1
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
2
|
Sohn M, Lim S. The Role of Cilostazol, a Phosphodiesterase-3 Inhibitor, in the Development of Atherosclerosis and Vascular Biology: A Review with Meta-Analysis. Int J Mol Sci 2024; 25:2593. [PMID: 38473840 DOI: 10.3390/ijms25052593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands as the leading global cause of mortality. Addressing this vital and pervasive condition requires a multifaceted approach, in which antiplatelet intervention plays a pivotal role, together with antihypertensive, antidiabetic, and lipid-lowering therapies. Among the antiplatelet agents available currently, cilostazol, a phosphodiesterase-3 inhibitor, offers a spectrum of pharmacological effects. These encompass vasodilation, the impediment of platelet activation and aggregation, thrombosis inhibition, limb blood flow augmentation, lipid profile enhancement through triglyceride reduction and high-density lipoprotein cholesterol elevation, and the suppression of vascular smooth muscle cell proliferation. However, the role of cilostazol has not been clearly documented in many guidelines for ASCVD. We comprehensively reviewed the cardiovascular effects of cilostazol within randomized clinical trials that compared it to control or active agents and involved individuals with previous coronary artery disease or stroke, as well as those with no previous history of such conditions. Our approach demonstrated that the administration of cilostazol effectively reduced adverse cardiovascular events, although there was less evidence regarding its impact on myocardial infarction. Most studies have consistently reported its favorable effects in reducing intermittent claudication and enhancing ambulatory capacity in patients with peripheral arterial disease. Furthermore, cilostazol has shown promise in mitigating restenosis following coronary stent implantation in patients with acute coronary syndrome. While research from more diverse regions is still needed, our findings shed light on the broader implications of cilostazol in the context of atherosclerosis and vascular biology, particularly for individuals at high risk of ASCVD.
Collapse
Affiliation(s)
- Minji Sohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| |
Collapse
|
3
|
Wu YF, Sun J, Chen M, Lin Q, Jin KY, Su SH, Hai J. Combined VEGF and bFGF loaded nanofiber membrane protects against neuronal injury and hypomyelination in a rat model of chronic cerebral hypoperfusion. Int Immunopharmacol 2023; 125:111108. [PMID: 37890380 DOI: 10.1016/j.intimp.2023.111108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Currently, there are no effective therapeutic targets for the treatment of chronic cerebral hypoperfusion(CCH)-induced cerebral ischemic injury. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are discovered as the inducers of neurogenesis and angiogenesis. We previously made a nanofiber membrane (NFM), maintaining a long-term release of VEGF and bFGF up to 35 days, which might make VEGF and bFGF NFM as the potential protective agents against cerebral ischemic insult. In this study, the effects of VEGF and bFGF delivered by NFM into brain were investigated as well as their underlying mechanismsin a rat model of CCH. VEGF + bFGF NFM application increased the expressions of tight junction proteins, maintained BBB integrity, and alleviated vasogenic cerebral edema. Furthermore, VEGF + bFGF NFM sticking enhanced angiogenesis and elevated CBF. Besides, VEGF + bFGF NFM treatment inhibited neuronal apoptosis and decreased neuronal loss. Moreover, roofing of VEGF + bFGF NFM attenuated microglial activation and blocked the launch of NLRP3/caspase-1/IL-1β pathway. In addition, VEGF + bFGF NFM administration prevented disruption to the pre/postsynaptic membranes and loss of myelin sheath, relieving synaptic injury and demyelination. Oligodendrogenesis, neurogenesis and PI3K/AKT/mTOR pathway were involved in the treatment of VEGF + bFGF NFM against CCH-induced neuronal injury and hypomyelination. These findings supported that VEGF + bFGF NFM application constitutes a neuroprotective strategy for the treatment of CCH, which may be worth further clinical translational research as a novel neuroprotective approach, benifiting indirect surgical revascularization.
Collapse
Affiliation(s)
- Yi-Fang Wu
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jun Sun
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Ming Chen
- Department of Neurosurgery, Xinhua hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Kai-Yan Jin
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shao-Hua Su
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Jian Hai
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| |
Collapse
|
4
|
Razick DI, Akhtar M, Wen J, Alam M, Dean N, Karabala M, Ansari U, Ansari Z, Tabaie E, Siddiqui S. The Role of Sirtuin 1 (SIRT1) in Neurodegeneration. Cureus 2023; 15:e40463. [PMID: 37456463 PMCID: PMC10349546 DOI: 10.7759/cureus.40463] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Sirtuins (SIRT) are a class of histone deacetylases that regulate important metabolic pathways and play a role in several disease processes. Of the seven mammalian homologs currently identified, sirtuin 1 (SIRT1) is the best understood and most studied. It has been associated with several neurodegenerative diseases and cancers. As such, it has been further investigated as a therapeutic target in the treatment of disorders such as Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD). SIRT1 deacetylates histones such as H1 lysine 26, H3 lysine 9, H3 lysine 56, and H4 lysine 16 to regulate chromatin remodeling and gene transcription. The homolog has also been observed to express contradictory responses to tumor suppression and tumor promotion. Studies have shown that SIRT1 may have anti-inflammatory properties by inhibiting the effects of NF-κB, as well as stimulating upregulation of autophagy. The SIRT1 activators resveratrol and cilostazol have been shown to improve Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) scores in AD patients. In this review, we aim to explore the various roles of SIRT1 with regard to neuroprotection and neurodegeneration.
Collapse
Affiliation(s)
- Daniel I Razick
- Surgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Muzammil Akhtar
- Surgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Jimmy Wen
- Physical Medicine and Rehabilitation, California Northstate University College of Medicine, Elk Grove, USA
| | - Meraj Alam
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Nabeal Dean
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Muhammad Karabala
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Ubaid Ansari
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Zaid Ansari
- Internal Medicine, University of California Berkeley, Berkeley, USA
| | - Ethan Tabaie
- Neurosurgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Shakeel Siddiqui
- Anesthesiology, OrthoMed Staffing Anesthesiology Group, Dallas, USA
| |
Collapse
|
5
|
Kherallah RY, Khawaja M, Olson M, Angiolillo D, Birnbaum Y. Cilostazol: a Review of Basic Mechanisms and Clinical Uses. Cardiovasc Drugs Ther 2021; 36:777-792. [PMID: 33860901 DOI: 10.1007/s10557-021-07187-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
Primarily used in the treatment of intermittent claudication, cilostazol is a 2-oxyquinolone derivative that works through the inhibition of phosphodiesterase III and related increases in cyclic adenosine monophosphate (cAMP) levels. However, cilostazol has been implicated in a number of other basic pathways including the inhibition of adenosine reuptake, the inhibition of multidrug resistance protein 4, among others. It has been observed to exhibit antiplatelet, antiproliferative, vasodilatory, and ischemic-reperfusion protective properties. As such, cilostazol has been investigated for clinical use in a variety of settings including intermittent claudication, as an adjunctive for reduction of restenosis after coronary and peripheral endovascular interventions, and in the prevention of secondary stroke, although its widespread implementation for indications other than intermittent claudication has been limited by relatively modest effect sizes and lack of studies in western populations. In this review, we highlight the pleiotropic effects of cilostazol and the evidence for its clinical use.
