1
|
Xu ST, Jin HW, Jin X, Xu BX, Zhang Y, Xie T, Wang G, Wang J, Zhen L. Development and validation for bioanalysis of VK2809, its active metabolite VK2809A and glutathione-conjugated metabolite MB06588 in rat liver using LC-MS/MS. J Pharm Biomed Anal 2023; 234:115595. [PMID: 37487290 DOI: 10.1016/j.jpba.2023.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
VK2809 is a promising drug candidate in Phase II clinical trials for the treatment of non-alcoholic steatohepatitis (NASH). It is a prodrug with a HepDirect strategy, which can achieve selective hepatic metabolic activation, generating an active metabolite VK2809A as a potent and selective agonist for thyroid hormone receptor beta (TRβ), a concomitant reactive metabolite VK2809B, and a glutathione (GSH) conjugate MB06588. Currently, there is no convenient and sensitive bioanalytical method for the simultaneous determination of the above three metabolites. Herein, we established an LC-MS/MS method to separate VK2809 and its metabolites on the XSelect HSS T3 column and quantified them in negative electrospray ionization mode. Subsequently, several factors were investigated such as the use of 60% acetonitrile for homogenization to stabilize the analytes, the addition of 20 mM glutathione for the derivation of VK2809B, and the protein precipitation with methanol containing Sobetirome as the internal standard (IS). The method exhibited good linearity for all compounds (19.4-388.4 nM for VK2809; 27.4-2744.4 nM for VK2809A and 10.6-211.0 nM for MB06588) with great correlation coefficients (r > 0.996). The method validation also demonstrated acceptable precision (RSD < 13.0% for VK2809, RSD < 7.9% for VK2809A, RSD < 14.4% for MB06588) and accuracy (92.7%-103% for VK2809, 91.2%-107.3% for VK2809A, 96%-106.7% for MB06588). The matrix effect, recovery, and stability were also suitable to determine all the analytes. This method is suitable for the bioanalysis of VK2809 and its metabolites and has been successfully applied to the study of intrahepatic exposure in rats. It is expected to be further practiced in drug design, optimization, and metabolism study in the following research.
Collapse
Affiliation(s)
- Si-Tao Xu
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hao-Wen Jin
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xin Jin
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bi-Xin Xu
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yu Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Tao Xie
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jiankun Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Le Zhen
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Abstract
Cumulative research over several decades has implicated the involvement of reactive metabolites in many idiosyncratic adverse drug reactions (IADRs). Consequently, "avoidance" strategies have been inserted into drug discovery paradigms, which include the exclusion of structural alerts and possible termination of reactive metabolite-positive compounds. Several noteworthy examples where reactive metabolite-related liabilities have been resolved through structure-metabolism studies are presented herein. Considerable progress has also been made in addressing the limitations of the avoidance strategy and further refining the process of managing reactive metabolite issues in drug development. These efforts primarily stemmed from the observation that numerous drugs, which contain structural alerts and/or form reactive metabolites, are devoid of ADRs. The Perspective also dwells into an analysis of the structural alert/reactive metabolite concept with a discussion of risk mitigation tactics to support the progression of reactive metabolite-positive drug candidates.
Collapse
Affiliation(s)
- Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development and Medical, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Abstract
Given the distinctive characteristics of both epilepsy and antiepileptic drugs (AEDs), therapeutic drug monitoring (TDM) can make a significant contribution to the field of epilepsy. The measurement and interpretation of serum drug concentrations can be of benefit in the treatment of uncontrollable seizures and in cases of clinical toxicity; it can aid in the individualization of therapy and in adjusting for variable or nonlinear pharmacokinetics; and can be useful in special populations such as pregnancy. This review examines the potential for TDM of newer AEDs such as eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, perampanel, pregabalin, rufinamide, retigabine, stiripentol, tiagabine, topiramate, vigabatrin, and zonisamide. We describe the relationships between serum drug concentration, clinical effect, and adverse drug reactions for each AED as well as the different analytical methods used for serum drug quantification. We discuss retrospective studies and prospective data on the serum drug concentration-efficacy of these drugs and present the pharmacokinetic parameters, oral bioavailability, reference concentration range, and active metabolites of newer AEDs. Limited data are available for recent AEDs, and we discuss the connection between drug concentrations in terms of clinical efficacy and nonresponse. Although we do not propose routine TDM, serum drug measurement can play a beneficial role in patient management and treatment individualization. Standardized studies designed to assess, in particular, concentration-efficacy-toxicity relationships for recent AEDs are urgently required.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutics, College of Pharmacy, Gulf Medical University, University Street, P.O.Box No.4184, Ajman, UAE.
