1
|
Chen Y, León-Letelier RA, Abdel Sater AH, Vykoukal J, Dennison JB, Hanash S, Fahrmann JF. c-MYC-Driven Polyamine Metabolism in Ovarian Cancer: From Pathogenesis to Early Detection and Therapy. Cancers (Basel) 2023; 15:623. [PMID: 36765581 PMCID: PMC9913358 DOI: 10.3390/cancers15030623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
c-MYC and its paralogues MYCN and MYCL are among the most frequently amplified and/or overexpressed oncoproteins in ovarian cancer. c-MYC plays a key role in promoting ovarian cancer initiation and progression. The polyamine pathway is a bona fide target of c-MYC signaling, and polyamine metabolism is strongly intertwined with ovarian malignancy. Targeting of the polyamine pathway via small molecule inhibitors has garnered considerable attention as a therapeutic strategy for ovarian cancer. Herein, we discuss the involvement of c-MYC signaling and that of its paralogues in promoting ovarian cancer tumorigenesis. We highlight the potential of targeting c-MYC-driven polyamine metabolism for the treatment of ovarian cancers and the utility of polyamine signatures in biofluids for early detection applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
El Naggar O, Doyle B, Mariner K, Gilmour SK. Difluoromethylornithine (DFMO) Enhances the Cytotoxicity of PARP Inhibition in Ovarian Cancer Cells. Med Sci (Basel) 2022; 10:medsci10020028. [PMID: 35736348 PMCID: PMC9230675 DOI: 10.3390/medsci10020028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/26/2022] Open
Abstract
Ovarian cancer accounts for 3% of the total cancers in women, yet it is the fifth leading cause of cancer deaths among women. The BRCA1/2 germline and somatic mutations confer a deficiency of the homologous recombination (HR) repair pathway. Inhibitors of poly (ADP-ribose) polymerase (PARP), another important component of DNA damage repair, are somewhat effective in BRCA1/2 mutant tumors. However, ovarian cancers often reacquire functional BRCA and develop resistance to PARP inhibitors. Polyamines have been reported to facilitate the DNA damage repair functions of PARP. Given the elevated levels of polyamines in tumors, we hypothesized that treatment with the polyamine synthesis inhibitor, α-difluoromethylornithine (DFMO), may enhance ovarian tumor sensitivity to the PARP inhibitor, rucaparib. In HR-competent ovarian cancer cell lines with varying sensitivities to rucaparib, we show that co-treatment with DFMO increases the sensitivity of ovarian cancer cells to rucaparib. Immunofluorescence assays demonstrated that, in the presence of hydrogen peroxide-induced DNA damage, DFMO strongly inhibits PARylation, increases DNA damage accumulation, and reduces cell viability in both HR-competent and deficient cell lines. In vitro viability assays show that DFMO and rucaparib cotreatment significantly enhances the cytotoxicity of the chemotherapeutic agent, cisplatin. These results suggest that DFMO may be a useful adjunct chemotherapeutic to improve the anti-tumor efficacy of PARP inhibitors in treating ovarian cancer.
Collapse
|
3
|
De Santis C, Götte M. The Role of microRNA Let-7d in Female Malignancies and Diseases of the Female Reproductive Tract. Int J Mol Sci 2021; 22:ijms22147359. [PMID: 34298978 PMCID: PMC8305730 DOI: 10.3390/ijms22147359] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
microRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Let-7d is a microRNA of the conserved let-7 family that is dysregulated in female malignancies including breast cancer, ovarian cancer, endometrial cancer, and cervical cancer. Moreover, a dysregulation is observed in endometriosis and pregnancy-associated diseases such as preeclampsia and fetal growth restriction. Let-7d expression is regulated by cytokines and steroids, involving transcriptional regulation by OCT4, MYC and p53, as well as posttranscriptional regulation via LIN28 and ADAR. By downregulating a wide range of relevant mRNA targets, let-7d affects cellular processes that drive disease progression such as cell proliferation, apoptosis (resistance), angiogenesis and immune cell function. In an oncological context, let-7d has a tumor-suppressive function, although some of its functions are context-dependent. Notably, its expression is associated with improved therapeutic responses to chemotherapy in breast and ovarian cancer. Studies in mouse models have furthermore revealed important roles in uterine development and function, with implications for obstetric diseases. Apart from a possible utility as a diagnostic blood-based biomarker, pharmacological modulation of let-7d emerges as a promising therapeutic concept in a variety of female disease conditions.
Collapse
MESH Headings
- Aging
- Animals
- Biomarkers
- Biomarkers, Tumor
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Cell Line, Tumor
- Female
- Fertility/genetics
- Gene Expression Regulation
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Genital Diseases, Female/drug therapy
- Genital Diseases, Female/genetics
- Genital Neoplasms, Female/drug therapy
- Genital Neoplasms, Female/genetics
- Humans
- Mice
- MicroRNAs/genetics
- MicroRNAs/physiology
- Molecular Targeted Therapy
- Pregnancy
- Pregnancy Complications/genetics
- RNA, Neoplasm/antagonists & inhibitors
- RNA, Neoplasm/genetics
- RNA, Neoplasm/physiology
Collapse
|
4
|
Chromosome instability is prevalent and dynamic in high-grade serous ovarian cancer patient samples. Gynecol Oncol 2021; 161:769-778. [PMID: 33714608 DOI: 10.1016/j.ygyno.2021.02.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/27/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE High-grade serous ovarian cancer (HGSOC) is the most lethal gynaecological malignancy in women with a high level of mortality, metastatic disease, disease recurrence and multi-drug resistance. Many previous studies have focused on characterising genome instability in recurrent resistant HGSOC and while this has advanced our understanding of HGSOC, our fundamental knowledge of the mechanisms driving genome instability remains limited. Chromosome instability (CIN; an increased rate of chromosome gains and losses) is a form of genome instability that is commonly associated with recurrence and multi-drug resistance in many cancer types but has just begun to be characterised in HGSOC. METHOD To examine the relationship between CIN and HGSOC, we employed single-cell quantitative imaging microscopy approaches capable of capturing the cell-to-cell heterogeneity associated with CIN, to assess the prevalence and dynamics of CIN within individual and patient-matched HGSOC ascites and solid tumour samples. RESULTS CIN occurs in 90.9% of ascites samples and 100% of solid tumours, while in-depth analyses identified statistically significant temporal dynamics within the serial ascites samples. In general, aneuploidy and CIN increase with disease progression and frequently decrease following chemotherapy treatments in responsive disease. Finally, our work identified higher levels of CIN in solid tumours relative to ascites samples isolated from the same individual, which identifies a novel difference existing between solid tumours and ascites samples. CONCLUSIONS Our findings provide novel insight into the relationship between CIN and HGSOC, and uncover a previously unknown relationship existing between CIN in solid tumours and metastatic disease (ascites).
Collapse
|
5
|
Reyes-González JM, Vivas-Mejía PE. c-MYC and Epithelial Ovarian Cancer. Front Oncol 2021; 11:601512. [PMID: 33718147 PMCID: PMC7952744 DOI: 10.3389/fonc.2021.601512] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is the deadliest of gynecological malignancies with approximately 49% of women surviving 5 years after initial diagnosis. The standard of care for ovarian cancer consists of cytoreductive surgery followed by platinum-based combination chemotherapy. Unfortunately, despite initial response, platinum resistance remains a major clinical challenge. Therefore, the identification of effective biomarkers and therapeutic targets is crucial to guide therapy regimen, maximize clinical benefit, and improve patient outcome. Given the pivotal role of c-MYC deregulation in most tumor types, including ovarian cancer, assessment of c-MYC biological and clinical relevance is essential. Here, we briefly describe the frequency of c-MYC deregulation in ovarian cancer and the consequences of its targeting.
Collapse
Affiliation(s)
- Jeyshka M Reyes-González
- Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Pablo E Vivas-Mejía
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.,Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
6
|
Fahrmann JF, Irajizad E, Kobayashi M, Vykoukal J, Dennison JB, Murage E, Wu R, Long JP, Do KA, Celestino J, Lu KH, Lu Z, Bast RC, Hanash S. A MYC-Driven Plasma Polyamine Signature for Early Detection of Ovarian Cancer. Cancers (Basel) 2021; 13:913. [PMID: 33671595 PMCID: PMC7927060 DOI: 10.3390/cancers13040913] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
MYC is an oncogenic driver in the pathogenesis of ovarian cancer. We previously demonstrated that MYC regulates polyamine metabolism in triple-negative breast cancer (TNBC) and that a plasma polyamine signature is associated with TNBC development and progression. We hypothesized that a similar plasma polyamine signature may associate with ovarian cancer (OvCa) development. Using mass spectrometry, four polyamines were quantified in plasma from 116 OvCa cases and 143 controls (71 healthy controls + 72 subjects with benign pelvic masses) (Test Set). Findings were validated in an independent plasma set from 61 early-stage OvCa cases and 71 healthy controls (Validation Set). Complementarity of polyamines with CA125 was also evaluated. Receiver operating characteristic area under the curve (AUC) of individual polyamines for distinguishing cases from healthy controls ranged from 0.74-0.88. A polyamine signature consisting of diacetylspermine + N-(3-acetamidopropyl)pyrrolidin-2-one in combination with CA125 developed in the Test Set yielded improvement in sensitivity at >99% specificity relative to CA125 alone (73.7% vs 62.2%; McNemar exact test 2-sided P: 0.019) in the validation set and captured 30.4% of cases that were missed with CA125 alone. Our findings reveal a MYC-driven plasma polyamine signature associated with OvCa that complemented CA125 in detecting early-stage ovarian cancer.
Collapse
Affiliation(s)
- Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (M.K.); (J.V.); (J.B.D.); (E.M.); (R.W.)
| | - Ehsan Irajizad
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (E.I.); (J.P.L.); (K.-A.D.)
| | - Makoto Kobayashi
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (M.K.); (J.V.); (J.B.D.); (E.M.); (R.W.)
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (M.K.); (J.V.); (J.B.D.); (E.M.); (R.W.)
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (M.K.); (J.V.); (J.B.D.); (E.M.); (R.W.)
| | - Eunice Murage
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (M.K.); (J.V.); (J.B.D.); (E.M.); (R.W.)
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (M.K.); (J.V.); (J.B.D.); (E.M.); (R.W.)
| | - James P. Long
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (E.I.); (J.P.L.); (K.-A.D.)
