1
|
Uceda AB, Mariño L, Casasnovas R, Adrover M. An overview on glycation: molecular mechanisms, impact on proteins, pathogenesis, and inhibition. Biophys Rev 2024; 16:189-218. [PMID: 38737201 PMCID: PMC11078917 DOI: 10.1007/s12551-024-01188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/14/2024] Open
Abstract
The formation of a heterogeneous set of advanced glycation end products (AGEs) is the final outcome of a non-enzymatic process that occurs in vivo on long-life biomolecules. This process, known as glycation, starts with the reaction between reducing sugars, or their autoxidation products, with the amino groups of proteins, DNA, or lipids, thus gaining relevance under hyperglycemic conditions. Once AGEs are formed, they might affect the biological function of the biomacromolecule and, therefore, induce the development of pathophysiological events. In fact, the accumulation of AGEs has been pointed as a triggering factor of obesity, diabetes-related diseases, coronary artery disease, neurological disorders, or chronic renal failure, among others. Given the deleterious consequences of glycation, evolution has designed endogenous mechanisms to undo glycation or to prevent it. In addition, many exogenous molecules have also emerged as powerful glycation inhibitors. This review aims to provide an overview on what glycation is. It starts by explaining the similarities and differences between glycation and glycosylation. Then, it describes in detail the molecular mechanism underlying glycation reactions, and the bio-molecular targets with higher propensity to be glycated. Next, it discusses the precise effects of glycation on protein structure, function, and aggregation, and how computational chemistry has provided insights on these aspects. Finally, it reports the most prevalent diseases induced by glycation, and the endogenous mechanisms and the current therapeutic interventions against it.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Laura Mariño
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Rodrigo Casasnovas
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Miquel Adrover
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| |
Collapse
|
2
|
Pasupulati AK, Nagati V, Paturi ASV, Reddy GB. Non-enzymatic glycation and diabetic kidney disease. VITAMINS AND HORMONES 2024; 125:251-285. [PMID: 38997166 DOI: 10.1016/bs.vh.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Chronic diabetes leads to various complications including diabetic kidney disease (DKD). DKD is a major microvascular complication and the leading cause of morbidity and mortality in diabetic patients. Varying degrees of proteinuria and reduced glomerular filtration rate are the cardinal clinical manifestations of DKD that eventually progress into end-stage renal disease. Histopathologically, DKD is characterized by renal hypertrophy, mesangial expansion, podocyte injury, glomerulosclerosis, and tubulointerstitial fibrosis, ultimately leading to renal replacement therapy. Amongst the many mechanisms, hyperglycemia contributes to the pathogenesis of DKD via a mechanism known as non-enzymatic glycation (NEG). NEG is the irreversible conjugation of reducing sugars onto a free amino group of proteins by a series of events, resulting in the formation of initial Schiff's base and an Amadori product and to a variety of advanced glycation end products (AGEs). AGEs interact with cognate receptors and evoke aberrant signaling cascades that execute adverse events such as oxidative stress, inflammation, phenotypic switch, complement activation, and cell death in different kidney cells. Elevated levels of AGEs and their receptors were associated with clinical and morphological manifestations of DKD. In this chapter, we discussed the mechanism of AGEs accumulation, AGEs-induced cellular and molecular events in the kidney and their impact on the pathogenesis of DKD. We have also reflected upon the possible options to curtail the AGEs accumulation and approaches to prevent AGEs mediated adverse renal outcomes.
Collapse
Affiliation(s)
- Anil K Pasupulati
- Department of Biochemistry, University of Hyderabad, Hyderabad, India.
| | - Veerababu Nagati
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| | - Atreya S V Paturi
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| | - G Bhanuprakash Reddy
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, India.
