1
|
Kohyama N, Takamine K, Okamoto W, Yamada T, Yamaguchi M, Kohno M, Tochinai R, Komatsu T. Nanoparticle O 2 Carrier Composed of a Polymerized Stroma-Free Hemoglobin Core and Serum Albumin Shell as a Red Blood Cell Alternative in Hemorrhagic Shock Therapy. ACS APPLIED BIO MATERIALS 2025; 8:2397-2407. [PMID: 39945398 DOI: 10.1021/acsabm.4c01901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
A wide array of artificial O2 carriers based on hemoglobin (Hb) has been developed to serve as substitutes for red blood cells (RBCs). Nevertheless, the prevention of heme-iron oxidation within Hb remains a critical challenge. In this study, we synthesized a nanoparticle O2 carrier comprising a polymerized stromal-free Hb (SFHb) core covered with a human serum albumin shell, designated as SFHbNP. With an optimized particle size of approximately 30 nm, SFHbNPs are engineered to evade uptake by the reticuloendothelial system in various organs. We characterized the physicochemical properties and biochemical functions of SFHbNPs, demonstrating that the incorporation of trace amounts of the antioxidant enzyme catalase within the core effectively suppresses Hb autoxidation. The SFHbNP solution exhibited excellent compatibility with human blood and demonstrated no cytotoxicity toward human endothelial cells. Moreover, its extended circulatory retention enabled preclinical evaluation in animal models. In a rat model of 50% hemorrhagic shock, administration of SFHbNP solution achieved full resuscitation, as evidenced by the restoration of circulatory parameters. Serum biochemistry tests and histopathological analyses of major organs indicated no adverse effects. Comprehensive in vitro and in vivo studies confirm the safety and potential efficacy of SFHbNPs as a promising RBC alternative in transfusion medicine.
Collapse
Affiliation(s)
- Natsumi Kohyama
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Koki Takamine
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Wataru Okamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Taiga Yamada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Masatoshi Yamaguchi
- Department of General Thoracic Surgery, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Saitama 350-8550, Japan
| | - Mitsutomo Kohno
- Department of General Thoracic Surgery, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Saitama 350-8550, Japan
| | - Ryota Tochinai
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
2
|
Mohanto N, Mondal H, Park YJ, Jee JP. Therapeutic delivery of oxygen using artificial oxygen carriers demonstrates the possibility of treating a wide range of diseases. J Nanobiotechnology 2025; 23:25. [PMID: 39827150 PMCID: PMC11742488 DOI: 10.1186/s12951-024-03060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Artificial oxygen carriers have emerged as potential substitutes for red blood cells in situations of major blood loss, including accidents, surgical procedures, trauma, childbirth, stomach ulcers, hemorrhagic shock, and blood vessel ruptures which can lead to sudden reduction in blood volume. The therapeutic delivery of oxygen utilizing artificial oxygen carriers as red blood cell substitutes presents a promising avenue for treating a spectrum of disease models. Apart from that, the recent advancement of artificial oxygen carriers intended to supplant conventional blood transfusions draws significant attention due to the exigencies of warfare and the ongoing challenges posed by the COVID-19 pandemic. However, there is a pressing need to formulate stable, non-toxic, and immunologically inert oxygen carriers. Even though numerous challenges are encountered in the development of artificial oxygen carriers, their applicability extends to various medical treatments, encompassing elective and cardiovascular surgeries, hemorrhagic shock, decompression illness, acute stroke, myocardial infarction, sickle cell crisis, and proficient addressing conditions such as cerebral hypoxia. Therefore, this paper provides an overview of therapeutic oxygen delivery using assorted types of artificial oxygen carriers, including hemoglobin-based, perfluorocarbon-based, stem cell-derived, and oxygen micro/nanobubbles, in the treatment of diverse disease models. Additionally, it discusses the potential side effects and limitations associated with these interventions, while incorporating completed and ongoing research and recent clinical developments. Finally, the prospective solutions and general demands of the perfect artificial oxygen carriers were anticipated to be a reference for subsequent research endeavors.
Collapse
Affiliation(s)
- Nijaya Mohanto
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea
| | - Himangsu Mondal
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea
| | - Young-Joon Park
- College of Pharmacy, Ajou University, Suwon, Gyeonggi, Republic of Korea
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea.
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, Republic of Korea.
| |
Collapse
|
3
|
Khan MA, Salvi T, Beyer GJ, Abdalbaqi A, Allyn M, Bresolin A, Palmer AF. Scalable Production and Biophysical Characterization of High-Molecular-Weight Relaxed and Tense Quaternary State Polymerized Human Hemoglobin as Potential Red Blood Cell Substitutes. Biomacromolecules 2024; 25:7334-7348. [PMID: 39477826 DOI: 10.1021/acs.biomac.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
High-molecular-weight (HMW) (>500 kDa) glutaraldehyde-polymerized human hemoglobin (PolyhHb) is a promising hemoglobin-based oxygen carrier (HBOC) due to its decreased risk of vasoconstriction and oxidative tissue injury. Previously, HMW tense (T) quaternary state PolyhHb was synthesized at the pilot scale with tangential flow filtration (TFF) for the removal of low-molecular-weight species. However, T-state PolyhHb is limited to specific biomedical applications due to its low oxygen affinity, thus motivating the need to produce high oxygen affinity relaxed (R) quaternary state PolyhHb at the pilot scale. This study explored the pilot-scale synthesis and extensive biophysical characterization of both HMW T- and R-state PolyhHb. The resultant characterization demonstrated the successful synthesis of low and high oxygen affinity PolyhHb with increased molecular weight (∼1000-1500 kDa). Overall, T- and R-state PolyhHb provides a platform for manufacturing oxygen therapeutics with a diverse range of oxygen affinities and potential biomedical applications.
Collapse
Affiliation(s)
- Mohd Asim Khan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tanmay Salvi
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Griffin J Beyer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amna Abdalbaqi
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Megan Allyn
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alejandro Bresolin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Munoz CJ, Lucas D, Muller CR, Breton A, Jani V, Savla C, Palmer AF, Cabrales P. Degree of PEGylatation of Lumbricus terrestris Hemoglobin Improves Microcirculatory Blood Flow but Increases the Rate of Auto-Oxidation. ACS APPLIED BIO MATERIALS 2024; 7:5188-5200. [PMID: 38970152 DOI: 10.1021/acsabm.4c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
INTRODUCTION The demand for red blood cells (RBCs) is on the rise due to the increasing diagnosis of chronic diseases such as sickle cell anemia, malaria, and thalassemia. Despite many commercial attempts, there are no U.S. FDA-approved artificial RBCs for use in humans. Existing RBC substitutes have employed various strategies to transport oxygen, extend the circulation time, and reduce organ toxicity, but none have replicated the natural protective mechanisms of RBCs, which prevent hemoglobin (Hb) dimerization and heme iron oxidation. Lumbricus terrestris (earthworm) erythrocruorin (LtEc) is a naturally occurring extracellular hemoglobin (Hb) with promising attributes: large molecular diameter (30 nm), high molecular weight (3.6 MDa), low auto-oxidation rate, and limited nitric oxide-scavenging properties. These characteristics make LtEc an ideal candidate as an RBC substitute. However, LtEc has a significant drawback, its short circulatory half-life. To address this issue, we explored thiol-mediated surface PEGylation of LtEc (PEG-LtEc) at varying polyethylene glycol (PEG) surface coverages. Increasing PEG surface coverage beyond 40% destabilizes LtEc into smaller subunits that are 1/12th the size of LtEc. Therefore, we evaluated two PEG surface coverage options: PEG-LtEc-0.2 (20% PEGylation) and PEG-LtEc-1.0 (100% PEGylation). METHODS We conducted experiments using golden Syrian hamsters with dorsal window chambers and catheters to assess the efficacy of these solutions. We measured microvascular parameters, organ function, cerebral blood flow, circulation time, mean arterial pressure, heart rate, and blood gases and performed histology to screen for toxicity. CONCLUSION Our findings indicate that both PEG-LtEc molecules offer significant benefits in restoring microvascular parameters, organ function, cerebral blood flow, and circulation time compared to LtEc alone. Notably, PEG-LtEc-1.0 showed superior microvascular perfusion, although it exhibited a higher rate of auto-oxidation compared to PEG-LtEc-0.2. These results underscore the advantages of PEGylation in terms of tissue perfusion and organ health while highlighting its limitations.
