1
|
Yin L, Niu T, Li L, Yu W, Han B, Rehman A, Zeng K. Research advancements in molecular glues derived from natural product scaffolds: Chemistry, targets, and molecular mechanisms. CHINESE HERBAL MEDICINES 2025; 17:235-245. [PMID: 40256709 PMCID: PMC12009069 DOI: 10.1016/j.chmed.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/30/2024] [Accepted: 01/03/2025] [Indexed: 04/22/2025] Open
Abstract
The mechanism of action of traditional Chinese medicine (TCM) remains unclear. Historically, research on TCM has mainly focused on exploring the mechanisms of active components acting on single targets. However, it is insufficient to explain the complex mechanisms by which these active components in TCM treat diseases. In recent years, the emergence of molecular glues (MGs) theory has provided new strategies to address this issue. MGs are small molecules that can promote interactions between proteins at their interface. The characteristic of MGs is to establish connections between diverse protein structures, thereby enabling a chemically-mediated proximity effect that triggers a wide spectrum of biological functions. Natural products are the result of billions of years of evolutionary processes in the natural environment. Thus, the extensive structural diversity of natural products renders them a rich source of MGs, including polyketides, terpenoids, steroids, lignans, organic acids, alkaloids and other classes. Currently, several well-known natural MGs, including the immunosuppressants cyclosporin A (CsA) and tacrolimus (FK506), as well as the anticancer agent taxol, have been incorporated into clinical practice. Meanwhile, the advancement of new technologies is propelling the discovery of novel MGs from natural products. Thus, we primarily summarize a growing variety of MGs from natural origins reported in recent years and categorize them based on the chemical structural types. Moreover, the main sources of TCM are natural products. The discovery of natural MGs promises to provide a new perspective for the elucidation of the molecular mechanism behind the efficiency of TCM. In summary, this review aims to provide insights from the perspective of natural products that could potentially influence TCM and modern drug development.
Collapse
Affiliation(s)
- Lina Yin
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
| | - Tingting Niu
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
| | - Ling Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Yu
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
| | - Bo Han
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
| | - Asma Rehman
- National Institute for Biotechnology & Genetic Engineering College Pakistan Institute of Engineering & Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Kewu Zeng
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Klumbys E, Xu W, Koduru L, Heng E, Wei Y, Wong FT, Zhao H, Ang EL. Discovery, characterization, and engineering of an advantageous Streptomyces host for heterologous expression of natural product biosynthetic gene clusters. Microb Cell Fact 2024; 23:149. [PMID: 38790014 PMCID: PMC11127301 DOI: 10.1186/s12934-024-02416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Streptomyces is renowned for its robust biosynthetic capacity in producing medically relevant natural products. However, the majority of natural products biosynthetic gene clusters (BGCs) either yield low amounts of natural products or remain cryptic under standard laboratory conditions. Various heterologous production hosts have been engineered to address these challenges, and yet the successful activation of BGCs has still been limited. In our search for a valuable addition to the heterologous host panel, we identified the strain Streptomyces sp. A4420, which exhibited rapid initial growth and a high metabolic capacity, prompting further exploration of its potential. RESULTS We engineered a polyketide-focused chassis strain based on Streptomyces sp. A4420 (CH strain) by deleting 9 native polyketide BGCs. The resulting metabolically simplified organism exhibited consistent sporulation and growth, surpassing the performance of most existing Streptomyces based chassis strains in standard liquid growth media. Four distinct polyketide BGCs were chosen and expressed in various heterologous hosts, including the Streptomyces sp. A4420 wild-type and CH strains, alongside Streptomyces coelicolor M1152, Streptomyces lividans TK24, Streptomyces albus J1074, and Streptomyces venezuelae NRRL B-65442. Remarkably, only the Streptomyces sp. A4420 CH strain demonstrated the capability to produce all metabolites under every condition outperforming its parental strain and other tested organisms. To enhance visualization and comparison of the tested strains, we developed a matrix-like analysis involving 15 parameters. This comprehensive analysis unequivocally illustrated the significant potential of the new strain to become a popular heterologous host. CONCLUSION Our engineered Streptomyces sp. A4420 CH strain exhibits promising attributes for the heterologous expression of natural products with a focus on polyketides, offering an alternative choice in the arsenal of heterologous production strains. As genomics and cloning strategies progress, establishment of a diverse panel of heterologous production hosts will be crucial for expediting the discovery and production of medically relevant natural products derived from Streptomyces.
Collapse
Affiliation(s)
- Evaldas Klumbys
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore
| | - Wei Xu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore
| | - Lokanand Koduru
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Elena Heng
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore
| | - Fong Tian Wong
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore
| | - Huimin Zhao
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Ee Lui Ang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore.
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Republic of Singapore.
