1
|
Takase K, Niikura T, Fukui T, Kumabe Y, Sawauchi K, Yoshikawa R, Yamamoto Y, Nishida R, Matsumoto T, Kuroda R, Oe K. Three-dimensional printed calcium phosphate scaffolds emulate bone microstructure to promote bone regrowth and repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:53. [PMID: 39225913 PMCID: PMC11371849 DOI: 10.1007/s10856-024-06817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
The interconnected structures in a 3D scaffold allows the movement of cells and nutrients. Therefore, this study aimed to investigate the in-vivo bioactivity of 3D-printed β-tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) scaffolds that replicate biological bone. This study included 24-week-old male New Zealand white rabbits. A cylindrical bone defect with a diameter of 4.5 mm and a depth of 8 mm was created in the lateral aspect of the distal femur. A 3D-printed scaffold was implanted in the right femur (experimental side), whereas the left femur was kept free of implantation (control side). Micro-CT analysis and histological observations of the bone defect site were conducted at 4, 8, and 12 weeks postoperatively to track the bone repair progress. No evidence of new bone tissue formation was found in the medullary cavity of the bone defect on the control side. In contrast, on the experimental side, the 3D scaffold demonstrated sufficient bioactivity, leading to the growth of new bone tissue. Over time, new bone tissue gradually extended from the periphery toward the center, a phenomenon evident in both micro-CT images and biopsy staining. In the current study, we observed that the cells involved in bone metabolism adhered, spread, and proliferated on our newly designed 3D-printed scaffold with a bone microstructure. Therefore, it is suggested that this scaffold has sufficient bioactivity to induce new bone formation and could be expected to be a more useful artificial bone than the existing version.
Collapse
Affiliation(s)
- Kyohei Takase
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Japan.
- Visiting Medical Scientist, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Tomoaki Fukui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yohei Kumabe
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichi Sawauchi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryo Yoshikawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuya Yamamoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryota Nishida
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keisuke Oe
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Wang H, Li X, Xuan M, Yang R, Zhang J, Chang J. Marine biomaterials for sustainable bone regeneration. GIANT 2024; 19:100298. [DOI: 10.1016/j.giant.2024.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Ji J, Zhao C, Hua C, Lu L, Pang Y, Sun W. 3D Printing Cervical Implant Scaffolds Incorporated with Drug-Loaded Carboxylated Chitosan Microspheres for Long-Term Anti-HPV Protein Delivery. ACS Biomater Sci Eng 2024; 10:1544-1553. [PMID: 38369785 DOI: 10.1021/acsbiomaterials.3c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
As attempting personalized medicine, 3D-printed tissue engineering scaffolds are employed to combine with therapeutic proteins/peptides especially in the clinical treatment of infectious diseases, genetic diseases, and cancers. However, current drug-loading methods, such as immersion and encapsulation, usually lead to the burst release of the drugs. To address these issues, we proposed an integrated strategy toward the long-term controlled release of protein. In this study, patient-customized 3D scaffolds incorporated with drug-loaded microspheres were printed to realize the effective delivery of the anti-human papillomavirus (anti-HPV) protein after cervical conization in the treatment of cervical cancer. The 3D-printed scaffold could provide mechanical support to the defect site and ensure local release of the drug to avoid systemic administration. Meanwhile, microspheres serve as functional components to prevent the inactivation of proteins, as well as regulate their release period to meet the time requirement of different treatment courses. The research also utilized bovine serum albumin as a model protein to validate the feasibility of these scaffolds as a generic technology platform. The bioactivity of the released anti-HPV protein was validated using a pseudovirus model, which demonstrated that the microsphere encapsulation would not cause protein denaturation during the scaffold fabrication process. Besides, 3D-printed scaffolds incorporated with carboxylated chitosan microspheres were biocompatible and beneficial for cell attachment, which have been demonstrated by favorable cell viability and better coverage results for HeLa and HFF-1. This study highlights the great potential of scaffolds incorporated with microspheres to serve as tissue engineering candidate products with the function of effective protein delivery in a long-term controlled manner and personalized shapes for clinical trials.
Collapse
Affiliation(s)
- Jingyuan Ji
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Overseas Expertise Introduction Center for Discipline Innovation, Tsinghua University, Haidian District, Beijing 100084, China
| | - Chenjia Zhao
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Overseas Expertise Introduction Center for Discipline Innovation, Tsinghua University, Haidian District, Beijing 100084, China
| | - Chen Hua
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan-Jinbo Functional Protein Joint Research Center, Fudan University, Shanghai 200433, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan-Jinbo Functional Protein Joint Research Center, Fudan University, Shanghai 200433, China
| | - Yuan Pang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Overseas Expertise Introduction Center for Discipline Innovation, Tsinghua University, Haidian District, Beijing 100084, China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Overseas Expertise Introduction Center for Discipline Innovation, Tsinghua University, Haidian District, Beijing 100084, China
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Zhao B, Dong Y, Shen X, He W, Jin H, Lili yao, Zheng SW, Zan X, Liu J. Construction of multifunctional coating with cationic amino acid-coupled peptides for osseointegration of implants. Mater Today Bio 2023; 23:100848. [PMID: 38033370 PMCID: PMC10682118 DOI: 10.1016/j.mtbio.2023.100848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Osseointegration is an important indicator of implant success. This process can be improved by coating modified bioactive molecules with multiple functions on the surface of implants. Herein, a simple multifunctional coating that could effectively improve osseointegration was prepared through layer-by-layer self-assembly of cationic amino acids and tannic acid (TA), a negatively charged molecule. Osteogenic growth peptide (OGP) and the arginine-glycine-aspartic acid (RGD) functional polypeptides were coupled with Lys6 (K6), the two polypeptides then self-assembled with TA layer by layer to form a composite film, (TA-OGP@RGD)n. The surface morphology and biomechanical properties of the coating were analyzed in gas and liquid phases, and the deposition process and kinetics of the two peptides onto TA were monitored using a quartz crystal microbalance. In addition, the feeding consistency and adsorption ratios of the two peptides were explored by using fluorescence visualization and quantification. The (TA-OGP@RGD)n composite membrane mediated the early migration and adhesion of cells and significantly promoted osteogenic differentiation and mineralization of the extracellular matrix in vitro. Additionally, the bifunctional peptide exhibited excellent osteogenesis and osseointegration owing to the synergistic effect of the OGP and RGD peptides in vivo. Simultaneously, the (TA-OGP@RGD)n membrane regulated the balance of reactive oxygen species in the cell growth environment, thereby influencing the complex biological process of osseointegration. Thus, the results of this study provide a novel perspective for constructing multifunctional coatings for implants and has considerable application potential in orthopedics and dentistry.