Collapse
Affiliation(s)
- Carlos J Munoz
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Daniela Lucas
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Cynthia R Muller
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Amanda Breton
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Vinay Jani
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Okamoto W, Hiwatashi Y, Kobayashi T, Morita Y, Onozawa H, Iwazaki M, Kohno M, Tomiyasu H, Tochinai R, Georgieva R, Bäumler H, Komatsu T. Poly(2-ethyl-2-oxazoline)-Conjugated Hemoglobins as a Red Blood Cell Substitute. ACS APPLIED BIO MATERIALS 2023; 6:3330-3340. [PMID: 37504970 DOI: 10.1021/acsabm.3c00392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Hemoglobin wrapped covalently with poly(2-ethyl-2-oxazoline)s (POx-Hb) is characterized physicochemically and physiologically as an artificial O2 carrier for use as a red blood cell (RBC) substitute. The POx-Hb is generated by linkage of porcine Hb surface-lysines to a sulfhydryl terminus of the POx derivative, with the average binding number of the polymers ascertained as 6. The POx-Hb shows moderately higher colloid osmotic activity and O2 affinity than the naked Hb. Human adult HbA conjugated with POx also possesses equivalent features and O2 binding properties. The POx-Hb solution exhibits good hemocompatibility, with no influence on the functions of platelets, granulocytes, and monocytes. Its circulation half-life in rats is 14 times longer than that of naked Hb. Hemorrhagic shock in rats is relieved sufficiently by infusion of the POx-Hb solution, as revealed by improvements of circulatory parameters. Serum biochemistry tests and histopathological observations indicate no acute toxicity or abnormality in the related organs. All results indicate that POx-Hb represents an attractive alternative for RBCs and a useful O2 therapeutic reagent in transfusion medicine.
Collapse
Affiliation(s)
- Wataru Okamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yuuki Hiwatashi
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tatsuhiro Kobayashi
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yoshitsugu Morita
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hiroto Onozawa
- Department of General Thoracic Surgery, School of Medicine, Tokai University, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Masayuki Iwazaki
- Department of General Thoracic Surgery, School of Medicine, Tokai University, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Mitsutomo Kohno
- Department of General Thoracic Surgery, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe-shi, Saitama 350-8550, Japan
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryota Tochinai
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Radostina Georgieva
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Medical Physics, Biophysics and Radiology, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Hans Bäumler
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
6
|
Wang Z, Jiang Z, Lu R, Kou L, Zhao YZ, Yao Q. Formulation strategies to provide oxygen-release to contrast local hypoxia for transplanted islets. Eur J Pharm Biopharm 2023; 187:130-140. [PMID: 37105362 DOI: 10.1016/j.ejpb.2023.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Islet transplantation refers to the transfusion of healthy islet cells into the diabetic recipients and reconstruction of their endogenous insulin secretion to achieve insulin independence. It is a minimally invasive surgery that holds renewed prospect as a therapeutic method for type 1 diabetes mellitus. However, poor oxygenation in the early post-transplantation period is considered as one of the major causes of islet loss and dysfunction. Due to the metabolism chacteristics, islets required a high supply of oxygen for cell survival while a hypoxia environment would lead to severe islet loss and graft failure. Emerging strategies have been proposed, including providing external oxygen and speeding up revascularization. From the perspective of formulation science, it is feasible and practical to protect transplanted islets by oxygen-release before revascularization as opposed to local hypoxia. In this study, we review the potential formulation strategies that could provide oxygen-release by either delivering external oxygen or triggering localized oxygen generation for transplanted islets.
Collapse
Affiliation(s)
- Zeqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhikai Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ruijie Lu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
7
|
Kim H, Yoon J, Kim HK, Lee WT, Nguyen NT, Le XT, Lee EH, Lee ES, Oh KT, Choi HG, Youn YS. Upconverting nanoparticle-containing erythrocyte-sized hemoglobin microgels that generate heat, oxygen and reactive oxygen species for suppressing hypoxic tumors. Bioact Mater 2023; 22:112-126. [PMID: 36203958 PMCID: PMC9526021 DOI: 10.1016/j.bioactmat.2022.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Inspired by erythrocytes that contain oxygen-carrying hemoglobin (Hb) and that exhibit photo-driven activity, we introduce homogenous-sized erythrocyte-like Hb microgel (μGel) systems (5–6 μm) that can (i) emit heat, (ii) supply oxygen, and (iii) generate reactive oxygen species (ROS; 1O2) in response to near-infrared (NIR) laser irradiation. Hb μGels consist of Hb, bovine serum albumin (BSA), chlorin e6 (Ce6) and erbium@lutetium upconverting nanoparticles (UCNPs; ∼35 nm) that effectively convert 808 nm NIR light to 660 nm visible light. These Hb μGels are capable of releasing oxygen to help generate sufficient reactive oxygen species (1O2) from UCNPs/Ce6 under severely hypoxic condition upon NIR stimulation for efficient photodynamic activity. Moreover, the Hb μGels emit heat and increase surface temperature due to NIR light absorption by heme (iron protoporphyrin IX) and display photothermal activity. By changing the Hb/UCNP/Ce6 ratio and controlling the amount of NIR laser irradiation, it is possible to formulate bespoke Hb μGels with either photothermal or photodynamic activity or both in the context of combined therapeutic effect. These Hb μGels effectively suppress highly hypoxic 4T1 cell spheroid growth and xenograft mice tumors in vivo. Erythrocyte-like hemoglobin μGels are prepared with upconverting nanoparticles. The μGels respond to the 808 nm near-infrared laser irradiation. The μGels emit heat, supply oxygen, and generate reactive oxygen species. The μGels have combined photothermal and photodynamic activity. The μGels suppress the growth of severe hypoxic 4T1 xenograft tumors.
Collapse
|
8
|
Wilson MT, Reeder BJ. The peroxidatic activities of Myoglobin and Hemoglobin, their pathological consequences and possible medical interventions. Mol Aspects Med 2021; 84:101045. [PMID: 34654576 PMCID: PMC8837633 DOI: 10.1016/j.mam.2021.101045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022]
Abstract
Under those pathological conditions in which Myoglobin and Hemoglobin escape their cellular environments and are thus separated from cellular reductive/protective systems, the inherent peroxidase activities of these proteins can be expressed. This activity leads to the formation of the highly oxidizing oxo-ferryl species. Evidence that this happens in vivo is provided by the formation of a covalent bond between the heme group and the protein and this acts as an unambiguous biomarker for the presence of the oxo ferryl form. The peroxidatic activity also leads to the oxidation of lipids, the products of which can be powerful vasoconstrictive agents (e.g. isoprostanes, neuroprostanes). Here we review the evidence that lipid oxidation occurs following rhabdomyolysis and sub-arachnoid hemorrhage and that the products formed from arachidonic acid chains of phospholipids lead, through vasoconstriction, to kidney failure and brain vasospasm. Intervention in these pathological conditions through administration of reducing agents to remove ferryl heme is discussed. Through-protein electron transfer pathways that facilitate ferryl reduction at low reductant concentration have been identified. We conclude with consideration of the therapeutic use of Hemoglobin Based Oxygen carriers and how the toxicity of these may be reduced by engineering such electron transfer pathways into hemoglobin.