| |
Collapse
|
3
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Alexiou A, Papadakis M, Saad HM, Batiha GES. Autophagy and autophagy signaling in Epilepsy: possible role of autophagy activator. Mol Med 2023; 29:142. [PMID: 37880579 PMCID: PMC10598971 DOI: 10.1186/s10020-023-00742-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Autophagy is an explicit cellular process to deliver dissimilar cytoplasmic misfolded proteins, lipids and damaged organelles to the lysosomes for degradation and elimination. The mechanistic target of rapamycin (mTOR) is the main negative regulator of autophagy. The mTOR pathway is involved in regulating neurogenesis, synaptic plasticity, neuronal development and excitability. Exaggerated mTOR activity is associated with the development of temporal lobe epilepsy, genetic and acquired epilepsy, and experimental epilepsy. In particular, mTOR complex 1 (mTORC1) is mainly involved in epileptogenesis. The investigation of autophagy's involvement in epilepsy has recently been conducted, focusing on the critical role of rapamycin, an autophagy inducer, in reducing the severity of induced seizures in animal model studies. The induction of autophagy could be an innovative therapeutic strategy in managing epilepsy. Despite the protective role of autophagy against epileptogenesis and epilepsy, its role in status epilepticus (SE) is perplexing and might be beneficial or detrimental. Therefore, the present review aims to revise the possible role of autophagy in epilepsy.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran university, Najran, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, Wien, 1030, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
4
|
Hoy MJ, Park E, Lee H, Lim WY, Cole DC, DeBouver ND, Bobay BG, Pierce PG, Fox D, Ciofani M, Juvvadi PR, Steinbach W, Hong J, Heitman J. Structure-Guided Synthesis of FK506 and FK520 Analogs with Increased Selectivity Exhibit In Vivo Therapeutic Efficacy against Cryptococcus. mBio 2022; 13:e0104922. [PMID: 35604094 PMCID: PMC9239059 DOI: 10.1128/mbio.01049-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 01/04/2023] Open
Abstract
Calcineurin is an essential virulence factor that is conserved across human fungal pathogens, including Cryptococcus neoformans, Aspergillus fumigatus, and Candida albicans. Although an excellent target for antifungal drug development, the serine-threonine phosphatase activity of calcineurin is conserved in mammals, and inhibition of this activity results in immunosuppression. FK506 (tacrolimus) is a naturally produced macrocyclic compound that inhibits calcineurin by binding to the immunophilin FKBP12. Previously, our fungal calcineurin-FK506-FKBP12 structure-based approaches identified a nonconserved region of FKBP12 that can be exploited for fungus-specific targeting. These studies led to the design of an FK506 analog, APX879, modified at the C-22 position, which was less immunosuppressive yet maintained antifungal activity. We now report high-resolution protein crystal structures of fungal FKBP12 and a human truncated calcineurin-FKBP12 bound to a natural FK506 analog, FK520 (ascomycin). Based on information from these structures and the success of APX879, we synthesized and screened a novel panel of C-22-modified compounds derived from both FK506 and FK520. One compound, JH-FK-05, demonstrates broad-spectrum antifungal activity in vitro and is nonimmunosuppressive in vivo. In murine models of pulmonary and disseminated C. neoformans infection, JH-FK-05 treatment significantly reduced fungal burden and extended animal survival alone and in combination with fluconazole. Furthermore, molecular dynamic simulations performed with JH-FK-05 binding to fungal and human FKBP12 identified additional residues outside the C-22 and C-21 positions that could be modified to generate novel FK506 analogs with improved antifungal activity. IMPORTANCE Due to rising rates of antifungal drug resistance and a limited armamentarium of antifungal treatments, there is a paramount need for novel antifungal drugs to treat systemic fungal infections. Calcineurin has been established as an essential and conserved virulence factor in several fungi, making it an attractive antifungal target. However, due to the immunosuppressive action of calcineurin inhibitors, they have not been successfully utilized clinically for antifungal treatment in humans. Recent availability of crystal structures of fungal calcineurin-bound inhibitor complexes has enabled the structure-guided design of FK506 analogs and led to a breakthrough in the development of a compound with increased fungal specificity. The development of a calcineurin inhibitor with reduced immunosuppressive activity and maintained therapeutic antifungal activity would add a significant tool to the treatment options for these invasive fungal infections with exceedingly high rates of mortality.
Collapse
Affiliation(s)
- Michael J. Hoy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Eunchong Park
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Hyunji Lee
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Won Young Lim
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - D. Christopher Cole
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Nicholas D. DeBouver
- UCB Biosciences, Bainbridge Island, Washington, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | | | - Phillip G. Pierce
- UCB Biosciences, Bainbridge Island, Washington, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - David Fox
- UCB Biosciences, Bainbridge Island, Washington, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Maria Ciofani
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Praveen R. Juvvadi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - William Steinbach
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
5
|
Wang P, Wang X, Yin Y, He M, Tan W, Gao W, Wen J. Increasing the Ascomycin Yield by Relieving the Inhibition of Acetyl/Propionyl-CoA Carboxylase by the Signal Transduction Protein GlnB. Front Microbiol 2021; 12:684193. [PMID: 34122395 PMCID: PMC8187598 DOI: 10.3389/fmicb.2021.684193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Ascomycin (FK520) is a multifunctional antibiotic produced by Streptomyces hygroscopicus var. ascomyceticus. In this study, we demonstrated that the inactivation of GlnB, a signal transduction protein belonging to the PII family, can increase the production of ascomycin by strengthening the supply of the precursors malonyl-CoA and methylmalonyl-CoA, which are produced by acetyl-CoA carboxylase and propionyl-CoA carboxylase, respectively. Bioinformatics analysis showed that Streptomyces hygroscopicus var. ascomyceticus contains two PII family signal transduction proteins, GlnB and GlnK. Protein co-precipitation experiments demonstrated that GlnB protein could bind to the α subunit of acetyl-CoA carboxylase, and this binding could be disassociated by a sufficient concentration of 2-oxoglutarate. Coupled enzyme activity assays further revealed that the interaction between GlnB protein and the α subunit inhibited both the activity of acetyl-CoA carboxylase and propionyl-CoA carboxylase, and this inhibition could be relieved by 2-oxoglutarate in a concentration-dependent manner. Because GlnK protein can act redundantly to maintain metabolic homeostasis under the control of the global nitrogen regulator GlnR, the deletion of GlnB protein enhanced the supply of malonyl-CoA and methylmalonyl-CoA by restoring the activity of acetyl-CoA carboxylase and propionyl-CoA carboxylase, thereby improving the production of ascomycin to 390 ± 10 mg/L. On this basis, the co-overexpression of the β and ε subunits of propionyl-CoA carboxylase further increased the ascomycin yield to 550 ± 20 mg/L, which was 1.9-fold higher than that of the parent strain FS35 (287 ± 9 mg/L). Taken together, this study provides a novel strategy to increase the production of ascomycin, providing a reference for improving the yield of other antibiotics.
