To test this hypothesis, H. pylori strains were cultured in Ham's F-12 chemically defined medium in the presence or absence of cholesterol. The two cultures were subjected to overnight incubations with serial 2-fold dilutions of 10 bile salts and four ceragenins, which are novel bile salt derivatives that mimic membrane-disrupting activity of antimicrobial peptides. H. pylori cultured with cholesterol was substantially more resistant to seven of the bile salts and three ceragenins than H. pylori cultured without cholesterol. In most cases, these cholesterol-dependent differences ranged from 2 to 7 orders of magnitude; this magnitude depended on concentration of the agent. Cholesterol is modified by glycosylation using Cgt, a cholesteryl glycosyltransferase. Surprisingly, a cgt knockout strain still maintained cholesterol-dependent resistance to bile salts and ceragenins, indicating that cholesterol modification was not involved in resistance. We then tested whether three putative, paralogous inner membrane efflux pumps, HefC, HefF, or HefI, played a role. While HefF and HefI appeared unimportant, HefC was shown to play a critical role in the resistance to bile salts and ceragenins by multiple methods in multiple strain backgrounds. Thus, both cholesterol and the putative bile salt efflux pump HefC play important roles in H. pylori resistance to bile salts and ceragenins.
Collapse
|
23
|
DNA damage triggers genetic exchange in Helicobacter pylori. PLoS Pathog 2010; 6:e1001026. [PMID: 20686662 PMCID: PMC2912397 DOI: 10.1371/journal.ppat.1001026] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 06/30/2010] [Indexed: 12/11/2022] Open
Abstract
Many organisms respond to DNA damage by inducing expression of DNA repair genes. We find that the human stomach pathogen Helicobacter pylori instead induces transcription and translation of natural competence genes, thus increasing transformation frequency. Transcription of a lysozyme-like protein that promotes DNA donation from intact cells is also induced. Exogenous DNA modulates the DNA damage response, as both recA and the ability to take up DNA are required for full induction of the response. This feedback loop is active during stomach colonization, indicating a role in the pathogenesis of the bacterium. As patients can be infected with multiple genetically distinct clones of H. pylori, DNA damage induced genetic exchange may facilitate spread of antibiotic resistance and selection of fitter variants through re-assortment of preexisting alleles in this important human pathogen. All organisms have genetic programs to respond to stressful conditions. The human stomach pathogen, Helicobacter pylori, survives on the surface of the stomach lining for the lifetime of its host and causes a chronic inflammatory response. In this niche, H. pylori is likely exposed to constant DNA damage and requires DNA repair systems to survive in the host. Many bacteria encode a genetic program for a coordinated response to DNA damage called the SOS response, which typically includes transcriptional induction of DNA repair systems and mutagenic DNA polymerases and a temporary halt to cell division. This study demonstrates that H. pylori has a distinct DNA damage response: instead of activating DNA repair systems, it induces both DNA uptake machinery and an enzyme that liberates DNA from neighboring cells. This capacity for genetic exchange enhances recombination of exogenous DNA into the genome, thus contributing to both the high genetic diversity observed between H. pylori clinical isolates and the spread of antibiotic resistance.
Collapse
|
24
|
Douillard FP, Ryan KA, Lane MC, Caly DL, Moore SA, Penn CW, Hinds J, O'Toole PW. The HP0256 gene product is involved in motility and cell envelope architecture of Helicobacter pylori. BMC Microbiol 2010; 10:106. [PMID: 20377912 PMCID: PMC2864241 DOI: 10.1186/1471-2180-10-106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 04/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Helicobacter pylori is the causative agent for gastritis, and peptic and duodenal ulcers. The bacterium displays 5-6 polar sheathed flagella that are essential for colonisation and persistence in the gastric mucosa. The biochemistry and genetics of flagellar biogenesis in H. pylori has not been fully elucidated. Bioinformatics analysis suggested that the gene HP0256, annotated as hypothetical, was a FliJ homologue. In Salmonella, FliJ is a chaperone escort protein for FlgN and FliT, two proteins that themselves display chaperone activity for components of the hook, the rod and the filament. RESULTS Ablation of the HP0256 gene in H. pylori significantly reduced motility. However, flagellin and hook protein synthesis was not affected in the HP0256 mutant. Transmission electron transmission microscopy revealed that the HP0256 mutant cells displayed a normal flagellum configuration, suggesting that HP0256 was not essential for assembly and polar localisation of the flagella in the cell. Interestingly, whole genome microarrays of an HP0256 mutant revealed transcriptional changes in a number of genes associated with the flagellar regulon and the cell envelope, such as outer membrane proteins and adhesins. Consistent with the array data, lack of the HP0256 gene significantly reduced adhesion and the inflammatory response in host cells. CONCLUSIONS We conclude that HP0256 is not a functional counterpart of FliJ in H. pylori. However, it is required for full motility and it is involved, possibly indirectly, in expression of outer membrane proteins and adhesins involved in pathogenesis and adhesion.