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (E.I.); (J.P.L.); (K.-A.D.)
| | - Joseph Celestino
- Department of Gynecological Oncology and Reproductive Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.C.); (K.H.L.); (Z.L.)
| | - Karen H. Lu
- Department of Gynecological Oncology and Reproductive Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.C.); (K.H.L.); (Z.L.)
| | - Zhen Lu
- Department of Gynecological Oncology and Reproductive Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.C.); (K.H.L.); (Z.L.)
| | - Robert C. Bast
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (M.K.); (J.V.); (J.B.D.); (E.M.); (R.W.)
| |
Collapse
|
7
|
Arildsen NS, Hedenfalk I. Simvastatin is a potential candidate drug in ovarian clear cell carcinomas. Oncotarget 2020; 11:3660-3674. [PMID: 33088426 PMCID: PMC7546754 DOI: 10.18632/oncotarget.27747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/01/2020] [Indexed: 11/25/2022] Open
Abstract
Ovarian clear cell carcinomas (OCCC) constitute a rare subtype of epithelial ovarian cancer, lacking efficient treatment options. Based on previous studies, we assessed the anti-proliferative effect of simvastatin, a Rho GTPase interfering drug, in three OCCC cell lines: JHOC-5, OVMANA and TOV-21G, and one high-grade serous ovarian cancer (HGSOC) cell line, Caov3. We used the Rho GTPase interfering drug CID-1067700 as a control. All OCCC cell lines were more sensitive to single-agent simvastatin than the HGSOC cells, while all cell lines were less sensitive to CID-1067700 than to simvastatin. Combinations of carboplatin and simvastatin were generally antagonistic. Most treatments inhibited migration, while only simvastatin and CID-1067700 also disrupted actin organization in the OCCC cell lines. All treatments induced a G1 arrest in JHOC-5 and TOV-21G cells. Treatments with simvastatin consistently reduced c-Myc protein expression in all OCCC cell lines and displayed evidence of causing both caspase-mediated apoptotic cell death and autophagic response in a cell line dependent manner. Differences between cell lines in response to the treatments were observed and such differences, including e. g. prior treatment, should be investigated further. Conclusively, simvastatin efficiently controlled OCCC proliferation and migration, thus showing potential as a candidate drug for the treatment of OCCC.
Collapse
Affiliation(s)
- Nicolai Skovbjerg Arildsen
- Division of Oncology, Department of Clinical Sciences, Lund and Lund University Cancer Center, Lund University, Lund, Sweden
- Current Address: Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences, Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Sammarco A, Gomiero C, Sacchetto R, Beffagna G, Michieletto S, Orvieto E, Cavicchioli L, Gelain ME, Ferro S, Patruno M, Zappulli V. Wnt/β-Catenin and Hippo Pathway Deregulation in Mammary Tumors of Humans, Dogs, and Cats. Vet Pathol 2020; 57:774-790. [PMID: 32807036 DOI: 10.1177/0300985820948823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mammary cancer is a common neoplasm in women, dogs, and cats that still represents a therapeutic challenge. Wnt/β-catenin and Hippo pathways are involved in tumor progression, cell differentiation, and metastasis. The aim of this study was to evaluate mRNA and protein expression of molecules involved in these pathways in human (HBC), canine (CMT), and feline mammary tumors (FMT). Real-time quantitative polymerase chain reaction (qPCR) for β-catenin, CCND1, YAP, TAZ, CTGF, and ANKRD1, western blotting for YAP, TAZ, and β-catenin, and immunohistochemistry for estrogen receptor (ER), progesterone receptor (PR), ERBB2, β-catenin, and YAP/TAZ were performed on mammary tumor tissues. The protein expression of active β-catenin was higher in tumors than in healthy tissues in all 3 species. The mRNA expression of the downstream gene CCND1 was increased in HBC ER+ and CMTs compared to healthy tissues. Membranous and cytoplasmic protein expression of β-catenin were strongly negatively correlated in all 3 species. Tumors showed an increased protein expression of YAP/TAZ when compared to healthy tissues. Notably, YAP/TAZ expression was higher in triple negative breast cancers when compared to HBC ER+ and in FMTs when compared to CMTs. The mRNA expression of β-catenin, YAP, TAZ, CTGF, and ANKRD1 was not different between tumors and healthy mammary gland in the 3 species. This study demonstrates deregulation of Wnt/β-catenin and Hippo pathways in mammary tumors, which was more evident at the protein rather than the mRNA level. Wnt/β-catenin and Hippo pathways seem to be involved in mammary carcinogenesis and therefore represent interesting therapeutic targets that should be further investigated.
Collapse
Affiliation(s)
- Alessandro Sammarco
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| | - Chiara Gomiero
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy.,Department of Biomedical Sciences, 9308University of Padua, Italy.,Neuroscience Institute - Italian National Research Council (CNR), Padua, Italy
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| | - Giorgia Beffagna
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy.,Department of Cardio-Thoraco-Vascular Sciences and Public Health, 9308University of Padua, Italy
| | | | - Enrico Orvieto
- Department of Pathology, Azienda Ospedaliera di Padova, Padua, Italy.,Department of Pathology, 18674Santa Maria della Misericordia Hospital, Rovigo, Italy
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| |
Collapse
|
9
|
Xu Z, Zhuang L, Wang X, Li Q, Sang Y, Xu J. FBXW7γ is a tumor-suppressive and prognosis-related FBXW7 transcript isoform in ovarian serous cystadenocarcinoma. Future Oncol 2020; 16:1921-1930. [PMID: 32915667 DOI: 10.2217/fon-2020-0371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: To explore FBXW7 protein-coding transcript isoform (α, β and γ) expression, their functions and prognostic value in ovarian serous cystadenocarcinoma (OSC). Materials & methods: FBXW7 transcript data were collected from The Cancer Genome Atlas and the Genotype-Tissue Expression project. IOSE, A2780 and SKOV3 cells were used for in vitro and in vivo studies. Results: FBXW7α and FBXW7γ are dominant protein-coding transcripts that were downregulated in OSC. FBXW7γ overexpression reduced the protein expression of c-Myc, Notch1 and Yap1 and suppressed OSC cell growth in vitro and in vivo. FBXW7γ expression was an independent indicator of longer disease-specific survival (HR: 0.588; 95% CI: 0.449-0.770) and progression-free survival (HR: 0.708; 95% CI: 0.562-0.892). Conclusion: FBXW7γ is a tumor-suppressive and might be the only prognosis-related FBXW7 transcript in OSC.
Collapse
Affiliation(s)
- Zhou Xu
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Lin Zhuang
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Xiaoyin Wang
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Qianrong Li
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Yan Sang
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Jiao Xu
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| |
Collapse
|
10
|
Han J, Zhou J, Yuan H, Zhu L, Ma H, Hang D, Li D. Genetic variants within the cancer susceptibility region 8q24 and ovarian cancer risk in Han Chinese women. Oncotarget 2018; 8:36462-36468. [PMID: 28430593 PMCID: PMC5482668 DOI: 10.18632/oncotarget.16861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/28/2017] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence suggests that genetic variants at chromosome 8q24 confer susceptibility to various types of cancer. This case-control study was designed to explore the relationship between genetic variants at 8q24 and ovarian cancer risk in Han Chinese women. Two variants (rs13281615 A > G and rs6983267 T > G) were genotyped in 377 ovarian cancer cases and 1034 cancer-free controls using TaqMan allelic discrimination assay. Logistic regression analysis revealed that the G allele of rs6983267 was significantly associated with increased risk of ovarian cancer (additive model: adjusted OR = 1.21, 95% CI = 1.01-1.43, P = 0.048; recessive model: adjusted OR = 1.51, 95% CI = 1.06-2.15, P = 0.023). However, no significant association was observed between rs13281615 and ovarian cancer. In stratified analysis, the risk effect of rs6983267 variant remained significant in premenopausal women (additive model: adjusted OR = 1.62, 95% CI = 1.18-2.23, P = 0.003). Summarily, this study suggested that 8q24 rs6983267 may contribute to the susceptibility of ovarian cancer in premenopausal Han Chinese women, supporting the pleiotropy of 8q24 in carcinogenesis.
Collapse
Affiliation(s)
- Jing Han
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Epidemiology, Nanjing Medical University Affiliated Cancer Institute of Jiangsu Province, Nanjing 211166, China
| | - Jing Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hua Yuan
- Jangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China
| | - Longbiao Zhu
- Jangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Dong Hang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Dake Li
- Department of Gynaecology, Jiangsu Provincial Hospital of TCM, Affiliated Hospital of Nanjing University of TCM, Nanjing 210005, China
| |
Collapse
|
11
|
Nerve growth factor modulates the tumor cells migration in ovarian cancer through the WNT/β-catenin pathway. Oncotarget 2018; 7:81026-81048. [PMID: 27835587 PMCID: PMC5348374 DOI: 10.18632/oncotarget.13186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022] Open
Abstract
Nerve growth factor (NGF)/nerve growth factor receptors (NGFRs) axis and canonical WNT/β-catenin pathway have shown to play crucial roles in tumor initiation, progression and prognosis. But little did we know the relationship between them in modulation of tumor progress. In this report, we found that NGF/NGFRs and β-catenin were coexpression in ovarian cancer cell lines, and NGF can decrease the expression level of β-catenin and affect its activities, which may be related to the NGF-induced down-regulation of B-cell CLL/lymphoma 9-like (BCL9L, BCL9-2). Furthermore, NGF can also increase or decrease the downstream target gene expression levels of WNT/β-catenin depending on the cell types. Especially, we created a novel in vitro cell growth model based on a microfluidic device to intuitively observe the effects of NGF/NGFRs on the motility behaviors of ovarian cancer cells. The results showed that the migration area and maximum distance into three dimensional (3D) matrigel were decreased in CAOV3 and OVCAR3 cells, but increased in SKOV3 cells following the stimulation with NGF. In addition, we found that the cell colony area was down-regulated in CAOV3 cells, however, it was augmented in OVCAR3 cells after treatment with NGF. The inhibitors of NGF/NGFRs, such as Ro 08-2750, K252a and LM11A-31,can all block NGF-stimulated changes of gene expression or migratory behavior on ovarian cancer cells. The different results among ovarian cancer cells illustrated the heterogeneity and complexity of ovarian cancer. Collectively, our results suggested for the first time that NGF is functionally linked to β-catenin in the migration of human ovarian cancer cells, which may be a novel therapeutic perspective to prevent the spread of ovarian carcinomas by studying the interaction between NGF/NGFRs and canonical WNT/β-catenin signaling.