Collapse
Affiliation(s)
- Pan Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Xin Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Ying Yin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Mingliang He
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Wei Tan
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Wenting Gao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Parhizkar F, Motavalli-Khiavi R, Aghebati-Maleki L, Parhizkar Z, Pourakbari R, Kafil HS, Danaii S, Yousefi M. The Impact of New Immunological Therapeutic Strategies on Recurrent Miscarriage and Recurrent Implantation Failure. Immunol Lett 2021; 236:20-30. [PMID: 34090942 DOI: 10.1016/j.imlet.2021.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Maternal-fetal immune dysregulation is one of the risk factors that increases the probability of embryo rejection and reproductive failure. The stimulation of immunological tolerance and suppression of immunological rejection are prerequisites for protecting embryos and preventing immunological attacks. Hence, it appears that immunomodulatory and immunosuppressive therapies can manage reproductive failures by controlling immune cells. The current medical literature has shown that immunotherapy approaches and cell therapy have promising results in improving pregnancy outcomes and live birth rates. These outcomes are obtained by regulating maternal immune responses, and exerting positive effects on human reproductive processes.
Collapse
Affiliation(s)
- Forough Parhizkar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli-Khiavi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zahra Parhizkar
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ramin Pourakbari
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Centre, Eastern Azerbaijan branch of ACECR, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Wang P, Yin Y, Wang X, Wen J. Enhanced ascomycin production in Streptomyces hygroscopicus var. ascomyceticus by employing polyhydroxybutyrate as an intracellular carbon reservoir and optimizing carbon addition. Microb Cell Fact 2021; 20:70. [PMID: 33731113 PMCID: PMC7968196 DOI: 10.1186/s12934-021-01561-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ascomycin is a multifunctional antibiotic produced by Streptomyces hygroscopicus var. ascomyceticus. As a secondary metabolite, the production of ascomycin is often limited by the shortage of precursors during the late fermentation phase. Polyhydroxybutyrate is an intracellular polymer accumulated by prokaryotic microorganisms. Developing polyhydroxybutyrate as an intracellular carbon reservoir for precursor synthesis is of great significance to improve the yield of ascomycin. RESULTS The fermentation characteristics of the parent strain S. hygroscopicus var. ascomyceticus FS35 showed that the accumulation and decomposition of polyhydroxybutyrate was respectively correlated with cell growth and ascomycin production. The co-overexpression of the exogenous polyhydroxybutyrate synthesis gene phaC and native polyhydroxybutyrate decomposition gene fkbU increased both the biomass and ascomycin yield. Comparative transcriptional analysis showed that the storage of polyhydroxybutyrate during the exponential phase accelerated biosynthesis processes by stimulating the utilization of carbon sources, while the decomposition of polyhydroxybutyrate during the stationary phase increased the biosynthesis of ascomycin precursors by enhancing the metabolic flux through primary pathways. The comparative analysis of cofactor concentrations confirmed that the biosynthesis of polyhydroxybutyrate depended on the supply of NADH. At low sugar concentrations found in the late exponential phase, the optimization of carbon source addition further strengthened the polyhydroxybutyrate metabolism by increasing the total concentration of cofactors. Finally, in the fermentation medium with 22 g/L starch and 52 g/L dextrin, the ascomycin yield of the co-overexpression strain was increased to 626.30 mg/L, which was 2.11-fold higher than that of the parent strain in the initial medium (296.29 mg/L). CONCLUSIONS Here we report for the first time that polyhydroxybutyrate metabolism is beneficial for cell growth and ascomycin production by acting as an intracellular carbon reservoir, stored as polymers when carbon sources are abundant and depolymerized into monomers for the biosynthesis of precursors when carbon sources are insufficient. The successful application of polyhydroxybutyrate in increasing the output of ascomycin provides a new strategy for improving the yields of other secondary metabolites.
Collapse
Affiliation(s)
- Pan Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ying Yin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xin Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
8
|
Sambyal K, Singh RV. Bioprocess and genetic engineering aspects of ascomycin production: a review. J Genet Eng Biotechnol 2020; 18:73. [PMID: 33215240 PMCID: PMC7677420 DOI: 10.1186/s43141-020-00092-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Ascomycin is a highly valuable multifunctional drug which exhibits numerous biological properties. Being an immunosuppressant, it is known to prevent graft rejection in humans and has potential to treat varying skin ailments. Its derivatives represent a novel class of anti-inflammatory macrolactams. But the biosynthetic machinery of ascomycin is still unclear. Due to the structural complexity, there occurs difficulty in its chemical synthesis; therefore, microbial production has been preferred by using Streptomyces hygroscopicus subsp. ascomyceticus. Through several genetic manipulation and mutagenesis techniques, the yield can be increased by several folds without any difficulties. Genetic engineering has played a significant role in understanding the biosynthetic pathway of ascomycin. SHORT CONCLUSION Recently, many efforts have been made to utilize the therapeutic effects of ascomycin and its derivatives. This article covers concepts related to the production kinetics of ascomycin including an update of the ongoing yield improvement techniques as well as screening method of novel strains for ascomycin production.
Collapse
Affiliation(s)
- Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab India
| | - Rahul Vikram Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
9
|
Rydzanicz M, Wachowska M, Cook EC, Lisowski P, Kuźniewska B, Szymańska K, Diecke S, Prigione A, Szczałuba K, Szybińska A, Koppolu A, Murcia Pienkowski V, Kosińska J, Wiweger M, Kostrzewa G, Brzozowska M, Domańska-Pakieła D, Jurkiewicz E, Stawiński P, Gromadka A, Zielenkiewicz P, Demkow U, Dziembowska M, Kuźnicki J, Creamer TP, Płoski R. Novel calcineurin A (PPP3CA) variant associated with epilepsy, constitutive enzyme activation and downregulation of protein expression. Eur J Hum Genet 2018; 27:61-69. [PMID: 30254215 DOI: 10.1038/s41431-018-0254-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/22/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022] Open
Abstract
PPP3CA encodes calmodulin-binding catalytic subunit of calcineurin, a ubiquitously expressed calcium/calmodulin-regulated protein phosphatase. Recently de novo PPP3CA variants were reported as a cause of disease in 12 subjects presenting with epileptic encephalopathy and dysmorphic features. We describe a boy with similar phenotype and severe early onset epileptic encephalopathy in whom a novel de novo c.1324C>T (p.(Gln442Ter)) PPP3CA variant was found by whole exome sequencing. Western blot experiments in patient's cells (EBV transformed lymphocytes and neuronal cells derived through reprogramming) indicate that despite normal mRNA abundance the protein expression level is strongly reduced both for the mutated and wild-type protein. By in vitro studies with recombinant protein expressed in E. coli we show that c.1324C>T (p.(Gln442Ter)) results in constitutive activation of the enzyme. Our results confirm the role of PPP3CA defects in pathogenesis of a distinct neurodevelopmental disorder including severe epilepsy and dysmorphism and provide further functional clues regarding the pathogenic mechanism.