Collapse
Affiliation(s)
- Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.
| | - Brandon J Reeder
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.
| |
Collapse
|
9
|
Kanagarajan S, Carlsson MLR, Chakane S, Kettisen K, Smeds E, Kumar R, Ortenlöf N, Gram M, Åkerström B, Bülow L, Zhu LH. Production of functional human fetal hemoglobin in Nicotiana benthamiana for development of hemoglobin-based oxygen carriers. Int J Biol Macromol 2021; 184:955-966. [PMID: 34153360 DOI: 10.1016/j.ijbiomac.2021.06.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Hemoglobin-based oxygen carriers have long been pursued to meet clinical needs by using native hemoglobin (Hb) from human or animal blood, or recombinantly produced Hb, but the development has been impeded by safety and toxicity issues. Herewith we report the successful production of human fetal hemoglobin (HbF) in Nicotiana benthamiana through Agrobacterium tumefaciens-mediated transient expression. HbF is a heterotetrameric protein composed of two identical α- and two identical γ-subunits, held together by hydrophobic interactions, hydrogen bonds, and salt bridges. In our study, the α- and γ-subunits of HbF were fused in order to stabilize the α-subunits and facilitate balanced expression of α- and γ-subunits in N. benthamiana. Efficient extraction and purification methods enabled production of the recombinantly fused endotoxin-free HbF (rfHbF) in high quantity and quality. The transiently expressed rfHbF protein was identified by SDS-PAGE, Western blot and liquid chromatography-tandem mass spectrometry analyses. The purified rfHbF possessed structural and functional properties similar to native HbF, which were confirmed by biophysical, biochemical, and in vivo animal studies. The results demonstrate a high potential of plant expression systems in producing Hb products for use as blood substitutes.
Collapse
Affiliation(s)
- Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Magnus L R Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Sandeep Chakane
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Karin Kettisen
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Emanuel Smeds
- Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Ranjeet Kumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Niklas Ortenlöf
- Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Magnus Gram
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Bo Åkerström
- Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden.
| |
Collapse
|
10
|
Cooper CE, Bird M, Sheng X, Choi JW, Silkstone GGA, Simons M, Syrett N, Piano R, Ronda L, Bettati S, Paredi G, Mozzarelli A, Reeder BJ. Stability of Maleimide-PEG and Mono-Sulfone-PEG Conjugation to a Novel Engineered Cysteine in the Human Hemoglobin Alpha Subunit. Front Chem 2021; 9:707797. [PMID: 34381760 PMCID: PMC8350135 DOI: 10.3389/fchem.2021.707797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
In order to use a Hemoglobin Based Oxygen Carrier as an oxygen therapeutic or blood substitute, it is necessary to increase the size of the hemoglobin molecule to prevent rapid renal clearance. A common method uses maleimide PEGylation of sulfhydryls created by the reaction of 2-iminothiolane at surface lysines. However, this creates highly heterogenous mixtures of molecules. We recently engineered a hemoglobin with a single novel, reactive cysteine residue on the surface of the alpha subunit creating a single PEGylation site (βCys93Ala/αAla19Cys). This enabled homogenous PEGylation by maleimide-PEG with >80% efficiency and no discernible effect on protein function. However, maleimide-PEG adducts are subject to deconjugation via retro-Michael reactions and cross-conjugation to endogenous thiol species in vivo. We therefore compared our maleimide-PEG adduct with one created using a mono-sulfone-PEG less susceptible to deconjugation. Mono-sulfone-PEG underwent reaction at αAla19Cys hemoglobin with > 80% efficiency, although some side reactions were observed at higher PEG:hemoglobin ratios; the adduct bound oxygen with similar affinity and cooperativity as wild type hemoglobin. When directly compared to maleimide-PEG, the mono-sulfone-PEG adduct was significantly more stable when incubated at 37°C for seven days in the presence of 1 mM reduced glutathione. Hemoglobin treated with mono-sulfone-PEG retained > 90% of its conjugation, whereas for maleimide-PEG < 70% of the maleimide-PEG conjugate remained intact. Although maleimide-PEGylation is certainly stable enough for acute therapeutic use as an oxygen therapeutic, for pharmaceuticals intended for longer vascular retention (weeks-months), reagents such as mono-sulfone-PEG may be more appropriate.
Collapse
Affiliation(s)
- Chris E Cooper
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | | | | | | | - Gary G A Silkstone
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Michelle Simons
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Natalie Syrett
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Riccardo Piano
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Council, Pisa, Italy
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Council, Pisa, Italy
| | | | - Andrea Mozzarelli
- Institute of Biophysics, National Research Council, Pisa, Italy.,Department of Food and Drug, University of Parma, Parma, Italy
| | - Brandon J Reeder
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
11
|
Jahr JS, Guinn NR, Lowery DR, Shore-Lesserson L, Shander A. Blood Substitutes and Oxygen Therapeutics: A Review. Anesth Analg 2021; 132:119-129. [PMID: 30925560 DOI: 10.1213/ane.0000000000003957] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite the exhaustive search for an acceptable substitute to erythrocyte transfusion, neither chemical-based products such as perfluorocarbons nor hemoglobin-based oxygen carriers have succeeded in providing a reasonable alternative to allogeneic blood transfusion. However, there remain scenarios in which blood transfusion is not an option, due to patient's religious beliefs, inability to find adequately cross-matched erythrocytes, or in remote locations. In these situations, artificial oxygen carriers may provide a mortality benefit for patients with severe, life-threatening anemia. This article provides an up-to-date review of the history and development, clinical trials, new technology, and current standing of artificial oxygen carriers as an alternative to transfusion when blood is not an option.
Collapse
Affiliation(s)
- Jonathan S Jahr
- From the David Geffen School of Medicine at University of California Los Angeles, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Nicole R Guinn
- Department of Anesthesiology, Center for Blood Conservation Duke University Medical Center, Durham, North Carolina
| | - David R Lowery
- US Military, San Antonio, Texas.,Department of Anesthesiology, Uniformed Services University of the Health Sciences, San Antonio Military Medical Center, San Antonio, Texas
| | | | - Aryeh Shander
- Department of Anesthesiology, Critical Care and Hyperbaric Medicine, Englewood Hospital and Medical Center, Englewood, New Jersey.,TeamHealth Research Institute, Englewood Hospital and Medical Center, Englewood, New Jersey
| |
Collapse
|
12
|
Coll-Satue C, Bishnoi S, Chen J, Hosta-Rigau L. Stepping stones to the future of haemoglobin-based blood products: clinical, preclinical and innovative examples. Biomater Sci 2021; 9:1135-1152. [DOI: 10.1039/d0bm01767a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Critical overview of the different oxygen therapeutics developed so far to be used when donor blood is not available.