Collapse
Affiliation(s)
- Bingyang Zhao
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yilong Dong
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou, 325016, China
| | - Xinkun Shen
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou, 325016, China
| | - Wei He
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hairu Jin
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lili yao
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China
| | - Sheng wu Zheng
- Wenzhou Celecare Medical Instruments Co.,Ltd, Wenzhou, 325000, China
| | - Xingjie Zan
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Jiming Liu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
5
|
Zhu X, Wang C, Bai H, Zhang J, Wang Z, Li Z, Zhao X, Wang J, Liu H. Functionalization of biomimetic mineralized collagen for bone tissue engineering. Mater Today Bio 2023; 20:100660. [PMID: 37214545 PMCID: PMC10199226 DOI: 10.1016/j.mtbio.2023.100660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Mineralized collagen (MC) is the basic unit of bone structure and function and is the main component of the extracellular matrix (ECM) in bone tissue. In the biomimetic method, MC with different nanostructures of neo-bone have been constructed. Among these, extra-fibrous MC has been approved by regulatory agencies and applied in clinical practice to play an active role in bone defect repair. However, in the complex microenvironment of bone defects, such as in blood supply disorders and infections, MC is unable to effectively perform its pro-osteogenic activities and needs to be functionalized to include osteogenesis and the enhancement of angiogenesis, anti-infection, and immunomodulation. This article aimed to discuss the preparation and biological performance of MC with different nanostructures in detail, and summarize its functionalization strategy. Then we describe the recent advances in the osteo-inductive properties and multifunctional coordination of MC. Finally, the latest research progress of functionalized biomimetic MC, along with the development challenges and future trends, are discussed. This paper provides a theoretical basis and advanced design philosophy for bone tissue engineering in different bone microenvironments.
Collapse
Affiliation(s)
- Xiujie Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Chenyu Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
| | - Haotian Bai
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Jiaxin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Xin Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| |
Collapse
|
6
|
Feng G, Liu W, Yu Y, Tian B, Zhang Y, Yang F, Huang J, Zhang P, Wang W, Li D, Sun S, Niu X, Chai L, Li J. Angiogenesis coupled with osteogenesis in a bone tissue engineering scaffold enhances bone repair in osteoporotic bone defects. Biomed Mater 2023; 18. [PMID: 37144422 DOI: 10.1088/1748-605x/accf55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
Increased life expectancy has resulted in an increase in osteoporosis incidence worldwide. The coupling of angiogenesis and osteogenesis is indispensable for bone repair. Although traditional Chinese medicine (TCM) exerts therapeutic effects on osteoporosis, TCM-related scaffolds, which focus on the coupling of angiogenesis and osteogenesis, have not yet been used for the treatment of osteoporotic bone defects.Panax notoginsengsaponin (PNS), the active ingredient ofPanax notoginseng, was added to a poly (L-lactic acid) (PLLA) matrix. Osteopractic total flavone (OTF), the active ingredient ofRhizoma Drynariae, was encapsulated in nano-hydroxyapatite/collagen (nHAC) and added to the PLLA matrix. Magnesium (Mg) particles were added to the PLLA matrix to overcome the bioinert character of PLLA and neutralize the acidic byproducts generated by PLLA. In this OTF-PNS/nHAC/Mg/PLLA scaffold, PNS was released faster than OTF. The control group had an empty bone tunnel; scaffolds containing OTF:PNS = 100:0, 50:50, and 0:100 were used as the treatment groups. Scaffold groups promoted new vessel and bone formation, increased the osteoid tissue, and suppressed the osteoclast activity around osteoporotic bone defects. Scaffold groups upregulated the expression levels of angiogenic and osteogenic proteins. Among these scaffolds, the OTF-PNS (50:50) scaffold exhibited a better capacity for osteogenesis than the OTF-PNS (100:0 and 0:100) scaffolds. Activation of the bone morphogenic protein (BMP)-2/BMP receptor (BMPR)-1A/runt-related transcription factor (RUNX)-2signaling pathway may be a possible mechanism for the promotion of osteogenesis. Our study demonstrated that the OTF-PNS/nHAC/Mg/PLLA scaffold could promote osteogenesis via the coupling of angiogenesis and osteogenesis in osteoporotic rats with bone defects, and activating theBMP-2/BMPR1A/RUNX2signaling pathway may be an osteogenesis-related mechanism. However, further experiments are necessary to facilitate its practical application in the treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Guiyu Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Wei Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Yao Yu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Bingbing Tian
- Operating Room, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Yingkai Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Fenghe Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Jian Huang
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Pingxin Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Wei Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Dongyang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Song Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Jinyu Li
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| |
Collapse
|
7
|
Du T, Niu X, Hou S, Xu M, Li Z, Li P, Fan Y. Highly aligned hierarchical intrafibrillar mineralization of collagen induced by periodic fluid shear stress. J Mater Chem B 2021; 8:2562-2572. [PMID: 32101230 DOI: 10.1039/c9tb02643f] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Periodic fluid shear stress (FSS) is one of the main mechanical microenvironments in mineralization of bone matrix. To elucidate the mechanism of periodic FSS in collagen mineralization, a mechanical loading induced mineralization system is developed and compared with traditional polyacrylic acid (PAA) induced mineralization. Fourier transform infrared (FTIR) spectroscopy, calcium-to-phosphorus molar ratio and transmission electron microscopy (TEM) demonstrate that both periodic FSS and PAA can control the size of amorphous calcium phosphate (ACP) to avoid aggregation and help the formation of intrafibrillar mineralization. Differently, periodic FSS under a proper cycle and range can accelerate the conversion of ACP to apatite crystals and alleviate the reduced transformation caused by PAA. Under the action of template analogues, periodic FSS can also promote the formation of highly oriented hierarchical intrafibrillar mineralized (HIM) collagen. These findings are helpful for understanding the mechanism of collagen mineralization in natural bone matrix and contribute to the design of novel bone substitute materials with hierarchical structures.
Collapse
Affiliation(s)
- Tianming Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China and Research Institute of Beihang University in Shenzhen, Shenzhen 518057, China
| | - Sen Hou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Menghan Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Zhengwei Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China and Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| |
Collapse
|
8
|
Three-Dimensional Printing of Hydroxyapatite Composites for Biomedical Application. CRYSTALS 2021. [DOI: 10.3390/cryst11040353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.
Collapse
|
9
|
de Sousa Victor R, Marcelo da Cunha Santos A, Viana de Sousa B, de Araújo Neves G, Navarro de Lima Santana L, Rodrigues Menezes R. A Review on Chitosan's Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4995. [PMID: 33171898 PMCID: PMC7664280 DOI: 10.3390/ma13214995] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Chitosan, derived from chitin, is a biopolymer consisting of arbitrarily distributed β-(1-4)-linked D-glucosamine and N-acetyl-D-glucosamine that exhibits outstanding properties- biocompatibility, biodegradability, non-toxicity, antibacterial activity, the capacity to form films, and chelating of metal ions. Most of these peculiar properties are attributed to the presence of free protonable amino groups along the chitosan backbone, which also gives it solubility in acidic conditions. Moreover, this biopolymer can also be physically modified, thereby presenting a variety of forms to be developed. Consequently, this polysaccharide is used in various fields, such as tissue engineering, drug delivery systems, and cancer treatment. In this sense, this review aims to gather the state-of-the-art concerning this polysaccharide when used as a biomaterial, providing information about its characteristics, chemical modifications, and applications. We present the most relevant and new information about this polysaccharide-based biomaterial's applications in distinct fields and also the ability of chitosan and its various derivatives to selectively permeate through the cancer cell membranes and exhibit anticancer activity, and the possibility of adding several therapeutic metal ions as a strategy to improve the therapeutic potential of this polymer.