Collapse
Affiliation(s)
| | - Małgorzata Wachowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Erik C Cook
- Center for Structural Biology and Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, USA
| | - Paweł Lisowski
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland.,Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | | | - Krystyna Szymańska
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Alessandro Prigione
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Agnieszka Koppolu
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Victor Murcia Pienkowski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Wiweger
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Grażyna Kostrzewa
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Dorota Domańska-Pakieła
- Department of Child Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Elżbieta Jurkiewicz
- Department of Diagnostic Imaging, The Children's Memorial Health Institute, Warsaw, Poland
| | - Piotr Stawiński
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Gromadka
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Zielenkiewicz
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | | | - Jacek Kuźnicki
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Trevor P Creamer
- Center for Structural Biology and Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, USA
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
10
|
Ordóñez-Robles M, Santos-Beneit F, Martín JF. Unraveling Nutritional Regulation of Tacrolimus Biosynthesis in Streptomyces tsukubaensis through omic Approaches. Antibiotics (Basel) 2018; 7:antibiotics7020039. [PMID: 29724001 PMCID: PMC6022917 DOI: 10.3390/antibiotics7020039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022] Open
Abstract
Streptomyces tsukubaensis stands out among actinomycetes by its ability to produce the immunosuppressant tacrolimus. Discovered about 30 years ago, this macrolide is widely used as immunosuppressant in current clinics. Other potential applications for the treatment of cancer and as neuroprotective agent have been proposed in the last years. In this review we introduce the discovery of S. tsukubaensis and tacrolimus, its biosynthetic pathway and gene cluster (fkb) regulation. We have focused this work on the omic studies performed in this species in order to understand tacrolimus production. Transcriptomics, proteomics and metabolomics have improved our knowledge about the fkb transcriptional regulation and have given important clues about nutritional regulation of tacrolimus production that can be applied to improve production yields. Finally, we address some points of S. tsukubaensis biology that deserve more attention.
Collapse
Affiliation(s)
- María Ordóñez-Robles
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León 24071, Spain.
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, León 24006, Spain.
| | - Fernando Santos-Beneit
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, León 24006, Spain.
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo 33006, Spain.
| | - Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León 24071, Spain.
| |
Collapse
|
11
|
Wang J, Wang C, Song K, Wen J. Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus. Microb Cell Fact 2017; 16:169. [PMID: 28974216 PMCID: PMC5627430 DOI: 10.1186/s12934-017-0787-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
Abstract
Background Ascomycin is a 23-membered polyketide macrolide with high immunosuppressant and antifungal activity. As the lower production in bio-fermentation, global metabolic analysis is required to further explore its biosynthetic network and determine the key limiting steps for rationally engineering. To achieve this goal, an engineering approach guided by a metabolic network model was implemented to better understand ascomycin biosynthesis and improve its production. Results The metabolic conservation of Streptomyces species was first investigated by comparing the metabolic enzymes of Streptomyces coelicolor A3(2) with those of 31 Streptomyces strains, the results showed that more than 72% of the examined proteins had high sequence similarity with counterparts in every surveyed strain. And it was found that metabolic reactions are more highly conserved than the enzymes themselves because of its lower diversity of metabolic functions than that of genes. The main source of the observed metabolic differences was from the diversity of secondary metabolism. According to the high conservation of primary metabolic reactions in Streptomyces species, the metabolic network model of Streptomyces hygroscopicus var. ascomyceticus was constructed based on the latest reported metabolic model of S. coelicolor A3(2) and validated experimentally. By coupling with flux balance analysis and using minimization of metabolic adjustment algorithm, potential targets for ascomycin overproduction were predicted. Since several of the preferred targets were highly associated with ethylmalonyl-CoA biosynthesis, two target genes hcd (encoding 3-hydroxybutyryl-CoA dehydrogenase) and ccr (encoding crotonyl-CoA carboxylase/reductase) were selected for overexpression in S. hygroscopicus var. ascomyceticus FS35. Both the mutants HA-Hcd and HA-Ccr showed higher ascomycin titer, which was consistent with the model predictions. Furthermore, the combined effects of the two genes were evaluated and the strain HA-Hcd-Ccr with hcd and ccr overexpression exhibited the highest ascomycin production (up to 438.95 mg/L), 1.43-folds improvement than that of the parent strain FS35 (305.56 mg/L). Conclusions The successful constructing and experimental validation of the metabolic model of S. hygroscopicus var. ascomyceticus showed that the general metabolic network model of Streptomyces species could be used to analyze the intracellular metabolism and predict the potential key limiting steps for target metabolites overproduction. The corresponding overexpression strains of the two identified genes (hcd and ccr) using the constructed model all displayed higher ascomycin titer. The strategy for yield improvement developed here could also be extended to the improvement of other secondary metabolites in Streptomyces species. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0787-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junhua Wang
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Cheng Wang
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Kejing Song
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jianping Wen
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
12
|
Draft Genome Sequence of the Tacrolimus-Producing Bacterium Streptomyces tsukubaensis F601. GENOME ANNOUNCEMENTS 2017; 5:5/20/e00385-17. [PMID: 28522727 PMCID: PMC5477335 DOI: 10.1128/genomea.00385-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Streptomyces tsukubaensis strain F601 was found to be a producer of the immunosuppressive drug tacrolimus. The draft genome sequence of this strain was approximately 8.52 Mbp. Genes involved in the biosynthesis of tacrolimus were identified in the genome. This draft genome sequence will provide insights into the genetic basis of tacrolimus biosynthesis and regulation.