Collapse
Affiliation(s)
- Riyad Y Kherallah
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Muzamil Khawaja
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Michael Olson
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Dominick Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Yochai Birnbaum
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, 7200 Cambridge Street, Houston, TX, USA.
| |
Collapse
|
6
|
Bauzon J, Lee G, Cummings J. Repurposed agents in the Alzheimer's disease drug development pipeline. Alzheimers Res Ther 2020; 12:98. [PMID: 32807237 PMCID: PMC7433208 DOI: 10.1186/s13195-020-00662-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/29/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Treatments are needed to address the growing prevalence of Alzheimer's disease (AD). Clinical trials have failed to produce any AD drugs for Food and Drug Administration (FDA) approval since 2003, and the pharmaceutical development process is both time-consuming and costly. Drug repurposing provides an opportunity to accelerate this process by investigating the AD-related effects of agents approved for other indications. These drugs have known safety profiles, pharmacokinetic characterization, formulations, doses, and manufacturing processes. METHODS We assessed repurposed AD therapies represented in Phase I, Phase II, and Phase III of the current AD pipeline as registered on ClinicalTrials.gov as of February 27, 2020. RESULTS We identified 53 clinical trials involving 58 FDA-approved agents. Seventy-eight percent of the agents in trials had putative disease-modifying mechanisms of action. Of the repurposed drugs in the pipeline 20% are hematologic-oncologic agents, 18% are drugs derived from cardiovascular indications, 14% are agents with psychiatric uses, 12% are drug used to treat diabetes, 10% are neurologic agents, and the remaining 26% of drugs fall under other conditions. Intellectual property strategies utilized in these programs included using the same drug but altering doses, routes of administration, or formulations. Most repurposing trials were supported by Academic Medical Centers and were not funded through the biopharmaceutical industry. We compared our results to a European trial registry and found results similar to those derived from ClinicalTrials.gov. CONCLUSIONS Drug repurposing is a common approach to AD drug development and represents 39% of trials in the current AD pipeline. Therapies from many disease areas provide agents potentially useful in AD. Most of the repurposed agents are generic and a variety of intellectual property strategies have been adopted to enhance their economic value.
Collapse
Affiliation(s)
- Justin Bauzon
- School of Medicine, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, 89154, USA
| | - Garam Lee
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, 89106, USA
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, 89106, USA.
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, 89154, USA.
| |
Collapse
|
7
|
Kim HN, Seo BR, Kim H, Koh JY. Cilostazol restores autophagy flux in bafilomycin A1-treated, cultured cortical astrocytes through lysosomal reacidification: roles of PKA, zinc and metallothionein 3. Sci Rep 2020; 10:9175. [PMID: 32514052 PMCID: PMC7280249 DOI: 10.1038/s41598-020-66292-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022] Open
Abstract
Cilostazol, a phosphodiesterase 3 inhibitor, reduces the amyloid-beta (Aβ) burden in mouse models of Alzheimer disease by as yet unidentified mechanisms. In the present study, we examined the possibility that cilostazol ameliorates lysosomal dysfunction. Astrocytes treated with bafilomycin A1 (BafA1) exhibited markedly reduced DND-189 and acridine orange (AO) fluorescence, indicating reduced lysosomal acidity. In both cases, BafA1-induced alkalization was reversed by addition of cilostazol, dibutyryl cAMP or forskolin. All three agents significantly increased free zinc levels in lysosomes, and addition of the zinc chelator TPEN abrogated lysosomal reacidification. These treatments did not raise free zinc levels or reverse BafA1-mediated lysosomal alkalization in metallothionein 3 (Mt3)-null astrocytes, indicating that the increases in zinc in astrocytes were derived mainly from Mt3. Lastly, in FITC-Aβ-treated astrocytes, cilostazol reversed lysosomal alkalization, increased cathepsin D activity, and reduced Aβ accumulation in astrocytes. Cilostazol also reduced mHtt aggregate formation in GFP-mHttQ74–expressing astrocytes. Collectively, our results present the novel finding that cAMP/PKA can overcome the v-ATPase blocking effect of BafA1 in a zinc- and Mt3-dependent manner.
Collapse
Affiliation(s)
- Ha Na Kim
- Neural Injury Lab, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Bo-Ra Seo
- Neural Injury Lab, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Hyunjin Kim
- Department of Neurology, University of Ulsan College of Medicine, Seoul, Korea; Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Young Koh
- Department of Neurology, University of Ulsan College of Medicine, Seoul, Korea; Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea. .,Neural Injury Lab, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
8
|
Cilostazol protects against acetic acid-induced colitis in rats: Possible role for cAMP/SIRT1 pathway. Eur J Pharmacol 2020; 881:173234. [PMID: 32497625 DOI: 10.1016/j.ejphar.2020.173234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
The phosphodiesterase-3 inhibitor, cilostazol has been recently shown to protect against chemically induced colitis in animal models. However, whether cyclic adenosine monophosphate (cAMP) contributes to the anti-inflammatory activity of cilostazol in colitis is still unknown. In the current study, we investigated the role of cAMP/silent information regulator-1 (SIRT-1) pathway in the protective effect of cilostazol using rat model of acetic acid-induced colitis. Upregulation of SIRT1 activity and expression has been recently shown to protect against chemically induced colitis. Our results demonstrated that cilostazol alleviated the histopathological changes associated with acetic acid-induced colitis. Interestingly, pre-administration of cilostazol increased cAMP concentration and SIRT1 expression in colonic mucosa to levels similar to that observed in control animals without induction of colitis. In addition, cilostazol inhibited the SIRT1 targets; NF-κB, Akt and MAPK inflammatory pathways as demonstrated by suppression of acetic acid-induced upregulation of NF-κB activity, p-AKT levels and the expression of p38 MAPK. NF-κB activity and the levels of p-AKT, tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) were similar in rats pretreated with cilostazol prior to induction of colitis and the control rats without colitis. Furthermore, cilostazol reduced acetic acid-induced oxidative stress and apoptosis. In conclusion, the protective effect of cilostazol against acetic acid-induced colitis may be attributed to activation of SIRT1 expression by cAMP. SIRT1 is suggested to contribute to cilostazol-induced suppression of NF-κB, Akt and MAPK inflammatory pathways, oxidative stress and apoptosis.
Collapse
|
9
|
Lee JY, Lee H, Yoo HB, Choi JS, Jung HY, Yoon EJ, Kim H, Jung YH, Lee HY, Kim YK. Efficacy of Cilostazol Administration in Alzheimer's Disease Patients with White Matter Lesions: A Positron-Emission Tomography Study. Neurotherapeutics 2019; 16:394-403. [PMID: 30761509 PMCID: PMC6554387 DOI: 10.1007/s13311-018-00708-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
This study tested the efficacy of the phosphodiesterase type III inhibitor cilostazol in Alzheimer's disease patients with white matter lesions treated with donepezil in comparison with donepezil monotherapy using fluorodeoxyglucose (18F) positron-emission tomography (FDG PET). A 24-week, randomized, double-blind, placebo-controlled, parallel-group study was conducted. Thirty-six Alzheimer's disease patients with white matter lesions who received donepezil (n = 18 each in the cilostazol and placebo groups) were enrolled. Participants underwent pre and post FDG PET imaging scans and three rounds of clinical and neuropsychological tests. The cilostazol group did not show a significant decrease of regional glucose metabolism; however, regional glucose metabolism was significantly decreased in the parietal and frontal lobes of the placebo group. The repeated measures ANOVA measuring differences in uptake change revealed that regional glucose metabolism in the left inferior frontal gyrus was significantly more preserved in the cilostazol group than that in the placebo group (p < 0.005). Mean changes from baseline on the Mini-Mental State Exam, Alzheimer's Disease Assessment Scale-cognitive subscale, Alzheimer's Disease Cooperative Study-Activities of Daily Living Inventory, and the Clinical Dementia Rating Sum of Boxes did not differ between the two groups. In the cilostazol group, the increase of glucose metabolism correlated with the improvment of the Alzheimer's Disease Assessment Scale-cognitive score. We conclude that cilostazol treatment added to donepezil may delay the decline in regional cerebral metabolism in Alzheimer's disease with white matter lesions compared with donepezil monotherapy. In additon, our results verified the efficacy of cilostazol in improving or protecting cognitive function in Alzheimer's disease through increased glucose metabolism. However, the long-term effect of cilostazol on cognitive function and Alzheimer's disease modification must be tested in further studies with larger sample size and longer study period. Trial registration: http://clinicaltrials.gov : NCT01409564.