Collapse
|
12
|
Hasegawa-Minato J, Toyoshima M, Ishibashi M, Zhang X, Shigeta S, Grandori C, Kitatani K, Yaegashi N. Novel cooperative pathway of c-Myc and Furin, a pro-protein convertase, in cell proliferation as a therapeutic target in ovarian cancers. Oncotarget 2017; 9:3483-3496. [PMID: 29423060 PMCID: PMC5790477 DOI: 10.18632/oncotarget.23322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/16/2017] [Indexed: 01/16/2023] Open
Abstract
c-Myc is a master regulator of various oncogenic functions in many types of human cancers. However, direct c-Myc-targeted therapy has not been successful in the clinic. Here, we explored a novel therapeutic target, which shows synthetic lethality in c-Myc-driven ovarian cancers, and examined the molecular mechanism of the synthetic lethal interaction. By high throughput siRNA screening with a library of 6,550 genes, Furin, a pro-protein convertase, was identified as the top hit gene. Furin inhibition by siRNA or a Furin inhibitor significantly suppressed cell proliferation in high c-Myc-expressing ovarian cancer cells compared with low c-Myc-expressing cells. Conversely, Furin overexpression in the presence of high c-Myc significantly promoted cell proliferation compared with only c-Myc or Furin overexpression. Notch1, one of the Furin substrates, was upregulated by c-Myc, and Notch1 cleaved by Furin increased cell proliferation of high c-Myc-expressing ovarian cancer cells. Notch1 was involved in the cooperative pathway of c-Myc and Furin in cell proliferation. In clinical ovarian cancer specimens, co-expression of c-Myc and Furin correlated with poor survival. In conclusion, we found that c-Myc cooperates with Furin to promote cell proliferation. Furin may be a promising therapeutic target in c-Myc-driven ovarian cancer.
Collapse
Affiliation(s)
- Junko Hasegawa-Minato
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masafumi Toyoshima
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masumi Ishibashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Xuewei Zhang
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shogo Shigeta
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Carla Grandori
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,SEngine Precision Medicine, Seattle, WA, USA
| | - Kazuyuki Kitatani
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
13
|
Ou-Yang L, Zhang XF, Wu M, Li XL. Node-based learning of differential networks from multi-platform gene expression data. Methods 2017; 129:41-49. [DOI: 10.1016/j.ymeth.2017.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/11/2017] [Accepted: 05/18/2017] [Indexed: 01/07/2023] Open
|
14
|
Kawahara N, Ogawa K, Nagayasu M, Kimura M, Sasaki Y, Kobayashi H. Candidate synthetic lethality partners to PARP inhibitors in the treatment of ovarian clear cell cancer. Biomed Rep 2017; 7:391-399. [PMID: 29109859 DOI: 10.3892/br.2017.990] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
Inhibitors of poly(ADP-ribose) polymerase (PARP) are new types of personalized treatment of relapsed platinum-sensitive ovarian cancer harboring BRCA1/2 mutations. Ovarian clear cell cancer (CCC), a subset of ovarian cancer, often appears as low-stage disease with a higher incidence among Japanese. Advanced CCC is highly aggressive with poor patient outcome. The aim of the present study was to determine the potential synthetic lethality gene pairs for PARP inhibitions in patients with CCC through virtual and biological screenings as well as clinical studies. We conducted a literature review for putative PARP sensitivity genes that are associated with the CCC pathophysiology. Previous studies identified a variety of putative target genes from several pathways associated with DNA damage repair, chromatin remodeling complex, PI3K-AKT-mTOR signaling, Notch signaling, cell cycle checkpoint signaling, BRCA-associated complex and Fanconi's anemia susceptibility genes that could be used as biomarkers or therapeutic targets for PARP inhibition. BRCA1/2, ATM, ATR, BARD1, CCNE1, CHEK1, CKS1B, DNMT1, ERBB2, FGFR2, MRE11A, MYC, NOTCH1 and PTEN were considered as candidate genes for synthetic lethality gene partners for PARP interactions. When considering the biological background underlying PARP inhibition, we hypothesized that PARP inhibitors would be a novel synthetic lethal therapeutic approach for CCC tumors harboring homologous recombination deficiency and activating oncogene mutations. The results showed that the majority of CCC tumors appear to have indicators of DNA repair dysfunction similar to those in BRCA-mutation carriers, suggesting the possible utility of PARP inhibitors in a subset of CCC.
Collapse
Affiliation(s)
- Naoki Kawahara
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Kenji Ogawa
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Mika Nagayasu
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Mai Kimura
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Yoshikazu Sasaki
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| |
Collapse
|
15
|
Chang YJ, Tseng CY, Lin PY, Chuang YC, Chao MW. Acute exposure to DEHP metabolite, MEHP cause genotoxicity, mutagenesis and carcinogenicity in mammalian Chinese hamster ovary cells. Carcinogenesis 2017; 38:336-345. [PMID: 28426879 DOI: 10.1093/carcin/bgx009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/15/2017] [Indexed: 12/20/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), the common plasticizer used in the production of polyvinyl chloride, can be converted to the more potent metabolite mono-ethylhexyl phthalate (MEHP). Epidemiological studies have shown an association with elevated induction of rat hepatic cancer and reproductive toxicity in response to MEHP exposure. However, the mechanism of genotoxicity and carcinogenicity induced by MEHP treatment remains unclear. As a means to elucidate the mechanisms of action, lethality and mutagenicity in the adenine phosphoribosyltransferase (aprt+/-) gene induced in several CHO cell types by MEHP were assessed. Dose-response relationships were determined in the parental AA8 cell line, its nucleotide repair-deficient UV5 and base repair-deficient EM9 subclones, and also in AS52 cells harboring the bacterial guanine-hypoxanthine phosphoribosyltransferase (gpt) gene and its derived AS52-XPD-knockdown and AS52-PARP-1-knockdown cells. Treatment of AS52 with MEHP led to intracellular production of reactive oxygen species (ROS) and DNA strand breaks in a dose-dependent manner. Separately, mutations in the gpt gene of AS52 cells were characterized and found to be dominated by G:C to A:T and A:T to G:C transitions. Independent AS52-mutant cell (ASMC) clones were collected for the sequential in vivo xenograft tumorigenic studies, 4 of total 20 clones had aggressive tumor growth. Moreover, microarray analysis indicated miR-let-7a and miR-125b downregulated in ASMC, which might raise oncogenic MYC and RAS level and activate ErbB pathway. Comparative evaluation of the results indicates that the principal mechanism of this mutagenic action is probably to be through generation of ROS, causing base excision damage resulting in carcinogenicity.
Collapse
Affiliation(s)
- Yu-Jung Chang
- Department of Bioscience Technology, College of Science
| | - Chia-Yi Tseng
- Department of Biomedical Engineering, College of Engineering and.,Center of Nanotechnology, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Pei-Ying Lin
- Department of Bioscience Technology, College of Science
| | - Yu-Chen Chuang
- Department of Biomedical Engineering, College of Engineering and
| | - Ming-Wei Chao
- Department of Bioscience Technology, College of Science.,Center of Nanotechnology, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
16
|
Ning YX, Luo X, Xu M, Feng X, Wang J. Let-7d increases ovarian cancer cell sensitivity to a genistein analog by targeting c-Myc. Oncotarget 2017; 8:74836-74845. [PMID: 29088827 PMCID: PMC5650382 DOI: 10.18632/oncotarget.20413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/02/2017] [Indexed: 12/26/2022] Open
Abstract
c-Myc is a key oncogenic transcription factor that participates in tumor pathogenesis. In this study, we found that levels of c-Myc mRNA and protein were higher in early ovarian cancer tissues than normal ovary samples. Increased c-Myc levels correlated positively with clinical stage I (Ia+b/Ic) in ovarian cancer patients. Patients with higher nuclear c-Myc expression had shorter overall survival times than patients with low c-Myc expression. Knocking down c-Myc sensitized ovarian cancer cells to 7-difluoromethoxyl-5,4’-di-n-octylgenistein (DFOG), a novel synthetic genistein analogue that suppressed PI3K/AKT signaling in vitro and in vivo. Finally, c-Myc was confirmed to be a direct target of let-7d, and let-7d-induced suppression of c-Myc increased the DFOG-sensitivity of ovarian cancer cells. These results indicate that nuclear c-Myc expression is an unfavorable factor in early ovarian cancer, and that let-7d increases ovarian cancer cell sensitivity to DFOG by suppressing c-Myc and PI3K/AKT signaling.
Collapse
Affiliation(s)
- Ying-Xia Ning
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xin Luo
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Meng Xu
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xin Feng
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou 510315, China
| | - Jian Wang
- Institute of Reproductive and Stem Cell Engineering, Central South University, National Engineering and Research Center of Human Stem Cell, Changsha, 41007, China
| |
Collapse
|
17
|
Gupta I, Burney I, Al-Moundhri MS, Tamimi Y. Molecular genetics complexity impeding research progress in breast and ovarian cancers. Mol Clin Oncol 2017; 7:3-14. [PMID: 28685067 PMCID: PMC5492732 DOI: 10.3892/mco.2017.1275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Breast and ovarian cancer are heterogeneous diseases. While breast cancer accounts for 25% of cancers worldwide, ovarian cancer accounts for 3.5% of all cancers and it is considered to be the most lethal type of cancer among women. In Oman, breast cancer accounts for 25% and ovarian cancer for 4.5% of all cancer cases. Various risk factors, including variable biological and clinical traits, are involved in the onset of breast and ovarian cancer. Although highly developed diagnostic and therapeutic methods have paved the way for better management, targeted therapy against specific biomarkers has not yet shown any significant improvement, particularly in triple-negative breast cancer and epithelial ovarian cancer, which are associated with high mortality rates. Thus, elucidating the mechanisms underlying the pathology of these diseases is expected to improve their prevention, prognosis and management. The aim of the present study was to provide a comprehensive review and updated information on genomics and proteomics alterations associated with cancer pathogenesis, as reported by several research groups worldwide. Furthermore, molecular research in our laboratory, aimed at identifying new pathways involved in the pathogenesis of breast and ovarian cancer using microarray and chromatin immunoprecipitation (ChIP), is discussed. Relevant candidate genes were found to be either up- or downregulated in a cohort of breast cancer cases. Similarly, ChIP analysis revealed that relevant candidate genes were regulated by the E2F5 transcription factor in ovarian cancer tissue. An ongoing study aims to validate these genes with a putative role as biological markers that may contribute to the development of targeted therapies for breast and ovarian cancer.
Collapse
Affiliation(s)
- Ishita Gupta
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Ikram Burney
- Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Mansour S Al-Moundhri
- Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Yahya Tamimi
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
18
|
Chakravorty D, Jana T, Das Mandal S, Seth A, Bhattacharya A, Saha S. MYCbase: a database of functional sites and biochemical properties of Myc in both normal and cancer cells. BMC Bioinformatics 2017; 18:224. [PMID: 28454513 PMCID: PMC5410051 DOI: 10.1186/s12859-017-1652-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
Background Myc is an essential gene having multiple functions such as in cell growth, differentiation, apoptosis, genomic stability, angiogenesis, and disease biology. A large number of researchers dedicated to Myc biology are generating a substantial amount of data in normal and cancer cells/tissues including Burkitt’s lymphoma and ovarian cancer. Results MYCbase (http://bicresources.jcbose.ac.in/ssaha4/mycbase) is a collection of experimentally supported functional sites in Myc that can influence the biological cellular processes. The functional sites were compiled according to their role which includes mutation, methylation pattern, post-translational modifications, protein-protein interactions (PPIs), and DNA interactions. In addition, biochemical properties of Myc are also compiled, which includes metabolism/pathway, protein abundance, and modulators of protein-protein interactions. The OMICS data related to Myc- like gene expression, proteomics expression using mass-spectrometry and miRNAs targeting Myc were also compiled in MYCbase. The mutation and pathway data from the MYCbase were analyzed to look at the patterns and distributions across different diseases. There were few proteins/genes found common in Myc-protein interactions and Myc-DNA binding, and these can play a significant role in transcriptional feedback loops. Conclusion In this report, we present a comprehensive integration of relevant information regarding Myc in the form of MYCbase. The data compiled in MYCbase provides a reliable data resource for functional sites at the residue level and biochemical properties of Myc in various cancers.