Collapse
Affiliation(s)
- Clara Coll-Satue
- Department of Health Technology
- Centre for Nanomedicine and Theranostics
- DTU Health Tech
- Technical University of Denmark
- 2800 Lyngby
| | - Shahana Bishnoi
- Department of Health Technology
- Centre for Nanomedicine and Theranostics
- DTU Health Tech
- Technical University of Denmark
- 2800 Lyngby
| | - Jiantao Chen
- Department of Health Technology
- Centre for Nanomedicine and Theranostics
- DTU Health Tech
- Technical University of Denmark
- 2800 Lyngby
| | - Leticia Hosta-Rigau
- Department of Health Technology
- Centre for Nanomedicine and Theranostics
- DTU Health Tech
- Technical University of Denmark
- 2800 Lyngby
| |
Collapse
|
13
|
Abstract
In blood, the primary role of red blood cells (RBCs) is to transport oxygen via highly regulated mechanisms involving hemoglobin (Hb). Hb is a tetrameric porphyrin protein comprising of two α- and two β-polypeptide chains, each containing an iron-containing heme group capable of binding one oxygen molecule. In military as well as civilian traumatic exsanguinating hemorrhage, rapid loss of RBCs can lead to suboptimal tissue oxygenation and subsequent morbidity and mortality. In such cases, transfusion of whole blood or RBCs can significantly improve survival. However, blood products including RBCs present issues of limited availability and portability, need for type matching, pathogenic contamination risks, and short shelf-life, causing substantial logistical barriers to their prehospital use in austere battlefield and remote civilian conditions. While robust research is being directed to resolve these issues, parallel research efforts have emerged toward bioengineering of semisynthetic and synthetic surrogates of RBCs, using various cross-linked, polymeric, and encapsulated forms of Hb. These Hb-based oxygen carriers (HBOCs) can potentially provide therapeutic oxygenation when blood or RBCs are not available. Several of these HBOCs have undergone rigorous preclinical and clinical evaluation, but have not yet received clinical approval in the USA for human use. While these designs are being optimized for clinical translations, several new HBOC designs and molecules have been reported in recent years, with unique properties. The current article will provide a comprehensive review of such HBOC designs, including current state-of-the-art and novel molecules in development, along with a critical discussion of successes and challenges in this field.
Collapse
|
14
|
Polymerized human hemoglobin facilitated modulation of tumor oxygenation is dependent on tumor oxygenation status and oxygen affinity of the hemoglobin-based oxygen carrier. Sci Rep 2020; 10:11372. [PMID: 32647211 PMCID: PMC7347553 DOI: 10.1038/s41598-020-68190-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
Administration of hemoglobin-based oxygen carriers (HBOCs) into the systemic circulation is a potential strategy to relieve solid tumor hypoxia in order to increase the effectiveness of chemotherapeutics. Previous computational analysis indicated that the oxygen (O2) status of the tumor and HBOC O2 affinity may play a role in increased O2 delivery to the tumor. However, no study has experimentally investigated how low- and high-affinity HBOCs would perform in normoxic and hypoxic tumors. In this study, we examined how the HBOC, polymerized human hemoglobin (PolyhHb), in the relaxed (R) or tense (T) quaternary state modulates O2 delivery to hypoxic (FME) and normoxic (LOX) human melanoma xenografts in a murine window chamber model. We examined microcirculatory fluid flow via video shearing optical microscopy, and O2 distributions via phosphorescence quenching microscopy. Additionally, we examined how weekly infusion of a 20% top-load dose of PolyhHb influences growth rate, vascularization, and regional blood flow in the FME and LOX tumor xenografts. Infusion of low-affinity T-state PolyhHb led to increased tissue oxygenation, decreased blood flow, decreased tumor growth, and decreased vascularization in hypoxic tumors. However, infusion of both T-state and R-state PolyhHbs led to worse outcomes in normoxic tumors. Of particular concern was the high-affinity R-state PolyhHb, which led to no improvement in hypoxic tumors and significantly worsened outcomes in normoxic tumors. Taken together, the results of this study indicate that the tumor O2 status is a primary determinant of the potency and outcomes of infused PolyhHb.
Collapse
|
15
|
Cooper CE, Silkstone GGA, Simons M, Gretton S, Rajagopal BS, Allen-Baume V, Syrett N, Shaik T, Popa G, Sheng X, Bird M, Choi JW, Piano R, Ronda L, Bettati S, Paredi G, Mozzarelli A, Reeder BJ. Engineering hemoglobin to enable homogenous PEGylation without modifying protein functionality. Biomater Sci 2020; 8:3896-3906. [PMID: 32539053 DOI: 10.1039/c9bm01773a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In order to infuse hemoglobin into the vasculature as an oxygen therapeutic or blood substitute, it is necessary to increase the size of the molecule to enhance vascular retention. This aim can be achieved by PEGylation. However, using non-specific conjugation methods creates heterogenous mixtures and alters protein function. Site-specific PEGylation at the naturally reactive thiol on human hemoglobin (βCys93) alters hemoglobin oxygen binding affinity and increases its autooxidation rate. In order to avoid this issue, new reactive thiol residues were therefore engineered at sites distant to the heme group and the α/β dimer/dimer interface. The two mutants were βCys93Ala/αAla19Cys and βCys93Ala/βAla13Cys. Gel electrophoresis, size exclusion chromatography and mass spectrometry revealed efficient PEGylation at both αAla19Cys and βAla13Cys, with over 80% of the thiols PEGylated in the case of αAla19Cys. For both mutants there was no significant effect on the oxygen affinity or the cooperativity of oxygen binding. PEGylation at αAla19Cys had the additional benefit of decreasing the rates of autoxidation and heme release, properties that have been considered contributory factors to the adverse clinical side effects exhibited by previous hemoglobin based oxygen carriers. PEGylation at αAla19Cys may therefore be a useful component of future clinical products.
Collapse
Affiliation(s)
- Chris E Cooper
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang N, Wei MY, Ma Q. Nanomedicines: A Potential Treatment for Blood Disorder Diseases. Front Bioeng Biotechnol 2019; 7:369. [PMID: 31850329 PMCID: PMC6892756 DOI: 10.3389/fbioe.2019.00369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Blood disorder diseases (BDDs), also known as hematologic, is one of the diseases owing to hematopoietic system disorder. Chemotherapy, bone marrow transplantation, and stem cells therapy have been used to treat BDDs. However, the cure rates are still low due to the availability of the right type of bone marrow and the likelihood of recurrence and infection. With the rapid development of nanotechnology in the field of biomedicine, artificial blood or blood substitute has shown promising features for the emergency treatment of BDDs. Herein, we surveyed recent advances in the development of artificial blood components: gas carrier components (erythrocyte substitutes), immune response components (white blood cell substitutes), and hemostasis-responsive components (platelet substitutes). Platelet-inspired nanomedicines for cancer treatment were also discussed. The challenges and prospects of these treatment options in future nanomedicine development are discussed.
Collapse
Affiliation(s)
- Nan Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, China
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Ming-Yuan Wei
- Texas Commission on Environmental Quality, Austin, TX, United States
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
17
|
Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers. Adv Colloid Interface Sci 2018; 260:65-84. [PMID: 30177214 DOI: 10.1016/j.cis.2018.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022]
Abstract
Blood transfusions, which usually consist in the administration of isolated red blood cells (RBCs), are crucial in traumatic injuries, pre-surgical conditions and anemias. Although RBCs transfusion from donors is a safe procedure, donor RBCs can only be stored for a maximum of 42 days under refrigerated conditions and, therefore, stockpiles of RBCs for use in acute disasters do not exist. With a worldwide shortage of donor blood that is expected to increase over time, the creation of oxygen-carriers with long storage life and compatibility without typing and cross-matching, persists as one of the foremost important challenges in biomedicine. However, research has so far failed to produce FDA approved RBCs substitutes (RBCSs) for human usage. As such, due to unacceptable toxicities, the first generation of oxygen-carriers has been withdrawn from the market. Being hemoglobin (Hb) the main component of RBCs, a lot of effort is being devoted in assembling semi-synthetic RBCS utilizing Hb as the oxygen-carrier component, the so-called Hb-based oxygen carriers (HBOCs). However, a native RBC also contains a multi-enzyme system to prevent the conversion of Hb into non-functional methemoglobin (metHb). Thus, the challenge for the fabrication of next-generation HBOCs relies in creating a system that takes advantage of the excellent oxygen-carrying capabilities of Hb, while preserving the redox environment of native RBCs that prevents or reverts the conversion of Hb into metHb. In this review, we feature the most recent advances in the assembly of the new generation of HBOCs with emphasis in two main approaches: the chemical modification of Hb either by cross-linking strategies or by conjugation to other polymers, and the Hb encapsulation strategies, usually in the form of lipidic or polymeric capsules. The applications of the aforementioned HBOCs as blood substitutes or for oxygen-delivery in tissue engineering are highlighted, followed by a discussion of successes, challenges and future trends in this field.