Collapse
Affiliation(s)
- François P Douillard
- Department of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hildebrandt E, McGee DJ. Helicobacter pylori lipopolysaccharide modification, Lewis antigen expression, and gastric colonization are cholesterol-dependent. BMC Microbiol 2009; 9:258. [PMID: 20003432 PMCID: PMC2804598 DOI: 10.1186/1471-2180-9-258] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 12/14/2009] [Indexed: 12/22/2022] Open
Abstract
Background Helicobacter pylori specifically takes up cholesterol and incorporates it into the bacterial membrane, yet little is currently known about cholesterol's physiological roles. We compared phenotypes and in vivo colonization ability of H. pylori grown in a defined, serum-free growth medium, F12 with 1 mg/ml albumin containing 0 to 50 μg/ml cholesterol. Results While doubling times were largely unaffected by cholesterol, other overt phenotypic changes were observed. H. pylori strain SS1 grown in defined medium with cholesterol successfully colonized the stomach of gerbils, whereas SS1 grown without cholesterol failed to colonize. H. pylori lipopolysaccharide often displays Lewis X and/or Y antigens. Expression of these antigens measured by whole-cell ELISA was markedly enhanced in response to growth of strain SS1, 26695, or G27 in cholesterol. In addition, electrophoretic analysis of lipopolysaccharide in wild type G27 and in mutants lacking the O-chain revealed structural changes within the oligosaccharide core/lipid A moieties. These responses in Lewis antigen levels and in lipopolysaccharide profiles to cholesterol availability were highly specific, because no changes took place when cholesterol was substituted by β-sitosterol or bile salts. Disruption of the genes encoding cholesterol α-glucosyltransferase or lipid A phosphoethanolamine transferase had no effect on Lewis expression, nor on lipopolysaccharide profiles, nor on the cholesterol responsiveness of these properties. Disruption of the lipid A 1-phosphatase gene eliminated the effect of cholesterol on lipopolysaccharide profiles but not its effect on Lewis expression. Conclusions Together these results suggest that cholesterol depletion leads to aberrant forms of LPS that are dependent upon dephosphorylation of lipid A at the 1-position. A tentative model for the observed effects of cholesterol is discussed in which sequential steps of lipopolysaccharide biogenesis and, independently, presentation of Lewis antigen at the cell surface, depend upon membrane composition. These new findings demonstrate that cholesterol availability permits H. pylori to modify its cell envelope in ways that can impact colonization of host tissue in vivo.
Collapse
Affiliation(s)
- Ellen Hildebrandt
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, 1501 Kings Highway, Shreveport, LA 71130, USA.
| | | |
Collapse
|
26
|
Douillard FP, Ryan KA, Caly DL, Hinds J, Witney AA, Husain SE, O'Toole PW. Posttranscriptional regulation of flagellin synthesis in Helicobacter pylori by the RpoN chaperone HP0958. J Bacteriol 2008; 190:7975-84. [PMID: 18931105 PMCID: PMC2593243 DOI: 10.1128/jb.00879-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 10/07/2008] [Indexed: 12/21/2022] Open
Abstract
The Helicobacter pylori protein HP0958 is essential for flagellum biogenesis. It has been shown that HP0958 stabilizes the sigma(54) factor RpoN. The aim of this study was to further investigate the role of HP0958 in flagellum production in H. pylori. Global transcript analysis identified a number of flagellar genes that were differentially expressed in an HP0958 mutant strain. Among these, the transcription of the major flagellin gene flaA was upregulated twofold, suggesting that HP0958 was a negative regulator of the flaA gene. However, the production of the FlaA protein was significantly reduced in the HP0958 mutant, and this was not due to the decreased stability of the FlaA protein. RNA stability analysis and binding assays indicated that HP0958 binds and destabilizes flaA mRNA. The HP0958 mutant was successfully complemented, confirming that the mutant phenotype described was due to the lack of HP0958. We conclude that HP0958 is a posttranscriptional regulator that modulates the amount of the flaA message available for translation in H. pylori.