Collapse
Affiliation(s)
- Debangana Chakravorty
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Road, Scheme-VII (M), Kolkata, 700054, India
| | - Tanmoy Jana
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Road, Scheme-VII (M), Kolkata, 700054, India
| | - Sukhen Das Mandal
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Road, Scheme-VII (M), Kolkata, 700054, India.,Current Address: Department of Biological sciences, Indian Institute of Science Education and Research, Kolkata, India
| | | | | | - Sudipto Saha
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Road, Scheme-VII (M), Kolkata, 700054, India.
| |
Collapse
|
19
|
Penner-Goeke S, Lichtensztejn Z, Neufeld M, Ali JL, Altman AD, Nachtigal MW, McManus KJ. The temporal dynamics of chromosome instability in ovarian cancer cell lines and primary patient samples. PLoS Genet 2017; 13:e1006707. [PMID: 28376088 PMCID: PMC5395197 DOI: 10.1371/journal.pgen.1006707] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/18/2017] [Accepted: 03/20/2017] [Indexed: 01/12/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the most prevalent form of ovarian cancer and has the highest mortality rate. Novel insight into EOC is required to minimize the morbidity and mortality rates caused by recurrent, drug resistant disease. Although numerous studies have evaluated genome instability in EOC, none have addressed the putative role chromosome instability (CIN) has in disease progression and drug resistance. CIN is defined as an increase in the rate at which whole chromosomes or large parts thereof are gained or lost, and can only be evaluated using approaches capable of characterizing genetic or chromosomal heterogeneity within populations of cells. Although CIN is associated with numerous cancer types, its prevalence and dynamics in EOC is unknown. In this study, we assessed CIN within serial samples collected from the ascites of five EOC patients, and in two well-established ovarian cancer cell models of drug resistance (PEO1/4 and A2780s/cp). We quantified and compared CIN (as measured by nuclear areas and CIN Score (CS) values) within and between serial samples to glean insight into the association and dynamics of CIN within EOC, with a particular focus on resistant and recurrent disease. Using quantitative, single cell analyses we determined that CIN is associated with every sample evaluated and further show that many EOC samples exhibit a large degree of nuclear size and CS value heterogeneity. We also show that CIN is dynamic and generally increases within resistant disease. Finally, we show that both drug resistance models (PEO1/4 and A2780s/cp) exhibit heterogeneity, albeit to a much lesser extent. Surprisingly, the two cell line models exhibit remarkably similar levels of CIN, as the nuclear areas and CS values are largely overlapping between the corresponding paired lines. Accordingly, these data suggest CIN may represent a novel biomarker capable of monitoring changes in EOC progression associated with drug resistance.
Collapse
Affiliation(s)
- Signe Penner-Goeke
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Zelda Lichtensztejn
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Megan Neufeld
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Jennifer L. Ali
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alon D. Altman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mark W. Nachtigal
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kirk J. McManus
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
20
|
Gwak H, Kim Y, An H, Dhanasekaran DN, Song YS. Metformin induces degradation of cyclin D1 via AMPK/GSK3β axis in ovarian cancer. Mol Carcinog 2017; 56:349-358. [PMID: 27128966 DOI: 10.1002/mc.22498] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 12/11/2022]
Abstract
Metformin, which is widely used as an anti-diabetic drug, reduces cancer related morbidity and mortality. However, the role of metformin in cancer is not fully understood. Here, we first describe that the anti-cancer effect of metformin is mediated by cyclin D1 deregulation via AMPK/GSK3β axis in ovarian cancer cells. Metformin promoted cytotoxic effects only in the cancer cells irrespective of the p53 status and not in the normal primary-cultured cells. Metformin induced the G1 cell cycle arrest, in parallel with a decrease in the protein expressions of cyclin D1 without affecting its transcriptional levels. Using a proteasomal inhibitor, we could address that metformin-induced decrease in cyclin D1 through the ubiquitin/proteasome process. Cyclin D1 degradation by metformin requires the activation of GSK3β, as determined based on the treatment with GSK3β inhibitors. The activation of GSK3β correlated with the inhibitory phosphorylation by Akt as well as p70S6K through AMPK activation in response to metformin. These findings suggested that the anticancer effects of metformin was induced due to cyclin D1 degradation via AMPK/GSK3β signaling axis that involved the ubiquitin/proteasome pathway specifically in ovarian cancer cells. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- HyeRan Gwak
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Youngmin Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Haein An
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Danny N Dhanasekaran
- Department of Cell Biology, Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yong Sang Song
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Hudson CD, Savadelis A, Nagaraj AB, Joseph P, Avril S, DiFeo A, Avril N. Altered glutamine metabolism in platinum resistant ovarian cancer. Oncotarget 2016; 7:41637-41649. [PMID: 27191653 PMCID: PMC5173084 DOI: 10.18632/oncotarget.9317] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/10/2016] [Indexed: 01/21/2023] Open
Abstract
Ovarian cancer is characterized by an increase in cellular energy metabolism, which is predominantly satisfied by glucose and glutamine. Targeting metabolic pathways is an attractive approach to enhance the therapeutic effectiveness and to potentially overcome drug resistance in ovarian cancer. In platinum-sensitive ovarian cancer cell lines the metabolism of both, glucose and glutamine was initially up-regulated in response to platinum treatment. In contrast, platinum-resistant cells revealed a significant dependency on the presence of glutamine, with an upregulated expression of glutamine transporter ASCT2 and glutaminase. This resulted in a higher oxygen consumption rate compared to platinum-sensitive cell lines reflecting the increased dependency of glutamine utilization through the tricarboxylic acid cycle. The important role of glutamine metabolism was confirmed by stable overexpression of glutaminase, which conferred platinum resistance. Conversely, shRNA knockdown of glutaminase in platinum resistant cells resulted in re-sensitization to platinum treatment. Importantly, combining the glutaminase inhibitor BPTES with platinum synergistically inhibited platinum sensitive and resistant ovarian cancers in vitro. Apoptotic induction was significantly increased using platinum together with BPTES compared to either treatment alone. Our findings suggest that targeting glutamine metabolism together with platinum based chemotherapy offers a potential treatment strategy particularly in drug resistant ovarian cancer.
Collapse
Affiliation(s)
- Chantelle D. Hudson
- Department of Radiology, Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alyssa Savadelis
- Department of Radiology, Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anil Belur Nagaraj
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Peronne Joseph
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Stefanie Avril
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Analisa DiFeo
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Norbert Avril
- Department of Radiology, Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
22
|
Zhao Z, Ma J, Wu K, Chen L, Yu J, Hu W, Zhang K. SATB1 is a potential therapeutic target in intrahepatic cholangiocarcinoma. Clin Transl Oncol 2015; 18:878-83. [PMID: 26563145 DOI: 10.1007/s12094-015-1449-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is the second most common primary malignant tumor of the liver with a poor prognosis. Upregulation of special AT-rich sequence-binding protein 1 (SATB1) promotes tumor progression. However, little is known about the role of SATB1 in ICC tumorigenesis. METHODS We firstly investigated the expression of SATB1 in 88 cases of ICC by immunohistochemistry (IHC), QRT-PCR, and western blot. Meanwhile, we constructed stably knockdown (shRNA) of SATB1 in ICC cell lines to evaluate the effects of SATB1 on the ability of cell proliferation and invasion by MTT and transwell invasion assay. RESULTS Our result showed that SATB1 was overexpressed in ICC tissues samples. Knockdown of SATB1 could inhibit ICC cell proliferation, and suppress ICC cell invasion of ICC cell lines. In addition, the depletion of SATB1 expression suppressed the MYC levels in vitro. CONCLUSIONS Our results highlight the significance of SATB1 in ICC and suggest that SATB1 could be a promising therapy target and a potential biomarker for prognosis in ICC patients.
Collapse
Affiliation(s)
- Z Zhao
- Pancreato-Biliary Surgery Department, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - J Ma
- Thoracic Surgery Department, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - K Wu
- Colorectal Surgery Department, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - L Chen
- Pancreato-Biliary Surgery Department, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - J Yu
- Pancreato-Biliary Surgery Department, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - W Hu
- Pancreato-Biliary Surgery Department, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - K Zhang
- Pancreato-Biliary Surgery Department, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
23
|
Al-Hujaily EM, Tang Y, Yao DS, Carmona E, Garson K, Vanderhyden BC. Divergent Roles of PAX2 in the Etiology and Progression of Ovarian Cancer. Cancer Prev Res (Phila) 2015; 8:1163-73. [DOI: 10.1158/1940-6207.capr-15-0121-t] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/08/2015] [Indexed: 11/16/2022]
|
24
|
Lawrenson K, Mhawech-Fauceglia P, Worthington J, Spindler TJ, O'Brien D, Lee JM, Spain G, Sharifian M, Wang G, Darcy KM, Pejovic T, Sowter H, Timms JF, Gayther SA. Identification of novel candidate biomarkers of epithelial ovarian cancer by profiling the secretomes of three-dimensional genetic models of ovarian carcinogenesis. Int J Cancer 2015; 137:1806-17. [PMID: 25204737 DOI: 10.1002/ijc.29197] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 12/27/2022]
Abstract
Epithelial ovarian cancer (EOC) is still considered the most lethal gynecological malignancy and improved early detection of ovarian cancer is crucial to improving patient prognoses. To address this need, we tested whether candidate EOC biomarkers can be identified using three-dimensional (3D) in vitro models. We quantified changes in the abundance of secreted proteins in a 3D genetic model of early-stage EOC, generated by expressing CMYC and KRAS(G) (12) (V) in TERT-immortalized normal ovarian epithelial cells. Cellular proteins were labeled in live cells using stable isotopic amino acid analogues, and secreted proteins identified and quantified using liquid chromatography-tandem mass spectrometry. Thirty-seven and 55 proteins were differentially expressed by CMYC and CMYC+KRAS(G) (12) (V) expressing cells respectively (p < 0.05; >2-fold). We evaluated expression of the top candidate biomarkers in ∼210 primary EOCs: CHI3L1 and FKBP4 are both expressed by >96% of primary EOCs, and FASN and API5 are expressed by 86 and 75% of cases. High expression of CHI3L1 and FKBP4 was associated with worse patient survival (p = 0.042 and p = 0.002, respectively). Expression of LGALS3BP was positively associated with recurrence (p = 0.0001) and suboptimal debulking (p = 0.018) suggesting that these proteins may be novel prognostic biomarkers. Furthermore, within early stage tumours (I/II), high expression of API5, CHI3L1 and FASN was associated with high tumour grade (p = 3 × 10(-4) , p = 0.016, p = 0.010, respectively). We show in vitro cell biology models of early-stage cancer development can be used to identify novel candidate biomarkers for disease, and report the identification of proteins that represent novel potential candidate diagnostic and prognostic biomarkers for this highly lethal disease.