| |
Collapse
|
3
|
Froldi G, Djeujo FM, Bulf N, Caparelli E, Ragazzi E. Comparative Evaluation of the Antiglycation and Anti-α-Glucosidase Activities of Baicalein, Baicalin (Baicalein 7- O-Glucuronide) and the Antidiabetic Drug Metformin. Pharmaceutics 2022; 14:pharmaceutics14102141. [PMID: 36297576 PMCID: PMC9612222 DOI: 10.3390/pharmaceutics14102141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
The discovery of new oral antidiabetic drugs remains a priority in medicine. This research aimed to evaluate the activity of the flavonoid baicalein and its natural glucuronide baicalin, compared to the antidiabetic drug metformin, as potential antiglycation, anti–radical, and anti-α–glucosidase agents, in order to assess their potential role in counteracting hyperglycemia-induced tissue damage. The study considered: (i) the BSA assay, to detect the formation of advanced glycation end products (AGEs), (ii) the GK peptide–ribose assay, which evaluates the cross–linking between the peptide and ribose, and (iii) the carbonyl content assay to detect the total carbonyl content, as a biomarker of tissue damage. In addition, to obtain a reliable picture of the antiglycation capacity of the investigated compounds, DPPH scavenging and oxygen radical absorbance capacity (ORAC) assays were performed. Furthermore, the anti–α–glucosidase activity of baicalein and baicalin was detected. Furthermore, to estimate cell permeability, preliminarily, the cytotoxicity of baicalein and baicalin was evaluated in HT–29 human colon adenocarcinoma cells using the MTT assay. Successively, the ability of the compounds to pass through the cytoplasmic membranes of HT–29 cells was detected as a permeability screen to predict in vivo absorption, showing that baicalein passes into cells even if it is quickly modified in various metabolites, being its main derivative baicalin. Otherwise, baicalin per se did not pass through cell membranes. Data show that baicalein is the most active compound in reducing glycation, α-glucosidase activity, and free radicals, while baicalin exhibited similar activities, but did not inhibit the enzyme α–glucosidase.
Collapse
|
4
|
Asif A, Zeeshan N, Mehmood S. Antioxidant and antiglycation activities of traditional plants and identification of bioactive compounds from extracts of Hordeum vulgare by LC-MS and GC-MS. J Food Biochem 2020; 44:e13381. [PMID: 32696536 DOI: 10.1111/jfbc.13381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Glycation has been involved in Schiff base reaction lead to hyperglycemia at cellular level. The current study aimed to identify the bioactive compounds from selected folkloric plants for their antiglycation and antioxidant potential. Methanol extracts demonstrated the highest activities, therefore, it was further fractionated using n-hexane, dichloromethane, ethyl acetate, and methanol solvents to isolate the nonpolar compounds from the Hordeum vulgare. Moreover, n-hexane and dichloromethane fractions of H. vulgare demonstrated the best antioxidant (61.58% and 62.89%) and antiglycation activities (72.52% and 61.52%) at 2 mg/ml, respectively. Analytical techniques of LC-MS and GC-MS were employed for identification of bioactive compounds; Biochanin A in dichloromethane (DCM) and Vitamin E in n-hexane fractions. There was a strong correlation between antioxidant and antiglycation activities (r = 0.97 and r = 0.96) of DCM & n-hexane fractions of H. vulgare. Findings of this study established the role of Biochanin A and Vit E from H. vulgare as potent antiglycation agents. PRACTICAL APPLICATIONS: The results of this study confirmed the potential role of Black Barley has involved in the inhibition of protein glycation, which can be the potential treatment to reduce the complications of Diabetic Patients. The Black Barley has a rich source of identified compounds Biochanin A and Vitamin E. We can use this plant as a staple food in curing the severity of diabetes. The other practical approach is to use this plant as an ingredient of different food products. The extraction of identified bioactive compounds from the plant will be a good and cheap source of the treatment.
Collapse
Affiliation(s)
- Awais Asif
- Department of Biochemistry, Nawaz Sharif Medical College, University of Gujrat, Gujrat, Pakistan.,Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Sajid Mehmood
- Department of Biochemistry, Islam Medical and Dental College, Sialkot, Pakistan
| |
Collapse
|
5
|
Lee TW, Kao YH, Chen YJ, Chao TF, Lee TI. Therapeutic potential of vitamin D in AGE/RAGE-related cardiovascular diseases. Cell Mol Life Sci 2019; 76:4103-4115. [PMID: 31250032 PMCID: PMC11105755 DOI: 10.1007/s00018-019-03204-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases (CVDs) are among the leading threats to human health. The advanced glycation end product (AGE) and receptor for AGE (RAGE) signaling pathway regulates the pathogenesis of CVDs, through its effects on arterial stiffness, atherosclerosis, mitochondrial dysfunction, oxidative stress, calcium homeostasis, and cytoskeletal function. Targeting the AGE/RAGE pathway is a potential therapeutic strategy for ameliorating CVDs. Vitamin D has several beneficial effects on the cardiovascular system. Experimental findings have shown that vitamin D regulates AGE/RAGE signaling and its downstream effects. This article provides a comprehensive review of the mechanistic insights into AGE/RAGE involvement in CVDs and the modulation of the AGE/RAGE signaling pathways by vitamin D.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Xinglong Road, Section 3 Wenshan District, Taipei, 11696, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Xinglong Road, Section 3 Wenshan District, Taipei, 11696, Taiwan.
