1
|
Freitas-Ribeiro S, Reis RL, Pirraco RP. Long-term and short-term preservation strategies for tissue engineering and regenerative medicine products: state of the art and emerging trends. PNAS NEXUS 2022; 1:pgac212. [PMID: 36714838 PMCID: PMC9802477 DOI: 10.1093/pnasnexus/pgac212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 02/01/2023]
Abstract
There is an ever-growing need of human tissues and organs for transplantation. However, the availability of such tissues and organs is insufficient by a large margin, which is a huge medical and societal problem. Tissue engineering and regenerative medicine (TERM) represent potential solutions to this issue and have therefore been attracting increased interest from researchers and clinicians alike. But the successful large-scale clinical deployment of TERM products critically depends on the development of efficient preservation methodologies. The existing preservation approaches such as slow freezing, vitrification, dry state preservation, and hypothermic and normothermic storage all have issues that somehow limit the biomedical applications of TERM products. In this review, the principles and application of these approaches will be summarized, highlighting their advantages and limitations in the context of TERM products preservation.
Collapse
Affiliation(s)
- Sara Freitas-Ribeiro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal,ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Barco GMR, Portugal
| | - Rui L Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal,ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Barco GMR, Portugal
| | | |
Collapse
|
2
|
Diel D, Lagranha VL, Schuh RS, Bruxel F, Matte U, Teixeira HF. Optimization of alginate microcapsules containing cells overexpressing α-l-iduronidase using Box-Behnken design. Eur J Pharm Sci 2017; 111:29-37. [PMID: 28882767 DOI: 10.1016/j.ejps.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023]
Abstract
Mucopolysaccharidosis type I (MPS I) is an autosomal recessive disease caused by deficiency of α-l-iduronidase (IDUA), which results in the lysosomal accumulation of glycosaminoglycans (GAG) leading to widespread clinical manifestations. The microencapsulation of IDUA overexpressing recombinant cells has been considered as a promising strategy for the treatment of MPS I. This study aimed at the optimization of alginate microcapsules containing recombinant BHK (Baby Hamster Kidney) cells (rBHK) overexpressing IDUA produced by electrostatic extrusion technique. The alginate microcapsule (MC-A) optimization study was carried out by means of an experimental Box-Behnken Design that allowed the simultaneous evaluation of the influence of voltage (kV), alginate/cell suspension flow (mL/h), and alginate concentration (%) on size and IDUA activity. The optimal conditions of voltage (10kV), flow (25mL/h), and alginate concentration (1.3%) made possible to obtain the smallest microcapsules showing the highest IDUA activity. After optimization, the microcapsules were sequentially coated with PLL and alginate (MC-APA) to increase their stability. MC-A and MC-APA presented monodisperse populations (span<1.22) with an average diameter of less than 350μm. The coating increased the mechanical stability of MC-APA by about 6-fold and modulated the permeability to the enzyme. Surface analyzes of MC-APA showed the presence of PLL bands, suggesting that the last alginate layer appears to have only partially coated the PLL. After 30days of subcutaneous implantation of the MC-APA microcapsules containing rBHK cells in a MPS I murine model, a significant increase in IDUA activity was observed in the skin near the implant. Histological analysis revealed an inflammatory infiltrate at the application site, which did not prevent the release of the enzyme under the conditions evaluated. Taken together, the overall results demonstrate the feasibility of MC-APA as a potential alternative for local treatment of MPS I.
Collapse
Affiliation(s)
- Dirnete Diel
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Valeska Lizzi Lagranha
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Roselena Silvestri Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Fernanda Bruxel
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Pampa (UNIPAMPA), BR 472, km 592, 97508-000, Uruguaiana, RS, Brazil
| | - Ursula Matte
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Lizzi Lagranha V, Zambiasi Martinelli B, Baldo G, Ávila Testa G, Giacomet de Carvalho T, Giugliani R, Matte U. Subcutaneous implantation of microencapsulated cells overexpressing α-L-iduronidase for mucopolysaccharidosis type I treatment. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:43. [PMID: 28150116 DOI: 10.1007/s10856-017-5844-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
Mucopolysaccharidosis type I (MPS I) is caused by a deficiency of α-L-iduronidase (IDUA), resulting in accumulation of glycosaminoglycans (GAG) in lysosomes. Microencapsulation of recombinant cells is a promising gene/cell therapy approach that could overcome the limitations of the current available treatments. In the present study we produced alginate-poly-L-lysine-alginate (APA) microcapsules containing recombinant cells overexpressing IDUA, which were implanted in the subcutaneous space of MPS I mice in order to evaluate their potential effect as a treatment for this disease. APA microcapsules enclosing genetically modified Baby Hamster Kidney cells overexpressing IDUA were produced and implanted in the subcutaneous space of 4-month-old MPS I mice (Idua -/-). Treatment was performed using two cell concentrations: 8.3 × 107 and 8.3 × 106 cells/mL. Untreated MPS I and normal mice were used as controls. Microcapsules were retrieved and analyzed after treatment. Increased IDUA in the liver, kidney and heart was detected 24 h postimplantation. After 120 days, higher IDUA activity was detected in the liver, kidney and heart, in both groups, whereas GAG accumulation was reduced only in the high cell concentration group. Microcapsules analysis showed blood vessels around them, as well as inflammatory cells and a fibrotic layer. Microencapsulated cells were able to ameliorate some aspects of the disease, indicating their potential as a treatment. To achieve better performance of the microcapsules, improvements such as the modulation of inflammatory response are suggested.