| | - Anroop B Nair
- Department of Pharmaceutics, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
4
|
Khaleghi-Rad A, Beyramabadi SA, Morsali A, Ebrahimi M, Khorzandi-Chenarboo M. Tautomerism of the antiepileptic drug Felbamate: A DFT study. J STRUCT CHEM+ 2017. [DOI: 10.1134/s0022476617020044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Shang Z, Wang F, Dai S, Lu J, Wu X, Zhang J. Profiling and identification of (−)-epicatechin metabolites in rats using ultra-high performance liquid chromatography coupled with linear trap-Orbitrap mass spectrometer. Drug Test Anal 2017; 9:1224-1235. [DOI: 10.1002/dta.2155] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/16/2016] [Accepted: 12/29/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Zhanpeng Shang
- School of Chinese Pharmacy; Beijing University of Chinese Medicine; No. 6, Wang Jing Zhong Huan Nang Lu South Road, Wangjing, Chaoyang District Beijing 100102 China
| | - Fei Wang
- School of Chinese Pharmacy; Beijing University of Chinese Medicine; No. 6, Wang Jing Zhong Huan Nang Lu South Road, Wangjing, Chaoyang District Beijing 100102 China
| | - Shengyun Dai
- School of Chinese Pharmacy; Beijing University of Chinese Medicine; No. 6, Wang Jing Zhong Huan Nang Lu South Road, Wangjing, Chaoyang District Beijing 100102 China
| | - Jianqiu Lu
- Library of Beijing University of Chinese Medicine; Beijing University of Chinese Medicine; No. 11, Bei San Huan Dong Lu, Chaoyang District Beijing 100029 China
| | - Xiaodan Wu
- Department of Herbal Medicine, School of Basic Medical Sciences; Beijing University of Chinese Medicine; No. 11, Bei San Huan Dong Lu, Chaoyang District Beijing 100029 China
| | - Jiayu Zhang
- Beijing Research Institute of Chinese Medicine; Beijing University of Chinese Medicine; No. 11, Bei San Huan Dong Lu, Chaoyang District Beijing 100029 China
| |
Collapse
|
6
|
Dried blood spots for monitoring and individualization of antiepileptic drug treatment. Eur J Pharm Sci 2015; 75:25-39. [DOI: 10.1016/j.ejps.2015.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/21/2022]
|
7
|
Kalgutkar AS, Dalvie D. Predicting toxicities of reactive metabolite-positive drug candidates. Annu Rev Pharmacol Toxicol 2014; 55:35-54. [PMID: 25292426 DOI: 10.1146/annurev-pharmtox-010814-124720] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Because of the inability to predict and quantify the risk of idiosyncratic adverse drug reactions (IADRs) and because reactive metabolites (RMs) are thought to be responsible for the pathogenesis of some IADRs, the potential for RM formation within new chemical entities is routinely examined with the ultimate goal of eliminating or reducing the liability through iterative design. Likewise, avoidance of structural alerts is almost a standard practice in drug design. However, the perceived safety concerns associated with the use of structural alerts and/or RM screening tools as standalone predictors of toxicity risks may be overexaggerated. Numerous marketed drugs form RMs but do not cause idiosyncratic toxicity. In this review article, we present a critique of the structural alert/RM concept as applied in drug discovery and evaluate the evidence linking structural alerts and RMs to observed toxic effects. Pragmatic risk mitigation strategies to aid the advancement of drug candidates that carry a RM liability are also discussed.
Collapse
Affiliation(s)
- Amit S Kalgutkar
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Worldwide Research and Development, 1Cambridge, Massachusetts 02139 and
| | | |
Collapse
|
8
|
Abstract
Blood (serum/plasma) antiepileptic drug (AED) therapeutic drug monitoring (TDM) has proven to be an invaluable surrogate marker for individualizing and optimizing the drug management of patients with epilepsy. Since 1989, there has been an exponential increase in AEDs with 23 currently licensed for clinical use, and recently, there has been renewed and extensive interest in the use of saliva as an alternative matrix for AED TDM. The advantages of saliva include the fact that for many AEDs it reflects the free (pharmacologically active) concentration in serum; it is readily sampled, can be sampled repetitively, and sampling is noninvasive; does not require the expertise of a phlebotomist; and is preferred by many patients, particularly children and the elderly. For each AED, this review summarizes the key pharmacokinetic characteristics relevant to the practice of TDM, discusses the use of other biological matrices with particular emphasis on saliva and the evidence that saliva concentration reflects those in serum. Also discussed are the indications for salivary AED TDM, the key factors to consider when saliva sampling is to be undertaken, and finally, a practical protocol is described so as to enable AED TDM to be applied optimally and effectively in the clinical setting. Overall, there is compelling evidence that salivary TDM can be usefully applied so as to optimize the treatment of epilepsy with carbamazepine, clobazam, ethosuximide, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, phenobarbital, phenytoin, primidone, topiramate, and zonisamide. Salivary TDM of valproic acid is probably not helpful, whereas for clonazepam, eslicarbazepine acetate, felbamate, pregabalin, retigabine, rufinamide, stiripentol, tiagabine, and vigabatrin, the data are sparse or nonexistent.