Collapse
Affiliation(s)
- Kate Lawrenson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Paulette Mhawech-Fauceglia
- Departments of Medicine and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jenny Worthington
- Cancer Proteomics Group, Institute for Women's Health, University College London, London, United Kingdom
| | - Tassja J Spindler
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Darragh O'Brien
- Cancer Proteomics Group, Institute for Women's Health, University College London, London, United Kingdom
| | - Janet M Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Georgia Spain
- Cancer Proteomics Group, Institute for Women's Health, University College London, London, United Kingdom
| | - Maryam Sharifian
- Departments of Medicine and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Guisong Wang
- Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale, VA
| | - Kathleen M Darcy
- Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale, VA
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR
| | - Heidi Sowter
- Biological and Forensic Science Department, University of Derby, Derby, United Kingdom
| | - John F Timms
- Cancer Proteomics Group, Institute for Women's Health, University College London, London, United Kingdom
| | - Simon A Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
25
|
Chen Z, Li Z, Li W, Zong Y, Zhu Y, Miao Y, Xu Z. SATB1 Promotes Pancreatic Cancer Growth and Invasion Depending on MYC Activation. Dig Dis Sci 2015; 60:3304-17. [PMID: 26108419 PMCID: PMC4621700 DOI: 10.1007/s10620-015-3759-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/10/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND SATB1 plays an important role in human malignant progression, inducing cancer cell proliferation and metastasis by regulating downstream gene expressions. However, little is known about the underlying mechanisms in which SATB1 promotes pancreatic cancer tumorigenesis. AIMS To investigate SATB1 expression levels and its biological functions in promoting pancreatic cancer growth and invasion. METHODS SATB1 expression levels were detected in seven human pancreatic cancer cell lines and 16 pairs of normal pancreatic/pancreatic cancer tissues using RT-PCR and western blot. SW1990 or Capan-1 cells stably knockdown (shRNA) or transiently knockdown (siRNA) SATB1 cells, and PANC-1 stably overexpressing SATB1 cells were investigated with MTT, EdU assay, flow cytometry, and transwell invasion assay for cell proliferation and invasion activity. The binding of SATB1 to MYC promoter region was examined using reporter assay. Expression of SATB1 in 68 pancreatic cancer samples was studied by immunohistochemical staining and scoring. RESULTS SATB1 was overexpressed in pancreatic cancer tissues samples, showing strong correlation with pancreatic cancer invasion depth and tumor staging. SATB1 induced MYC mRNA and protein expression; promoted pancreatic cancer cell growth; increased cell population in S phase; and enhanced pancreatic cancer cell invasion in vitro. On the other hand, SATB1 knockdown showed opposite effects. Furthermore, MYC blocking in SATB1-overexpressing cells attenuated the promotion of pancreatic cancer cell growth and invasion. Our data also indicated that SATB1 bound to specific promoter region of MYC. CONCLUSIONS SATB1 is overexpressed in pancreatic cancer, promoting cancer cell proliferation and invasion through the activation of MYC.
Collapse
Affiliation(s)
- Zheng Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China ,Institute of Tumor Biology, Jiangsu Province Academy of Clinical Medicine, Nanjing, People’s Republic of China
| | - Zengliang Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China ,Institute of Tumor Biology, Jiangsu Province Academy of Clinical Medicine, Nanjing, People’s Republic of China ,Department of Gastrointestinal Surgery, Huai’an First People’s Hospital, Nanjing Medical University, 6 Beijing Road West, Huai’an, 223300 People’s Republic of China ,Department of General Surgery, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, People’s Republic of China
| | - Wei Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China ,Department of Oncology, The First Affiliated Hospital of Soochow University, No. 1, Shizi Street, Suzhou City, 215006 People’s Republic of China
| | - Yang Zong
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China ,Institute of Tumor Biology, Jiangsu Province Academy of Clinical Medicine, Nanjing, People’s Republic of China ,Department of General Surgery, Changshu No. 1 People’s Hospital, 1 Shuyuan Street, Changshu, 215500 People’s Republic of China
| | - Yi Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China ,Institute of Tumor Biology, Jiangsu Province Academy of Clinical Medicine, Nanjing, People’s Republic of China
| | - Yi Miao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China ,Institute of Tumor Biology, Jiangsu Province Academy of Clinical Medicine, Nanjing, People’s Republic of China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China ,Institute of Tumor Biology, Jiangsu Province Academy of Clinical Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
26
|
Barathidasan R, Pawaiya RS, Rai RB, Dhama K. Upregulated Myc expression in N-methyl nitrosourea (MNU)- induced rat mammary tumours. Asian Pac J Cancer Prev 2014; 14:4883-9. [PMID: 24083763 DOI: 10.7314/apjcp.2013.14.8.4883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The most common incident cancer and cause of cancer-related deaths in women is breast cancer. The Myc gene is upregulated in many cancer types including breast cancer, and it is considered as a potential anti-cancer drug target. The present study was conducted to evaluate the Myc (gene and protein) expression pattern in an experimental mammary tumour model in rats. MATERIALS AND METHODS Thirty six Sprague Dawley rats were divided into: Experimental group (26 animals), which received the chemical carcinogen N-methyl nitrosourea (MNU) and a control group (10 animals), which received vehicle only. c-Myc oncoprotein and its mRNA expression pattern were evaluated using immunohistochemistry (IHC) and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively, in normal rat mammary tissue and mammary tumours. The rat glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was used as internal control for semi-quantitative RT-PCR. RESULTS Histopathological examination of mammary tissues and tumours from MNU treated animals revealed the presence of premalignant lesions, benign tumours, in situ carcinomas and invasive carcinomas. Immunohistochemical evaluation of tumour tissues showed upregulation and heterogeneous cellular localization of c-Myc oncoprotein. The expression levels of c-Myc oncoprotein were significantly elevated (75- 91%) in all the tumours. Semi-quantitative RT-PCR revealed increased expression of c-Myc mRNA in mammary tumours compared to normal mammary tissues. CONCLUSIONS Further large-scale investigation study is needed to adopt this experimental rat mammary tumour model as an in vivo model to study anti-cancer strategies directed against Myc or its downstream partners at the transcriptional or post-transcriptional level.
Collapse
Affiliation(s)
- Rajamani Barathidasan
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, India E-mail :
| | | | | | | |
Collapse
|
27
|
Hattinger E, Zwicker S, Ruzicka T, Yuspa SH, Wolf R. Opposing functions of psoriasin (S100A7) and koebnerisin (S100A15) in epithelial carcinogenesis. Curr Opin Pharmacol 2013; 13:588-94. [PMID: 23664757 DOI: 10.1016/j.coph.2013.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/04/2013] [Accepted: 04/12/2013] [Indexed: 12/22/2022]
Abstract
The S100 protein family is involved in epithelial cell maturation and inflammation. Some S100 members are dysregulated during carcinogenesis and have been established as tumor markers. Psoriasin (S100A7) and koebnerisin (S100A15) are highly homologous proteins that have been first described in psoriasis, which is characterized by disturbed epidermal maturation and chronic inflammation. Despite their homology, both S100 proteins are distinct in expression and function through different receptors but synergize as chemoattractants and pro-inflammatory 'alarmins' to promote inflammation. Psoriasin and koebnerisin are further regulated with tumor progression in epithelial cancers. In tumor cells, high cytoplasmic expression of psoriasin and koebnerisin may prevent oncogenic activity, whereas their nuclear translocation and extracellular secretion are associated with tumor progression and poor prognosis. The present review outlines these opposing effects of psoriasin and koebnerisin in multifunctional pathways and mechanisms that are known to affect tumor cells ('seeds'), tumor environment ('soil') and tumor cell metastasis ('seeding') thereby influencing epithelial carcinogenesis.
Collapse
Affiliation(s)
- Eva Hattinger
- Department of Dermatology and Allergology, Ludwig-Maximilian University, Munich, Germany
| | | | | | | | | |
Collapse
|
28
|
MiR-449c targets c-Myc and inhibits NSCLC cell progression. FEBS Lett 2013; 587:1359-65. [PMID: 23507140 DOI: 10.1016/j.febslet.2013.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/04/2013] [Indexed: 11/21/2022]
Abstract
MicroRNAs (miRNA) play an important role in tumorigenesis, proliferation, and differentiation. Altered miRNA expression in cancer indicates that miRNAs can function as tumor suppressors or oncogenes. MiR-449c downregulation in non-small cell lung cancer (NSCLC) compared with normal lung tissues was investigated in this study. NSCLC cell proliferation and invasion assays indicate that transfection of miR-449c expression plasmid inhibits the proliferation and invasion ability of NCI-H23 and NCI-H838 cells. In addition, miR-449c overexpression could suppress tumor growth in vivo. Morever, c-Myc was identified as a direct target gene of miR-449c. These findings clearly suggest that miR-449c downregulation and c-Myc amplification may be involved in the development of NSCLC.
Collapse
|
29
|
Delfino KR, Rodriguez-Zas SL. Transcription factor-microRNA-target gene networks associated with ovarian cancer survival and recurrence. PLoS One 2013; 8:e58608. [PMID: 23554906 PMCID: PMC3595291 DOI: 10.1371/journal.pone.0058608] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/06/2013] [Indexed: 12/24/2022] Open
Abstract
The identification of reliable transcriptome biomarkers requires the simultaneous consideration of regulatory and target elements including microRNAs (miRNAs), transcription factors (TFs), and target genes. A novel approach that integrates multivariate survival analysis, feature selection, and regulatory network visualization was used to identify reliable biomarkers of ovarian cancer survival and recurrence. Expression profiles of 799 miRNAs, 17,814 TFs and target genes and cohort clinical records on 272 patients diagnosed with ovarian cancer were simultaneously considered and results were validated on an independent group of 146 patients. Three miRNAs (hsa-miR-16, hsa-miR-22*, and ebv-miR-BHRF1-2*) were associated with both ovarian cancer survival and recurrence and 27 miRNAs were associated with either one hazard. Two miRNAs (hsa-miR-521 and hsa-miR-497) were cohort-dependent, while 28 were cohort-independent. This study confirmed 19 miRNAs previously associated with ovarian cancer and identified two miRNAs that have previously been associated with other cancer types. In total, the expression of 838 and 734 target genes and 12 and eight TFs were associated (FDR-adjusted P-value <0.05) with ovarian cancer survival and recurrence, respectively. Functional analysis highlighted the association between cellular and nucleotide metabolic processes and ovarian cancer. The more direct connections and higher centrality of the miRNAs, TFs and target genes in the survival network studied suggest that network-based approaches to prognosticate or predict ovarian cancer survival may be more effective than those for ovarian cancer recurrence. This study demonstrated the feasibility to infer reliable miRNA-TF-target gene networks associated with survival and recurrence of ovarian cancer based on the simultaneous analysis of co-expression profiles and consideration of the clinical characteristics of the patients.