Collapse
Affiliation(s)
- Rayssa de Sousa Victor
- Graduate Program in Materials Science and Engineering, Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Adillys Marcelo da Cunha Santos
- Center for Science and Technology in Energy and Sustainability (CETENS), Federal University of Recôncavo da Bahia (UFRB), Feira de Santana 44042-280, Brazil;
| | - Bianca Viana de Sousa
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil;
| | - Gelmires de Araújo Neves
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Lisiane Navarro de Lima Santana
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| |
Collapse
|
10
|
Application of Chitosan in Bone and Dental Engineering. Molecules 2019; 24:molecules24163009. [PMID: 31431001 PMCID: PMC6720623 DOI: 10.3390/molecules24163009] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Chitosan is a deacetylated polysaccharide from chitin, the natural biopolymer primarily found in shells of marine crustaceans and fungi cell walls. Upon deacetylation, the protonation of free amino groups of the d-glucosamine residues of chitosan turns it into a polycation, which can easily interact with DNA, proteins, lipids, or negatively charged synthetic polymers. This positive-charged characteristic of chitosan not only increases its solubility, biodegradability, and biocompatibility, but also directly contributes to the muco-adhesion, hemostasis, and antimicrobial properties of chitosan. Combined with its low-cost and economic nature, chitosan has been extensively studied and widely used in biopharmaceutical and biomedical applications for several decades. In this review, we summarize the current chitosan-based applications for bone and dental engineering. Combining chitosan-based scaffolds with other nature or synthetic polymers and biomaterials induces their mechanical properties and bioactivities, as well as promoting osteogenesis. Incorporating the bioactive molecules into these biocomposite scaffolds accelerates new bone regeneration and enhances neovascularization in vivo.
Collapse
|
11
|
Yang F, Niu X, Gu X, Xu C, Wang W, Fan Y. Biodegradable Magnesium-Incorporated Poly(l-lactic acid) Microspheres for Manipulation of Drug Release and Alleviation of Inflammatory Response. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23546-23557. [PMID: 31252468 DOI: 10.1021/acsami.9b03766] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Poly(l-lactic acid) (PLLA) and magnesium (Mg) are widely concerned biodegradable materials, but during in vivo implantation, the former produces acidic degradation byproducts and can easily induce inflammation in surrounding tissues, whereas the latter is fast corroded and generates alkaline products. The purpose of this study is to develop Mg/PLLA composite microspheres as a novel delivery system, in which Mg particles are used to regulate the drug release profile and suppress PLLA-induced inflammatory response. Morphological observation shows that multiple Mg particles are dispersed both on the surface and in the interior of composite microspheres. In vitro release study indicates that by varying the Mg contents or its particle sizes, the internal connectivity of composite microspheres is changed during hydrolytic degradation, and drug delivery can be facilely manipulated with tunable release patterns. In vivo release study further confirms the feasibility of Mg/PLLA microspheres for tailoring drug release in a physiological environment. The animal experiment reveals that Mg particles can alleviate macrophage infiltration and inflammatory cytokine expression. These results demonstrate the availability of using biodegradable Mg particles to manipulate drug release as well as alleviate PLLA-induced inflammation. The present Mg/PLLA composite microspheres have potential applications in controlled delivery of various therapeutic agents, especially some growth factors, for bone regeneration.
Collapse
Affiliation(s)
- Fenghe Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering , Beihang University , Beijing 100083 , China
- Beijing Advanced Innovation Centre for Biomedical Engineering , Beihang University , Beijing 100083 , China
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering , Beihang University , Beijing 100083 , China
- Beijing Advanced Innovation Centre for Biomedical Engineering , Beihang University , Beijing 100083 , China
- Research Institute of Beihang University in Shenzhen , Shenzhen 518057 , China
| | - Xuenan Gu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering , Beihang University , Beijing 100083 , China
- Beijing Advanced Innovation Centre for Biomedical Engineering , Beihang University , Beijing 100083 , China
| | - Chuanping Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering , Beihang University , Beijing 100083 , China
- Beijing Advanced Innovation Centre for Biomedical Engineering , Beihang University , Beijing 100083 , China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology , Peking University , Beijing 100191 , China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering , Beihang University , Beijing 100083 , China
- Beijing Advanced Innovation Centre for Biomedical Engineering , Beihang University , Beijing 100083 , China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability , National Research Center for Rehabilitation Technical Aids , Beijing 100176 , China
| |
Collapse
|
12
|
Liao J, Wu S, Li K, Fan Y, Dunne N, Li X. Peptide-modified bone repair materials: Factors influencing osteogenic activity. J Biomed Mater Res A 2019; 107:1491-1512. [PMID: 30790423 DOI: 10.1002/jbm.a.36663] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/29/2019] [Accepted: 02/14/2019] [Indexed: 11/08/2022]
Abstract
Many factors have been demonstrated as having an influencing effect on the osteogenic activity of the peptide-modified bone repair materials. However, most of studies only focus on one or two aspects that result in an incomplete direction for materials preparation, characterization, and performance evaluation. In this review, we reported several factors through summarizing previous research studies, which are mainly centered on three aspects: (1) the characteristics of peptide immobilized on the surface of matrix (e.g., type and length of sequence, structure, and density); (2) the combination mode between peptide and matrix (including covalent binding in selective or nonselective immobilization, and noncovalent binding through simple absorption or mixing with the matrix, and other factors in covalent binding); and (3) the properties of the matrix (including surface structure and morphology, dimension, mechanical properties, hydrophobic-hydrophilic balance, adsorbing proteins on materials), and the other possible influencing factors such as binding to other peptides. In addition, attentions were paid to the introduction and the discussion of newest studies and the analysis of mechanism. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2019.
Collapse
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Shuai Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Kun Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
13
|
Du T, Niu X, Hou S, Li Z, Li P, Fan Y. Apatite minerals derived from collagen phosphorylation modification induce the hierarchical intrafibrillar mineralization of collagen fibers. J Biomed Mater Res A 2019; 107:2403-2413. [PMID: 31222920 DOI: 10.1002/jbm.a.36747] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
Collagen is the critical organic component of bone matrix, which is the template for bone biomineralization. Phosphorylation modification of collagen plays an important role in the process of biomineralization in vivo, but its mechanism on in vitro biomimetic mineralization of bone matrix remains unclear at the molecular level. Sodium tripolyphosphate is used to phosphorylate collagen in this study and new phosphate groups appear on collagen fibrils after phosphorylation modification. The chelating amount of calcium is improved linearly with increasing the phosphorylation degree of collagen fibrils, which demonstrates that the introduced phosphate groups serve as new nucleation sites and participate in the formation of apatite minerals inside the collagen fibers. Stabilized nanosized amorphous calcium phosphate by polyacrylic acid can also permeate into collagen fibers and further transform into another layer of hydroxyapatite minerals. Both layers of apatite minerals eventually induce the formation of hierarchical intrafibrillar mineralization structure within the phosphorylated collagen fibers. The present research enriches the previous biomineralization mechanism of bone matrix, provides a facile strategy for biomimetic mineralization of collagen, and offers the basis for future investigation of the advanced bone substitute materials.