Collapse
|
9
|
Ryder T, Walker GS, Goosen TC, Ruggeri RB, Conn EL, Rocke BN, Lapham K, Steppan CM, Hepworth D, Kalgutkar AS. Insights into the Novel Hydrolytic Mechanism of a Diethyl 2-Phenyl-2-(2-arylacetoxy)methyl Malonate Ester-Based Microsomal Triglyceride Transfer Protein (MTP) Inhibitor. Chem Res Toxicol 2012; 25:2138-52. [DOI: 10.1021/tx300243v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Tim Ryder
- Pharmacokinetics, Dynamics, and Metabolism−New
Chemical Entities, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Gregory S. Walker
- Pharmacokinetics, Dynamics, and Metabolism−New
Chemical Entities, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Theunis C. Goosen
- Pharmacokinetics, Dynamics, and Metabolism−New
Chemical Entities, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Roger B. Ruggeri
- Cardiovascular Metabolic and Endocrine Diseases Medicinal
Chemistry, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Edward L. Conn
- Cardiovascular Metabolic and Endocrine Diseases
Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Benjamin N. Rocke
- Cardiovascular Metabolic and Endocrine Diseases
Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Kimberly Lapham
- Pharmacokinetics, Dynamics, and Metabolism−New
Chemical Entities, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Claire M. Steppan
- Pharmacokinetics, Dynamics, and Metabolism−New
Chemical Entities, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - David Hepworth
- Cardiovascular Metabolic and Endocrine Diseases Medicinal
Chemistry, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Amit S. Kalgutkar
- Pharmacokinetics, Dynamics, and Metabolism−New
Chemical Entities, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Johannessen Landmark C, Johannessen SI, Tomson T. Host factors affecting antiepileptic drug delivery-pharmacokinetic variability. Adv Drug Deliv Rev 2012; 64:896-910. [PMID: 22063021 DOI: 10.1016/j.addr.2011.10.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/11/2011] [Accepted: 10/14/2011] [Indexed: 01/16/2023]
Abstract
Antiepileptic drugs (AEDs) are the mainstay in the treatment of epilepsy, one of the most common serious chronic neurological disorders. AEDs display extensive pharmacological variability between and within patients, and a major determinant of differences in response to treatment is pharmacokinetic variability. Host factors affecting AED delivery may be defined as the pharmacokinetic characteristics that determine the AED delivery to the site of action, the epileptic focus. Individual differences may occur in absorption, distribution, metabolism and excretion. These differences can be determined by genetic factors including gender and ethnicity, but the pharmacokinetics of AEDs can also be affected by age, specific physiological states in life, such as pregnancy, or pathological conditions including hepatic and renal insufficiency. Pharmacokinetic interactions with other drugs are another important source of variability in response to AEDs. Pharmacokinetic characteristics of the presently available AEDs are discussed in this review as well as their clinical implications.
Collapse
|
11
|
Wong YC, Qian S, Zuo Z. Regioselective biotransformation of CNS drugs and its clinical impact on adverse drug reactions. Expert Opin Drug Metab Toxicol 2012; 8:833-54. [DOI: 10.1517/17425255.2012.688027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Vacondio F, Silva C, Mor M, Testa B. Qualitative structure-metabolism relationships in the hydrolysis of carbamates. Drug Metab Rev 2011; 42:551-89. [PMID: 20441444 DOI: 10.3109/03602531003745960] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aims of this review were 1) to compile a large number of reliable literature data on the metabolic hydrolysis of medicinal carbamates and 2) to extract from such data a qualitative relation between molecular structure and lability to metabolic hydrolysis. The compounds were classified according to the nature of their substituents (R³OCONR¹R²), and a metabolic lability score was calculated for each class. A trend emerged, such that the metabolic lability of carbamates decreased (i.e., their metabolic stability increased), in the following series: Aryl-OCO-NHAlkyl >> Alkyl-OCO-NHAlkyl ~ Alkyl-OCO-N(Alkyl)₂ ≥ Alkyl-OCO-N(endocyclic) ≥ Aryl-OCO-N(Alkyl)₂ ~ Aryl-OCO-N(endocyclic) ≥ Alkyl-OCO-NHAryl ~ Alkyl-OCO-NHAcyl >> Alkyl-OCO-NH₂ > Cyclic carbamates. This trend should prove useful in the design of carbamates as drugs or prodrugs.