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Meng Q, Li S, Huang J, Wei CC, Wan X, Sang S, Ho CT. Importance of the Nucleophilic Property of Tea Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5379-5383. [PMID: 30406649 DOI: 10.1021/acs.jafc.8b05917] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tea is the second most popular beverage in the world after water. Vast accumulative evidence attest that tea consumption may promote human health, such as antioxidant, anti-obesity, and anticancer activities. Therefore, tea phytochemicals have drawn exceeding attention from researchers in structure confirmation, formation mechanism, component clarification, and bioactivity screening of interested constituents. Particularly, most investigations of chemical or biochemical reactions of catechins have concentrated on the B ring of the C6-C3-C6 skeleton. Hence, in this perspective, we reviewed the profound findings of the carbon-carbon (C-C) connection from the unambiguous characterization of novel A-ring addition derivatives of tea catechins, including catechin-carbonyl and catechin-theanine conjugates and the C-C formation mechanisms, and offered our view of the potential effects of catechin-carbonyl interactions on flavor generation and bioactive action in tea.
Collapse
Affiliation(s)
- Qing Meng
- Department of Tea Science , Southwest University , Chongqing 400715 , People's Republic of China
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources , Huanggang Normal University , Huanggang , Hubei 438000 , People's Republic of China
| | - Junqing Huang
- Department of Food Science , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
- School of Traditional Chinese Medicine , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
| | - Chia-Cheng Wei
- Department of Food Science , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
- Institute of Food Safety and Health, College of Public Health , National Taiwan University , Taipei 10051 , Taiwan
| | | | - Shengmin Sang
- Laboratory for Functional Foods and Human Nutrition, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, Kannapolis , North Carolina 28080 , United States
| | - Chi-Tang Ho
- Department of Food Science , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|
7
|
Premer C, Kanelidis AJ, Hare JM, Schulman IH. Rethinking Endothelial Dysfunction as a Crucial Target in Fighting Heart Failure. Mayo Clin Proc Innov Qual Outcomes 2019; 3:1-13. [PMID: 30899903 PMCID: PMC6408687 DOI: 10.1016/j.mayocpiqo.2018.12.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Endothelial dysfunction is characterized by nitric oxide dysregulation and an altered redox state. Oxidative stress and inflammatory markers prevail, thus promoting atherogenesis and hypertension, important risk factors for the development and progression of heart failure. There has been a reemerging interest in the role that endothelial dysfunction plays in the failing circulation. Accordingly, patients with heart failure are being clinically assessed for endothelial dysfunction via various methods, including flow-mediated vasodilation, peripheral arterial tonometry, quantification of circulating endothelial progenitor cells, and early and late endothelial progenitor cell outgrowth measurements. Although the mechanisms underlying endothelial dysfunction are intimately related to cardiovascular disease and heart failure, it remains unclear whether targeting endothelial dysfunction is a feasible strategy for ameliorating heart failure progression. This review focuses on the pathophysiology of endothelial dysfunction, the mechanisms linking endothelial dysfunction and heart failure, and the various diagnostic methods currently used to measure endothelial function, ultimately highlighting the therapeutic implications of targeting endothelial dysfunction for the treatment of heart failure.