Collapse
Affiliation(s)
- Valeska Lizzi Lagranha
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Barbara Zambiasi Martinelli
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Talita Giacomet de Carvalho
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberto Giugliani
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ursula Matte
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Swioklo S, Constantinescu A, Connon CJ. Alginate-Encapsulation for the Improved Hypothermic Preservation of Human Adipose-Derived Stem Cells. Stem Cells Transl Med 2016; 5:339-49. [PMID: 26826163 DOI: 10.5966/sctm.2015-0131] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/16/2015] [Indexed: 12/16/2022] Open
Abstract
Despite considerable progress within the cell therapy industry, unmet bioprocessing and logistical challenges associated with the storage and distribution of cells between sites of manufacture and the clinic exist. We examined whether hypothermic (4°C-23°C) preservation of human adipose-derived stem cells could be improved through their encapsulation in 1.2% calcium alginate. Alginate encapsulation improved the recovery of viable cells after 72 hours of storage. Viable cell recovery was highly temperature-dependent, with an optimum temperature of 15°C. At this temperature, alginate encapsulation preserved the ability for recovered cells to attach to tissue culture plastic on rewarming, further increasing its effect on total cell recovery. On attachment, the cells were phenotypically normal, displayed normal growth kinetics, and maintained their capacity for trilineage differentiation. The number of cells encapsulated (up to 2 × 10(6) cells per milliliter) did not affect viable cell recovery nor did storage of encapsulated cells in a xeno-free, serum-free,current Good Manufacturing Practice-grade medium. We present a simple, low-cost system capable of enhancing the preservation of human adipose-derived stem cells stored at hypothermic temperatures, while maintaining their normal function. The storage of cells in this manner has great potential for extending the time windows for quality assurance and efficacy testing, distribution between the sites of manufacture and the clinic, and reducing the wastage associated with the limited shelf life of cells stored in their liquid state.
Collapse
Affiliation(s)
- Stephen Swioklo
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Andrei Constantinescu
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Che J Connon
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
5
|
Bulwan M, Antosiak-Iwańska M, Godlewska E, Granicka L, Zapotoczny S, Nowakowska M. Chitosan-Based Nanocoatings for Hypothermic Storage of Living Cells. Macromol Biosci 2013; 13:1610-20. [DOI: 10.1002/mabi.201300258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/02/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Maria Bulwan
- Faculty of Chemistry; Jagiellonian University; Ingardena 3, 30-060 Krakow Poland
| | - Magdalena Antosiak-Iwańska
- Polish Academy of Science; Nałęcz Instiute of Biocybernetics and Biomedical Engineering; Ks. Trojdena 4, 02-109 Warsaw Poland
| | - Ewa Godlewska
- Polish Academy of Science; Nałęcz Instiute of Biocybernetics and Biomedical Engineering; Ks. Trojdena 4, 02-109 Warsaw Poland
| | - Ludomira Granicka
- Polish Academy of Science; Nałęcz Instiute of Biocybernetics and Biomedical Engineering; Ks. Trojdena 4, 02-109 Warsaw Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry; Jagiellonian University; Ingardena 3, 30-060 Krakow Poland
| | - Maria Nowakowska
- Faculty of Chemistry; Jagiellonian University; Ingardena 3, 30-060 Krakow Poland
| |
Collapse
|
6
|
Lagranha VL, de Carvalho TG, Giugliani R, Matte U. Treatment of MPS I mice with microencapsulated cells overexpressing IDUA: effect of the prednisolone administration. J Microencapsul 2013; 30:383-9. [DOI: 10.3109/02652048.2012.746745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Baldo G, Mayer FQ, Martinelli B, Meyer FS, Burin M, Meurer L, Tavares AMV, Giugliani R, Matte U. Intraperitoneal implant of recombinant encapsulated cells overexpressing alpha-L-iduronidase partially corrects visceral pathology in mucopolysaccharidosis type I mice. Cytotherapy 2012; 14:860-7. [PMID: 22472038 DOI: 10.3109/14653249.2012.672730] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS Mucopolysaccharidosis type I (MPS I) is characterized by deficiency of the enzyme alpha-L-iduronidase (IDUA) and storage of glycosaminoglycans (GAG) in several tissues. Current available treatments present limitations, thus the search for new therapies. Encapsulation of recombinant cells within polymeric structures combines gene and cell therapy and is a promising approach for treating MPS I. METHODS We produced alginate microcapsules containing baby hamster kidney (BHK) cells overexpressing IDUA and implanted these capsules in the peritoneum of MPS I mice. RESULTS An increase in serum and tissue IDUA activity was observed at early time-points, as well as a reduction in GAG storage; however, correction in the long term was only partially achieved, with a drop in the IDUA activity being observed a few weeks after the implant. Analysis of the capsules obtained from the peritoneum revealed inflammation and a pericapsular fibrotic process, which could be responsible for the reduction in IDUA levels observed in the long term. In addition, treated mice developed antibodies against the enzyme. CONCLUSIONS The results suggest that the encapsulation process is effective in the short term but improvements must be achieved in order to reduce the immune response and reach a stable correction.