Collapse
Affiliation(s)
- Federica Vacondio
- Dipartimento Farmaceutico, Università degli Studi di Parma, Parma, Italy.
| | | | | | | |
Collapse
|
13
|
Stepan AF, Walker DP, Bauman J, Price DA, Baillie TA, Kalgutkar AS, Aleo MD. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem Res Toxicol 2011; 24:1345-410. [PMID: 21702456 DOI: 10.1021/tx200168d] [Citation(s) in RCA: 500] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Because of a preconceived notion that eliminating reactive metabolite (RM) formation with new drug candidates could mitigate the risk of idiosyncratic drug toxicity, the potential for RM formation is routinely examined as part of lead optimization efforts in drug discovery. Likewise, avoidance of "structural alerts" is almost a norm in drug design. However, there is a growing concern that the perceived safety hazards associated with structural alerts and/or RM screening tools as standalone predictors of toxicity risks may be over exaggerated. In addition, the multifactorial nature of idiosyncratic toxicity is now well recognized based upon observations that mechanisms other than RM formation (e.g., mitochondrial toxicity and inhibition of bile salt export pump (BSEP)) also can account for certain target organ toxicities. Hence, fundamental questions arise such as: When is a molecule that contains a structural alert (RM positive or negative) a cause for concern? Could the molecule in its parent form exert toxicity? Can a low dose drug candidate truly mitigate metabolism-dependent and -independent idiosyncratic toxicity risks? In an effort to address these questions, we have retrospectively examined 68 drugs (recalled or associated with a black box warning due to idiosyncratic toxicity) and the top 200 drugs (prescription and sales) in the United States in 2009 for trends in physiochemical characteristics, daily doses, presence of structural alerts, evidence for RM formation as well as toxicity mechanism(s) potentially mediated by parent drugs. Collectively, our analysis revealed that a significant proportion (∼78-86%) of drugs associated with toxicity contained structural alerts and evidence indicating that RM formation as a causative factor for toxicity has been presented in 62-69% of these molecules. In several cases, mitochondrial toxicity and BSEP inhibition mediated by parent drugs were also noted as potential causative factors. Most drugs were administered at daily doses exceeding several hundred milligrams. There was no obvious link between idiosyncratic toxicity and physicochemical properties such as molecular weight, lipophilicity, etc. Approximately half of the top 200 drugs for 2009 (prescription and sales) also contained one or more alerts in their chemical architecture, and many were found to be RM-positive. Several instances of BSEP and mitochondrial liabilities were also noted with agents in the top 200 category. However, with relatively few exceptions, the vast majority of these drugs are rarely associated with idiosyncratic toxicity, despite years of patient use. The major differentiating factor appeared to be the daily dose; most of the drugs in the top 200 list are administered at low daily doses. In addition, competing detoxication pathways and/or alternate nonmetabolic clearance routes provided suitable justifications for the safety records of RM-positive drugs in the top 200 category. Thus, while RM elimination may be a useful and pragmatic starting point in mitigating idiosyncratic toxicity risks, our analysis suggests a need for a more integrated screening paradigm for chemical hazard identification in drug discovery. Thus, in addition to a detailed assessment of RM formation potential (in relationship to the overall elimination mechanisms of the compound(s)) for lead compounds, effects on cellular health (e.g., cytotoxicity assays), BSEP inhibition, and mitochondrial toxicity are the recommended suite of assays to characterize compound liabilities. However, the prospective use of such data in compound selection will require further validation of the cellular assays using marketed agents. Until we gain a better understanding of the pathophysiological mechanisms associated with idiosyncratic toxicities, improving pharmacokinetics and intrinsic potency as means of decreasing the dose size and the associated "body burden" of the parent drug and its metabolites will remain an overarching goal in drug discovery.