Collapse
Key Words
- Ach, acetylcholine
- CAD, coronary artery disease
- CVD, cardiovascular disease
- ECFC, endothelial colony-forming cell
- EDHF, endothelium-derived hyperpolarizing factor
- EPC, endothelial progenitor cell
- EPC-CFU, EPC–colony-forming unit
- FMD, flow-mediated vasodilation
- H2O2, hydrogen peroxide
- HF, heart failure
- HFpEF, HF with preserved ejection fraction
- HFrEF, HF with reduced ejection fraction
- IVUS, intravascular ultrasound
- LVEF, left ventricular ejection fraction
- NO, nitric oxide
- NOS, NO synthase
- PAT, peripheral arterial tonometry
- QCA, quantitative coronary angiography
- ROS, reactive oxygen species
- cGMP, cyclic guanosine monophosphate
- eNOS, endothelial nitric oxide synthase
Collapse
Affiliation(s)
- Courtney Premer
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Ivonne Hernandez Schulman
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL.,Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
8
|
Munukutla S, Pan G, Palaniyandi SS. Aldehyde Dehydrogenase (ALDH) 2 in Diabetic Heart Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:155-174. [PMID: 31368103 DOI: 10.1007/978-981-13-6260-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A major pathophysiological mechanism behind the development of diabetic heart diseases is oxidative stress mediated by toxic reactive aldehydes such as 4-hydroxynonenal (4HNE). Aldehyde dehydrogenase (ALDH) 2 is a mitochondrial enzyme that has been found to detoxify these deleterious aldehydes and thereby mitigate cardiac damage. Furthermore, its protective role in cellular signaling reverses aberrations caused by hyperglycemia, thereby protecting cardiac function. This chapter assesses the role of ALDH2 in diabetic heart diseases by examining preclinical studies where ALDH2 activity is perturbed in both decreased and increased directions. In doing so, issues in improving ALDH2 activity in select human populations are elucidated, and further research directions are discussed.
Collapse
Affiliation(s)
- Srikar Munukutla
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Suresh S Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA.
- Department of Physiology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
9
|
Liu YH, Lu YL, Liu DZ, Hou WC. Antiglycation, radical scavenging, and semicarbazide-sensitive amine oxidase inhibitory activities of acetohydroxamic acid in vitro. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2139-2147. [PMID: 28761331 PMCID: PMC5516777 DOI: 10.2147/dddt.s141740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Advanced glycation endproducts (AGEs) can promote intracellular reactive oxygen species production, and the levels of AGEs are highly correlated with cardiovascular disease and diabetes complications. Acetohydroxamic acid (acetH) is a bacterial urease inhibitor drug used to treat kidney stones and infections in the urinary tract, and hydroxyurea (HU) is a drug used for antineoplasm and sickle cell diseases. Both acetH and HU are hydroxamic acid derivatives. It was found that acetH and HU at 2.5 or 5 mM showed anti-AGE formation by lowering the AGEs' fluorescent intensities and Nε-(carboxymethyl)lysine formation in bovine serum albumin/galactose models, and both showed better and significant differences (P<0.05) compared to the positive control of aminoguanidine. Regarding radical scavenging activities, the half-inhibition concentrations (IC50) of acetH against α,α-diphenyl-β-picrylhydrazyl radical and hydroxyl radical were 34.86 and 104.42 μM, respectively. The IC50 of acetH against semicarbazide-sensitive amine oxidase was 10.56 μM, and acetH showed noncompetitive inhibition respective to the substrates (benzylamine). The antiglycation, antioxidant, and semicarbazide-sensitive amine oxidase inhibitory activities of acetH prove that it has the potential for treating cardiovascular disease and diabetes complications and it needs further investigation in animal models.
Collapse
Affiliation(s)
- Yuh-Hwa Liu
- Division of Gastroenterology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Department of General Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yeh-Lin Lu
- Department of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Der-Zen Liu
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chi Hou
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Fernando CD, Karunaratne DT, Gunasinghe SD, Cooray MCD, Kanchana P, Udawatte C, Perera PK. Inhibitory action on the production of advanced glycation end products (AGEs) and suppression of free radicals in vitro by a Sri Lankan polyherbal formulation Nawarathne Kalka. Altern Ther Health Med 2016; 16:197. [PMID: 27391698 PMCID: PMC4939025 DOI: 10.1186/s12906-016-1178-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/14/2016] [Indexed: 11/29/2022]
Abstract