Collapse
MESH Headings
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Cohort Studies
- Female
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Genes, Neoplasm
- Humans
- MicroRNAs
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/pathology
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Survival Rate
Collapse
Affiliation(s)
- Kristin R. Delfino
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
- Department of Statistics, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
30
|
Cheng CW, Liu YF, Yu JC, Wang HW, Ding SL, Hsiung CN, Hsu HM, Shieh JC, Wu PE, Shen CY. Prognostic significance of cyclin D1, β-catenin, and MTA1 in patients with invasive ductal carcinoma of the breast. Ann Surg Oncol 2012; 19:4129-39. [PMID: 22864797 DOI: 10.1245/s10434-012-2541-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Indexed: 12/16/2023]
Abstract
BACKGROUND To investigate markers for predicting breast cancer progression, we performed a candidate gene-based study that assessed expression change of three genes, cyclin D1, β-catenin, and metastasis-associated protein-1 (MTA1), involving in aggressive phenotypes of cancerous cells, namely hyperproliferation, epithelial-mesenchymal transition, and global transcriptional regulation. METHODS Specimens were from 150 enrolled female patients, with invasive ductal carcinoma, followed up for more than 10 years. mRNA expression of cyclin D1, β-catenin, and MTA1 in cancerous and noncancerous cells microdissected from the primary tumor site was determined by quantitative real-time PCR. The relationship between mRNA expression levels of the genes and clinicopathologic features was assessed by statistical analysis. Disease-free and overall survival (DFS and OS) were analyzed by Kaplan-Meier analysis with log-rank test and a multivariate Cox regression model. RESULTS Cyclin D1 was shown to be overexpressed in late-stage breast cancer (stage III/IV). Breast cancer with lymph node metastasis (LNM) showed significantly higher frequency of overexpressed cyclin D1, β-catenin, and MTA1 (P < 0.05). Patients carrying greater numbers of overexpressed genes had joint effects on increased risk in tumors of advanced stages (P ( trend ) = 0.03) and LNM (P ( trend ) < 0.01). In the LNM-negative group, patients whose tumors with greater number of cyclin D1, β-catenin, and MTA1 overexpressions were associated with poorer clinical outcomes, with hazard ratio of 14.79 for OS (P = 0.015) and 7.54 for DFS (P = 0.015) using multivariate Cox regression analysis during the 10-year follow-up. CONCLUSIONS Higher expression of cyclin D1, β-catenin, and MTA1 mRNAs in breast cancers may prove effective in predicting unfavorable outcomes of breast cancer.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Female
- Follow-Up Studies
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Humans
- Immunoenzyme Techniques
- Laser Capture Microdissection
- Middle Aged
- Neoplasm Grading
- Neoplasm Staging
- Prognosis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Trans-Activators
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Chun-Wen Cheng
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Epithelial ovarian cancer (EOC) remains the most lethal gynecological malignancy despite several decades of progress in diagnosis and treatment. Taking advantage of the robust development of discovery and utility of prognostic biomarkers, clinicians and researchers are developing personalized and targeted treatment strategies. This review encompasses recently discovered biomarkers of ovarian cancer, the utility of published prognostic biomarkers for EOC (especially biomarkers related to angiogenesis and key signaling pathways), and their integration into clinical practice.
Collapse
Affiliation(s)
- Jie Huang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
32
|
Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci U S A 2012; 109:9545-50. [PMID: 22623531 DOI: 10.1073/pnas.1121119109] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MYC oncogene family members are broadly implicated in human cancers, yet are considered "undruggable" as they encode transcription factors. MYC also carries out essential functions in proliferative tissues, suggesting that its inhibition could cause severe side effects. We elected to identify synthetic lethal interactions with c-MYC overexpression (MYC-SL) in a collection of ~3,300 druggable genes, using high-throughput siRNA screening. Of 49 genes selected for follow-up, 48 were confirmed by independent retesting and approximately one-third selectively induced accumulation of DNA damage, consistent with enrichment in DNA-repair genes by functional annotation. In addition, genes involved in histone acetylation and transcriptional elongation, such as TRRAP and BRD4, were identified, indicating that the screen revealed known MYC-associated pathways. For in vivo validation we selected CSNK1e, a kinase whose expression correlated with MYCN amplification in neuroblastoma (an established MYC-driven cancer). Using RNAi and available small-molecule inhibitors, we confirmed that inhibition of CSNK1e halted growth of MYCN-amplified neuroblastoma xenografts. CSNK1e had previously been implicated in the regulation of developmental pathways and circadian rhythms, whereas our data provide a previously unknown link with oncogenic MYC. Furthermore, expression of CSNK1e correlated with c-MYC and its transcriptional signature in other human cancers, indicating potential broad therapeutic implications of targeting CSNK1e function. In summary, through a functional genomics approach, pathways essential in the context of oncogenic MYC but not to normal cells were identified, thus revealing a rich therapeutic space linked to a previously "undruggable" oncogene.
Collapse
|
33
|
Karve TM, Li X, Saha T. BRCA1-mediated signaling pathways in ovarian carcinogenesis. Funct Integr Genomics 2011; 12:63-79. [PMID: 21887486 DOI: 10.1007/s10142-011-0251-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/19/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
The link between loss or defect in functional BRCA1 and predisposition for development of ovarian and breast cancer is well established. Germ-line mutations in BRCA1 are responsible for both hereditary breast and ovarian cancer, which is around 5-10% for all breast and 10-15% of all ovarian cancer cases. However, majority of cases of ovarian cancer are sporadic in nature. The inactivation of cellular BRCA1 due to mutations or loss of heterozygosity is one of the most commonly observed events in such cases. Complement-resistant retroviral BRCA1 vector, MFG-BRCA1, is the only approved gene therapy for ovarian cancer patients by the Federal and Drug Administration. Given the limited available information, there is a need to evaluate the effects of BRCA1 on the global gene expression pattern for better understanding the etiology of the disease. Here, we use Ingenuity Pathway Knowledge Base to examine the differential pattern of global gene expression due to stable expression of BRCA1 in the ovarian cancer cell line, SKOV3. The functional analysis detected at least five major pathways that were significantly (p < 0.05) altered. These include: cell to cell signaling and interaction, cellular function and maintenance, cellular growth and proliferation, cell cycle and DNA replication, and recombination repair. In addition, we were able to detect several biologically relevant genes that are central for various signaling networks involved in cellular homeostasis; TGF-β1, TP53, c-MYC, NF-κB and TNF-α. This report provides a comprehensive rationale for tumor suppressor function(s) of BRCA1 in ovarian carcinogenesis.
Collapse
Affiliation(s)
- Tejaswita M Karve
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | | | | |
Collapse
|
34
|
Lawrenson K, Sproul D, Grun B, Notaridou M, Benjamin E, Jacobs IJ, Dafou D, Sims AH, Gayther SA. Modelling genetic and clinical heterogeneity in epithelial ovarian cancers. Carcinogenesis 2011; 32:1540-9. [PMID: 21859834 DOI: 10.1093/carcin/bgr140] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The biology underlying early-stage epithelial ovarian cancer (EOC) development is poorly understood. Identifying biomarkers associated with early-stage disease could have a significant impact on reducing mortality. Here, we describe establishment of a three-dimensional (3D) in vitro genetic model of EOC initiation and early-stage neoplastic progression. Normal primary ovarian epithelial (POE) cells, immortalized using hTERT (immortalised ovarian epithelial [IOE] cells), were partially transformed by overexpressing the CMYC oncogene (IOE(CMYC) cells). Subsequent expression of mutant alleles of KRAS (KRAS(G12V)) or BRAF (BRAF(V600E)) created double-mutant lines (IOE(CMYC.KRAS) and IOE(CMYC.BRAF)). The transformed phenotype of IOE(CMYC) cells was further enhanced in concert with KRAS(G12V)/BRAF(V600E) expression, as in vitro analyses indicated that IOE(CMYC) cells had undergone morphological and phenotypic changes characteristic of neoplastic progression. When cultured as 3D spheroids, IOE cells underwent growth arrest, reminiscent of nonproliferative, unstimulated POE in vivo. In contrast, IOSE(CMYC+BRAF/KRAS) cells formed highly proliferative, poly-aggregate spheroid structures, showing increased expression of the Wilms tumour 1 tumourigenic marker and MIB1 proliferation marker. Transcriptomic analyses identified different gene expression profiles between the different cell lines and novel candidate genes (e.g. RGS4, CTGF and THBS1) that are somatically altered in EOCs. Gene expression signatures were compared with signatures from primary EOCs; tumours with IOE(CMYC) 'like' signatures were more likely to be high grade (P = 0.018); tumours with BRAF signatures were associated with improved relapse-free survival (P = 0.003). In conclusion, we have established in vitro 3D models of early-stage EOCs, which reflect genetic and phenotypic heterogeneity of the disease. Molecular genetic characteristics of these models correlated with molecular and clinical features of primary EOCs.
Collapse
Affiliation(s)
- Kate Lawrenson
- UCL EGA Institute for Women's Health, University College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kwak YT, Radaideh SM, Ding L, Li R, Frenkel E, Story MD, Girard L, Minna J, Verma UN. Cells lacking IKKα show nuclear cyclin D1 overexpression and a neoplastic phenotype: role of IKKα as a tumor suppressor. Mol Cancer Res 2011; 9:341-9. [PMID: 21317297 DOI: 10.1158/1541-7786.mcr-10-0248] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The catalytic subunits of IκB kinase (IKK) complex, IKKα and IKKβ, are involved in activation of NF-κB and in mediating a variety of other biological functions. Though these proteins have a high-sequence homology, IKKα exhibits different functional characteristics as compared with IKKβ. Earlier, we have shown that cyclin D1 is overexpressed and predominantly localized in the nucleus of IKKα(-/-) cells, indicating that IKKα regulates turnover and subcellular distribution of cyclin D1, which is mediated by IKKα-induced phosphorylation of cyclin D1. Because cyclin D nuclear localization is implicated in tumor development, we examined whether the absence of IKKα leads to tumor development as well. In the current study, we show that IKKα plays a critical role in tumorigenesis. Though IKKα(-/-) MEF cells show a slower anchorage-dependent growth, they are clonogenic in soft agar. These cells are tumorigenic in nude mice. Microarray analysis of IKKα(-/-) cells indicates a differential expression of genes involved in proliferation and apoptosis. Furthermore, analysis of microarray data of human lung cancer cell lines revealed decreased IKKα RNA expression level as compared with cell lines derived from normal bronchial epithelium. These results suggest that IKKα may function as a tumor suppressor gene. Absence of IKKα may induce tumorigenicity by nuclear localization of cyclin D1 and modulating the expression of genes involved in neoplastic transformation.