Collapse
|
18
|
Sen Gupta A. Bio-inspired nanomedicine strategies for artificial blood components. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1464. [PMID: 28296287 PMCID: PMC5599317 DOI: 10.1002/wnan.1464] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/23/2017] [Accepted: 01/29/2017] [Indexed: 11/12/2022]
Abstract
Blood is a fluid connective tissue where living cells are suspended in noncellular liquid matrix. The cellular components of blood render gas exchange (RBCs), immune surveillance (WBCs) and hemostatic responses (platelets), and the noncellular components (salts, proteins, etc.) provide nutrition to various tissues in the body. Dysfunction and deficiencies in these blood components can lead to significant tissue morbidity and mortality. Consequently, transfusion of whole blood or its components is a clinical mainstay in the management of trauma, surgery, myelosuppression, and congenital blood disorders. However, donor-derived blood products suffer from issues of shortage in supply, need for type matching, high risks of pathogenic contamination, limited portability and shelf-life, and a variety of side-effects. While robust research is being directed to resolve these issues, a parallel clinical interest has developed toward bioengineering of synthetic blood substitutes that can provide blood's functions while circumventing the above problems. Nanotechnology has provided exciting approaches to achieve this, using materials engineering strategies to create synthetic and semi-synthetic RBC substitutes for enabling oxygen transport, platelet substitutes for enabling hemostasis, and WBC substitutes for enabling cell-specific immune response. Some of these approaches have further extended the application of blood cell-inspired synthetic and semi-synthetic constructs for targeted drug delivery and nanomedicine. The current study provides a comprehensive review of the various nanotechnology approaches to design synthetic blood cells, along with a critical discussion of successes and challenges of the current state-of-art in this field. WIREs Nanomed Nanobiotechnol 2017, 9:e1464. doi: 10.1002/wnan.1464 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
19
|
Zimmerman D, DiIusto M, Dienes J, Abdulmalik O, Elmer JJ. Direct comparison of oligochaete erythrocruorins as potential blood substitutes. Bioeng Transl Med 2017; 2:212-221. [PMID: 29313031 PMCID: PMC5675092 DOI: 10.1002/btm2.10067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/14/2017] [Accepted: 06/18/2017] [Indexed: 12/11/2022] Open
Abstract
While many blood substitutes are based on mammalian hemoglobins (e.g., human hemoglobin, HbA), the naturally extracellular hemoglobins of invertebrates (a.k.a. erythrocruorins, Ecs) are intriguing alternative oxygen carriers. Specifically, the erythrocruorin of Lumbricus terrestris has been shown to effectively deliver oxygen in mice and rats without the negative side effects observed with HbA. In this study, the properties of six oligochaete Ecs (Lumbricus terrestris, Eisenia hortensis, Eisenia fetida, Eisenia veneta, Eudrilus eugeniae, and Amynthas gracilis) were compared in vitro to identify the most promising blood substitute candidate(s). Several metrics were used to compare the Ecs, including their oxidation rates, dissociation at physiological pH, thermal stability, and oxygen transport characteristics. Overall, the Ecs of Lumbricus terrestris (LtEc) and Eisenia fetida (EfEc) were identified as promising candidates, since they demonstrated high thermal and oligomeric stability, while also exhibiting relatively low oxidation rates. Interestingly, the O2 affinity of LtEc (P50 = 26.25 mmHg at 37 °C) was also observed to be uniquely lower than EfEc and all of the other Ecs (P50 = 9.29–13.62 mmHg). Subsequent alignment of the primary sequences of LtEc and EfEc revealed several significant amino acid substitutions within the D subunit interfaces that may be responsible for this significant change in O2 affinity. Nonetheless, these results show that LtEc and EfEc are promising potential blood substitutes that are resistant to oxidation and denaturation, but additional experiments will need to be conducted to determine their safety, efficacy, and the effects of their disparate oxygen affinities in vivo.
Collapse
Affiliation(s)
- Devon Zimmerman
- Dept. of Chemical Engineering Villanova University 800 East Lancaster Avenue Villanova PA 19085
| | - Matthew DiIusto
- Dept. of Chemical Engineering Villanova University 800 East Lancaster Avenue Villanova PA 19085
| | - Jack Dienes
- Dept. of Chemical Engineering Villanova University 800 East Lancaster Avenue Villanova PA 19085
| | - Osheiza Abdulmalik
- Div. of Hematology, Abramson Building The Children's Hospital of Philadelphia 34th St. & Civic Center Blvd Philadelphia PA 19104
| | - Jacob J Elmer
- Dept. of Chemical Engineering Villanova University 800 East Lancaster Avenue Villanova PA 19085
| |
Collapse
|
20
|
Ronda L, Marchetti M, Piano R, Liuzzi A, Corsini R, Percudani R, Bettati S. A Trivalent Enzymatic System for Uricolytic Therapy of HPRT Deficiency and Lesch-Nyhan Disease. Pharm Res 2017; 34:1477-1490. [PMID: 28508122 PMCID: PMC5445154 DOI: 10.1007/s11095-017-2167-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/25/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Because of the evolutionary loss of the uricolytic pathway, humans accumulate poorly soluble urate as the final product of purine catabolism. Restoration of uricolysis through enzyme therapy is a promising treatment for severe hyperuricemia caused by deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT). To this end, we studied the effect of PEG conjugation on the activity and stability of the enzymatic complement required for conversion of urate into the more soluble (S)-allantoin. METHODS We produced in recombinant form three zebrafish enzymes required in the uricolytic pathway. We carried out a systematic study of the effect of PEGylation on the function and stability of the three enzymes by varying PEG length, chemistry and degree of conjugation. We assayed in vitro the uricolytic activity of the PEGylated enzymatic triad. RESULTS We defined conditions that allow PEGylated enzymes to retain native-like enzymatic activity even after lyophilization or prolonged storage. A combination of the three enzymes in an appropriate ratio allowed efficient conversion of urate to (S)-allantoin with no accumulation of intermediate metabolites. CONCLUSIONS Pharmaceutical restoration of the uricolytic pathway is a viable approach for the treatment of severe hyperuricemia.
Collapse
Affiliation(s)
- Luca Ronda
- Department of Medicine and Surgery,, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Marialaura Marchetti
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma,, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Riccardo Piano
- Department of Medicine and Surgery,, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Anastasia Liuzzi
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma,, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Romina Corsini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma,, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma,, Parco Area delle Scienze 23/A, 43124, Parma, Italy.
| | - Stefano Bettati
- Department of Medicine and Surgery,, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy. .,National Institute of Biostructures and Biosystems, Viale Medaglie d'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
21
|
Comparison of the Pharmacokinetic Properties of Hemoglobin-Based Oxygen Carriers. J Funct Biomater 2017; 8:jfb8010011. [PMID: 28335469 PMCID: PMC5371884 DOI: 10.3390/jfb8010011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/23/2022] Open
Abstract
Hemoglobin (Hb) is an ideal material for use in the development of an oxygen carrier in view of its innate biological properties. However, the vascular retention of free Hb is too short to permit a full therapeutic effect because Hb is rapidly cleared from the kidney via glomerular filtration or from the liver via the haptogloblin-CD 163 pathway when free Hb is administered in the blood circulation. Attempts have been made to develop alternate acellular and cellular types of Hb based oxygen carriers (HBOCs), in which Hb is processed via various routes in order to regulate its pharmacokinetic properties. These HBOCs have been demonstrated to have superior pharmacokinetic properties including a longer half-life than the Hb molecule in preclinical and clinical trials. The present review summarizes and compares the pharmacokinetic properties of acellular and cellular type HBOCs that have been developed through different approaches, such as polymerization, PEGylation, cross-linking, and encapsulation.