Background Advanced glycation end products (AGEs) and free radicals are inflammatory mediators and are implicated in many diseases such as diabetes, cancer, rheumatoid arthritis etc. Multi targeted poly herbal drug systems like Nawarathne Kalka (NK) are able to quench the overall effect of these mediators as they contain good combinations of phytochemicals that have least side effects in contrast to modern medicinal drugs. The objectives of this study were to evaluate phytochemical composition, free radical scavenging activity, cytotoxicity and the inhibitory action on the formation of AGEs by aqueous extract of NK. Methods Total phenolic content (TPC) and total flavonoid content (TFC) were determined using Folin ciocalteu method and aluminium chloride assay respectively. Free radical scavenging activity was assessed by DPPH radical scavenging assay (DRSA), phosphomolybdenum reduction antioxidant assay (PRAA) and nitric oxide (NO) scavenging assay. Brine Shrimp Lethality (BSL) bioassay was performed as preliminary screening for cytotoxic activity. Inhibitory action on AGE formation was evaluated using fructose mediated glycation of bovine serum albumin using fluorescence spectroscopic method. Results The TPC and TFC were 75.1 ± 3.0 mg/g gallic acid equivalents and 68.7 ± 7.8 mg/g epigallocatechin gallate equivalents. The DRSA yielded EC50 of 19.15 ± 2.24 μg mL−1 for NK. DRSA of NK extract was greater than butylated hydroxy toluene (EC50 = 96.50 ± 4.51 μg mL−1) but lesser than L-ascorbic acid (EC50 = 5.60 ± 0.51 μg mL−1). The total antioxidant capacity of NK as evidenced by PRAA was 106.4 ± 8.2 mg/g L-ascorbic acid equivalents. NK showed EC50 value of 99.3 ± 8.4 μg mL−1 in the NO scavenging assay compared to the standard ascorbic acid (EC50 = 7.3 ± 0.3 μg mL−1). The extract indicated moderate cytotoxic activity in the BSL bioassay. The extract showed effective inhibitory action on the formation of AGEs with EC50 values of 116 ± 19 μg mL−1, 125 ± 35 μg mL−1 and 84 ± 28 μg mL−1 in data obtained over three consecutive weeks respectively. Comparatively the reference standard, aminoguanidine at a concentration of 500 μg mL−1 demonstrated 65 % inhibition on the formation of AGE after one week of sample incubation. Conclusions The results proved the potential of NK as a free radical scavenger, moderate cytotoxic agent and an inhibitor on the formation of advanced glycation end-products.
Collapse
|
11
|
West BJ, Deng S, Uwaya A, Isami F, Abe Y, Yamagishi SI, Jensen CJ. Iridoids are natural glycation inhibitors. Glycoconj J 2016; 33:671-81. [PMID: 27306206 DOI: 10.1007/s10719-016-9695-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/02/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022]
Abstract
Glycation of amino acid residues in proteins leads to the eventual formation of advanced glycation end products (AGEs). AGE formation significantly influences human health and the aging process. AGE accumulation rates may be slowed by modifications to lifestyle or by pharmacological strategies. But the use of therapeutic drugs is not an appropriate means of controlling AGEs within the general population. However, phytochemical constituents in plant-based foods exhibit anti-glycation activities and may be more appropriate for general consumption. Among these phytochemicals are iridoids. The anti-AGE potential of iridoids has been demonstrated in vitro and in vivo, while also revealing possible mechanisms of action. Inclusion of iridoid food sources in the diet may be a useful component of strategies intended to mitigate AGE accumulation within the body.
Collapse
Affiliation(s)
- Brett J West
- Research and Development, Morinda, Inc., 737 East 1180 South, American Fork, UT, 84003, USA.
| | - Shixin Deng
- Research and Development, Morinda, Inc., 737 East 1180 South, American Fork, UT, 84003, USA
| | - Akemi Uwaya
- Research and Development, Morinda, Inc., 737 East 1180 South, American Fork, UT, 84003, USA
| | - Fumiyuki Isami
- Research and Development, Morinda, Inc., 737 East 1180 South, American Fork, UT, 84003, USA
| | - Yumi Abe
- Anti-Aging Medical Research Center and Glycation Stress Research Center, Doshisha University, Kyoto, Japan
| | | | - C Jarakae Jensen
- Research and Development, Morinda, Inc., 737 East 1180 South, American Fork, UT, 84003, USA
| |
Collapse
|
12
|
Grzegorczyk-Karolak I, Gołąb K, Gburek J, Wysokińska H, Matkowski A. Inhibition of Advanced Glycation End-Product Formation and Antioxidant Activity by Extracts and Polyphenols from Scutellaria alpina L. and S. altissima L. Molecules 2016; 21:molecules21060739. [PMID: 27314314 PMCID: PMC6273165 DOI: 10.3390/molecules21060739] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 12/23/2022] Open
Abstract
Methanolic extracts from the aerial parts and roots of two Scutellaria species, S. alpina and S. altissima, and five polyphenols from these plants demonstrated a significant ability to inhibit the formation of advanced glycation end-products (AGE) in vitro. S. alpina, which is richer in polyphenolic compounds, had strong antiglycation properties. These extracts demonstrated also high activity in the FRAP (ferric-reducing antioxidant power), antiradical (DPPH) and lipid peroxidation inhibition assays. Among the pure compounds, baicalin was the strongest glycation inhibitor (90.4% inhibition at 100 μg/mL), followed by luteolin (85.4%). Two other flavone glycosides had about half of this activity. Verbascoside was similar to the reference drug aminoguanidine (71.2% and 75.9%, respectively). The strong correlation observed between AGE inhibition and total flavonoid content indicated that flavonoids contribute significantly to antiglycation properties. A positive correlation was also observed between antiglycative and antioxidant activities. The studied skullcap species can be considered as a potential source of therapeutic agents for hyperglycemia-related disorders.