Collapse
|
13
|
Engineering of the LysR family transcriptional regulator FkbR1 and its target gene to improve ascomycin production. Appl Microbiol Biotechnol 2017; 101:4581-4592. [DOI: 10.1007/s00253-017-8242-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/01/2017] [Accepted: 03/10/2017] [Indexed: 01/07/2023]
|
14
|
Wang J, Liu H, Huang D, Jin L, Wang C, Wen J. Comparative proteomic and metabolomic analysis of Streptomyces tsukubaensis reveals the metabolic mechanism of FK506 overproduction by feeding soybean oil. Appl Microbiol Biotechnol 2017; 101:2447-2465. [DOI: 10.1007/s00253-017-8136-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 11/29/2022]
|
15
|
The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases. J Aging Res 2016; 2016:5081021. [PMID: 27597899 PMCID: PMC5002468 DOI: 10.1155/2016/5081021] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022] Open
Abstract
The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.
Collapse
|
16
|
TenBroek EM, Yunker L, Nies MF, Bendele AM. Randomized controlled studies on the efficacy of antiarthritic agents in inhibiting cartilage degeneration and pain associated with progression of osteoarthritis in the rat. Arthritis Res Ther 2016; 18:24. [PMID: 26794830 PMCID: PMC4721142 DOI: 10.1186/s13075-016-0921-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023] Open
Abstract
Background As an initial step in the development of a local therapeutic to treat osteoarthritis (OA), a number of agents were tested for their ability to block activation of inflammation through nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), subchondral bone changes through receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclastogenesis, and proteolytic degradation through matrix metalloproteinase (MMP)-13 activity. Candidates with low toxicity and predicted efficacy were further examined using either of two widely accepted models of OA joint degeneration in the rat: the monoiodoacetic acid (MIA) model or the medial meniscal tear/medial collateral ligament tear (MMT/MCLT) model. Methods Potential therapeutics were assessed for their effects on the activation of nuclear factor (NF)-κB, RANKL-mediated osteoclastogenesis, and MMP-13 activity in vitro using previously established assays. Toxicity was measured using HeLa cells, a synovial cell line, or primary human chondrocytes. Drugs predicted to perform well in vivo were tested either systemically or via intraarticular injection in the MIA or the MMT/MCLT model of OA. Pain behavior was measured by mechanical hyperalgesia using the digital Randall-Selitto test (dRS) or by incapacitance with weight bearing (WB). Joint degeneration was evaluated using micro computed tomography and a comprehensive semiquantitative scoring of cartilage, subchondral bone, and synovial histopathology. Results Several agents were effective both in vitro and in vivo. With regard to pain behavior, systemically delivered clonidine was superior in treating MIA-induced changes in WB or dRS, while systemic clonidine, curcumin, tacrolimus, and fluocinolone were all somewhat effective in modifying MMT/MCLT-induced changes in WB. Systemic tacrolimus was the most effective in slowing disease progression as measured by histopathology in the MMT/MCLT model. Conclusions All of the agents that demonstrated highest benefit in vivo, excepting clonidine, were found to inhibit MMP-13, NF-κB, and bone matrix remodeling in vitro. The MIA and MMT/MCLT models of OA, previously shown to possess inflammatory characteristics and to display associated pain behavior, were affected to different degrees by the same drugs. Although no therapeutic was remarkable across all measures, the several which showed the most promise in either model merit continued study with alternative dosing and therapeutic strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0921-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erica M TenBroek
- Medtronic Inc., 710 Medtronic Parkway, Minneapolis, MN, 55432, USA.
| | - Laurie Yunker
- Medtronic Inc., 710 Medtronic Parkway, Minneapolis, MN, 55432, USA.
| | - Mae Foster Nies
- Medtronic Inc., 710 Medtronic Parkway, Minneapolis, MN, 55432, USA.
| | - Alison M Bendele
- Bolder BioPATH, Inc., 5541 Central Avenue, Suite 160, Boulder, CO, 80301, USA.
| |
Collapse
|
17
|
Ban YH, Park SR, Yoon YJ. The biosynthetic pathway of FK506 and its engineering: from past achievements to future prospects. J Ind Microbiol Biotechnol 2015; 43:389-400. [PMID: 26342319 DOI: 10.1007/s10295-015-1677-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/19/2015] [Indexed: 11/28/2022]
Abstract
FK506, a 23-membered macrolide produced by several Streptomyces species, is an immunosuppressant widely used to prevent the rejection of transplanted organs. In addition, FK506 and its analogs possess numerous promising therapeutic potentials including antifungal, neuroprotective, and neuroregenerative activities. Herein, we introduce the biological activities and mechanisms of action of FK506 and discuss recent progress made in understanding its biosynthetic pathway, improving production, and in the mutasynthesis of diverse analogs. Perspectives highlighting further strain improvement and structural diversification aimed at generating more analogs with improved pharmaceutical properties will be emphasized.