Collapse
Affiliation(s)
- Guilherme Baldo
- Centro de Terapia Gênica-Hospital de Clinicas de Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rapid Heterotrophic Ossification with Cryopreserved Poly(ethylene glycol-) Microencapsulated BMP2-Expressing MSCs. Int J Biomater 2012; 2012:861794. [PMID: 22500171 PMCID: PMC3296315 DOI: 10.1155/2012/861794] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/09/2011] [Indexed: 12/29/2022] Open
Abstract
Autologous bone grafting is the most effective treatment for long-bone nonunions, but it poses considerable risks to donors, necessitating the development of alternative therapeutics. Poly(ethylene glycol) (PEG) microencapsulation and BMP2 transgene delivery are being developed together to induce rapid bone formation. However, methods to make these treatments available for clinical applications are presently lacking. In this study we used mesenchymal stem cells (MSCs) due to their ease of harvest, replication potential, and immunomodulatory capabilities. MSCs were from sheep and pig due to their appeal as large animal models for bone nonunion. We demonstrated that cryopreservation of these microencapsulated MSCs did not affect their cell viability, adenoviral BMP2 production, or ability to initiate bone formation. Additionally, microspheres showed no appreciable damage from cryopreservation when examined with light and electron microscopy. These results validate the use of cryopreservation in preserving the viability and functionality of PEG-encapsulated BMP2-transduced MSCs.
Collapse
|
9
|
Baldo G, Quoos Mayer F, Burin M, Carrillo-Farga J, Matte U, Giugliani R. Recombinant Encapsulated Cells Overexpressing Alpha- L-Iduronidase Correct Enzyme Deficiency in Human Mucopolysaccharidosis Type I Cells. Cells Tissues Organs 2012; 195:323-9. [DOI: 10.1159/000327532] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2011] [Indexed: 12/29/2022] Open
|
10
|
Matte U, Lagranha VL, de Carvalho TG, Mayer FQ, Giugliani R. Cell microencapsulation: a potential tool for the treatment of neuronopathic lysosomal storage diseases. J Inherit Metab Dis 2011; 34:983-90. [PMID: 21614584 DOI: 10.1007/s10545-011-9350-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/17/2011] [Accepted: 05/04/2011] [Indexed: 02/03/2023]
Abstract
Lysosomal storage disorders (LSD) are monogenic diseases caused by the deficiency of different lysosomal enzymes that degrade complex substrates such as glycosaminoglycans, sphingolipids, and others. As a consequence there is multisystemic storage of these substrates. Most treatments for these disorders are based in the fact that most of these enzymes are soluble and can be internalized by adjacent cells via mannose-6-phosphate receptor. In that sense, these disorders are good candidates to be treated by somatic gene therapy based on cell microencapsulation. Here, we review the existing data about this approach focused on the LSD treatments, the advantages and limitations faced by these studies.
Collapse
Affiliation(s)
- Ursula Matte
- Gene Therapy Center, Experimental Research Center, Hospital de Clínicas, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
11
|
Abstract
In this Editor's Review, articles published in 2010 are organized by category and briefly summarized. As the official journal of The International Federation for Artificial Organs, The International Faculty for Artificial Organs, and the International Society for Rotary Blood Pumps, Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level."Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ Replacement, Recovery, and Regeneration from all over the world. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide such meaningful suggestions to the author's work whether eventually accepted or rejected and especially to those whose native tongue is not English. Without these excellent and dedicated reviewers the quality expected from such a journal could not be possible. We also express our special thanks to our Publisher, Wiley-Blackwell, for their expert attention and support in the production and marketing of Artificial Organs. In this Editor's Review, that historically has been widely received by our readership, we aim to provide a brief reflection of the currently available worldwide knowledge that is intended to advance and better human life while providing insight for continued application of technologies and methods of organ Replacement, Recovery, and Regeneration. We look forward to recording further advances in the coming years.
Collapse
|