Collapse
Affiliation(s)
- Jun-Young Lee
- Department of Psychiatry and Neuroscience Research Institute, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Dongjak-gu, Seoul, Republic of Korea
| | - Haewoo Lee
- Department of Psychiatry, Seoul Medical Center, Jungnang-gu, Seoul, Republic of Korea
| | - Hye Bin Yoo
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Jung-Seok Choi
- Department of Psychiatry and Neuroscience Research Institute, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Dongjak-gu, Seoul, Republic of Korea
| | - Hee-Yeon Jung
- Department of Psychiatry and Neuroscience Research Institute, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Dongjak-gu, Seoul, Republic of Korea
| | - Eun Jin Yoon
- Department of Nuclear Medicine, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Dongjak-gu, Seoul, Republic of Korea
| | - Hongrae Kim
- Department of Psychiatry and Neuroscience Research Institute, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Dongjak-gu, Seoul, Republic of Korea
| | - Ye-Ha Jung
- Department of Psychiatry and Neuroscience Research Institute, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Dongjak-gu, Seoul, Republic of Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine & Bundang Hospital, Seongnam, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Hedya SA, Safar MM, Bahgat AK. Cilostazol Mediated Nurr1 and Autophagy Enhancement: Neuroprotective Activity in Rat Rotenone PD Model. Mol Neurobiol 2018; 55:7579-7587. [DOI: 10.1007/s12035-018-0923-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
|
11
|
Galyfos G, Sianou A. Cilostazol for Secondary Prevention of Stroke: Should the Guidelines Perhaps Be Extended? Vasc Specialist Int 2017; 33:89-92. [PMID: 28955697 PMCID: PMC5614376 DOI: 10.5758/vsi.2017.33.3.89] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022] Open
Abstract
Cilostazol belongs to the new generation antiplatelet agents that have been introduced and studied regarding a potential role in cardiovascular disease prevention or treatment. Although data on peripheral artery disease are sufficient, and the drug has been recommended as first line treatment for intermittent claudication, it has not been approved nor recommended as far as cerebrovascular events are concerned. However, a great volume of randomized as well as pooled data has been published during the last years. Therefore, this review aims to describe the basic mechanisms of cilostazol’s action as well as to present all recent clinical data in order to conclude on whether official guidelines should be extended.
Collapse
Affiliation(s)
- George Galyfos
- Division of Vascular Surgery, Department of Propaedeutic Surgery, University of Athens Medical School, Hippocration Hospital, Athens, Greece
| | - Argyri Sianou
- Department of Microbiology, University of Athens Medical School, Areteion Hospital, Athens, Greece
| |
Collapse
|
12
|
Rezaei F, Mesgarpour B, Jeddian A, Zeionoddini A, Mohammadinejad P, Salardini E, Shahriari M, Zeinoddini A, Akhondzadeh S. Cilostazol adjunctive therapy in treatment of negative symptoms in chronic schizophrenia: Randomized, double-blind, placebo-controlled study. Hum Psychopharmacol 2017; 32. [PMID: 28421639 DOI: 10.1002/hup.2583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 03/03/2017] [Accepted: 03/05/2017] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To evaluate the efficacy and safety of cilostazol, a selective inhibitor of phosphodiesterase III, as an adjunctive to risperidone in alleviating the negative symptoms of schizophrenia. METHODS Eighty-four in-patients with diagnosis of chronic schizophrenia participated in a randomized, placebo-controlled trial and underwent 8 weeks of treatment with either cilostazol (50 mg twice a day) or placebo as an adjuvant to risperidone. Participants were assessed using the positive and negative syndrome scale (PANSS) at baseline and at weeks 2, 4, 6, and 8. The primary outcome measure of the trial was to evaluate the efficacy of cilostazol compared to placebo in improving the PANSS negative subscale score. RESULT General linear model repeated measures demonstrated significant effect for time × treatment interaction on negative subscale scores (p < .001) and PANSS total (p = .006) but did not demonstrate significant effect on the PANSS positive (p = .37) and general (p = .06) subscales. Frequency of adverse events was not significantly different between the 2 treatment groups. No serious adverse event was observed. CONCLUSION An 8-week course of treatment with cilostazol as an adjunct to risperidone showed a favorable safety and efficacy profile in patients with schizophrenia.
Collapse
Affiliation(s)
- Farzin Rezaei
- Qods Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bita Mesgarpour
- National Institute for Medical Research Development, Tehran, Iran
| | - Alireza Jeddian
- Digestive Disease Research Institute, Tehran University of medical science, Tehran, Iran
| | - Atefeh Zeionoddini
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Payam Mohammadinejad
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Salardini
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Shahriari
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arefeh Zeinoddini
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Park SY, Lee HR, Lee WS, Shin HK, Kim HY, Hong KW, Kim CD. Cilostazol Modulates Autophagic Degradation of β-Amyloid Peptide via SIRT1-Coupled LKB1/AMPKα Signaling in Neuronal Cells. PLoS One 2016; 11:e0160620. [PMID: 27494711 PMCID: PMC4975437 DOI: 10.1371/journal.pone.0160620] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/01/2016] [Indexed: 01/19/2023] Open
Abstract
A neuroprotective role of autophagy mediates the degradation of β-amyloid peptide (Aβ) in Alzheimer’s disease (AD). The previous study showed cilostazol modulates autophagy by increasing beclin1, Atg5 and LC3-II expressions, and depletes intracellular Aβ accumulation. This study elucidated the mechanisms through which cilostazol modulates the autophagic degradation of Aβ in neurons. In N2a cells, cilostazol (10–30 μM), significantly increased the expression of P-AMPKα (Thr 172) and downstream P-ACC (acetyl-CoA carboxylase) (Ser 79) as did resveratrol (SIRT1 activator), or AICAR (AMPK activator), which were blocked by KT5720, compound C (AMPK inhibitor), or sirtinol. Furthermore, phosphorylated-mTOR (Ser 2448) and phosphorylated-P70S6K (Thr 389) expressions were suppressed, and LC3-II levels were elevated in association with decreased P62/Sqstm1 by cilostazol. Cilostazol increased cathepsin B activity and decreased p62/SQSTM 1, consequently decreased accumulation of Aβ1–42 in the activated N2aSwe cells, and these results were blocked by sirtinol, compound C and bafilomycin A1 (autophagosome blocker), suggesting enhanced autophagosome formation by cilostazol. In SIRT1 gene-silenced N2a cells, cilostazol failed to increase the expressions of P-LKB1 (Ser 428) and P-AMPKα, which contrasted with its effect in negative control cells transfected with scrambled siRNA duplex. Further, N2a cells transfected with expression vectors encoding pcDNA SIRT1 showed increased P-AMPKα expression, which mimicked the effect of cilostazol in N2a cells; suggesting cilostazol-stimulated expressions of P-LKB1 and P-AMPKα were SIRT1-dependent. Unlike their effects in N2a cells, in HeLa cells, which lack LKB1, cilostazol and resveratrol did not elevate SIRT1 or P-AMPKα expression, indicating cilostazol and resveratrol-stimulated expressions of SIRT1 and P-AMPKα are LKB1-dependent. In conclusion, cilostazol upregulates autophagy by activating SIRT1-coupled P-LKB1/P-AMPKα and inhibiting mTOR activation, thereby decreasing Aβ accumulation.