Collapse
|
22
|
Zimmerman D, Dienes J, Abdulmalik O, Elmer JJ. Purification of diverse hemoglobins by metal salt precipitation. Protein Expr Purif 2015; 125:74-82. [PMID: 26363116 DOI: 10.1016/j.pep.2015.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/05/2015] [Accepted: 09/05/2015] [Indexed: 11/15/2022]
Abstract
Although donated blood is the preferred material for transfusion, its limited availability and stringent storage requirements have motivated the development of blood substitutes. The giant extracellular hemoglobin (aka erythrocruorin) of the earthworm Lumbricus terrestris (LtEc) has shown promise as a blood substitute, but an efficient purification method for LtEc must be developed to meet the potential large demand for blood substitutes. In this work, an optimized purification process that uses divalent and trivalent metal salts to selectively precipitate human, earthworm, and bloodworm hemoglobin (HbA, LtEc, and GdHb, respectively) from crude solutions was developed. Although several metal ions were able to selectively precipitate LtEc, Zn(2+) and Ni(2+) provided the lowest heme oxidation and highest overall yield of LtEc. In contrast, Zn(2+) was the only metal ion that completely precipitated HbA and GdHb. Polyacrylamide gel electrophoresis (PAGE) analysis shows that metal precipitation removes several impurities to provide highly pure hemoglobin samples. Heme oxidation levels were relatively low for Zn(2+)-purified HbA and LtEc (2.4±1.3% and 5.3±2.1%, respectively), but slightly higher for Ni(2+)-purified LtEc (8.4±1.2%). The oxygen affinity and cooperativity of the precipitated samples are also identical to samples purified with tangential flow filtration (TFF) alone, indicating the metal precipitation does not significantly affect the function of the hemoglobins. Overall, these results show that hemoglobins from several different species can be highly purified using a combination of metal (Zn(2+)) precipitation and tangential flow filtration.
Collapse
Affiliation(s)
- Devon Zimmerman
- Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085, United States
| | - Jack Dienes
- Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085, United States
| | - Osheiza Abdulmalik
- Division of Hematology, Abramson Building, The Children's Hospital of Philadelphia, 34th St. & Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Jacob J Elmer
- Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085, United States.
| |
Collapse
|
23
|
Le Cœur C, Combet S, Carrot G, Busch P, Teixeira J, Longeville S. Conformation of the Poly(ethylene Glycol) Chains in DiPEGylated Hemoglobin Specifically Probed by SANS: Correlation with PEG Length and in Vivo Efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:8402-8410. [PMID: 26153251 DOI: 10.1021/acs.langmuir.5b01121] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cell-free hemoglobin (Hb)-based oxygen carriers have long been proposed as blood substitutes but their clinical use remains tricky due to problems of inefficiency and/or toxicity. Conjugation of Hb with the biocompatible polymer poly(ethylene glycol) (PEG) greatly improved their performance. However, physiological data suggested a polymer molecular weight (Mw) threshold of about 10 kDa, beyond which the grafting of two PEG chains no longer improves efficiency and nontoxicity of diPEG/Hb conjugates. We used small-angle neutron scattering and contrast variation, which are the only techniques able to probe separately the conformation of PEG chains and Hb protein within the complex, to investigate the role of PEG chain conformation in diPEGylated Hb conjugates as a function of the polymer Mw. We found out that the structure of Hb tetramer is not modified by the polymer grafting. Similarly, with a constant grafting of two chains per protein, there is no significant change of the Gaussian conformation between free and grafted PEG below ∼10 kDa, the complex being well described by the "dumbbell" model. However, beyond that threshold, the radius of gyration of grafted PEG is significantly smaller than that of the free polymer, showing a compaction of the PEG chains, either in the "dumbbell" model or in the "shroud" one. In the latter model, the polymer may be wrapped on the surface of the protein spreading a protective "shielding" effect over a larger fraction of the protein. Both proposed models are in good agreement with the physiological data reported in the literature.
Collapse
Affiliation(s)
- Clémence Le Cœur
- †Laboratoire Léon-Brillouin (LLB), UMR 12 CEA-CNRS, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Sophie Combet
- †Laboratoire Léon-Brillouin (LLB), UMR 12 CEA-CNRS, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Géraldine Carrot
- †Laboratoire Léon-Brillouin (LLB), UMR 12 CEA-CNRS, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Peter Busch
- ‡Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstrasse 1, D-85747 Garching, Germany
| | - José Teixeira
- †Laboratoire Léon-Brillouin (LLB), UMR 12 CEA-CNRS, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Stéphane Longeville
- †Laboratoire Léon-Brillouin (LLB), UMR 12 CEA-CNRS, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| |
Collapse
|
24
|
Yeh JSM, Sennoga CA, McConnell E, Eckersley R, Tang MX, Nourshargh S, Seddon JM, Haskard DO, Nihoyannopoulos P. A Targeting Microbubble for Ultrasound Molecular Imaging. PLoS One 2015; 10:e0129681. [PMID: 26161541 PMCID: PMC4498921 DOI: 10.1371/journal.pone.0129681] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 05/12/2015] [Indexed: 11/30/2022] Open
Abstract
Rationale Microbubbles conjugated with targeting ligands are used as contrast agents for ultrasound molecular imaging. However, they often contain immunogenic (strept)avidin, which impedes application in humans. Although targeting bubbles not employing the biotin-(strept)avidin conjugation chemistry have been explored, only a few reached the stage of ultrasound imaging in vivo, none were reported/evaluated to show all three of the following properties desired for clinical applications: (i) low degree of non-specific bubble retention in more than one non-reticuloendothelial tissue; (ii) effective for real-time imaging; and (iii) effective for acoustic quantification of molecular targets to a high degree of quantification. Furthermore, disclosures of the compositions and methodologies enabling reproduction of the bubbles are often withheld. Objective To develop and evaluate a targeting microbubble based on maleimide-thiol conjugation chemistry for ultrasound molecular imaging. Methods and Results Microbubbles with a previously unreported generic (non-targeting components) composition were grafted with anti-E-selectin F(ab’)2 using maleimide-thiol conjugation, to produce E-selectin targeting microbubbles. The resulting targeting bubbles showed high specificity to E-selectin in vitro and in vivo. Non-specific bubble retention was minimal in at least three non-reticuloendothelial tissues with inflammation (mouse heart, kidneys, cremaster). The bubbles were effective for real-time ultrasound imaging of E-selectin expression in the inflamed mouse heart and kidneys, using a clinical ultrasound scanner. The acoustic signal intensity of the targeted bubbles retained in the heart correlated strongly with the level of E-selectin expression (|r|≥0.8), demonstrating a high degree of non-invasive molecular quantification. Conclusions Targeting microbubbles for ultrasound molecular imaging, based on maleimide-thiol conjugation chemistry and the generic composition described, may possess properties (i)–(iii) desired for clinical applications.