Collapse
Affiliation(s)
- Tianming Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,Research Institute of Beihang University in Shenzhen, Shenzhen, China
| | - Sen Hou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Zhengwei Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| |
Collapse
|
14
|
Gu X, Lin W, Li D, Guo H, Li P, Fan Y. Degradation and biocompatibility of a series of strontium substituted hydroxyapatite coatings on magnesium alloys. RSC Adv 2019; 9:15013-15021. [PMID: 35516316 PMCID: PMC9064257 DOI: 10.1039/c9ra02210d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/04/2019] [Indexed: 01/28/2023] Open
Abstract
Sr-HA coatings could simply improve the degradation and osteoblast response of Mg in a Sr-dose dependent manner.
Collapse
Affiliation(s)
- Xuenan Gu
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
- China
- Beijing Advanced Innovation Centre for Biomedical Engineering
| | - Wenting Lin
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
- China
| | - Dan Li
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
- China
| | - Hongmei Guo
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
- China
| | - Ping Li
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
- China
- Beijing Advanced Innovation Centre for Biomedical Engineering
| | - Yubo Fan
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
- China
- Beijing Advanced Innovation Centre for Biomedical Engineering
| |
Collapse
|
15
|
Zhou G, Wang K, Liu H, Wang L, Xiao X, Dou D, Fan Y. Three-dimensional polylactic acid@graphene oxide/chitosan sponge bionic filter: Highly efficient adsorption of crystal violet dye. Int J Biol Macromol 2018. [DOI: 10.1016/j.ijbiomac.2018.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Kowalczewski CJ, Saul JM. Biomaterials for the Delivery of Growth Factors and Other Therapeutic Agents in Tissue Engineering Approaches to Bone Regeneration. Front Pharmacol 2018; 9:513. [PMID: 29896102 PMCID: PMC5986909 DOI: 10.3389/fphar.2018.00513] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/27/2018] [Indexed: 12/14/2022] Open
Abstract
Bone fracture followed by delayed or non-union typically requires bone graft intervention. Autologous bone grafts remain the clinical "gold standard". Recently, synthetic bone grafts such as Medtronic's Infuse Bone Graft have opened the possibility to pharmacological and tissue engineering strategies to bone repair following fracture. This clinically-available strategy uses an absorbable collagen sponge as a carrier material for recombinant human bone morphogenetic protein 2 (rhBMP-2) and a similar strategy has been employed by Stryker with BMP-7, also known as osteogenic protein-1 (OP-1). A key advantage to this approach is its "off-the-shelf" nature, but there are clear drawbacks to these products such as edema, inflammation, and ectopic bone growth. While there are clinical challenges associated with a lack of controlled release of rhBMP-2 and OP-1, these are among the first clinical examples to wed understanding of biological principles with biochemical production of proteins and pharmacological principles to promote tissue regeneration (known as regenerative pharmacology). After considering the clinical challenges with such synthetic bone grafts, this review considers the various biomaterial carriers under investigation to promote bone regeneration. This is followed by a survey of the literature where various pharmacological approaches and molecular targets are considered as future strategies to promote more rapid and mature bone regeneration. From the review, it should be clear that pharmacological understanding is a key aspect to developing these strategies.
Collapse
Affiliation(s)
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States
| |
Collapse
|
17
|
Hou G, Zhou F, Guo Y, Yang Z, Li A, Wang C, Qiu D. In vivo study of a bioactive nanoparticle-gelatin composite scaffold for bone defect repair in rabbits. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:181. [PMID: 29022190 DOI: 10.1007/s10856-017-5991-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
The purpose is to study the in vivo bioactivity of this scaffold and verify its ability to simulate the characteristics of cancellous bone. Twenty-four adult New Zealand white rabbits were divided into three groups. Bone defects above the femoral condylar of both sides were created. A newly designed bioactive nanoparticle-gelatin composite scaffold was implanted to the experimental side, while the control side was left without implantation. The repair of bone defect was monitored by X-ray examination, gross observation, Micro-CT examination and histological observation of the area of bone defect 4, 8 and 12 weeks after surgery. There was void of new bone tissue in medullary cavity in the bone defect area of the control side. In the experimental side, the composite scaffold displayed excellent biodegradability, bioactivity and cyto-compatibility. With the time laps, new bone tissue grew from the edge to center as revealed by both Micro-CT image and staining biopsy, which complies with the "creeping substitution" process. The mechanical properties of the newly designed bioactive nanoparticle-gelatin composite scaffold and the 3-D structure of new bone tissue are comparable to the surrounding cancellous bones. This newly developed bioactive nanoparticle-gelatin composite scaffold possesses good biocompatibility and in vivo osteogenic capability for bone defect repair. It may be a promising artificial bone grafts.
Collapse
Affiliation(s)
- Guojin Hou
- Department of Orthopaedic Surgery, Peking University Third Hospital, No 49, North Garden Rd, HaiDian District, 100191, Beijing, China
| | - Fang Zhou
- Department of Orthopaedic Surgery, Peking University Third Hospital, No 49, North Garden Rd, HaiDian District, 100191, Beijing, China.