Collapse
Affiliation(s)
- Youn-Tae Kwak
- Department of Medicine, Division of Hematology/Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Skírnisdóttir IA, Sorbe B, Lindborg K, Seidal T. Prognostic impact of p53, p27, and C-MYC on clinicopathological features and outcome in early-stage (FIGO I-II) epithelial ovarian cancer. Int J Gynecol Cancer 2011; 21:236-44. [PMID: 21270607 DOI: 10.1097/igc.0b013e31820986e5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The objective of the study was to evaluate the prognostic effect of p53, p27, and C-MYC on clinicopathological features, recurrent disease, and disease-free survival (DFS) of 131 patients with ovarian cancer in International Federation of Gynecology and Obstetrics (FIGO) stages I-II. METHODS The technique of tissue microarray and immunohistochemistry was used for detection of positivity/overexpression of the biological markers p53, p27, and C-MYC. RESULTS In the complete series, the 5-year and overall survival rates were 68% and 71%, respectively. Positive staining for p53, p27, and C-MYC was detected in 25%, 57%, and 76% of cases, respectively. Positivity of p53, p27, concomitant p53-p27, C-MYC, and C-MYC-p27 status were associated with tumor grade. Positivity of p27 and concomitant p53-p27 were related to serous tumors. In survival analysis, DFS was related to p53, combined p53-p27, and combined p53-C-MYC status. Significant predictive factors for tumor recurrences were the FIGO stage (odds ratio [OR] = 9.8), status of node sampling (OR = 0.2), and p53 status (OR = 3.7) in a logistic regression analysis. In a multivariate Cox regression analysis, FIGO stage (hazard ratio [HR] = 4.3) and p53 status (HR = 3.0) were significant prognostic factors for DFS. In a separate Cox regression analysis, FIGO stage (HR = 2.0) and concomitant p53-p27-C-MYC status (HR = 0.3) were independent prognostic factors for DFS. It was possible to identify a subgroup, constituting 30% of the patients, who had excellent survival with tumors of concomitant p53 negativity, p27 positivity, and C-MYC positivity apart from the clinicopathological factors. Patients in this subgroup were longtime survivors with DFS of 92% at 5 and 9 years. CONCLUSIONS The results of this study strongly suggest that patients with p53-positive tumors (alone/or combined with p27 and/or C-MYC) had significantly worse survival (DFS) compared with patients with p53-negative tumors. Patients with p53-positive tumors continued to have recurrences after the 5-year follow-up and die in disease.
Collapse
|
37
|
Senturk E, Cohen S, Dottino PR, Martignetti JA. A critical re-appraisal of BRCA1 methylation studies in ovarian cancer. Gynecol Oncol 2010; 119:376-83. [PMID: 20797776 DOI: 10.1016/j.ygyno.2010.07.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/12/2010] [Accepted: 07/23/2010] [Indexed: 12/29/2022]
Abstract
A central challenge facing gynecologic oncology is achieving personalized care in ovarian cancer treatment. The current ovarian cancer classification scheme distinguishes tumors based on histopathologic subtype, grade, and surgical stage. Recent molecular investigations have highlighted distinguishing genetic features of certain tumors within a given category, and given the rapid pace of technologic advancement combined with plummeting costs for complete genomic sequencing this classification will markedly improve. Clinical studies have begun to explore the influence of currently known distinctions on the natural history of the disease, most recently with particular attention to the BRCA1 status of tumors. Mutations in the BRCA1 gene have long been known to increase a woman's risk of developing ovarian cancer. As has been shown, BRCA1-associated ovarian cancers may be associated with characteristic differences in therapeutic response and overall survival, and further defining these subsets may become instrumental in clinical decision-making. Therefore, given the eightfold difference (5-40%) in reported frequency of BRCA1 inactivation by methylation in the pioneering studies in the field, a critical re-appraisal of the literature, techniques, samples used, and interpretations of BRCA1 inactivation is warranted along with a review of the more recent and comprehensive molecular studies.
Collapse
Affiliation(s)
- Emir Senturk
- Department of Genetics and Genomic Sciences, Division of Gynecologic Oncology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
38
|
Prathapam T, Aleshin A, Guan Y, Gray JW, Martin GS. p27Kip1 mediates addiction of ovarian cancer cells to MYCC (c-MYC) and their dependence on MYC paralogs. J Biol Chem 2010; 285:32529-38. [PMID: 20647308 DOI: 10.1074/jbc.m110.151902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The MYCC (c-MYC) gene is amplified in 30-60% of human ovarian cancers. We assessed the functional significance of MYCC amplification by siRNA inhibition of MYCC or MYC paralogs in a panel of ovarian cancer cell lines expressing varying levels of MYCC. Inactivation of MYCC inhibited cell proliferation and induced replicative senescence only in lines with amplified MYCC, indicating that these cells are addicted to continued MYCC overexpression. In contrast, siRNA knockdown of all three MYC isoforms inhibited proliferation of MYCC non-amplified ovarian cancer cells without inducing replicative senescence, and did not inhibit the proliferation of telomerase-immortalized ovarian surface epithelial cells. The arrest induced by MYCC knockdown was accompanied by an increase in the level of the Cdk inhibitor p27(Kip1) and a decrease in cyclin A expression and Cdk2 activity, and could be reversed by RNAi knockdown of p27(Kip1) or Rb, or by overexpression of cyclin A/Cdk2. The arrest induced by knockdown of all three MYC isoforms could similarly be reversed by p27(Kip1) knockdown. Our findings indicate that the addiction of MYCC-amplified ovarian cancer cells to MYCC differs from the dependence of MYCC non-amplified cancer cells on MYC paralogs, but both are mediated, at least in part, by p27(Kip1). They also suggest that growth of ovarian cancers may be blocked by inhibition of MYCC or MYC paralogs.
Collapse
Affiliation(s)
- Tulsiram Prathapam
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
39
|
Previdi S, Malek A, Albertini V, Riva C, Capella C, Broggini M, Carbone GM, Rohr J, Catapano CV. Inhibition of Sp1-dependent transcription and antitumor activity of the new aureolic acid analogues mithramycin SDK and SK in human ovarian cancer xenografts. Gynecol Oncol 2010; 118:182-8. [PMID: 20452660 DOI: 10.1016/j.ygyno.2010.03.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 03/20/2010] [Accepted: 03/27/2010] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Increased activity of Sp family of transcription factors is a frequent and critical event in cancer development and progression. Genes governing tumor growth, invasion and angiogenesis are regulated by Sp factors, like Sp1, Sp3 or Sp4, and are frequently over-expressed in tumors. Targeting Sp factors has been explored as a therapeutic approach. Mithramycin (MTM) is a natural antibiotic that binds DNA and inhibit Sp1-dependent transcription. New analogues, named MTM-SDK and MTM-SK, were recently obtained by genetic engineering of the MTM biosynthetic pathway and have demonstrated improved transcriptional and antiproliferative activity in ovarian cancer cell lines in vitro. In the present study we evaluated the activity of the new compounds in human ovarian cancer xenografts. METHODS Expression of Sp1 and target proteins in ovarian cancer specimens and tumor xenografts was assessed by immunohistochemistry. Drug-induced silencing of Sp1-regulated genes in cells and tumor xenograft samples was assessed by quantitative RT-PCR. Toxicity and antitumor activity of the compounds were investigated in healthy and tumor-bearing immunocompromised mice, respectively. RESULTS Expression of Sp1 was frequently increased in human epithelial ovarian cancers. MTM-SDK and MTM-SK acted as potent inhibitors of Sp1-dependent transcription both in vitro and in tumor xenografts. Both compounds were well tolerated even after prolonged administration and delayed growth of ovarian tumor xenografts. MTM-SDK was particularly effective against orthotopic tumors leading to a significant increase of survival and delay of tumor progression. CONCLUSIONS MTM-SDK and MTM-SK show relevant activity in vivo and represent interesting candidates for treatment of ovarian cancers.
Collapse
Affiliation(s)
- Sara Previdi
- Laboratory of Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Grygalewicz B, Sobiczewski P, Krawczyk P, Woroniecka R, Rygier J, Pastwińska A, Bidziński M, Pieńkowska-Grela B. Comparison of cytogenetic changes between primary and relapsed patients with borderline tumors of the ovary. ACTA ACUST UNITED AC 2009; 195:157-63. [PMID: 19963116 DOI: 10.1016/j.cancergencyto.2009.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
Abstract
The aim of this work was to compare cytogenetic changes in primary and relapsed borderline tumors of the ovary. We analyzed 11 tumors (6 primary and 5 relapsed) by conventional GTG banding analysis and fluorescence in situ hybridization. The tumors studied were clinical stages I and III. Genomic imbalances were detected in both investigated groups. In the primary tumors group, only simple chromosome changes were detected. There were gains of chromosome 12, 7, and 8. The presence of additional copies of chromosomes 12 and 7 was independent of histologic subtype, whereas trisomy 8 appeared only in serous tumors. In the group of relapsed borderline tumors, besides trisomies 7 and 12, the structural aberrations of chromosomes 1, 6q, 7q, and 10q were revealed. Gains of tested oncogenes (CCND1 and MYC) have been demonstrated in both groups of investigated tumors. Gains of CCNC1 and MYC genes could be of prognostic value in borderline tumors, but this assumption requires further research.
Collapse
Affiliation(s)
- Beata Grygalewicz
- Cytogenetic Laboratory, Maria Sklodowska-Curie Memorial Cancer Centre and Institute, ul. Roentgena 5, 02-781 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Brooks TA, Hurley LH. The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics. Nat Rev Cancer 2009; 9:849-61. [PMID: 19907434 DOI: 10.1038/nrc2733] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MYC is deregulated in most tumour types, but an effective means to selectively target its aberrant expression is not yet available. Supercoiling that is induced by transcription has been demonstrated to have dynamic effects on DNA in the MYC promoter element: it converts duplex DNA to non-duplex DNA structures, even at considerable distances from the transcriptional start site. These non-duplex DNA structures, which control both turning on and off of transcription and the rate of transcription firing, are amenable to small-molecule targeting. This dynamic system provides a unique opportunity for the treatment of tumours in which MYC is an important oncogene.