Collapse
Affiliation(s)
- James Shue-Min Yeh
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Cardiology, Hammersmith Hospital, London, United Kingdom
- Imaging Sciences Department, Medical Research Council, Imperial College London, London, United Kingdom
| | - Charles A. Sennoga
- Imaging Sciences Department, Medical Research Council, Imperial College London, London, United Kingdom
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Ellen McConnell
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Robert Eckersley
- Imaging Sciences Department, Medical Research Council, Imperial College London, London, United Kingdom
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sussan Nourshargh
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- William Harvey Research Institute, Queen Mary, University of London, London, United Kingdom
| | - John M. Seddon
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Dorian O. Haskard
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Petros Nihoyannopoulos
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Cardiology, Hammersmith Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Tao Z, Ghoroghchian PP. Microparticle, nanoparticle, and stem cell-based oxygen carriers as advanced blood substitutes. Trends Biotechnol 2014; 32:466-73. [DOI: 10.1016/j.tibtech.2014.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/22/2014] [Accepted: 05/05/2014] [Indexed: 12/29/2022]
|
26
|
Affiliation(s)
- Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210;
| | - Marcos Intaglietta
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
27
|
Meng F, Tsai AG, Intaglietta M, Acharya SA. PEGylation of αα-Hb using succinimidyl propionic acid PEG 5K: Conjugation chemistry and PEG shell structure dictate respectively the oxygen affinity and resuscitation fluid like properties of PEG αα-Hbs. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 43:270-81. [PMID: 24597567 DOI: 10.3109/21691401.2014.885443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PEGylation of intramolecularly crosslinked Hb has been studied here to overcome the limitation of dissociation of Hb tetramers. New hexa and deca PEGylated low oxygen affinity PEG-ααHbs have been generated. Influence of PEG conjugation chemistry and the PEG shell structure on the functional properties as well as PEGylation induced plasma expander like properties of the protein has been delineated. The results have established that in the design of PEG-Hbs as oxygen therapeutics, the influence of conjugation chemistry and the PEG shell structure on the oxygen affinity of Hb needs to be optimized independently besides optimizing the PEG shell structure for inducing resuscitation fluid like properties.
Collapse
Affiliation(s)
- Fantao Meng
- Hematology Division, Department of Medicine, Albert Einstein College of Medicine of Yeshiva University , Bronx, NY , USA
| | | | | | | |
Collapse
|
28
|
Wernick MB, Steinmetz HW, Martin-Jurado O, Howard J, Vogler B, Vogt R, Codron D, Hatt JM. Comparison of fluid types for resuscitation in acute hemorrhagic shock and evaluation of gastric luminal and transcutaneous Pco2 in Leghorn chickens. J Avian Med Surg 2013; 27:109-19. [PMID: 23971219 DOI: 10.1647/2012-018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to compare the effects of 3 different fluid types for resuscitation after experimentally induced hemorrhagic shock in anesthetized chickens and to evaluate partial pressures of carbon dioxide measured in arterial blood (Paco2), with a transcutaneous monitor (TcPco2), with a gastric intraluminal monitor (GiPco2), and by end tidal measurements (Etco2) under stable conditions and after induced hemorrhagic shock. Hemorrhagic shock was induced in 40 white leghorn chickens by removing 50% of blood volume by phlebotomy under general anesthesia. Birds were divided into 4 groups: untreated (control group) and treated with intravenous hetastarch (haes group), with a hemoglobin-based oxygen carrier (hemospan group), or by autotransfusion (blood group). Respiratory rates, heart rates, and systolic arterial blood pressure (SAP) were compared at 8 time points (baseline [T0]; at the loss of 10% [T10%], 20% [T20%], 30% [T30%], 40% [T40%], and 50% [T50%] of blood volume; at the end of resuscitation [RES]; and at the end of anesthesia [END]). Packed cell volume (PCV) and blood hemoglobin content were compared at 6 time points (T0, T50%, RES, and 1, 3, and 7 days after induced hemorrhagic shock). Measurements of Paco2, TcPco2, GiPco2, and Etco2 were evaluated at 2 time points (T0 and T50%), and venous lactic acid concentrations were evaluated at 3 time points (T0, T50%, and END). No significant differences were found in mortality, respiratory rate, heart rate, PCV, or hemoglobin values among the 4 groups. Birds given fluid resuscitation had significantly higher SAPs after fluid administration than did birds in the control group. In all groups, PCV and hemoglobin concentrations began to rise by day 3 after phlebotomy, and baseline values were reached 7 days after blood removal. At T0, TcPco2 did not differ significantly from Paco2, but GiPco2 and Etco2 differed significantly from Paco2. After hemorrhagic shock, GiPco2 and TcPco2 differed significantly from Paco2. The TcPco2 or GiPco2 values did not differ significantly at any time point in birds that survived or died in any of the groups and across all groups. These results showed no difference in mortality in leghorn chickens treated with fluid resuscitation after hemorrhagic shock and that the PCV and hemoglobin concentrations increased by 3 days after acute hemorrhage with or without treatment. The different CO2 measurements document changes in CO2-values consistent with poor perfusion and may prove useful for serial evaluation of responses to shock and shock treatment.
Collapse
Affiliation(s)
- Morena B Wernick
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8052 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
SIGNIFICANCE There has been a striking advancement in our understanding of red cell substitutes over the past decade. Although regulatory oversight has influenced many aspects of product development in this period, those who have approached the demonstration of efficacy of red cell substitutes have failed to understand their implication at the level of the microcirculation, where blood interacts closely with tissue. RECENT ADVANCES The understanding of the adverse effects of acellular hemoglobin (Hb)-based oxygen carriers (HBOCs) has fortunately expanded from Hb-induced renal toxicity to a more complete list of biochemical mechanism. In addition, various unexpected adverse reactions were seen in early clinical studies. The effects of the presence of acellular Hb in plasma are relatively unique because of the convergence of mechanical and biochemical natures. CRITICAL ISSUES Controlling the variables using genetic engineering and chemical modification to change specific characteristics of the Hb molecule may allow for solving the complex multivariate problems of acellular Hb vasoactivity. HBOCs may never be rendered free of negative effects; however, quantifying the nature and extent of microvascular complications establishes a platform for designing new ameliorative therapies. FUTURE DIRECTIONS It is time to leave behind the study of vasoactivity and toxicity based on bench-top measurements of biochemical changes and those based solely on systemic parameters in vivo, and move to a more holistic analysis of the mechanisms creating the problems, complemented with meaningful studies of efficacy.
Collapse
Affiliation(s)
- Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
30
|
Kuznetsova NP, Panarin EF, Gudkin LR, Mishaeva RN. Biologically active polymer systems based on hemoglobin. Russ Chem Bull 2013. [DOI: 10.1007/s11172-013-0002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Harrison CR, Vydha S. Capillary electrophoretic analysis of whole blood samples for hemoglobin-based oxygen carriers without the use of immunoprecipitation. Electrophoresis 2012; 33:1087-94. [DOI: 10.1002/elps.201100506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Srilatha Vydha
- Department of Chemistry and Biochemistry; San Diego State University; San Diego; CA; USA
| |
Collapse
|
32
|
Simoni J. Artificial Oxygen Carriers: Renewed Commercial Interest and Scientific/Technological Advances. Artif Organs 2012; 36:123-6. [DOI: 10.1111/j.1525-1594.2011.01430.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Elmer J, Palmer AF. Biophysical Properties of Lumbricus terrestris Erythrocruorin and Its Potential Use as a Red Blood Cell Substitute. J Funct Biomater 2012; 3:49-60. [PMID: 24956515 PMCID: PMC4031009 DOI: 10.3390/jfb3010049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/09/2011] [Accepted: 12/24/2011] [Indexed: 01/21/2023] Open
Abstract
Previous generations of hemoglobin (Hb)-based oxygen carriers (HBOCs) have been plagued by key biophysical limitations that result in severe side-effects once transfused in vivo, including protein instability, high heme oxidation rates, and nitric oxide (NO) scavenging. All of these problems emerge after mammalian Hbs are removed from red blood cells (RBCs) and used for HBOC synthesis/formulation. Therefore, extracellular Hbs (erythrocruorins) from organisms which lack RBCs might serve as better HBOCs. This review focuses on the erythrocruorin of Lumbricus terrestris (LtEc), which has been shown to be extremely stable, resistant to oxidation, and may interact with NO differently than mammalian Hbs. All of these beneficial properties show that LtEc is a promising new HBOC which warrants further investigation.