Collapse
Affiliation(s)
- Francois P Douillard
- Department of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
27
|
Viator RJ, Rest RF, Hildebrandt E, McGee DJ. Characterization of Bacillus anthracis arginase: effects of pH, temperature, and cell viability on metal preference. BMC BIOCHEMISTRY 2008; 9:15. [PMID: 18522738 PMCID: PMC2423185 DOI: 10.1186/1471-2091-9-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 06/03/2008] [Indexed: 11/10/2022]
Abstract
Background Arginase (RocF) hydrolyzes L-arginine to L-ornithine and urea. While previously characterized arginases have an alkaline pH optimum and require activation with manganese, arginase from Helicobacter pylori is optimally active with cobalt at pH 6. The arginase from Bacillus anthracis is not well characterized; therefore, this arginase was investigated by a variety of strategies and the enzyme was purified. Results The rocF gene from B. anthracis was cloned and expressed in E. coli and compared with E. coli expressing H. pylori rocF. In the native organisms B. anthracis arginase was up to 1,000 times more active than H. pylori arginase and displayed remarkable activity in the absence of exogenous metals, although manganese, cobalt, and nickel all improved activity. Optimal B. anthracis arginase activity occurred with nickel at an alkaline pH. Either B. anthracis arginase expressed in E. coli or purified B. anthracis RocF showed similar findings. The B. anthracis arginase expressed in E. coli shifted its metal preference from Ni > Co > Mn when assayed at pH 6 to Ni > Mn > Co at pH 9. Using a viable cell arginase assay, B. anthracis arginase increased dramatically when the cells were grown with manganese, even at final concentrations of <1 μM, whereas B. anthracis grown with cobalt or nickel (≥500 μM) showed no such increase, suggesting existence of a high affinity and specificity manganese transporter. Conclusion Unlike other eubacterial arginases, B. anthracis arginase displays unusual metal promiscuity. The unique properties of B. anthracis arginase may allow utilization of a specific metal, depending on the in vivo niches occupied by this organism.
Collapse
Affiliation(s)
- Ryan J Viator
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA.
| | | | | | | |
Collapse
|
28
|
Expanding the Helicobacter pylori genetic toolbox: modification of an endogenous plasmid for use as a transcriptional reporter and complementation vector. Appl Environ Microbiol 2007; 73:7506-14. [PMID: 17921278 DOI: 10.1128/aem.01084-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Helicobacter pylori is an important human pathogen. However, the study of this organism is often limited by a relative shortage of genetic tools. In an effort to expand the methods available for genetic study, an endogenous H. pylori plasmid was modified for use as a transcriptional reporter and as a complementation vector. This was accomplished by addition of an Escherichia coli origin of replication, a kanamycin resistance cassette, a promoterless gfpmut3 gene, and a functional multiple cloning site to form pTM117. The promoters of amiE and pfr, two well-characterized Fur-regulated promoters, were fused to the promoterless gfpmut3, and green fluorescent protein (GFP) expression of the fusions in wild-type and delta fur strains was analyzed by flow cytometry under iron-replete and iron-depleted conditions. GFP expression was altered as expected based on current knowledge of Fur regulation of these promoters. RNase protection assays were used to determine the ability of this plasmid to serve as a complementation vector by analyzing amiE, pfr, and fur expression in wild-type and delta fur strains carrying a wild-type copy of fur on the plasmid. Proper regulation of these genes was restored in the delta fur background under high- and low-iron conditions, signifying complementation of both iron-bound and apo Fur regulation. These studies show the potential of pTM117 as a molecular tool for genetic analysis of H. pylori.