Collapse
Affiliation(s)
- Antonia F Stepan
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Kang J, Park YS, Kim SH, Kim SH, Jun MY. Modern methods for analysis of antiepileptic drugs in the biological fluids for pharmacokinetics, bioequivalence and therapeutic drug monitoring. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:67-81. [PMID: 21660146 DOI: 10.4196/kjpp.2011.15.2.67] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/10/2011] [Accepted: 04/15/2011] [Indexed: 12/20/2022]
Abstract
Epilepsy is a chronic disease occurring in approximately 1.0% of the world's population. About 30% of the epileptic patients treated with availably antiepileptic drugs (AEDs) continue to have seizures and are considered therapy-resistant or refractory patients. The ultimate goal for the use of AEDs is complete cessation of seizures without side effects. Because of a narrow therapeutic index of AEDs, a complete understanding of its clinical pharmacokinetics is essential for understanding of the pharmacodynamics of these drugs. These drug concentrations in biological fluids serve as surrogate markers and can be used to guide or target drug dosing. Because early studies demonstrated clinical and/or electroencephalographic correlations with serum concentrations of several AEDs, It has been almost 50 years since clinicians started using plasma concentrations of AEDs to optimize pharmacotherapy in patients with epilepsy. Therefore, validated analytical method for concentrations of AEDs in biological fluids is a necessity in order to explore pharmacokinetics, bioequivalence and TDM in various clinical situations. There are hundreds of published articles on the analysis of specific AEDs by a wide variety of analytical methods in biological samples have appears over the past decade. This review intends to provide an updated, concise overview on the modern method development for monitoring AEDs for pharmacokinetic studies, bioequivalence and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Juseop Kang
- Pharmacology & Clinical Pharmacology Lab, College of Medicine, Hanyang University, Seoul 133-791, Korea
| | | | | | | | | |
Collapse
|
15
|
Hansen RJ, Samber BJ, Gustafson DL. Rapid and sensitive LC-MS/MS method for determination of felbamate in mouse plasma and tissues and human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:3432-6. [PMID: 21081288 PMCID: PMC4278804 DOI: 10.1016/j.jchromb.2010.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 09/28/2010] [Accepted: 10/08/2010] [Indexed: 11/24/2022]
Abstract
Felbamate (2-phenyl-1,3-propanediol dicarbamate) is a second generation antiepileptic drug used to treat seizures refractory to other antiepileptic drugs. With approximately 3500 new patients exposed annually, several important pharmacologic interaction questions remain unanswered necessitating the need for rapid and accurate methods of felbamate analysis in biological matrices. To this end, a rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for the measurement of felbamate in mouse plasma and tissues and human plasma. Plasma (100 μL) and tissues homogenates (100 μL of 100 mg/mL) were spiked with internal standard (carisoprodol) prior to protein precipitation with acetonitrile. Samples were chromatographed on a XBridge Phenyl, 2.5 μm, 4.6 mm×50 mm column with quantitation by internal standard reference monitoring of the ion transitions m/z 239→117 for felbamate and m/z 261→176 for carisoprodol. Calibration curves were linear from 2.5 to 500 ng/mL in mouse or human plasma and 25-5000 pg/mg in tissue homogenates. Recoveries were greater than 97% for plasma and homogenates with accuracies >92% in any of the mouse matrices and >88% in human plasma. Comparable accuracies and precision were found with and without the use of the internal standard in preparation of the calibration curves and suggest that the internal standard may not be required.
Collapse
Affiliation(s)
- Ryan J. Hansen
- Pharmacology Core Laboratory, Department of Clinical Sciences, Animal Cancer Center, Colorado State University, Fort Collins, CO 80523-1678, United States
| | - Bradley J. Samber
- Pharmacology Core Laboratory, Department of Clinical Sciences, Animal Cancer Center, Colorado State University, Fort Collins, CO 80523-1678, United States
| | - Daniel L. Gustafson
- Pharmacology Core Laboratory, Department of Clinical Sciences, Animal Cancer Center, Colorado State University, Fort Collins, CO 80523-1678, United States
| |
Collapse
|
16
|
Krasowski MD. Therapeutic Drug Monitoring of the Newer Anti-Epilepsy Medications. Pharmaceuticals (Basel) 2010; 3:1909-1935. [PMID: 20640233 PMCID: PMC2904466 DOI: 10.3390/ph3061909] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 05/11/2010] [Accepted: 06/09/2010] [Indexed: 11/16/2022] Open
Abstract
In the past twenty years, 14 new antiepileptic drugs have been approved for use in the United States and/or Europe. These drugs are eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, pregabalin, rufinamide, stiripentol, tiagabine, topiramate, vigabatrin and zonisamide. In general, the clinical utility of therapeutic drug monitoring has not been established in clinical trials for these new anticonvulsants, and clear guidelines for drug monitoring have yet to be defined. The antiepileptic drugs with the strongest justifications for drug monitoring are lamotrigine, oxcarbazepine, stiripentol, and zonisamide. Stiripentol and tiagabine are strongly protein bound and are candidates for free drug monitoring. Therapeutic drug monitoring has lower utility for gabapentin, pregabalin, and vigabatrin. Measurement of salivary drug concentrations has potential utility for therapeutic drug monitoring of lamotrigine, levetiracetam, and topiramate. Therapeutic drug monitoring of the new antiepileptic drugs will be discussed in managing patients with epilepsy.