| | - Yan Guo
- Department of Orthopaedic Surgery, Peking University Third Hospital, No 49, North Garden Rd, HaiDian District, 100191, Beijing, China
| | - Zhongwei Yang
- Department of Orthopaedic Surgery, Peking University Third Hospital, No 49, North Garden Rd, HaiDian District, 100191, Beijing, China
| | - Ailing Li
- Department of Orthopaedic Surgery, Peking University Third Hospital, No 49, North Garden Rd, HaiDian District, 100191, Beijing, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Chen Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
18
|
Ke X, Zhuang C, Yang X, Fu J, Xu S, Xie L, Gou Z, Wang J, Zhang L, Yang G. Enhancing the Osteogenic Capability of Core-Shell Bilayered Bioceramic Microspheres with Adjustable Biodegradation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:24497-24510. [PMID: 28714662 DOI: 10.1021/acsami.7b06798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study describes the fabrication and biological evaluation of core-shell bilayered bioceramic microspheres with adjustable compositional distribution via a coaxial bilayer capillary system. Beyond the homogeneous hybrid composites, varying the diameter of capillary nozzles and the composition of the bioceramic slurries makes it easy to create bilayered β-tricalcium phosphate (CaP)/β-calcium silicate (CaSi) microspheres with controllable compositional distribution in the core or shell layer. Primary investigations in vitro revealed that biodegradation could be adjusted by compositional distribution or shell thickness and that poorly soluble CaP located on the shell layer of CaP or CaSi@CaP microspheres was particularly beneficial for mesenchymal stem cell adhesion and growth in the early stage, but the ion release from the CaP@CaSi exhibited a potent stimulating effect on alkaline phosphatase expression of the cells at longer times. When the bilayered microspheres (CaSi@CaP, CaP@CaSi) and the monolayered microspheres (CaP, CaSi) were implanted into the critical-sized femoral bone defect in rabbit models, significant differences in osteogenic capacity over time were measured at 6-18 weeks post implantation. The CaP microspheres showed the lowest biodegradation rate and slow new bone regeneration, whereas the CaSi@CaP showed a fast degradation of the CaSi core through the porous CaP shell so that a significant osteogenic response was observed at 12-18 weeks. The CaP@CaSi microspheres possessed excellent surface bioactivity and osteogenic activity, whereas the CaSi microspheres group exhibited a poor bone augmentation in the later stage due to extreme biodegradation. These findings demonstrated that the bioactive response in such core-shell-structured bioceramic systems could be adjusted by compositional distribution, and this strategy can be used to fabricate a variety of bioceramic microspheres with adjustable biodegradation rates and enhanced biological response for bone regeneration applications in medicine.
Collapse
Affiliation(s)
- Xiurong Ke
- Rui'an People's Hospital & The 3rd Hospital Affiliated to Wenzhou Medical University , Rui'an 325200, China
| | - Chen Zhuang
- Bio-Nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University , Hangzhou 310058, China
| | - Xianyan Yang
- Bio-Nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University , Hangzhou 310058, China
| | - Jia Fu
- Rui'an People's Hospital & The 3rd Hospital Affiliated to Wenzhou Medical University , Rui'an 325200, China
| | - Sanzhong Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Medicine of Zhejiang University , Hangzhou 310003, China
| | - Lijun Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine of Zhejiang University , Hangzhou 310009, China
| | - Zhongru Gou
- Bio-Nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University , Hangzhou 310058, China
| | - Juncheng Wang
- Rui'an People's Hospital & The 3rd Hospital Affiliated to Wenzhou Medical University , Rui'an 325200, China
| | - Lei Zhang
- Rui'an People's Hospital & The 3rd Hospital Affiliated to Wenzhou Medical University , Rui'an 325200, China
| | - Guojing Yang
- Rui'an People's Hospital & The 3rd Hospital Affiliated to Wenzhou Medical University , Rui'an 325200, China
| |
Collapse
|
19
|
Versatility of Chitosan-Based Biomaterials and Their Use as Scaffolds for Tissue Regeneration. ScientificWorldJournal 2017; 2017:8639898. [PMID: 28567441 PMCID: PMC5439263 DOI: 10.1155/2017/8639898] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/10/2017] [Accepted: 04/03/2017] [Indexed: 01/05/2023] Open
Abstract
Chitosan is a naturally occurring polysaccharide obtained from chitin, present in abundance in the exoskeletons of crustaceans and insects. It has aroused great interest as a biomaterial for tissue engineering on account of its biocompatibility and biodegradation and its affinity for biomolecules. A significant number of research groups have investigated the application of chitosan as scaffolds for tissue regeneration. However, there is a wide variability in terms of physicochemical characteristics of chitosan used in some studies and its combinations with other biomaterials, making it difficult to compare results and standardize its properties. The current systematic review of literature on the use of chitosan for tissue regeneration consisted of a study of 478 articles in the PubMed database, which resulted, after applying inclusion criteria, in the selection of 61 catalogued, critically analysed works. The results demonstrated the effectiveness of chitosan-based biomaterials in 93.4% of the studies reviewed, whether or not combined with cells and growth factors, in the regeneration of various types of tissues in animals. However, the absence of clinical studies in humans, the inadequate experimental designs, and the lack of information concerning chitosan's characteristics limit the reproducibility and relevance of studies and the clinical applicability of chitosan.
Collapse
|
20
|
Li J, Ding J, Liu T, Liu JF, Yan L, Chen X. Poly(lactic acid) Controlled Drug Delivery. INDUSTRIAL APPLICATIONS OF POLY(LACTIC ACID) 2017. [DOI: 10.1007/12_2017_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Cui W, Sun G, Qu Y, Xiong Y, Sun T, Ji Y, Yang L, Shao Z, Ma J, Zhang S, Guo X. Repair of rat calvarial defects using Si-doped hydroxyapatite scaffolds loaded with a bone morphogenetic protein-2-related peptide. J Orthop Res 2016; 34:1874-1882. [PMID: 26909759 DOI: 10.1002/jor.23208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/17/2016] [Indexed: 02/06/2023]
Abstract
Tissue engineering promises therapies ideal for treating conventional large bone injuries and defects. In the present study, we developed a novel Si-HA scaffold loaded with a synthetic BMP-2-related peptide, P28, and tested its ability to repair a critical-sized calvarial defect. We created a calvarial defect (5 mm in diameter) in the parietal bone of 32 rats and implanted one of the following biomaterials: No implant (control), Si-HA, P28/Si-HA, or rhBMP-2/Si-HA. As assessed by micro CT imaging and histological evaluations, the P28/Si-HA scaffold promoted bone recovery to a similar degree as the rhBMP-2/Si-HA scaffold. In addition, both P28/Si-HA and rhBMP-2/Si-HA promoted recovery better than Si-HA alone. The novel P28/Si-HA scaffold might represent a promising biomaterial for future bone tissue engineering applications. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1874-1882, 2016.