Collapse
Affiliation(s)
- So Youn Park
- Department of Pharmacology, School of Korean Medicine, Pusan National University, Gyeongsangnam-do, 50612, Republic of Korea.,Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, 50612, Republic of Korea
| | - Hye Rin Lee
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, 50612, Republic of Korea
| | - Won Suk Lee
- Department of Pharmacology, School of Korean Medicine, Pusan National University, Gyeongsangnam-do, 50612, Republic of Korea
| | - Hwa Kyoung Shin
- Division of Meridian and Structural Medicine, Pusan National University, Gyeongsangnam-do, 50612, Republic of Korea
| | - Hye Young Kim
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, 50612, Republic of Korea
| | - Ki Whan Hong
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, 50612, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Korean Medicine, Pusan National University, Gyeongsangnam-do, 50612, Republic of Korea.,Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, 50612, Republic of Korea
| |
Collapse
|
14
|
Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res 2016; 95:943-972. [PMID: 27350397 DOI: 10.1002/jnr.23777] [Citation(s) in RCA: 302] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 02/06/2023]
Abstract
Aging, hypertension, diabetes, hypoxia/obstructive sleep apnea (OSA), obesity, vitamin B12/folate deficiency, depression, and traumatic brain injury synergistically promote diverse pathological mechanisms including cerebral hypoperfusion and glucose hypometabolism. These risk factors trigger neuroinflammation and oxidative-nitrosative stress that in turn decrease nitric oxide and enhance endothelin, Amyloid-β deposition, cerebral amyloid angiopathy, and blood-brain barrier disruption. Proinflammatory cytokines, endothelin-1, and oxidative-nitrosative stress trigger several pathological feedforward and feedback loops. These upstream factors persist in the brain for decades, upregulating amyloid and tau, before the cognitive decline. These cascades lead to neuronal Ca2+ increase, neurodegeneration, cognitive/memory decline, and Alzheimer's disease (AD). However, strategies are available to attenuate cerebral hypoperfusion and glucose hypometabolism and ameliorate cognitive decline. AD is the leading cause of dementia among the elderly. There is significant evidence that pathways involving inflammation and oxidative-nitrosative stress (ONS) play a key pathophysiological role in promoting cognitive dysfunction. Aging and several comorbid conditions mentioned above promote diverse pathologies. These include inflammation, ONS, hypoperfusion, and hypometabolism in the brain. In AD, chronic cerebral hypoperfusion and glucose hypometabolism precede decades before the cognitive decline. These comorbid disease conditions may share and synergistically activate these pathophysiological pathways. Inflammation upregulates cerebrovascular pathology through proinflammatory cytokines, endothelin-1, and nitric oxide (NO). Inflammation-triggered ONS promotes long-term damage involving fatty acids, proteins, DNA, and mitochondria; these amplify and perpetuate several feedforward and feedback pathological loops. The latter includes dysfunctional energy metabolism (compromised mitochondrial ATP production), amyloid-β generation, endothelial dysfunction, and blood-brain-barrier disruption. These lead to decreased cerebral blood flow and chronic cerebral hypoperfusion- that would modulate metabolic dysfunction and neurodegeneration. In essence, hypoperfusion deprives the brain from its two paramount trophic substances, viz., oxygen and nutrients. Consequently, the brain suffers from synaptic dysfunction and neuronal degeneration/loss, leading to both gray and white matter atrophy, cognitive dysfunction, and AD. This Review underscores the importance of treating the above-mentioned comorbid disease conditions to attenuate inflammation and ONS and ameliorate decreased cerebral blood flow and hypometabolism. Additionally, several strategies are described here to control chronic hypoperfusion of the brain and enhance cognition. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE Dept/MSE, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Edrissi H, Schock SC, Cadonic R, Hakim AM, Thompson CS. Cilostazol reduces blood brain barrier dysfunction, white matter lesion formation and motor deficits following chronic cerebral hypoperfusion. Brain Res 2016; 1646:494-503. [PMID: 27350079 DOI: 10.1016/j.brainres.2016.06.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 01/01/2023]
Abstract
Cerebral small vessel disease (CSVD) is a pathological process leading to lacunar infarcts, leukoaraiosis and cerebral microbleeds. Dysfunction of the blood brain barrier (BBB) has been proposed as a mechanism in the progression cerebral small vessel disease. A rodent model commonly used to study some aspects of CSVD is bilateral common carotid artery occlusion (BCCAO) in the rat. In the present study it was determined that gait impairment, as determined by a tapered beam test, and BBB permeability increased following BCCAO. Cilostazol, a type III phosphodiesterase inhibitor, has been shown to have anti-apoptotic effects and prevent white matter vacuolation and rarefaction induced by BCCAO in rats. In this study the protective effect of cilostazol administration on the increase BBB permeability following BCCAO was determined as well as the effect on plasma levels of circulating microparticles (MPs), cerebral white matter rarefaction, glial activation and gait disturbance. The effect of cilostazol on in vitro endothelial barriers was also evaluated. Cilostazol treatment improved BBB permeability and reduced gait disturbance, visual impairment and microglial activation in optic tract following BCCAO in vivo. It also reduced the degree of cell death and the reduction in trans-endothelial electrical resistance (TEER) in artificial endothelial barriers in vitro induced by MP treatment of in vitro barriers.
Collapse
Affiliation(s)
- Hamidreza Edrissi
- Universiy of Ottawa, Neuroscience Graduate Program, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | - Sarah C Schock
- Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | - Robert Cadonic
- Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | - Antoine M Hakim
- Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | - Charlie S Thompson
- Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5.
| |
Collapse
|
16
|
Intravenous Administration of Cilostazol Nanoparticles Ameliorates Acute Ischemic Stroke in a Cerebral Ischemia/Reperfusion-Induced Injury Model. Int J Mol Sci 2015; 16:29329-44. [PMID: 26690139 PMCID: PMC4691110 DOI: 10.3390/ijms161226166] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 11/16/2022] Open
Abstract
It was reported that cilostazol (CLZ) suppressed disruption of the microvasculature in ischemic areas. In this study, we have designed novel injection formulations containing CLZ nanoparticles using 0.5% methylcellulose, 0.2% docusate sodium salt, and mill methods (CLZnano dispersion; particle size 81 ± 59 nm, mean ± S.D.), and investigated their toxicity and usefulness in a cerebral ischemia/reperfusion-induced injury model (MCAO/reperfusion mice). The pharmacokinetics of injections of CLZnano dispersions is similar to that of CLZ solutions prepared with 2-hydroxypropyl-β-cyclodextrin, and no changes in the rate of hemolysis of rabbit red blood cells, a model of cell injury, were observed with CLZnano dispersions. In addition, the intravenous injection of 0.6 mg/kg CLZnano dispersions does not affect the blood pressure and blood flow, and the 0.6 mg/kg CLZnano dispersions ameliorate neurological deficits and ischemic stroke in MCAO/reperfusion mice. It is possible that the CLZnano dispersions will provide effective therapy for ischemic stroke patients, and that injection preparations of lipophilic drugs containing drug nanoparticles expand their therapeutic usage.
Collapse
|
17
|
Magalingam KB, Radhakrishnan A, Haleagrahara N. Protective effects of quercetin glycosides, rutin, and isoquercetrin against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in rat pheochromocytoma (PC-12) cells. Int J Immunopathol Pharmacol 2015; 29:30-9. [PMID: 26542606 DOI: 10.1177/0394632015613039] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022] Open
Abstract
There is increasing evidence that free radicals induced oxidative stress is a major causative agent in the pathogenesis of neurodegenerative diseases, particularly Parkinson's disease. Quercetin glycosides, namely rutin and isoquercitrin, are flavonoid polyphenol compounds found ubiquitously in fruits and vegetables and have been known to possess antioxidant effects. This study was designed to compare the neuroprotective effects of quercetin glycosides rutin and isoquercitrin in 6-OHDA-induced rat pheochromocytoma (PC-12) cells. The results showed that both rutin and isoquercitrin significantly increased antioxidant enzymes, catalase, superoxide dismutase, glutathione peroxidase, and glutathione level that were attenuated by 6-OHDA in PC-12 cells. There was no significant difference in the activation of glutathione and glutathione peroxidase enzymes between rutin and isoquercitrin. These two glycosides were equally effective in suppressing lipid peroxidation in 6-OHDA-induced PC-12 cells as both compounds suppressed the malondialdehyde generation and prevented cell damage. In conclusion, quercetin glycosides rutin and isoquercetrin are having a significant neuroprotective effect against 6-OHDA toxicity in PC-12 cells.