Collapse
Affiliation(s)
- Tracy A Brooks
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
42
|
Wu GQ, Xie D, Yang GF, Liao YJ, Mai SJ, Deng HX, Sze J, Guan XY, Zeng YX, Lin MC, Kung HF. Cell cycle-related kinase supports ovarian carcinoma cell proliferation via regulation of cyclin D1 and is a predictor of outcome in patients with ovarian carcinoma. Int J Cancer 2009; 125:2631-42. [PMID: 19672860 DOI: 10.1002/ijc.24630] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Our previous study has suggested that the cell cycle-related kinase (CCRK) is a putative candidate oncogene in glioblastoma tumorigenesis. The potential oncogenic role of CCRK and its clinical/prognostic significance, however, in ovarian carcinoma are unclear. In this study, CCRK expression was examined by immunohistochemistry in a series of ovarian carcinoma tissues. Overexpression of CCRK was detected in 53% of the ovarian carcinomas, and it was positively correlated with an ascending histological grade and/or advanced clinical stage of the disease (p < 0.05). In addition, overexpression of CCRK in ovarian carcinoma was determined to be a strong and an independent predictor of short overall survival (p < 0.05). In ovarian carcinoma cells, CCRK knockdown by RNAi led to a G1 phase cell cycle arrest, while CCRK overexpression by stable transfection of CCRK-containing plasmid pcDNA-CCRK promoted cell proliferation in vitro and tumor growth in vivo. In addition, CCRK knockdown was found to reduce cyclin D1 expression. Consistently, CCRK overexpression increased cyclin D1 expression, and furthermore, a significant correlation between expression of CCRK and cyclin D1 in ovarian carcinomas was observed (p < 0.001). These findings suggest a potential important role of CCRK in the control of cell proliferation via regulation of cyclin D1 expression, and the overexpression of CCRK, as detected by immunohistochemistry, is an independent molecular marker for shortened survival time of patients with ovarian carcinoma.
Collapse
Affiliation(s)
- Guo-Qing Wu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Introduction. According to clinical and epidemiological studies, ovarian cancer ranks fifth in cancer deaths among women. The causes of ovarian cancer remain largely unknown but various factors may increase the risk of developing it, such as age, family history of cancer, childbearing status etc. This cancer results from a succession of genetic alterations involving oncogenes and tumour suppressor genes, which have a critical role in normal cell growth regulation. Mutations and/or overexpression of three oncogenes, c-erbB-2, c-Myc and K-ras, and of the tumour suppressor gene p53, have been frequently observed in a sporadic ovarian cancer. Objective. The aim of the present study was to analyze c-Myc and c-erbB-2 oncogene alterations, specifically amplification, as one of main mechanisms of their activation in ovarian cancers and to establish a possible association with the pathogenic process. Methods. DNA was isolated from 15 samples of malignant and 5 benign ovarian tumours, using proteinase K digestion, followed by phenol-chloroform isoamyl extraction and ethanol precipitation. C-Myc and c-erbB-2 amplification were detected by differential PCR. The level of gene copy increase was measured using the Scion image software. Results. The amplification of both c-Myc and c-erbB-2 was detected in 26.7% of ovarian epithelial carcinoma specimens. Only one tumour specimen concomitantly showed increased gene copy number for both studied genes. Interestingly, besides amplification, gene deletion was also detected (26.7% for c-erbB-2). Most of the ovarian carcinomas with alterations in c-Myc and c-erbB-2 belonged to advanced FIGO stages. Conclusion. The amplification of c-Myc and c-erbB-2 oncogenes in ovarian epithelial carcinomas is most probably a late event in the pathogenesis conferring these tumours a more aggressive biological behaviour. Similarly, gene deletions point to genomic instability in epithelial carcinomas in higher clinical stages as the result of clonal evolution and selection.
Collapse
|
44
|
Jarboe EA, Folkins AK, Drapkin R, Ince TA, Agoston ES, Crum CP. Tubal and ovarian pathways to pelvic epithelial cancer: a pathological perspective. Histopathology 2008; 53:127-38. [PMID: 18298580 DOI: 10.1111/j.1365-2559.2007.02938.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Prolongation of ovarian epithelial cancer survival depends on early detection or improved responses to chemotherapy. Gains in either have been modest at best. Understanding the diverse pathogenesis of this disease is critical to early intervention or prevention. This review addresses six important variables, including (i) cell of origin, (ii) site of origin, (iii) initial genotoxic events, (iv) risks imposed by hereditary and other promoting conditions, (v) subsequent factors that promote different patterns of metastatic spread, and (vi) prospects for intervention. This review proposes two distinct pathways to pelvic epithelial cancer. The first initiates in ovarian surface epithelium (OSE), Mullerian inclusions or endometriosis in the ovary. The second arises from the endosalpinx and encompasses a subset of serous carcinomas. The serous carcinogenic sequence in the distal fallopian tube is described and contrasted with lower grade serous tumors based on tumour location, earliest genetic change and ability (or lack of) to undergo terminal (ciliated) differentiation. Ultimately, a clear understanding of tumour origin and the mechanism(s) leading to the earliest phases of the serous and endometrioid carcinogenic sequences may hold the greatest promise for designing prevention strategies and/or developing new therapies.
Collapse
Affiliation(s)
- E A Jarboe
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
45
|
Li YF, Hu W, Fu SQ, Li JD, Liu JH, Kavanagh JJ. Aromatase inhibitors in ovarian cancer: is there a role? Int J Gynecol Cancer 2008; 18:600-14. [PMID: 17894799 DOI: 10.1111/j.1525-1438.2007.01075.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Estrogen plays a role in ovarian tumorigenesis. Aromatase is the enzyme required for the synthesis of estrogen via conversion of androgen to estrogen, which is the major source of estrogen in postmenopausal women. Aromatase is present in normal ovaries and other tissues (e.g., fat and muscle) as well as in 33-81% tumor tissues of ovarian cancer. Aromatase inhibitors (AIs) block estrogen synthesis by inhibiting aromatase activity. In patients with recurrent ovarian cancer, single-agent AI therapy has been shown to elicit clinical response rates of up to 35.7% and stable disease rates of 20-42%. Given the limited treatment options for recurrent ovarian cancer and the favorable safety profile and convenient use, AI is a rational option for prolonging platinum-free interval in recurrent ovarian cancer. Further studies are required to determine the efficacy of combination treatment with AIs and biological agents, determine the benefit of AIs for treating special types of ovarian cancer (e.g., endometrioid type), and identify biomarkers for targeted patient selection. This review summarizes the current epidemiologic, preclinical, and clinical data regarding estrogen's role in ovarian cancer, the expression and regulation of aromatase in this disease, the development and characteristics of the three generations of AIs, and the preclinical and clinical studies of AIs in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Y F Li
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77230, USA
| | | | | | | | | | | |
Collapse
|
46
|
Gadducci A, Cosio S, Tana R, Genazzani AR. Serum and tissue biomarkers as predictive and prognostic variables in epithelial ovarian cancer. Crit Rev Oncol Hematol 2008; 69:12-27. [PMID: 18595727 DOI: 10.1016/j.critrevonc.2008.05.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/17/2008] [Accepted: 05/08/2008] [Indexed: 11/29/2022] Open
Abstract
Tumour stage, residual disease after initial surgery, histological type and tumour grade are the most important clinical-pathological factors related to the clinical outcome of patients with epithelial ovarian cancer. In the last years, several investigations have assessed different biological variables in sera and in tissue samples from patients with this malignancy in order to detect biomarkers able to reflect either the response to chemotherapy or survival. The present paper reviewed the literature data about the predictive or prognostic relevance of serum CA 125, soluble cytokeratin fragments, serum human kallikreins, serum cytokines, serum vascular endothelial growth factor and plasma d-dimer as well as of tissue expression of cell cycle- and apoptosis-regulatory proteins, human telomerase reverse transcriptase, membrane tyrosine kinase receptors and matrix metalloproteinases. A next future microarray technology will hopefully offer interesting perspectives of translational research for the identification of novel predictive and prognostic biomarkers for epithelial ovarian cancer.
Collapse
Affiliation(s)
- Angiolo Gadducci
- Department of Procreative Medicine, Division of Gynecology and Obstetrics, University of Pisa, Via Roma 56, Pisa 56127, Italy.
| | | | | | | |
Collapse
|
47
|
Expression of Wnt-1, beta-catenin and c-myc in ovarian epithelial tumor and its implication. Chin J Cancer Res 2008. [DOI: 10.1007/s11670-008-0073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
D'Andrilli G, Giordano A, Bovicelli A. Epithelial ovarian cancer: the role of cell cycle genes in the different histotypes. ACTA ACUST UNITED AC 2008; 2:7-12. [PMID: 18665245 PMCID: PMC2490600 DOI: 10.2174/1874189400802010007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 01/14/2008] [Accepted: 01/22/2008] [Indexed: 11/22/2022]
Abstract
Cancer is frequently considered to be a disease of the cell cycle; alterations in different families of cell cycle regulators cooperate in tumor development. Molecular analysis of human tumors has shown that cell cycle regulators are frequently mutated in human neoplasms, which underscores how important the maintenance of cell cycle commitment is in the prevention of human cancer. The regulatory pathways controlling cell cycle phases include several oncogenes and tumor suppressor genes which display a range of abnormalities with potential usefulness as markers of evolution or treatment response in epithelial ovarian cancer. This review summarizes the current knowledge about these aberrations in malignant tumors of the ovary. We sought to focus our attention on the genes involved in the development of tumors arising from the ovarian epithelium, which are the most common types of ovarian malignancies.
Collapse
Affiliation(s)
- Giuseppina D'Andrilli
- Sbarro Institute for Cancer Research and Molecular Medicine, Dept. of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | | | |
Collapse
|
49
|
Köbel M, Weidensdorfer D, Reinke C, Lederer M, Schmitt WD, Zeng K, Thomssen C, Hauptmann S, Hüttelmaier S. Expression of the RNA-binding protein IMP1 correlates with poor prognosis in ovarian carcinoma. Oncogene 2007; 26:7584-9. [PMID: 17546046 DOI: 10.1038/sj.onc.1210563] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The IMP (IGFII mRNA-binding protein) family comprises a group of three RNA-binding proteins involved in the regulation of cytoplasmic mRNA-fate. Recent studies identified IMP proteins as oncofetal factors in various neoplasias, but knowledge of a potential role in ovarian carcinomas is still lacking. The immunohistochemical analysis of 107 ovarian carcinomas, 30 serous borderline tumors of the ovary and five normal ovaries revealed de novo synthesis of IMP1 in 69% of ovarian carcinomas. Elevated IMP1 expression was observed preferentially in high-grade and high-stage cases and was a significant prognostic indicator for reduced recurrence-free and overall survival. Phenotypic studies in ovarian carcinoma-derived ES-2 cells demonstrated that IMP1 knockdown affects proliferation and cell survival. Reduced proliferation was associated with decreased c-myc mRNA half-life, suggesting IMP1 as an oncogenic factor that is involved in promoting elevated proliferation by stabilizing the c-myc mRNA in ovarian carcinoma cells.
Collapse
Affiliation(s)
- M Köbel
- Department of Medicine, Institute of Pathology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Expressions of beta-catenin, APC protein, C-myc and cyclin D1 in ovarian epithelial tumor and their implication. Chin J Cancer Res 2007. [DOI: 10.1007/s11670-007-0131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|