Collapse
Affiliation(s)
- Wei Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Guangfei Sun
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Yanzhen Qu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yi Xiong
- Department of Orthopedics, Central hospital of Enshi, Enshi, 445000, People's Republic of China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yanhui Ji
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Liang Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jun Ma
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|
22
|
Liu W, Li Z, Zheng L, Zhang X, Liu P, Yang T, Han B. Electrospun fibrous silk fibroin/poly(L-lactic acid) scaffold for cartilage tissue engineering. Tissue Eng Regen Med 2016; 13:516-526. [PMID: 30603432 PMCID: PMC6170845 DOI: 10.1007/s13770-016-9099-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 01/13/2023] Open
Abstract
For successful tissue engineering of articular cartilage, a scaffold with mechanical properties that match those of natural cartilage as closely as possible is needed. In the present study, we prepared a fibrous silk fibroin (SF)/poly(L-lactic acid) (PLLA) scaffold via electrospinning and investigated the morphological, mechanical, and degradation properties of the scaffolds fabricated using different electrospinning conditions, including collection distance, working voltage, and the SF:PLLA mass ratio. In addition, in vitro cell-scaffold interactions were evaluated in terms of chondrocyte adhesion to the scaffolds as well as the cytotoxicity and cytocompatibility of the scaffolds. The optimum electrospinning conditions for generating a fibrous SF/PLLA scaffold with the best surface morphology (ordered alignment and suitable diameter) and tensile strength (~1.5 MPa) were a collection distance of 20 cm, a working voltage of 15 kV, and a SF:PLLA mass ratio of S50P50. The degradation rate of the SF/PLLA scaffolds was found to be determined by the SF:PLLA mass ratio, and it could be increased by reducing the PLLA proportion. Furthermore, chondrocytes spread well on the fibrous SF/PLLA scaffolds and secreted extracellular matrix, indicating good adhesion to the scaffold. The cytotoxicity of SF/PLLA scaffold extract to chondrocytes over 24 and 48 h in culture was low, indicating that the SF/PLLA scaffolds are biocompatible. Chondrocytes grew well on the SF/PLLA scaffold after 1, 3, 5, and 7 days of direct contact, indicating the good cytocompatibility of the scaffold. These results demonstrate that the fibrous SF/PLLA scaffold represents a promising composite material for use in cartilage tissue engineering.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, 1500 Tsinghua Road, Changchun, 130021 China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Zhengqiang Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, 1500 Tsinghua Road, Changchun, 130021 China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Lu Zheng
- College of Chemistry, Jilin University, Changchun, China
| | - Xiaoyan Zhang
- The Affiliated Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Peng Liu
- Department of Stomatology, School of Medicine, Yanbian University, Yanji, China
| | - Ting Yang
- College of Chemistry, Jilin University, Changchun, China
| | - Bing Han
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, 1500 Tsinghua Road, Changchun, 130021 China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
23
|
Saravanan S, Leena RS, Selvamurugan N. Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 2016; 93:1354-1365. [PMID: 26845481 DOI: 10.1016/j.ijbiomac.2016.01.112] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 12/18/2022]
Abstract
The clinical demand for scaffolds and the diversity of available polymers provide freedom in the fabrication of scaffolds to achieve successful progress in bone tissue engineering (BTE). Chitosan (CS) has drawn much of the attention in recent years for its use as graft material either as alone or in a combination with other materials in BTE. The scaffolds should possess a number of properties like porosity, biocompatibility, water retention, protein adsorption, mechanical strength, biomineralization and biodegradability suited for BTE applications. In this review, CS and its properties, and the role of CS along with other polymeric and ceramic materials as scaffolds for bone tissue repair applications are highlighted.
Collapse
Affiliation(s)
- S Saravanan
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India
| | - R S Leena
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
24
|
Agrawal V, Sinha M. A review on carrier systems for bone morphogenetic protein-2. J Biomed Mater Res B Appl Biomater 2016; 105:904-925. [PMID: 26728994 DOI: 10.1002/jbm.b.33599] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 01/26/2023]
Abstract
Bone morphogenetic protein-2 (BMP-2) has unique bone regeneration property. The powerful osteoinductive nature makes it considered as second line of therapy in nonunion bone defect. A large number of carriers and delivery systems made up of different materials have been investigated for controlled and sustained release of BMP-2. The delivery systems are in the form of hydrogel, microsphere, nanoparticles, and fibers. The carriers used for the delivery are made up of metals, ceramics, polymers, and composites. Implantation of these protein-loaded carrier leads to cell adhesion, degradation which eventually releases the drug/protein at site specific. But, problems like ectopic growth, lesser protein delivery, inactivation of the protein are reported in the available carrier systems. Therefore, it is need of an hour to modify the available carrier systems as well as explore other biomaterials with desired properties. In this review, all the reported carrier systems made of metals, ceramics, polymers, composites are evaluated in terms of their processing conditions, loading capacity and release pattern of BMP-2. Along with these biomaterials, the attempts of protein modification by adding some functional group to BMP-2 or extracting functional peptides from the protein to achieve the desired effect, is also evaluated. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 904-925, 2017.
Collapse
Affiliation(s)
- Vishal Agrawal
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Ahmedabad-, 380054, India
| | - Mukty Sinha
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Ahmedabad-, 380054, India
| |
Collapse
|
25
|
Yao AH, Li XD, Xiong L, Zeng JH, Xu J, Wang DP. Hollow hydroxyapatite microspheres/chitosan composite as a sustained delivery vehicle for rhBMP-2 in the treatment of bone defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:5336. [PMID: 25578692 DOI: 10.1007/s10856-014-5336-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/31/2014] [Indexed: 06/04/2023]
Abstract
Composite scaffold comprised of hollow hydroxyapatite (HA) and chitosan (designated hHA/CS) was prepared as a delivery vehicle for recombinating human bone morphogenetic protein-2 (rhBMP-2). The in vitro and in vivo biological activities of rhBMP2 released from the composite scaffold were then investigated. The rhBMP-2 was firstly loaded into the hollow HA microspheres, and then the rhBMP2-loaded HA microspheres were further incorporated into the chitosan matrix. The chitosan not only served to bind the HA microspheres together and kept them at the implant site, but also effectively modified the release behavior of rhBMP-2. The in vitro release and bioactivity analysis confirmed that the rhBMP2 could be loaded and released from the composite scaffolds in bioactive form. In addition, the composite scaffolds significantly reduced the initial burst release of rhBMP2, and thus providing prolonged period of time (as long as 60 days) compared with CS scaffolds. In vivo bone regenerative potential of the rhBMP2-loaded composite scaffolds was evaluated in a rabbit radius defect model. The results revealed that the rate of new bone formation in the rhBMP2-loaded hHA/CS group was higher than that in both negative control and rhBMP2-loaded CS group. These observations suggest that the hHA/CS composite scaffold would be effective and feasible as a delivery vehicle for growth factors in bone regeneration and repair.