Collapse
Affiliation(s)
- Yeon Hee Ban
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Sung Ryeol Park
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yeo Joon Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Republic of Korea.
| |
Collapse
|
18
|
Du W, Huang D, Xia M, Wen J, Huang M. Improved FK506 production by the precursors and product-tolerant mutant of Streptomyces tsukubaensis based on genome shuffling and dynamic fed-batch strategies. J Ind Microbiol Biotechnol 2014; 41:1131-43. [PMID: 24788378 DOI: 10.1007/s10295-014-1450-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/18/2014] [Indexed: 01/09/2023]
Abstract
FK506, a secondary metabolite produced by Streptomyces tsukubaensis, is well known for its immunosuppressant properties to prevent rejection of transplanted organs and treat autoimmune diseases. However, the low titer of FK506 in the original producer strain limits the further industrialization efforts and restricts its clinical applications. To address this issue, a highly efficient method combined genome shuffling and dynamic fed-batch strategies was systematically performed in this work. Firstly, after five rounds of genome shuffling based on precursors and product resistances, a higher yielding strain TJ-P325 was successfully acquired, whose production reached 365.6 mg/L, 11-fold increase compared with the original strain. Then, the possible mechanism of different production capabilities between TJ-P325 and the wild type was explored through comparative gene expression analysis of key genes. Results showed that the transcription level of key genes was altered significantly in the mutant. Moreover, precursors addition enhanced the FK506 production by 28 %, as well as reduced the by-products biosynthesis. Finally, the disodium malonate and disodium methylmalonate dynamic fed-batch strategies dramatically led to the production of 514.5 mg/L in a 7.5-L bioreactor. These results demonstrated that genome shuffling and dynamic fed-batch strategies could be successfully applied to generate high-yield strains with value-added natural products during industrial microbial fermentation.
Collapse
Affiliation(s)
- Wenjie Du
- Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
19
|
Enhancement of FK506 production by engineering secondary pathways of Streptomyces tsukubaensis and exogenous feeding strategies. J Ind Microbiol Biotechnol 2013; 40:1023-37. [PMID: 23779221 DOI: 10.1007/s10295-013-1301-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/29/2013] [Indexed: 01/13/2023]
Abstract
FK506 is a clinically important macrocyclic polyketide with immunosuppressive activity produced by Streptomyces tsukubaensis. However, the low titer at which it is produced is a bottleneck to its application and use in industrial processes. We have overexpressed five potential targets associated with FK506 production (fkbO, fkbL, fkbP, fkbM, fkbD) which were identified in our previous study, with the aim to improve FK506 production. The results of the analysis showed that the constructed strains with an additional copy of each gene increased FK506 production by approximately 10-40 % compared with the wild-type strain D852. The results of the gene expression analysis indicated that each gene was upregulated. Combinatorial overexpression of the five genes resulted in a 146 % increase in the FK506 titer to 353.2 mg/L, in comparison with the titer produced by D852. To further improve the production of FK506 by the engineered strain HT-FKBOPLMD, we supplemented the medium with various nutrients, including soybean oil, lactate, succinate, shikimate, chorismate, lysine, pipecolate, isoleucine and valine. Optimization of feeding concentrations and times resulted in HT-FKBOPLMD being able to produce approximately 70 % more FK506, thereby reaching the maximal titer of 457.5 mg/L, with lower amounts of by-products (FK520 and 37,38-dihydro-FK506). These results demonstrate that the combination of the metabolically engineered secondary pathways and the exogenous feeding strategies developed here was able to be successfully applied to improve the production of industrially and clinically important compounds.
Collapse
|
20
|
Improvement of FK506 production in Streptomyces tsukubaensis by genetic enhancement of the supply of unusual polyketide extender units via utilization of two distinct site-specific recombination systems. Appl Environ Microbiol 2012; 78:5093-103. [PMID: 22582065 DOI: 10.1128/aem.00450-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FK506 is a potent immunosuppressant that has a wide range of clinical applications. Its 23-member macrocyclic scaffold, mainly with a polyketide origin, features two methoxy groups at C-13 and C-15 and one allyl side chain at C-21, due to the region-specific incorporation of two unusual extender units derived from methoxymalonyl-acyl carrier protein (ACP) and allylmalonyl-coenzyme A (CoA), respectively. Whether their intracellular formations can be a bottleneck for FK506 production remains elusive. In this study, we report the improvement of FK506 yield in the producing strain Streptomyces tsukubaensis by the duplication of two sets of pathway-specific genes individually encoding the biosyntheses of these two extender units, thereby providing a promising approach to generate high-FK506-producing strains via genetic manipulation. Taking advantage of the fact that S. tsukubaensis is amenable to two actinophage (ΦC31 and VWB) integrase-mediated recombination systems, we genetically enhanced the biosyntheses of methoxymalonyl-ACP and allylmalonyl-CoA, as indicated by transcriptional analysis. Together with the optimization of glucose supplementation, the maximal FK506 titer eventually increased by approximately 150% in comparison with that of the original strain. The strategy of engineering the biosynthesis of unusual extender units described here may be applicable to improving the production of other polyketide or nonribosomal peptide natural products that contain pathway-specific building blocks.
Collapse
|
21
|
Roles of fkbN in positive regulation and tcs7 in negative regulation of FK506 biosynthesis in Streptomyces sp. strain KCTC 11604BP. Appl Environ Microbiol 2012; 78:2249-55. [PMID: 22267670 DOI: 10.1128/aem.06766-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FK506 is an important 23-member polyketide macrolide with immunosuppressant activity. Its entire biosynthetic gene cluster was previously cloned from Streptomyces sp. strain KCTC 11604BP, and sequence analysis identified three putative regulatory genes, tcs2, tcs7, and fkbN, which encode proteins with high similarity to the AsnC family transcriptional regulators, LysR-type transcriptional regulators, and LAL family transcriptional regulators, respectively. Overexpression and in-frame deletion of tcs2 did not affect the production of FK506 or co-occurring FK520 compared to results for the wild-type strain, suggesting that tcs2 is not involved in their biosynthesis. fkbN overexpression improved the levels of FK506 and FK520 production by approximately 2.0-fold, and a deletion of fkbN caused the complete loss of FK506 and FK520 production. Although the overexpression of tcs7 decreased the levels of FK506 and FK520 production slightly, a deletion of tcs7 caused 1.9-fold and 1.5-fold increases in FK506 and FK520 production, respectively. Finally, fkbN overexpression in the tcs7 deletion strain resulted in a 4.0-fold (21 mg liter(-1)) increase in FK506 production compared to that by the wild-type strain. This suggests that fkbN encodes a positive regulatory protein essential for FK506/FK520 biosynthesis and that the gene product of tcs7 negatively regulates their biosynthesis, demonstrating the potential of exploiting this information for strain improvement. Semiquantitative reverse transcription-PCR (RT-PCR) analyses of the transcription levels of the FK506 biosynthetic genes in the wild-type and mutant strains proved that most of the FK506 biosynthetic genes are regulated by fkbN in a positive manner and negatively by tcs7.