Collapse
Affiliation(s)
- Izabela Grzegorczyk-Karolak
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, ul. Muszynskiego 1, Lodz 90-151, Poland.
| | - Krzysztof Gołąb
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, ul. Borowska 211A, Wroclaw 50-556, Poland.
| | - Jakub Gburek
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, ul. Borowska 211A, Wroclaw 50-556, Poland.
| | - Halina Wysokińska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, ul. Muszynskiego 1, Lodz 90-151, Poland.
| | - Adam Matkowski
- Department of Biology and Pharmaceutical Botany, Wroclaw Medical University, ul. Borowska 211, Wroclaw 50-556, Poland.
| |
Collapse
|
13
|
Heng XP, Yang LQ, Chen ML, Li L, Huang SP, Lei Y. Paradox of using intensive lowering of blood glucose in diabetics and strategies to overcome it and decrease cardiovascular risks. Chin J Integr Med 2015; 21:791-800. [PMID: 26525551 DOI: 10.1007/s11655-015-0780-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Indexed: 02/06/2023]
Abstract
Hyperglycemia significantly increases the risk of cardiovascular disease (CVD) in diabetics. However, it has been shown by a series of large scale international studies that intensive lowering of blood glucose levels not only has very limited benefits against cardiovascular problems in patients, but may even be harmful to patients at a high risk for CVD and/or poor long-term control of blood glucose levels. Therefore, Western medicine is faced with a paradox. One way to solve this may be administration of Chinese herbal medicines that not only regulate blood glucose, blood fat levels and blood pressure, but also act on multiple targets. These medicines can eliminate cytotoxicity of high glucose through anti-inflammatory and anti-oxidant methods, regulation of cytokines and multiple signaling molecules, and maintenance of cell vitality and the cell cycle, etc. This allows hyperglycemic conditions to exist in a healthy manner, which is called "harmless hyperglycemia" Furthermore, these cardiovascular benefits go beyond lowering blood glucose levels. The mechanisms of action not only avoid cardiovascular injury caused by intensive lowering of blood glucose levels, but also decrease the cardiovascular dangers posed by hyperglycemia.
Collapse
Affiliation(s)
- Xian-pei Heng
- Department of Endocrinology, Peoples Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Peoples Hospital of Fujian Province, Fuzhou, 350004, China.