Collapse
Affiliation(s)
- Ai-Hua Yao
- School of Materials Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
26
|
Turon P, Valle LJD, Alemán C, Puiggalí J. Preparation and Applications of Hydroxyapatite Nanocomposites Based on Biodegradable and Natural Polymers. SYNTHESIS TECHNIQUES FOR POLYMER NANOCOMPOSITES 2014:51-86. [DOI: 10.1002/9783527670307.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
27
|
Huang Y, Niu X, Wang L, Fan J, Li X, Zhou G, Feng Q, Fan Y. Effects of hydroxyapatite/collagen composite on osteogenic differentiation of rat bone marrow derived mesenchymal stem cells. JOURNAL OF COMPOSITE MATERIALS 2014; 48:1971-1980. [DOI: 10.1177/0021998313493808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Combination of cells and materials opens a new option for tissue repair and regeneration. The aim of this study is to investigate the effects of hydroxyapatite/collagen composite on the osteogenic differentiation of rat bone marrow derived mesenchymal stem cells. The hydroxyapatite/collagen composites are synthesized by bioinspired mineralization and characterized by Fourier transform infrared spectrometry, X-ray diffraction, scanning electron microscope, thermogravimetric analysis and laser particle size analyzer. Different concentrations of hydroxyapatite/collagen are co-cultured with the rat bone marrow derived mesenchymal stem cells in passages 2–4 on a culture plate. Osteogenic differentiation is evaluated using reverse transcription polymerase chain reaction, alkaline phosphatase spectrophotometry as well as western blotting. The results demonstrate that the developed hydroxyapatite/collagen composite has microstructure and composition that are similar to the natural bone matrix. Hydroxyapatite/collagen treatment can induce osteogenic differentiation of rat bone marrow derived mesenchymal stem cells, as confirmed by the expression of osteoblast-related markers at both messenger RNA and protein levels. The concentration of 75 µg/ml may be the optimal inducer. In addition, combining biochemical reagents and hydroxyapatite/collagen has a synergistic interaction on the osteogenic differentiation of rat bone marrow derived mesenchymal stem cells. This provides a new avenue for mechanistic studies of stem cell differentiation and a novel approach to obtain more committed differentiated cells.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, China
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, China
| | - Liyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, China
| | - Jie Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, China
| | - Gang Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, China
| | - Qingling Feng
- State Key Laboratory of New Ceramic and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, China
| | - Yubo Fan
- State Key Laboratory of New Ceramic and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, China
| |
Collapse
|
28
|
Microencapsulation of mechano growth factor E peptide for sustained delivery and bioactivity maintenance. Int J Pharm 2014; 469:214-21. [DOI: 10.1016/j.ijpharm.2014.04.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/08/2014] [Accepted: 04/20/2014] [Indexed: 11/21/2022]
|
29
|
Zeng W, Rong M, Hu X, Xiao W, Qi F, Huang J, Luo Z. Incorporation of chitosan microspheres into collagen-chitosan scaffolds for the controlled release of nerve growth factor. PLoS One 2014; 9:e101300. [PMID: 24983464 PMCID: PMC4077743 DOI: 10.1371/journal.pone.0101300] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 06/05/2014] [Indexed: 11/18/2022] Open
Abstract
Background Artifical nerve scaffold can be used as a promising alternative to autologous nerve grafts to enhance the repair of peripheral nerve defects. However, current nerve scaffolds lack efficient microstructure and neurotrophic support. Methods Microsphere–Scaffold composite was developed by incorporating chitosan microspheres loaded with nerve growth factor (NGF–CMSs) into collagen-chitosan scaffolds (CCH) with longitudinally oriented microchannels (NGF–CMSs/CCH). The morphological characterizations, in vitro release kinetics study, neurite outgrowth assay, and bioactivity assay were evaluated. After that, a 15-mm-long sciatic nerve gap in rats was bridged by the NGF–CMSs/CCH, CCH physically absorbed NGF (NGF/CCH), CCH or nerve autograft. 16 weeks after implantation, electrophysiology, fluoro-gold retrograde tracing, and nerve morphometry were performed. Results The NGF–CMSs were evenly distributed throughout the longitudinally oriented microchannels of the scaffold. The NGF–CMSs/CCH was capable of sustained release of bioactive NGF within 28 days as compared with others in vitro. In vivo animal study demonstrated that the outcomes of NGF–CMSs/CCH were better than those of NGF/CCH or CCH. Conclusion Our findings suggest that incorporation of NGF–CMSs into the CCH may be a promising tool in the repair of peripheral nerve defects.
Collapse
Affiliation(s)
- Wen Zeng
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Mengyao Rong
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xueyu Hu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Wei Xiao
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Fengyu Qi
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- * E-mail: (JHH); (ZJL)
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- * E-mail: (JHH); (ZJL)
| |
Collapse
|
30
|
Abstract
Bone defects requiring grafts to promote healing are frequently occurring and costly problems in health care. Chitosan, a biodegradable, naturally occurring polymer, has drawn considerable attention in recent years as scaffolding material in tissue engineering and regenerative medicine. Chitosan is especially attractive as a bone scaffold material because it supports the attachment and proliferation of osteoblast cells as well as formation of mineralized bone matrix. In this review, we discuss the fundamentals of bone tissue engineering and the unique properties of chitosan as a scaffolding material to treat bone defects for hard tissue regeneration. We present the common methods for fabrication and characterization of chitosan scaffolds, and discuss the influence of material preparation and addition of polymeric or ceramic components or biomolecules on chitosan scaffold properties such as mechanical strength, structural integrity, and functional bone regeneration. Finally, we highlight recent advances in development of chitosan-based scaffolds with enhanced bone regeneration capability.
Collapse
Affiliation(s)
- Sheeny Lan Levengood
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195 USA
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
31
|
Garg T, Goyal AK. Biomaterial-based scaffolds – current status and future directions. Expert Opin Drug Deliv 2014; 11:767-89. [DOI: 10.1517/17425247.2014.891014] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
The application of fiber-reinforced materials in disc repair. BIOMED RESEARCH INTERNATIONAL 2013; 2013:714103. [PMID: 24383057 PMCID: PMC3870616 DOI: 10.1155/2013/714103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/18/2013] [Indexed: 01/08/2023]
Abstract
The intervertebral disc degeneration and injury are the most common spinal diseases with tremendous financial and social implications. Regenerative therapies for disc repair are promising treatments. Fiber-reinforced materials (FRMs) are a kind of composites by embedding the fibers into the matrix materials. FRMs can maintain the original properties of the matrix and enhance the mechanical properties. By now, there are still some problems for disc repair such as the unsatisfied static strength and dynamic properties for disc implants. The application of FRMs may resolve these problems to some extent. In this review, six parts such as background of FRMs in tissue repair, the comparison of mechanical properties between natural disc and some typical FRMs, the repair standard and FRMs applications in disc repair, and the possible research directions for FRMs' in the future are stated.
Collapse
|
33
|
Niu X, Chen P, Zhou G, She Z, Tan R, Wang M, Fan Y. Ectopic osteogenesis of a microsphere–scaffold delivery system with encapsulated synthetic peptide derived from BMP-2. J Control Release 2013. [DOI: 10.1016/j.jconrel.2013.08.217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Wang Y, Lv P, Ma Z, Zhang J. Enhanced healing of rat calvarial critical size defect with selenium-doped lamellar biocomposites. Biol Trace Elem Res 2013; 155:72-81. [PMID: 23892698 DOI: 10.1007/s12011-013-9763-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/11/2013] [Indexed: 12/23/2022]
Abstract
A 3D porous lamellar selenium-containing nano-hydroxyapatite (SeHAN)/chitosan (CS) biocomposite was synthesized. The selenium-containing hydroxyapatite (HA) grains of 150~200 nm in length and 20~30 nm in width were observed by dynamic light scattering and transmission electron microscopy. A combination of X-ray diffraction, Fourier-transform infrared spectroscopy, and SEM indicated that HA particles were uniformly dispersed in chitosan matrix and there was a chemical interaction between chitosan and HA. Then, a standard critical size calvarial bone defect was created in Wistar rats. In group 1, no implant was made in the defect. In groups 2 and 3, HA nanoparticles (HAN)/CS biocomposite and SeHAN/CS biocomposite were implanted into the defect, respectively. After 4 weeks, the histological assessment clearly exhibited no significant changes, only found some living cells anchored in the periphery of the implants. After 8 and 12 weeks, most newly formed osteoid tissue was found in the SeHAN/CS implant group. Additionally, the newly formed osteoid tissue, both at the edge and in the center of implants, was bioactive and neovascularized. Microfocus computerized tomography measurements also confirmed the much better quality of the newly formed bone tissue in SeHAN/CS implant group than that in HAN/CS implant group (p < 0.01). Collectively, the SeHAN/CS biocomposite, as a bioactive bone grafting substitute, significantly enhanced the repair of bone defect.