Collapse
Affiliation(s)
- Jacob Elmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 425 Koffolt Laboratories, 140 West 19th Avenue, Columbus, OH 43210, USA.
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 425 Koffolt Laboratories, 140 West 19th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
34
|
Lui FE, Yu B, Baron DM, Lei C, Zapol WM, Kluger R. Hemodynamic responses to a hemoglobin bis-tetramer and its polyethylene glycol conjugate. Transfusion 2011; 52:974-82. [DOI: 10.1111/j.1537-2995.2011.03421.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
van der Linden P, Gazdzik TS, Jahoda D, Heylen RJ, Skowronski JC, Pellar D, Kofranek I, Górecki AZ, Fagrell B, Keipert PE, Hardiman YJ, Levy H. A Double-Blind, Randomized, Multicenter Study of MP4OX for Treatment of Perioperative Hypotension in Patients Undergoing Primary Hip Arthroplasty Under Spinal Anesthesia. Anesth Analg 2011; 112:759-73. [PMID: 21317165 DOI: 10.1213/ane.0b013e31820c7b5f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Sakai H, Okuda N, Takeoka S, Tsuchida E. Increased viscosity of hemoglobin-based oxygen carriers retards NO-binding when perfused through narrow gas-permeable tubes. Microvasc Res 2011; 81:169-76. [DOI: 10.1016/j.mvr.2010.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 12/27/2022]
|
37
|
Li T, Jing X, Huang Y. Polymer/hemoglobin assemblies: biodegradable oxygen carriers for artificial red blood cells. Macromol Biosci 2011; 11:865-75. [PMID: 21312333 DOI: 10.1002/mabi.201000469] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Indexed: 01/05/2023]
Abstract
In routine clinical procedures, blood transfusion is now suffering from the defects of the blood products, like cross-matching, short storage time and virus infection. Various blood substitutes have been designed by researchers through continual efforts. With recent progress in nanotechnology, new types of artificial red blood cells with cellular structure are available. This article aims to describe some artificial red blood cells which encapsulate or conjugate hemoglobin molecules through various approaches, especially the nanoscale self-assembly technique, to mitigate the adverse effects of free hemoglobin molecules. These types of artificial red blood cell systems, which make use of biodegradable polymers as matrix materials, show advantages over the traditional types.
Collapse
Affiliation(s)
- Taihang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | | | | |
Collapse
|
38
|
Zaldivar-Lopez S, Chisnell HK, Couto CG, Westendorf-Stingle N, Marin LM, Iazbik MC, Cooper ES, Wellman ML, Muir Iii WW. Blood gas analysis and cooximetry in retired racing Greyhounds. J Vet Emerg Crit Care (San Antonio) 2011; 21:24-8. [PMID: 21288290 DOI: 10.1111/j.1476-4431.2010.00607.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The purposes of this study were to evaluate the oxygen affinity of hemoglobin (Hb) in healthy retired racing Greyhounds via cooximetry, and to establish reference intervals for blood gases and cooximetry in this breed. DESIGN Prospective clinical study. SETTING University Teaching Hospital. ANIMALS Fifty-seven Greyhounds and 30 non-Greyhound dogs. INTERVENTIONS Venous blood samples were collected from the jugular vein and placed into heparinized tubes. The samples were analyzed within 30 minutes of collection using a blood gas analyzer equipped with a cooximeter. MEASUREMENTS AND MAIN RESULTS Greyhounds had significantly higher pH, PO(2) , oxygen saturation, oxyhemoglobin, total Hb, oxygen content, and oxygen capacity and significantly lower deoxyhemoglobin and P(50) when compared with non-Greyhound dogs. CONCLUSION These findings support the fact that this breed is able to carry a higher concentration of total oxygen in the blood. As reported previously, this breed also has lower P(50) and, therefore, high oxygen affinity. In light of recent findings suggesting that in certain tissues a high affinity for oxygen is beneficial, this adaptation may be of benefit during strenuous exercise.
Collapse
Affiliation(s)
- Sara Zaldivar-Lopez
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lui FE, Kluger R. Reviving artificial blood: meeting the challenge of dealing with NO scavenging by hemoglobin. Chembiochem 2011; 11:1816-24. [PMID: 20661989 DOI: 10.1002/cbic.201000291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Francine E Lui
- Department of Chemistry, Davenport Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | | |
Collapse
|
40
|
|
41
|
Hu T, Li D, Meng F, Prabhakaran M, Acharya SA. Increased Inter Dimeric Interaction of Oxy Hemoglobin is Necessary for Attenuation of Redutive Pegylation Promoted Dissociation of Tetramer. ACTA ACUST UNITED AC 2010; 39:69-78. [DOI: 10.3109/10731199.2010.501756] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Abstract
Recent setbacks in using Hb-based technology to develop oxygen carriers or blood substitutes may spur new and fundamentally different approaches for the development of a new generation of hemoglobin-based oxygen carriers (HBOCs). This article briefly details some underlying mechanisms that may have been responsible for the adverse-event profile associated with HBOCs, with a focus on the contribution of the author's laboratory toward identifying some of these biochemical pathways and some ways and means to control them. It is hoped that this will aid in the development of a safe and effective second generation of HBOCs.
Collapse
|
43
|
Lui FE, Kluger R. Enhancing nitrite reductase activity of modified hemoglobin: bis-tetramers and their PEGylated derivatives. Biochemistry 2010; 48:11912-9. [PMID: 19894773 DOI: 10.1021/bi9014105] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The clinical evaluation of stabilized tetrameric hemoglobin as alternatives to red cells revealed that the materials caused significant increases in blood pressure and related problems and this was attributed to the scavenging of nitric oxide and extravasation. The search for materials with reduced vasoactivity led to the report that conjugates of hemoglobin tetramers and polyethylene glycol (PEG) chains did not elicit these pressor effects. However, this material does not deliver oxygen efficiently due to its lack of cooperativity and high oxygen affinity, making it unsuitable as an oxygen carrier. It has been recently reported that PEG-conjugated hemoglobin converts nitrite to nitric oxide at a faster rate than does the native protein, which may compensate for the scavenging of nitric oxide. It is therefore important to alter hemoglobin in order to enhance nitrite reductase activity while retaining its ability to deliver oxygen. If the beneficial effect of PEG is associated with the increased size reducing extravasation, this can also be achieved by coupling cross-linked tetramers to one another, giving materials with appropriate oxygen affinity and cooperativity for use as circulating oxygen carriers. In the present study it is shown that cross-linked bis-tetramers with good oxygen delivery potential have enhanced nitrite reductase activity with k(obs) = 0.70 M(-1) s(-1) (24 degrees C), compared to native protein and cross-linked tetramers, k(obs) = 0.25 M(-1) s(-1) and k(obs) = 0.52 M(-1) s(-1), respectively, but are less active in reduction of nitrite than Hb-PEG5K(2) (k(obs) = 2.5 M(-1) s(-1)). However, conjugation of four PEG chains to the bis-tetramer (at each beta-Cys-93) produces a material with greatly increased nitrite reductase activity (k(obs) = 1.8 M(-1) s(-1)) while retaining cooperativity (P(50) = 4.1, n(50) = 2.4). Thus, PEGylated bis-tetramers combine increased size and enhanced nitrite reductase activity expected for decreased vasoactivity with characteristics of an acceptable HBOC.
Collapse
Affiliation(s)
- Francine E Lui
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | | |
Collapse
|
44
|
|