Collapse
|
22
|
Piilgaard H, Witgen BM, Rasmussen P, Lauritzen M. Cyclosporine A, FK506, and NIM811 ameliorate prolonged CBF reduction and impaired neurovascular coupling after cortical spreading depression. J Cereb Blood Flow Metab 2011; 31:1588-98. [PMID: 21427730 PMCID: PMC3137467 DOI: 10.1038/jcbfm.2011.28] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 11/08/2022]
Abstract
Cortical spreading depression (CSD) is associated with mitochondrial depolarization, increasing intracellular Ca(2+), and the release of free fatty acids, which favor opening of the mitochondrial permeability transition pore (mPTP) and activation of calcineurin (CaN). Here, we test the hypothesis that cyclosporine A (CsA), which blocks both mPTP and CaN, ameliorates the persistent reduction of cerebral blood flow (CBF), impaired vascular reactivity, and a persistent rise in the cerebral metabolic rate of oxygen (CMRO(2)) following CSD. In addition to CsA, we used the specific mPTP blocker NIM811 and the specific CaN blocker FK506. Cortical spreading depression was induced in rat frontal cortex. Electrocortical activity was recorded by glass microelectrodes, CBF by laser Doppler flowmetry, and tissue oxygen tension with polarographic microelectrodes. Electrocortical activity, basal CBF, CMRO(2), and neurovascular and neurometabolic coupling were unaffected by all three drugs under control conditions. NIM811 augmented the rise in CBF observed during CSD. Cyclosporine A and FK506 ameliorated the persistent decrease in CBF after CSD. All three drugs prevented disruption of neurovascular coupling after CSD; the rise in CMRO(2) was unchanged. Our data suggest that blockade of mPTP formation and CaN activation may prevent persistent CBF reduction and vascular dysfunction after CSD.
Collapse
Affiliation(s)
- Henning Piilgaard
- Department of Neuroscience and Pharmacology, Center for Healthy Aging, The Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| | - Brent M Witgen
- Department of Neuroscience and Pharmacology, Center for Healthy Aging, The Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| | - Peter Rasmussen
- Department of Neuroscience and Pharmacology, Center for Healthy Aging, The Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| | - Martin Lauritzen
- Department of Neuroscience and Pharmacology, Center for Healthy Aging, The Panum Institute, University of Copenhagen, Copenhagen N, Denmark
- Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| |
Collapse
|
23
|
Mo S, Kim DH, Lee JH, Park JW, Basnet DB, Ban YH, Yoo YJ, Chen SW, Park SR, Choi EA, Kim E, Jin YY, Lee SK, Park JY, Liu Y, Lee MO, Lee KS, Kim SJ, Kim D, Park BC, Lee SG, Kwon HJ, Suh JW, Moore BS, Lim SK, Yoon YJ. Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues. J Am Chem Soc 2011; 133:976-85. [PMID: 21175203 PMCID: PMC3030623 DOI: 10.1021/ja108399b] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The allyl moiety of the immunosuppressive agent FK506 is structurally unique among polyketides and critical for its potent biological activity. Here, we detail the biosynthetic pathway to allylmalonyl-coenzyme A (CoA), from which the FK506 allyl group is derived, based on a comprehensive chemical, biochemical, and genetic interrogation of three FK506 gene clusters. A discrete polyketide synthase (PKS) with noncanonical domain architecture presumably in coordination with the fatty acid synthase pathway of the host catalyzes a multistep enzymatic reaction to allylmalonyl-CoA via trans-2-pentenyl-acyl carrier protein. Characterization of this discrete pathway facilitated the engineered biosynthesis of novel allyl group-modified FK506 analogues, 36-fluoro-FK520 and 36-methyl-FK506, the latter of which exhibits improved neurite outgrowth activity. This unique feature of FK506 biosynthesis, in which a dedicated PKS provides an atypical extender unit for the main modular PKS, illuminates a new strategy for the combinatorial biosynthesis of designer macrolide scaffolds as well as FK506 analogues.