| | - Liu-qing Yang
- Department of Endocrinology, Peoples Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Peoples Hospital of Fujian Province, Fuzhou, 350004, China
| | - Min-ling Chen
- Department of Endocrinology, Peoples Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Peoples Hospital of Fujian Province, Fuzhou, 350004, China
| | - Liang Li
- Department of Endocrinology, Peoples Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Peoples Hospital of Fujian Province, Fuzhou, 350004, China
| | - Su-ping Huang
- Academy of Integrative Medicine Fujian China, Fuzhou, 350122, China
| | - Ying Lei
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| |
Collapse
|
14
|
Satheesan S, Figarola JL, Dabbs T, Rahbar S, Ermel R. Effects of a new advanced glycation inhibitor, LR-90, on mitigating arterial stiffening and improving arterial elasticity and compliance in a diabetic rat model: aortic impedance analysis. Br J Pharmacol 2015; 171:3103-14. [PMID: 24611770 DOI: 10.1111/bph.12656] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 02/08/2014] [Accepted: 02/17/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE We determined the effects of treatment with LR-90, an inhibitor of advanced glycation end products, on the mechanical properties of the arterial system in streptozotocin (STZ)-induced diabetic Sprague Dawley rats, using aortic impedance analysis, and further investigated the effects of LR-90 on the progression of aortic pathology. EXPERIMENTAL APPROACH STZ-induced diabetic rats were treated with or without LR-90 (50 mg L(-1) in drinking water) for 8 weeks and compared with control groups. Arterial BP measurements, various metabolic parameters, aortic histopathology, collagen cross-linking, AGE accumulation, and RAGE protein expression in aortic tissue were determined. Pulsatile parameters were evaluated using a standard Fourier series expansion technique and impulse response function of the filtered aortic input impedance spectra. KEY RESULTS LR-90 reduced glycated haemoglobin and triglycerides levels, although it had no effect on the glycaemic status. LR-90 did not affect arterial BP, but prevented the diabetes-induced increase in peripheral resistance and variations in aortic distensibility, as it reduced aortic characteristic impedance by 21%. LR-90 also prevented the elevation in wave reflection factor, as indicated by a 22.5% reduction and an associated increase of 23.5% in wave transit time, suggesting it prevents the augmentation of the systolic load of the left ventricle. Moreover, LR-90 inhibited collagen cross-linking and the accumulation of AGE and RAGE in the vasculature of diabetic rats. CONCLUSIONS AND IMPLICATIONS Treatment with LR-90 may impart significant protection against diabetes-induced aortic stiffening and cardiac hypertrophy and provides an additional therapeutic option for treatment of AGE associated diabetic complications.
Collapse
Affiliation(s)
- S Satheesan
- Division of Comparative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | | | | | | | | |
Collapse
|
15
|
Kaida Y, Fukami K, Matsui T, Higashimoto Y, Nishino Y, Obara N, Nakayama Y, Ando R, Toyonaga M, Ueda S, Takeuchi M, Inoue H, Okuda S, Yamagishi SI. DNA aptamer raised against AGEs blocks the progression of experimental diabetic nephropathy. Diabetes 2013; 62:3241-50. [PMID: 23630304 PMCID: PMC3749365 DOI: 10.2337/db12-1608] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advanced glycation end products (AGEs) and their receptor (RAGE) play a role in diabetic nephropathy. We screened DNA aptamer directed against AGEs (AGEs-aptamer) in vitro and examined its effects on renal injury in KKAy/Ta mice, an animal model of type 2 diabetes. Eight-week-old male KKAy/Ta or C57BL/6J mice received continuous intraperitoneal infusion of AGEs- or control-aptamer for 8 weeks. AGEs-aptamer was detected and its level was increased in the kidney for at least 7 days. The elimination half-lives of AGEs-aptamer in the kidney were about 7 days. Compared with those in C57BL/6J mice, glomerular AGEs levels were significantly increased in KKAy/Ta mice, which were blocked by AGEs-aptamer. Urinary albumin and 8-hydroxy-2'-deoxy-guanosine levels were increased, and glomerular hypertrophy and enhanced extracellular matrix accumulation were observed in KKAy/Ta mice, all of which were prevented by AGEs-aptamer. Moreover, AGEs-aptamer significantly reduced gene expression of RAGE, monocyte chemoattractant protein-1, connective tissue growth factor, and type IV collagen both in the kidney of KKAy/Ta mice and in AGE-exposed human cultured mesangial cells. Our present data suggest that continuous administration of AGEs-aptamer could protect against experimental diabetic nephropathy by blocking the AGEs-RAGE axis and may be a feasible and promising therapeutic strategy for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Yusuke Kaida
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Kei Fukami
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Corresponding authors: Kei Fukami, , and Sho-ichi Yamagishi,
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Complications, Kurume University School of Medicine, Kurume, Japan
| | - Yuichiro Higashimoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Yuri Nishino
- Department of Pathophysiology and Therapeutics of Diabetic Complications, Kurume University School of Medicine, Kurume, Japan