Collapse
|
29
|
Scott DR, Marcus EA, Wen Y, Oh J, Sachs G. Gene expression in vivo shows that Helicobacter pylori colonizes an acidic niche on the gastric surface. Proc Natl Acad Sci U S A 2007; 104:7235-40. [PMID: 17438279 PMCID: PMC1855417 DOI: 10.1073/pnas.0702300104] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Helicobacter pylori is a gastric-dwelling pathogen responsible, with acid secretion, for peptic ulcer and a 20-fold increase in the risk of gastric cancer. Several transcriptomes have been described after short-term exposure to acidity in vitro, but there are no data identifying the effects of chronic gastric exposure on bacterial gene expression. Comparison of the in vivo to the in vitro transcriptome at pH 7.4 identified several groups of genes of known function that increased expression >2-fold, and three of these respond both to acidity in vitro and to gastric infection. Almost all known acid acclimation genes are highly up-regulated. These include ureA, ureB, and rocF and the pH-gated urea channel, ureI. There is also up-regulation of two groups of motility and chemotaxis genes and for pathogenicity island genes, especially cagA, a predictor for pathogenicity. Most of these genes interact with HP0166, the response element of the pH-sensing two-component histidine kinase, HP0165/HP0166, ArsRS. Based on the pH profile of survival of ureI deletion mutants in vitro and their inability to survive in gastric acidity, the habitat of the organism at the gastric surface is acidic with a pH < or = 4.0. Hence, the pH of the habitat of H. pylori on the surface of the stomach largely determines the regulation of these specific groups of genes.
Collapse
Affiliation(s)
- David R. Scott
- Departments of *Physiology and
- Veterans Administration Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073; and
- To whom correspondence may be addressed. E-mail: or
| | - Elizabeth A. Marcus
- Departments of *Physiology and
- Veterans Administration Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073; and
| | - Yi Wen
- Departments of *Physiology and
- Veterans Administration Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073; and
| | - Jane Oh
- Department of Internal Medicine, Ewha Womans University, Dongdaemun Hospital, 70 Chongro 6-ka, Chongro-ku, Seoul 110-783, Korea
| | - George Sachs
- Departments of *Physiology and
- Medicine, David Geffen School of Medicine, University of California, 405 Hilgard Avenue, Los Angeles, CA 90024
- Veterans Administration Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073; and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
30
|
Genetic microheterogeneity and phenotypic variation of Helicobacter pylori arginase in clinical isolates. BMC Microbiol 2007; 7:26. [PMID: 17408487 PMCID: PMC1853099 DOI: 10.1186/1471-2180-7-26] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 04/04/2007] [Indexed: 01/03/2023] Open
Abstract
Background Clinical isolates of the gastric pathogen Helicobacter pylori display a high level of genetic macro- and microheterogeneity, featuring a panmictic, rather than clonal structure. The ability of H. pylori to survive the stomach acid is due, in part, to the arginase-urease enzyme system. Arginase (RocF) hydrolyzes L-arginine to L-ornithine and urea, and urease hydrolyzes urea to carbon dioxide and ammonium, which can neutralize acid. Results The degree of variation in arginase was explored at the DNA sequence, enzyme activity and protein expression levels. To this end, arginase activity was measured from 73 minimally-passaged clinical isolates and six laboratory-adapted strains of H. pylori. The rocF gene from 21 of the strains was cloned into genetically stable E. coli and the enzyme activities measured. Arginase activity was found to substantially vary (>100-fold) in both different H. pylori strains and in the E. coli model. Western blot analysis revealed a positive correlation between activity and amount of protein expressed in most H. pylori strains. Several H. pylori strains featured altered arginase activity upon in vitro passage. Pairwise alignments of the 21 rocF genes plus strain J99 revealed extensive microheterogeneity in the promoter region and 3' end of the rocF coding region. Amino acid S232, which was I232 in the arginase-negative clinical strain A2, was critical for arginase activity. Conclusion These studies demonstrated that H. pylori arginase exhibits extensive genotypic and phenotypic variation which may be used to understand mechanisms of microheterogeneity in H. pylori.
Collapse
|