Collapse
Affiliation(s)
- SangJoon Mo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Dong Hwan Kim
- GenoTech Corporation, Daejeon 305-343, Republic of Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Jong Hyun Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Je Won Park
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Devi B. Basnet
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Yeon Hee Ban
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Young Ji Yoo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Shu-wei Chen
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Sung Ryeol Park
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eun Ae Choi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eunji Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Ying-Yu Jin
- Division of Bioscience and Bioinformatics, Myongji University, Gyeonggi 449-728, Republic of Korea
| | - Sung-Kwon Lee
- Division of Bioscience and Bioinformatics, Myongji University, Gyeonggi 449-728, Republic of Korea
| | - Ju Yeol Park
- Department of Biotechnology, The Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-746, Republic of Korea
| | - Yuan Liu
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0204, USA
| | - Mi Ok Lee
- GenoTech Corporation, Daejeon 305-343, Republic of Korea
| | - Keum Soon Lee
- GenoTech Corporation, Daejeon 305-343, Republic of Korea
| | - Sang Jun Kim
- GenoTech Corporation, Daejeon 305-343, Republic of Korea
| | - Dooil Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-600, Republic of Korea
| | - Byoung Chul Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-600, Republic of Korea
| | - Sang-gi Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Ho Jeong Kwon
- Department of Biotechnology, The Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-746, Republic of Korea
| | - Joo-Won Suh
- Division of Bioscience and Bioinformatics, Myongji University, Gyeonggi 449-728, Republic of Korea
| | - Bradley S. Moore
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0204, USA
| | - Si-Kyu Lim
- GenoTech Corporation, Daejeon 305-343, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
24
|
Esdin J, Pearce K, Glanzman DL. Long-term habituation of the gill-withdrawal reflex in aplysia requires gene transcription, calcineurin and L-type voltage-gated calcium channels. Front Behav Neurosci 2010; 4:181. [PMID: 21152260 PMCID: PMC2998902 DOI: 10.3389/fnbeh.2010.00181] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 11/12/2010] [Indexed: 11/30/2022] Open
Abstract
Although habituation is possibly the simplest form of learning, we still do not fully understand the neurobiological basis of habituation in any organism. To advance the goal of a comprehensive understanding of habituation, we have studied long-term habituation (LTH) of the gill-withdrawal reflex (GWR) in the marine snail Aplysia californica. Previously, we showed that habituation of the GWR in a reduced preparation lasts for up to 12 h, and depends on protein synthesis, as well as activation of protein phosphatases 1 and 2A and postsynaptic glutamate receptors. Here, we have used the reduced preparation to further analyze the mechanisms of LTH in Aplysia. We found that LTH of the GWR depends on RNA synthesis because it was blocked by both the irreversible transcriptional inhibitor actinomycin-D and the reversible transcriptional inhibitor, 5,6-dichlorobenzimidazole riboside (DRB). In addition, LTH requires activation of protein phosphatase 2B (calcineurin), because it was disrupted by ascomycin. Finally, LTH was blocked by nitrendipine, which indicates that activation of l-type voltage-gated Ca2+ channels is required for this form of learning. Together with our previous results, the present results indicate that exclusively presynaptic mechanisms, although possibly sufficient for short-term habituation, are insufficient for LTH. Rather, LTH must involve postsynaptic, as well as presynaptic, mechanisms.
Collapse
Affiliation(s)
- Joseph Esdin
- Department of Integrative Biology and Physiology, University of California Los Angeles, CA, USA
| | | | | |
Collapse
|
25
|
Cognitive decline in Alzheimer's disease is associated with selective changes in calcineurin/NFAT signaling. J Neurosci 2009; 29:12957-69. [PMID: 19828810 DOI: 10.1523/jneurosci.1064-09.2009] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Upon activation by calcineurin, the nuclear factor of activated T-cells (NFAT) translocates to the nucleus and guides the transcription of numerous molecules involved in inflammation and Ca(2+) dysregulation, both of which are prominent features of Alzheimer's disease (AD). However, NFAT signaling in AD remains relatively uninvestigated. Using isolated cytosolic and nuclear fractions prepared from rapid-autopsy postmortem human brain tissue, we show that NFATs 1 and 3 shifted to nuclear compartments in the hippocampus at different stages of neuropathology and cognitive decline, whereas NFAT2 remained unchanged. NFAT1 exhibited greater association with isolated nuclear fractions in subjects with mild cognitive impairment (MCI), whereas NFAT3 showed a strong nuclear bias in subjects with severe dementia and AD. Similar to NFAT1, calcineurin-Aalpha also exhibited a nuclear bias in the early stages of cognitive decline. But, unlike NFAT1 and similar to NFAT3, the nuclear bias for calcineurin became more pronounced as cognition worsened. Changes in calcineurin/NFAT3 were directly correlated to soluble amyloid-beta (Abeta((1-42))) levels in postmortem hippocampus, and oligomeric Abeta, in particular, robustly stimulated NFAT activation in primary rat astrocyte cultures. Oligomeric Abeta also caused a significant reduction in excitatory amino acid transporter 2 (EAAT2) protein levels in astrocyte cultures, which was blocked by NFAT inhibition. Moreover, inhibition of astrocytic NFAT activity in mixed cultures ameliorated Abeta-dependent elevations in glutamate and neuronal death. The results suggest that NFAT signaling is selectively altered in AD and may play an important role in driving Abeta-mediated neurodegeneration.
Collapse
|
26
|
Enhanced FK506 production in Streptomyces clavuligerus CKD1119 by engineering the supply of methylmalonyl-CoA precursor. J Ind Microbiol Biotechnol 2009; 36:1473-82. [PMID: 19756799 DOI: 10.1007/s10295-009-0635-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
FK506 is a 23-membered polyketide macrolide with immunosuppressant activity produced by Streptomyces species. The production of FK506 in S. clavuligerus CKD1119 (KCTC 10561BP) was improved by enhancing the supply of biosynthetic precursors. This improvement was approximately 2.5-fold (15 mg/l) with the supplementation of 10 mM methyl oleate, which is the probable source of acyl-CoAs, to R2YE medium. When the level of FK506 production reached its maximum, the intracellular concentration of methylmalonyl-CoA in S. clavuligerus CKD1119 supplemented with methyl oleate was 12.5-fold higher than that of the unsupplemented strain, suggesting that an increased methylmalonyl-CoA level caused the high-level production of FK506. The following three pathways for the production of (2S)-methylmalonyl-CoA were evaluated to identify the effective precursor supply pathway that can support the high production of FK506 in S. clavuligerus CKD1119: propionyl-CoA carboxylase, methylmalonyl-CoA mutase (MCM), and malonyl/methylmalonyl-CoA ligase. Of the three pathways examined, the MCM pathway supported the highest levels of FK506 production. The expression of MCM in S. clavuligerus CKD1119 led to a threefold and 1.5-fold increase in the methylmalonyl-CoA pool and FK506 production, respectively. Supplementing the culture broth of S. clavuligerus CKD1119 expressing MCM with methyl oleate resulted in an additional twofold increase in the FK506 titer (17.8 mg/l). Overall, these results show that the methylmalonyl-CoA supply is a limiting factor for FK506 biosynthesis and that among the three pathways analyzed, the MCM pathway is the most effective precursor supply pathway supporting the highest titer of FK506 in S. clavuligerus CKD1119.
Collapse
|