| | - Nana Obara
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yosuke Nakayama
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ryotaro Ando
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Maki Toyonaga
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Seiji Ueda
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Masayoshi Takeuchi
- Department of Advanced Medicine Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Hiroyoshi Inoue
- Department of Chemistry, Keio University School of Medicine, Tokyo, Japan
| | - Seiya Okuda
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sho-ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Complications, Kurume University School of Medicine, Kurume, Japan
- Corresponding authors: Kei Fukami, , and Sho-ichi Yamagishi,
| |
Collapse
|
16
|
Dai H, Yu Z, Fan X, Liu N, Yan M, Chen Z, Lo EH, Hajjar KA, Wang X. Dysfunction of annexin A2 contributes to hyperglycaemia-induced loss of human endothelial cell surface fibrinolytic activity. Thromb Haemost 2013; 109:1070-8. [PMID: 23572070 DOI: 10.1160/th12-12-0944] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/05/2013] [Indexed: 12/30/2022]
Abstract
Hyperglycaemia impairs fibrinolytic activity on the surface of endothelial cells, but the underlying mechanisms are not fully understood. In this study, we tested the hypothesis that hyperglycaemia causes dysfunction of the endothelial membrane protein annexin A2, thereby leading to an overall reduction of fibrinolytic activity. Hyperglycaemia for 7 days significantly reduced cell surface fibrinolytic activity in human brain microvascular endothelial cells (HBMEC). Hyperglycaemia also decreased tissue type plasminogen activator (t-PA), plasminogen, and annexin A2 mRNA and protein expression, while increasing plasminogen activator inhibitor-1 (PAI-1). No changes in p11 mRNA or protein expression were detected. Hyperglycaemia significantly increased AGE-modified forms of total cellular and membrane annexin A2. The hyperglycemia-associated reduction in fibrinolytic activity was fully restored upon incubation with recombinant annexin A2 (rA2), but not AGE-modified annexin A2 or exogenous t-PA. Hyperglycaemia decreased t-PA, upregulated PAI-1 and induced AGE-related disruption of annexin A2 function, all of which contributed to the overall reduction in endothelial cell surface fibrinolytic activity. Further investigations to elucidate the underlying molecular mechanisms and pathophysiological implications of A2 derivatisation might ultimately lead to a better understanding of mechanisms of impaired vascular fibrinolysis, and to development of new interventional strategies for the thrombotic vascular complications in diabetes.
Collapse
Affiliation(s)
- Haibin Dai
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tahara N, Yamagishi SI, Takeuchi M, Honda A, Tahara A, Nitta Y, Kodama N, Mizoguchi M, Kaida H, Ishibashi M, Hayabuchi N, Matsui T, Imaizumi T. Positive association between serum level of glyceraldehyde-derived advanced glycation end products and vascular inflammation evaluated by [(18)F]fluorodeoxyglucose positron emission tomography. Diabetes Care 2012; 35:2618-25. [PMID: 22912424 PMCID: PMC3507595 DOI: 10.2337/dc12-0087] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Advanced glycation end products (AGEs) evoke inflammatory reactions, contributing to the development and progression of atherosclerosis. We investigated the relationship between serum AGE level and vascular inflammation. RESEARCH DESIGN AND METHODS The study involved 275 outpatients at Kurume University, Japan (189 males and 86 females; mean age 61.2 ± 8.8 years) who underwent complete history and physical examinations and determinations of blood chemistry and anthropometric variables, including AGEs. Serum AGE level was examined by enzyme-linked immunosorbent assay. Vascular [(18)F]fluorodeoxyglucose (FDG) uptake, an index of vascular inflammation, was measured as blood-normalized standardized uptake value, known as the target-to-background ratio (TBR), by FDG-positron emission tomography (FDG-PET). Furthermore, we examined whether the changes in serum AGE level after treatment with oral hypoglycemia agents (OHAs) were correlated with those of TBR in another 18 subjects whose AGE value was >14.2 units/mL (mean ± 2 SD). RESULTS Mean serum AGE level and carotid TBR values were 9.15 ± 2.53 and 1.43 ± 0.22 units/mL, respectively. Multiple stepwise regression analysis revealed that TBR was independently correlated with AGEs (P < 0.001), carotid intima-media thickness (P < 0.01), and BMI (P < 0.02). When age- and sex-adjusted AGE values stratified by TBR tertiles were compared using ANCOVA, a significant trend was observed (P < 0.01). In addition, the changes in AGEs after OHA treatment were positively (r = 0.50, P < 0.05) correlated with those in TBR value. CONCLUSIONS The current study reveals that serum AGE level is independently associated with vascular inflammation evaluated by FDG-PET, suggesting that circulating AGE value may be a biomarker that could reflect vascular inflammation within an area of atherosclerosis.
Collapse
Affiliation(s)
- Nobuhiro Tahara
- Department of Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, Kurume, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|