Collapse
Affiliation(s)
- Yanhua Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | |
Collapse
|
35
|
Trachtenberg JE, Mountziaris PM, Kasper FK, Mikos AG. Fiber-Based Composite Tissue Engineering Scaffolds for Drug Delivery. Isr J Chem 2013. [DOI: 10.1002/ijch.201300051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv Drug Deliv Rev 2013; 65:471-96. [PMID: 22465488 DOI: 10.1016/j.addr.2012.03.009] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/01/2012] [Accepted: 03/07/2012] [Indexed: 11/23/2022]
Abstract
The development of smart biomaterials for tissue regeneration has become the focus of intense research interest. More opportunities are available by the composite approach of combining the biomaterials in the form of biopolymers and/or bioceramics either synthetic or natural. Strategies to provide smart capabilities to the composite biomaterials primarily seek to achieve matrices that are instructive/inductive to cells, or that stimulate/trigger target cell responses that are crucial in the tissue regeneration processes. Here, we review in-depth, recent developments concerning smart composite biomaterials available for delivery systems of biofactors and cells and scaffolding matrices in tissue engineering. Smart composite designs are possible by modulating the bulk and surface properties that mimic the native tissues, either in chemical (extracellular matrix molecules) or in physical properties (e.g. stiffness), or by introducing external therapeutic molecules (drugs, proteins and genes) within the structure in a way that allows sustainable and controllable delivery, even time-dependent and sequential delivery of multiple biofactors. Responsiveness to internal or external stimuli, including pH, temperature, ionic strength, and magnetism, is another promising means to improve the multifunctionality in smart scaffolds with on-demand delivery potential. These approaches will provide the next-generation platforms for designing three-dimensional matrices and delivery systems for tissue regenerative applications.
Collapse
|
37
|
Deplaine H, Lebourg M, Ripalda P, Vidaurre A, Sanz-Ramos P, Mora G, Prósper F, Ochoa I, Doblaré M, Gómez Ribelles JL, Izal-Azcárate I, Gallego Ferrer G. Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds. J Biomed Mater Res B Appl Biomater 2012; 101:173-86. [DOI: 10.1002/jbm.b.32831] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/30/2012] [Accepted: 09/04/2012] [Indexed: 01/28/2023]
|
38
|
Zugravu MV, Smith RA, Reves BT, Jennings JA, Cooper JO, Haggard WO, Bumgardner JD. Physical properties and in vitro evaluation of collagen-chitosan-calcium phosphate microparticle-based scaffolds for bone tissue regeneration. J Biomater Appl 2012; 28:566-79. [PMID: 23128039 DOI: 10.1177/0885328212465662] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to limitations of bone autografts and allografts, synthetic bone grafts using osteoconductive biomaterials have been designed. In this study, collagen-chitosan-calcium phosphate microparticle-based scaffolds fused with glycolic acid were compared to their counterparts without collagen in terms of degradation, cytocompatibility, porosity, and Young's modulus. It was found that 26-30% collagen was incorporated and that hydroxyapatite was present. Moreover, there were no differences between control and collagen scaffolds in degradation, cytocompatibility, porosity, and Young's modulus. In general, scaffolds exhibited 23% porosity, 0.6-1.2 MPa Young's modulus, 23% degradation over 4 weeks, and supported a four to seven fold increase in osteoblast cell number over 7 days in culture. Collagen can be incorporated into these bone graft substitute scaffolds, which show an improved degradation profile.
Collapse
Affiliation(s)
- Monica V Zugravu
- 1Department of Biomedical Engineering, University of Memphis, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Alves Cardoso D, Jansen JA, Leeuwenburgh SCG. Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration. J Biomed Mater Res B Appl Biomater 2012; 100:2316-26. [PMID: 23015272 DOI: 10.1002/jbm.b.32794] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/13/2012] [Accepted: 07/14/2012] [Indexed: 01/02/2023]
Abstract
In the past two decades, nanotechnology has entered the field of regenerative medicine, resulting in the development of a novel generation of instructive, nanostructured biomaterials that are able to orchestrate cellular behavior by presenting specific morphological and biological cues. Using nanotechnology, materials containing nanosized features (e.g., pores, patterns, textures, grain sizes) can be obtained that exhibit properties that are considerably altered compared with micron-structured materials. Inspired by the hierarchical nanostructure of bone, the application of nanostructured materials for bone regeneration is gaining increasing interest in the field of biomaterials research. Because crystallographic and chemical studies have shown that synthetic hydroxyapatite closely resembles the inorganic phase found in bone and teeth, synthesis and applications of nanostructured calcium phosphate ceramics have been reviewed. Synthesis techniques for the preparation of calcium phosphate nanoparticles include precipitation, sol-gel, and hydrothermal processes, whereas four main biomedical applications of nanostructured calcium phosphate ceramics in bone regeneration have been addressed in more detail, that is, (1) polymer/calcium phosphate nanocomposites, (2) nanostructured monophasic calcium phosphate bone fillers, (3) nanostructured precursor phases for calcium phosphate cements, and (4) nanostructured calcium phosphate coatings.
Collapse
Affiliation(s)
- D Alves Cardoso
- Department of Biomaterials, Radboud University Nijmegen Medical Center, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
40
|
Abstract
In this Editor's Review, articles published in 2011 are organized by category and briefly summarized. As the official journal of The International Federation for Artificial Organs, The International Faculty for Artificial Organs, and the International Society for Rotary Blood Pumps, Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level."Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ replacement, recovery, and regeneration from all over the world. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide meaningful suggestions to the author's work whether eventually accepted or rejected. Without these excellent and dedicated reviewers, the quality expected from such a journal would not be possible. We also express our special thanks to our Publisher, Wiley-Blackwell, for their expert attention and support in the production and marketing of Artificial Organs. In this Editor's Review, that historically has been widely well-received by our readership, we aim to provide a brief reflection of the currently available worldwide knowledge that is intended to advance and better human life while providing insight for continued application of technologies and methods of organ replacement, recovery, and regeneration. We look forward to recording further advances in the coming years.
Collapse
Affiliation(s)
- Paul S Malchesky
- Artificial Organs Editorial Office, 10 West Erie Street, Painesville, OH 44077, USA.
| |
Collapse
|