Collapse
Affiliation(s)
- Kasthuri Bai Magalingam
- Department of Medical Laboratory Technology, Faculty of Science and Technology, Nilai University, Negeri Sembilan, Malaysia
| | - Ammu Radhakrishnan
- Department of Medical Laboratory Technology, Faculty of Science and Technology, Nilai University, Negeri Sembilan, Malaysia
| | - Nagaraja Haleagrahara
- Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
18
|
Yang LC, Li J, Xu SF, Cai J, Lei H, Liu DM, Zhang M, Rong XF, Cui DD, Wang L, Peng Y, Wang XL. L-3-n-butylphthalide Promotes Neurogenesis and Neuroplasticity in Cerebral Ischemic Rats. CNS Neurosci Ther 2015. [PMID: 26215907 DOI: 10.1111/cns.12438] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS This study investigated whether anticerebral ischemia new drug, l-3-n-butylphthalide (l-NBP), improved behavioral recovery and enhanced hippocampal neurogenesis after cerebral ischemia in rats. METHODS AND RESULTS The middle cerebral artery of rats was blocked for 2 h. The daily oral administrations of 30 mg/kg l-NBP or vehicle were begun from the second day until the rats were sacrificed. L-NBP treatment markedly increased 5-bromo-2'-deoxyuridine (BrdU)-positive cells in the hippocampal dentate gyrus (DG) of injured hemisphere on day 28 after ischemia. The amount of newborn cells and newly mature neurons was also increased. The expressions of growth-associated protein-43 and synaptophysin were significantly elevated in l-NBP-treated rats. However, l-NBP markedly reduced the percentage of BrdU(+) /GFAP(+) cells. Additionally, the levels of catalytical subunit of protein kinase A (PKA), protein kinase B (Akt), and cAMP response element-binding protein (CREB) were significantly increased, and the activation of the signal transducer and activation of transcription 3 (STAT3) and the expressions of cleaved caspase-3 and Bax were obviously inhibited by l-NBP. Consequently, l-NBP attenuated the behavioral dysfunction. CONCLUSIONS It first demonstrates that l-NBP may improve the behavioral outcome of cerebral ischemia by promoting neurogenesis and neuroplasticity. Activation of CREB and Akt and inhibition of STAT3 signaling might be involved in.
Collapse
Affiliation(s)
- Li-Chao Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shao-Feng Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Cai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui Lei
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dong-Mei Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Man Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xian-Fang Rong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan-Dan Cui
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ling Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Liang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Baltsavias G, Yella S, Al Shameri RA, Luft A, Valavanis A. Intra-arterial administration of papaverine during mechanical thrombectomy for acute ischemic stroke. J Stroke Cerebrovasc Dis 2014; 24:41-7. [PMID: 25440359 DOI: 10.1016/j.jstrokecerebrovasdis.2014.07.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/13/2014] [Accepted: 07/27/2014] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND The use of stent retrievers for mechanical thrombectomy in acute ischemic stroke may induce significant vasospasm, which at the early phases of reperfusion may be crucial for rethrombosis of the recanalized vessel. We aimed to study whether the use of intra-arterial papaverine in selected cases of vasospasm was associated with improved cerebral perfusion, arterial reocclusion, or increased hemorrhagic complications. METHODS We retrospectively studied 9 consecutive patients with large artery acute occlusion, treated with stent retriever and intra-arterial papaverine. Onset to administration of intravenous recombinant tissue-plasminogen activator time, baseline National Institute of Health Stroke Scale, time to reperfusion, number of passes of the stent retriever, modified Rankin Scale score at discharge, postprocedural hemorrhage, onset to reperfusion time, papaverine dose, and thrombolysis in cerebral infarction grade were recorded in all patients. RESULTS After papaverine administration, the caliber of the infused arteries and their flow was increased in all cases. In none of the treated cases a reocclusion occurred after papaverine infusion. In one of the studied patients (11%), a parenchymal bleeding occurred 36 hours postoperatively. CONCLUSIONS This small study suggests that intra-arterial infusion of papaverine for the treatment of cerebral vasospasm after mechanical thrombectomy in acute ischemic stroke is effective and safe.
Collapse
Affiliation(s)
| | - Susmitha Yella
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Andreas Luft
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Anton Valavanis
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Nakase T, Sasaki M, Suzuki A. The Effect of Acute Medication with Cilostazol, an Anti-platelet Drug, on the Outcome of Small Vessel Brain Infarction. J Stroke Cerebrovasc Dis 2014; 23:1409-15. [DOI: 10.1016/j.jstrokecerebrovasdis.2013.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/20/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022] Open
|
21
|
Ishizuka F, Shimazawa M, Egashira Y, Ogishima H, Nakamura S, Tsuruma K, Hara H. Cilostazol prevents retinal ischemic damage partly via inhibition of tumor necrosis factor-α-induced nuclear factor-kappa B/activator protein-1 signaling pathway. Pharmacol Res Perspect 2013; 1:e00006. [PMID: 25505560 PMCID: PMC4184571 DOI: 10.1002/prp2.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 12/15/2022] Open
Abstract
Cilostazol is a specific inhibitor of phosphodiesterase III and is widely used to treat ischemic symptoms of peripheral vascular disease. We evaluated the protective effects of cilostazol in a murine model of ocular ischemic syndrome in which retinal ischemia was induced by 5-h unilateral ligation of both the pterygopalatine artery (PPA) and the external carotid artery (ECA) in anesthetized mice. The effects of cilostazol (30 mg/kg, p.o.) on ischemia/reperfusion (I/R)-induced retinal damage were examined by histological, retinal vascular permeability, and electrophysiological analyses. Using immunoblotting, the protective mechanism for cilostazol was evaluated by examining antiinflammatory effects of cilostazol on the expression of tumor necrosis factors-α (TNF-α) and tight junction proteins (ZO-1 and claudin-5), and the phosphorylations of nuclear factor-kappa B (NF-κB) and c-Jun. The histological analysis revealed that I/R decreased the cell number in the ganglion cell layer (GCL) and the thicknesses of the inner plexiform layer (IPL) and inner nuclear layer (INL), and that cilostazol attenuated these decreases. Additionally, cilostazol prevented the hyperpermeability of blood vessels. Electroretinogram (ERG) measurements revealed that cilostazol prevented the I/R-induced reductions in a-, b-, and oscillatory potential (OP) wave amplitudes seen at 5 days after I/R. Cilostazol inhibited the increased expression of TNF-α and the phosphorylation levels of NF-κB and c-Jun in the retina after I/R. In addition, cilostazol prevented TNF-α-induced reduction of ZO-1 and claudin-5 expression in human retinal microvascular endothelial cells (HRMECs). These findings indicate that cilostazol may prevent I/R-induced retinal damage partly through inhibition of TNF-α-induced NF-κB/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Fumiya Ishizuka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Yusuke Egashira
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan ; Department of Neurosurgery, Gifu University Graduate School of Medicine Gifu, Japan
| | - Hiromi Ogishima
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| |
Collapse
|
22
|
Cilostazol protects vessels against hyperglycemic injury and accelerates healing after implantation of drug-eluting stent in a type 1 diabetes mellitus rat aorta stent model. Atherosclerosis 2013; 228:332-8. [DOI: 10.1016/j.atherosclerosis.2013.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/09/2013] [Accepted: 03/11/2013] [Indexed: 11/22/2022]
|
23
|
Abe A, Nishiyama Y, Hagiwara H, Okubo S, Ueda M, Katsura KI, Katayama Y. Administration of cilostazol, an antiplatelet, to patients with acute-stage cerebral infarction and its effects on plasma substance P level and latent time of swallowing reflex. J NIPPON MED SCH 2013; 80:50-6. [PMID: 23470806 DOI: 10.1272/jnms.80.50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND OBJECTIVE It has been reported that medical treatment with cilostazol (cilo) as an antiplatelet may increase a substance P level in the striatum to shorten the latent time of swallowing reflex (LTSR). We undertook a pilot study to confirm whether cilo administration to patients with cerebral infarction is effective in increasing their plasma substance P level and then in ameliorating the status of LTSR. METHODS AND SUBJECTS Eligible subjects were recruited, after informed consents, from 20 hospitalized patients with acute-phase cerebral infarction within 72 hours from the onset. At the start of treatment, the subjects were assigned at random to those given aspirin alone (non-cilo group) and those given aspirin plus cilo (cilo group). Plasma substance P levels and LTSR values were measured at the starting point (baseline), 28 days after, and 180 days after. RESULTS AND DISCUSSION No significant time-dependent change in plasma substance P level was found probably because of large individual differences but, 28 days after the start of treatment, this value tended to become higher in cilo group than in non-cilo group (P<0.10). Whereas, in terms of fold changes of LTSR in cilo group, there was a significant between-term difference at P<0.05, indicating that this medication is effective in ameliorating the swallowing function is improved in the long run. CONCLUSION The LTSR values was significantly shortened within 180 days after the start of cilo treatment, but the result was not well explained by substance P levels as far as these were measured using the plasma, probably because this substance had diluted during blood circulation. However, it will become clinically usable as a single swallowing index, if in the future some ingeneus method of its measurement is developed. A larger-scale study would also be needed to confirm our conclusion from this pilot study.
Collapse
Affiliation(s)
- Arata Abe
- Divisions of Neurology, Nephrology, and Rheumatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Fujita K, Yoshimoto N, Kato T, Imada H, Matsumoto G, Inakuma T, Nagata Y, Miyachi E. Lycopene inhibits ischemia/reperfusion-induced neuronal apoptosis in gerbil hippocampal tissue. Neurochem Res 2013; 38:461-9. [PMID: 23296626 DOI: 10.1007/s11064-012-0952-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 12/11/2012] [Accepted: 12/19/2012] [Indexed: 01/07/2023]
Abstract
Plant lycopene exhibits antioxidant activity in animal tissues. Transient cerebral ischemia/reperfusion in Mongolian gerbils resulted in delayed neuronal death in hippocampal regions. We examined the antioxidant effects of lycopene because we expected lycopene to attenuate ischemia-related neuronal damage by controlling apoptosis at the gene level. The gerbils were divided into two groups: the normal feeding (control) group that received normal market food (MF) and the lycopene group that received MF containing lycopene (5 mg in 100 g MF food). After 1.5-2.0 months (when body weight were 60-65 g), the lycopene level was 38.2 ± 17.6 ng/ml in serum and 11.9 ± 4.0 μg/g-wet weight tissue in the liver. Levels of B cell leukemia-2, an apoptosis-suppressing protein, decreased in control animal brains 1, 3, and 7 days after surgery, whereas the levels increased in lycopene-treated animal brains. Moreover, cysteinyl aspartate-specific protease-3 activity increased gradually after ischemia, but was suppressed in the lycopene-treated animal brains 7 days after surgery. Finally, hippocampal superoxide dismutase (SOD) activity decreased in the control group 3 h after ischemia and, gradually increased thereafter, whereas it was significantly elevated in the lycopene group. Thus, orally administered lycopene is accumulated in the body, and provided protections against ischemia/reperfusion-induced brain injury by inducing an increase in SOD activity and inhibiting apoptosis.
Collapse
Affiliation(s)
- Kimikazu Fujita
- Department of Physiology, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Muhammed SJ, Lundquist I, Salehi A. Pancreatic β-cell dysfunction, expression of iNOS and the effect of phosphodiesterase inhibitors in human pancreatic islets of type 2 diabetes. Diabetes Obes Metab 2012; 14:1010-9. [PMID: 22687049 DOI: 10.1111/j.1463-1326.2012.01632.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/16/2012] [Accepted: 06/04/2012] [Indexed: 11/30/2022]
Abstract
AIMS Induction of inducible nitric oxide synthase (iNOS) in pancreatic islets leads to exaggerated nitric oxide (NO) production associated with dysfunctional β-cells. We examined insulin secretion, iNOS expression and its relationship to the cAMP system in islets from human type 2 diabetes. METHODS Insulin, glucagon and cAMP were analysed by RIA; iNOS or phosphodiesterase (PDE) expression by quantitative PCR (qPCR), Western blot and confocal microscopy; cell viability by MTS. RESULTS Diabetic islets displayed impaired insulin and glucagon responses to glucose, disturbed cAMP generation and high inducible nitric oxide synthase (iNOS) mRNA and protein expression. Confocal microscopy showed iNOS protein expression in diabetic islets being confined to insulin, glucagon and somatostatin cells. Culture of diabetic islets at 5.5 mmol/l glucose with dibutyryl-cAMP (Bt(2) -cAMP) for 24 h was accompanied by marked suppression of iNOS mRNA, reduced nitrite production and increased insulin secretion. Diabetic islets displayed marked increase in PDE3A and PDE3B mRNA expression. Short-time incubation of diabetic islets showed, among the PDE inhibitors tested, cilostazol being most favourable to increase insulin secretion. Diabetic islets were most susceptible to long-term (72 h) culture at high glucose (20 mmol/l) reacting with increased apoptosis. Bt(2) -cAMP and the PDE inhibitors cilostazol, milrinone and IBMX efficiently increased cell viability at high glucose during culture. Defective glucose-stimulated insulin release upon induction of iNOS was restored by iNOS inhibitor aminoguanidine. CONCLUSION Our results suggest that in islets from type 2 diabetes, stimulatory effects in certain cAMP-compartments induced by PDE inhibitors might play a central role in the suppression of iNOS, resulting in increased β-cell viability and improved secretory response to glucose.
Collapse
Affiliation(s)
- S J Muhammed
- Department of Clinical Science, Division of Endocrine Pharmacology, SUS, Malmö, University of Lund, Malmö, Sweden.
| | | | | |
Collapse
|
26
|
Liu S, Yu C, Yang F, Paganini-Hill A, Fisher MJ. Phosphodiesterase inhibitor modulation of brain microvascular endothelial cell barrier properties. J Neurol Sci 2012; 320:45-51. [PMID: 22819056 DOI: 10.1016/j.jns.2012.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 05/08/2012] [Accepted: 06/20/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Brain microvascular disorders, including cerebral microscopic hemorrhage, have high prevalence but few treatment options. To develop new strategies for these disorders, we analyzed the effects of several phosphodiesterase (PDE) inhibitors on human brain microvascular endothelial cells (HBECs). METHODS We modified barrier properties and response to histamine of HBECs using cilostazol (PDE3 inhibitor), rolipram (PDE4 inhibitor), and dipyridamole (non-specific PDE inhibitor). RESULTS Cilostazol and dipyridamole altered the distribution of endothelial F-actin. Cilostazol increased expression of tight junction protein claudin-5 by 118% compared to control (p<.001). Permeability to albumin was decreased by cilostazol (21% vs control, p<.05), and permeability to dextran (70Kd) was decreased by both cilostazol (37% vs control, p<.001) and dipyridamole (44% vs control, p<.0001). Cilostazol increased trans-endothelial electrical resistance (TEER) after 12h by 111% compared to control (p<.0001). Protein kinase A (PKA) inhibitors H89 and KT5720 attenuated the TEER increase by cilostazol. Transient increased permeability in response to histamine was significantly mitigated by cilostazol, but not by other PDE inhibitors. CONCLUSIONS These findings demonstrate distinctive effects of cilostazol and other PDE inhibitors on HBECs, including enhanced barrier characteristics and mitigation of response to histamine. PKA-mediated effects of cilostazol were prominent in this model. These in vitro findings are consistent with therapeutic potential of PDE inhibitors in human brain microvascular disorders.
Collapse
Affiliation(s)
- Shuo Liu
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States
| | | | | | | | | |
Collapse
|
27
|
Wajima D, Nakamura M, Horiuchi K, Takeshima Y, Nishimura F, Nakase H. Cilostazol minimizes venous ischemic injury in diabetic and normal rats. J Cereb Blood Flow Metab 2011; 31:2030-40. [PMID: 21505475 PMCID: PMC3208148 DOI: 10.1038/jcbfm.2011.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We evaluated the effects of cilostazol on venous infarction produced by a photothrombotic two-vein occlusion (2VO) model in diabetic and control rats. The cerebral blood flow (CBF) between the occluded veins was measured by laser Doppler flowmetry for 4 hours after 2VO. Infarct size and immunohistochemistry were evaluated 24, 48, 96, and 168 hours after 2VO. Cilostazol was administered 1 hour after 2VO, and thereafter at a continuous oral dose of 60 mg/kg per day. Cilostazol reduced the infarct size, and the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)-positive apoptotic and B-cell lymphoma 2-associated X protein (Bax)-positive cells, and improved the CBF in control rats. In diabetic rats, cilostazol reduced the infarct size, and the number of TUNEL-positive apoptotic and Bax-positive cells, 96 and 168 hours after 2VO, but did not improve the CBF 4 hours after 2VO. Cilostazol increased the number of B-cell lymphoma 2 (Bcl-2)-positive cells in both strains 48, 96, and 168 hours after 2VO, but did not improve vessel wall thickness or collagen deposits. Cilostazol appeared to limit venous infarcts by improving the penumbral CBF in nondiabetic rats, and inhibited pro-apoptotic changes through Bcl-2 overexpression, without improving the CBF in diabetic rats.
Collapse
Affiliation(s)
- Daisuke Wajima
- Department of Neurosurgery, Nara Medical University School of Medicine, Nara, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Evaluation of anti-platelet and anti-thrombotic effects of cilostazol with PFA-100® and Multiplate® whole blood aggregometer in vitro, ex vivo and FeCl3-induced thrombosis models in vivo. Thromb Res 2011; 127:565-70. [PMID: 21420150 DOI: 10.1016/j.thromres.2011.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 02/01/2011] [Accepted: 02/10/2011] [Indexed: 11/22/2022]
Abstract
We evaluate the anti-platelet and anti-thrombotic effects of cilostazol using Multiplate® and PFA-100® in vitro and ex vivo with freshly isolated rat whole blood and in vivo venous and arterial thrombosis models in the same species, in an effort to assess the sensitivity of the whole blood aggregometer assays without potential issues of species differences. In vitro assay of anti-platelet effects of cilostazol against collagen-induced aggregation using Multiplate® produced a graded dose-dependent inhibition curve with IC50 value of 75.4 ± 2.4 μM while it showed a highly sensitive and all-or-none type inhibition response from 25 μM in PFA-100®. Interestingly, cilostazol manifested anti-thrombotic effects in vivo at much lower plasma concentrations than the effective concentrations measured in ex vivo or in vitro aggregation tests using PFA-100® or Multiplate®. In addition, the tail bleeding time measurement demonstrated that rats have lower sensitivity to the anti-platelet effects of cilostazol than mice. These results suggest that the detailed comparative evaluation of whole blood aggregometer assays with anti-thrombotic effects in vivo should be preceded before the application of these methods for the pharmacodynamic studies of anti-thrombotic agents.
Collapse
|
29
|
Lee DH, Lee HR, Shin HK, Park SY, Hong KW, Kim EK, Bae SS, Lee WS, Rhim BY, Kim CD. Cilostazol enhances integrin-dependent homing of progenitor cells by activation of cAMP-dependent protein kinase in synergy with Epac1. J Neurosci Res 2011; 89:650-60. [PMID: 21337364 DOI: 10.1002/jnr.22558] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/25/2010] [Accepted: 10/25/2010] [Indexed: 11/10/2022]
Abstract
Recruitment and adhesion of exogenous endothelial progenitor cells (EPCs) or endogenously mobilized bone marrow mononuclear cells (BM MNCs) to the sites of ischemia is an important focus of cell therapy. This study sought to determine whether cilostazol enhances integrin-dependent homing of progenitor cells both in vitro and in vivo. In the in vitro experiments with human umbilical cord blood (HUCB)-derived EPCs, cilostazol (10 μM) stimulated up-regulation of integrins β1, α1, and αv as well as 8-pCPT-2'-O-Me-cAMP (100 μM; 8-pCPT, Epac activator). Cilostazol and 8-pCPT significantly enhanced migration and adhesion of HUCB EPCs to a fibronectin-coated plate and endothelial cells, which were inhibited by KT5720 (PKA inhibitor, 1 μM) and GGTI-298 (Rap1 inhibitor, 20 μM). Cilostazol stimulated Epac1 expression and up-regulated the active Rap1, as did 8-pCPT, and they were suppressed by KT5720 (P < 0.001) and GGTI-298 (P < 0.001). 8-pCPT increased p-CREB expression and stimulated PKA activity, which was inhibited by KT5720, Rp-cAMPS, and GGTI-298. In addition, N(6)-benzoyl-cAMP (100 μM) increased Rap1 GTP expression, as did 8-pCPT; they were suppressed by Rp-cAMPS and GGTI-298. The in vivo experiments showed that cilostazol (30 mg/kg/day, orally for 7 days) significantly enhanced the integrin β1 expression in the molecular layer and up-regulated homing of BM MNCs to the injured molecular layer with increased capillary density in mouse brain subjected to transient forebrain ischemia (n = 6, P < 0.001). In conclusion, cilostazol stimulated integrin expression and enhanced migration and adhesion of progenitor cells through cooperative activation of PKA and Epac signals; such activity may improve the efficacy of cell therapy for ischemic disease.
Collapse
Affiliation(s)
- Dong Hyung Lee
- Medical Research Center for Ischemic Tissue Regeneration, Department of Pharmacology, School of Medicine, Pusan National University, Yangsan-si, Gyeongsangnam-do, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shimazawa M, Hara H. Novel Situations of Endothelial Injury in Stroke — Mechanisms of Stroke and Strategy of Drug Development: Protective Effects of Antiplatelet Agents Against Stroke. J Pharmacol Sci 2011; 116:30-5. [DOI: 10.1254/jphs.10r26fm] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
31
|
Cai ZY, Yan Y, Chen R. Minocycline reduces astrocytic reactivation and neuroinflammation in the hippocampus of a vascular cognitive impairment rat model. Neurosci Bull 2010; 26:28-36. [PMID: 20101270 PMCID: PMC5560381 DOI: 10.1007/s12264-010-0818-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 10/27/2009] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To study the neuroprotective mechanism of minocycline against vascular cognitive impairment after cerebral ischemia. METHODS The rat model with vascular cognitive impairment was established by permanent bilateral common carotid artery occlusion (BCCAO). The observing time-points were determined at 4, 8 and 16 weeks after BCCAO. Animals were randomly divided into sham-operated group (n = 6), model group (subdivided into 3 groups: 4 weeks after BCCAO, n = 6; 8 weeks after BCCAO, n = 6; and 16 weeks after BCCAO, n = 6), and minocycline group (subdivided into 3 groups: 4 weeks after BCCAO, n = 6; 8 weeks after BCCAO, n = 6; and 16 weeks after BCCAO, n = 6). Minocycline was administered by douche via stomach after BCCAO until sacrifice. Glial fibrillary acidic protein (GFAP) was examined by Western blotting and immunohistochemistry. Levels of cyclooxygenase-2 (COX-2) and nuclear factor-kappaB (NF-kappaB) were measured by immunohistochemistry. IL-1beta and TNF-alpha levels were tested with ELISA method. RESULTS Levels of GFAP, COX-2, NF-kappaB, IL-1beta and TNF-alpha were all up-regulated after permanent BCCAO, which could be significantly inhibited by minocycline. CONCLUSION Minocycline could ameliorate the inflammation and oxidative stress in the hippocampus of the vascular cognitive impairment rat model.
Collapse
Affiliation(s)
- Zhi-You Cai
- Department of Neurology, Lu’an People’s Hospital, the Fifth Clinical College, Anhui Medical University, Lu’an, 237005 China
| | - Yong Yan
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016 China
| | - Ran Chen
- Department of Neurology, Lu’an People’s Hospital, the Fifth Clinical College, Anhui Medical University, Lu’an, 237005 China
| |
Collapse
|
32
|
Jung WK, Lee DY, Park C, Choi YH, Choi I, Park SG, Seo SK, Lee SW, Yea SS, Ahn SC, Lee CM, Park WS, Ko JH, Choi IW. Cilostazol is anti-inflammatory in BV2 microglial cells by inactivating nuclear factor-kappaB and inhibiting mitogen-activated protein kinases. Br J Pharmacol 2010; 159:1274-85. [PMID: 20128801 DOI: 10.1111/j.1476-5381.2009.00615.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Cilostazol is a specific inhibitor of 3'-5'-cyclic adenosine monophosphate (cAMP) phosphodiesterase, which is widely used to treat ischemic symptoms of peripheral vascular disease. Although cilostazol has been shown to exhibit vasodilator properties as well as antiplatelet and anti-inflammatory effects, its cellular mechanism in microglia is unknown. In the present study, we assessed the anti-inflammatory effect of cilostazol on the production of pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated murine BV2 microglia. EXPERIMENTAL APPROACH We examined the effects of cilostazol on LPS-induced nuclear factor-kappaB (NF-kappaB) activation and phosphorylation of mitogen-activated protein kinases (MAPKs). KEY RESULTS Cilostazol suppressed production of nitric oxide (NO), prostaglandin E(2) (PGE(2)) and the proinflammatory cytokines, interleukin-1 (IL-1), tumour necrosis factor-alpha, and monocyte chemoattractant protein-1 (MCP-1), in a concentration-dependent manner. Inhibitory effects of cilostazol were not affected by treatment with an adenylate cyclase inhibitor, SQ 22536, indicating that these actions of cilostazol were cAMP-independent. Cilostazol significantly inhibited the DNA binding and transcriptional activity of NF-kappaB. Moreover, cilostazol blocked signalling upstream of NF-kappaB activation by inhibiting extracellular signal-regulated kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinase (JNK), but without affecting the activity of p38 MAPK. CONCLUSION AND IMPLICATIONS Our results demonstrate that suppression of the NF-kappaB, ERK, JNK signalling pathways may inhibit LPS-induced NO and PGE(2) production. Therefore, cilostazol may have therapeutic potential for neurodegenerative diseases by inhibiting pro-inflammatory mediators and cytokine production in activated microglia.
Collapse
Affiliation(s)
- Won-Kyo Jung
- Department of Marine Life Science, Chosun University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Stroke and transient ischemic attacks result from a range of mechanisms. Secondary prevention includes both conventional approaches to vascular risk-factor management (blood pressure lowering, cholesterol reduction with statins, smoking cessation and antiplatelet therapy) and more specific interventions, such as carotid endarterectomy or anticoagulation for atrial fibrillation. The relative importance of even conventional risk factors in stroke differs from coronary artery disease. Large clinical trials produce information on most aspects of stroke prevention. Stroke and transient ischemic attacks are now recognized as medical emergencies, with a high early risk of recurrence, and evidence is accumulating to support the importance of immediate institution of secondary preventative treatments. We review current literature on the secondary prevention of stroke.
Collapse
Affiliation(s)
- Niall J J MacDougall
- Division of Clinical Neurosciences, University of Glasgow, Institute of Neurological Sciences, Southern General Hospital, Glasgow, G51 4TF, UK
| | | | | |
Collapse
|
34
|
Rutin protects the neural damage induced by transient focal ischemia in rats. Brain Res 2009; 1292:123-35. [DOI: 10.1016/j.brainres.2009.07.026] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/06/2009] [Accepted: 07/09/2009] [Indexed: 01/13/2023]
|
35
|
Nonaka Y, Koumura A, Hyakkoku K, Shimazawa M, Yoshimura S, Iwama T, Hara H. Combination treatment with normobaric hyperoxia and cilostazol protects mice against focal cerebral ischemia-induced neuronal damage better than each treatment alone. J Pharmacol Exp Ther 2009; 330:13-22. [PMID: 19336663 DOI: 10.1124/jpet.109.151548] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Normobaric hyperoxia (NBO) and cilostazol (6-[4-(1-cyclohexy-1H-tetrazol-5-yl)butoxyl]-3,4-dihydro-2-(1H)-quinolinone) (a selective inhibitor of phosphodiesterase 3) have each been reported to exert neuroprotective effects against acute brain injury after cerebral ischemia in rodents. Here, we evaluated the potential neuroprotective effects of combination treatment with NBO and cilostazol against acute and subacute brain injuries after simulated stroke. Mice subjected to 2-h filamental middle cerebral artery (MCA) occlusion were treated with NBO (95% O(2), during the ischemia) alone, with cilostazol (3 mg/kg i.p. after the ischemia) alone, with both of these treatments (combination), or with vehicle. The histological and neurobehavioral outcomes were assessed at acute (1 day) or subacute (7 days) stages after reperfusion. We measured regional cerebral blood flow (rCBF) during and after ischemia by laser-Doppler flowmetry and recovery (versus vehicle) in the combination therapy group just after reperfusion. Mean acute and subacute lesion volumes were significantly reduced in the combination group but not in the two monotherapy groups. The combination therapy increased endothelial nitric-oxide synthase (eNOS) activity in the lesion area after ischemia versus vehicle. Combination therapy with NBO plus cilostazol protected mice subjected to focal cerebral ischemia by improvement of rCBF after reperfusion, in part in association with eNOS activity.
Collapse
Affiliation(s)
- Yuko Nonaka
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 5-6-1 Mitabora-higashi, Gifu 502-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Nonaka Y, Tsuruma K, Shimazawa M, Yoshimura S, Iwama T, Hara H. Cilostazol protects against hemorrhagic transformation in mice transient focal cerebral ischemia-induced brain damage. Neurosci Lett 2009; 452:156-61. [PMID: 19383431 DOI: 10.1016/j.neulet.2009.01.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 01/05/2009] [Accepted: 01/16/2009] [Indexed: 01/21/2023]
Abstract
Cilostazol, an antiplatelet drug used to treat intermittent claudication, has been reported to offer neuroprotection and endothelial protection in animals with ischemic brain injury. Here, we evaluated the protection afforded by cilostazol against ischemic brain injury and hemorrhagic transformation. Mice subjected to a 2-h filamental middle cerebral artery (MCA) occlusion were treated with cilostazol (10mg/kg, intraperitoneally just after the occlusion) or with vehicle. Histological outcomes (infarct volume and hemorrhagic transformation) and Evans blue extravasation were assessed after reperfusion. Mean infarct volume, hemorrhagic transformation, and Evans blue extravasation were all significantly reduced in the cilostazol-treated group. Thus, cilostazol protected against ischemic brain injury and hemorrhagic transformation in mice subjected to transient focal cerebral ischemia.
Collapse
Affiliation(s)
- Yuko Nonaka
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Upregulation of BACE1 and beta-amyloid protein mediated by chronic cerebral hypoperfusion contributes to cognitive impairment and pathogenesis of Alzheimer's disease. Neurochem Res 2009; 34:1226-35. [PMID: 19123057 DOI: 10.1007/s11064-008-9899-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) increases the risk of Alzheimer disease (AD) through several biologically plausible pathways, but the relationship between CCH and the development of AD remains uncertain. To investigate expression of APP, BACE1 and A beta in the hippocampus of BCCAO rats and study pathophysiological mechanism of AD from CCH. CCH rat model was established by chronic bilateral common carotid artery occlusion (BCCAO). Behavior was evaluated after BCCAO with Morris water maze and open-field task. Expression of A beta was measured by enzyme linked immunosorbent assay (ELISA). beta-Amyloid precursor protein cleavage enzyme 1 (BACE1) and beta-amyloid precursor protein (APP) were tested by ELISA, Western blotting and RT-PCR. Cognitive impairment occurred with CCH by Morris water maze test and open-field task. The BACE1 and A beta level in BCCAO rats was more increased than sham-operation control rats (P < 0.01) but APP had no difference(P > 0.05). The expression of BACE1 and A beta has no inter-group difference in BCCAO rats (P > 0.05). The level of BACE1 and A beta had positive correlation with cognitive impairment (P < 0.01) while no correlation was observed between APP and cognitive impairment. Chronic cerebral ischemia contributes to cognitive impairment and vascular pathogenesis of Alzheimer's disease that chronic cerebral hypoperfusion increases BACE1 and A beta level in brain.
Collapse
|