Collapse
Affiliation(s)
- Matthew D Krasowski
- Department of Pathology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, RCP 6233, Iowa City, IA 52242
| |
Collapse
|
17
|
Abstract
In the past twenty years, 14 new antiepileptic drugs have been approved for use in the United States and/or Europe. These drugs are eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, pregabalin, rufinamide, stiripentol, tiagabine, topiramate, vigabatrin and zonisamide. In general, the clinical utility of therapeutic drug monitoring has not been established in clinical trials for these new anticonvulsants, and clear guidelines for drug monitoring have yet to be defined. The antiepileptic drugs with the strongest justifications for drug monitoring are lamotrigine, oxcarbazepine, stiripentol, and zonisamide. Stiripentol and tiagabine are strongly protein bound and are candidates for free drug monitoring. Therapeutic drug monitoring has lower utility for gabapentin, pregabalin, and vigabatrin. Measurement of salivary drug concentrations has potential utility for therapeutic drug monitoring of lamotrigine, levetiracetam, and topiramate. Therapeutic drug monitoring of the new antiepileptic drugs will be discussed in managing patients with epilepsy.
Collapse
|
18
|
Shetty SK, Surendranath KV, Kaja RK, Satish J, Jogul J, Manitripathi U. Development and validation of a stability-indicating UHPLC method for assay of felbamate and related substances. ACTA CHROMATOGR 2010. [DOI: 10.1556/achrom.22.2010.2.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Tribut O, Bentué-Ferrer D, Verdier MC. [Therapeutic drug monitoring of felbamate]. Therapie 2010; 65:35-8. [PMID: 20205993 DOI: 10.2515/therapie/2009068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/01/2009] [Accepted: 12/01/2009] [Indexed: 11/20/2022]
Abstract
Felbamate is a derivative of meprobamate used in second-line partial epilepsy and in the Lennox-Gastaut syndrome. Felbamate is well absorbed and has linear kinetics: C(max) and AUC increasing linearly with dose. The metabolism takes place in the liver. Metabolites represent 40 to 60% of excretion and are eliminated via the urine. The half-life is between 15 and 23 hours. Clearance is dependent on renal function. There is a concentration - efficacy and concentration - toxicity relationship. These arguments are in favour of a TDM but the therapeutic range is not clearly established. Potentially fatal side effects can be caused by felbamate (aplastic anemia, acute liver failure), which limits its use because they are dose-independant.
Collapse
Affiliation(s)
- Olivier Tribut
- Laboratoire de Pharmacologie Biologique, CHU Pontchaillou, Rennes, France.
| | | | | | | |
Collapse
|
20
|
Srivastava A, Lian LY, Maggs JL, Chaponda M, Pirmohamed M, Williams DP, Park BK. Quantifying the metabolic activation of nevirapine in patients by integrated applications of NMR and mass spectrometries. Drug Metab Dispos 2010; 38:122-32. [PMID: 19797610 PMCID: PMC2802423 DOI: 10.1124/dmd.109.028688] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 09/29/2009] [Indexed: 01/05/2023] Open
Abstract
Nevirapine (NVP), an antiretroviral drug, is associated with idiosyncratic hepatotoxicity and skin reactions. Metabolic pathways of haptenation and immunotoxicity mechanisms have been proposed. NVP is metabolized by liver microsomes to a reactive intermediate that binds irreversibly to protein and forms a GSH adduct. However, no reactive metabolite of NVP, trapped as stable thioether conjugates, has hitherto been identified in vivo. This study has defined the metabolism of NVP with respect to reactive intermediate formation in patients and a rat model of NVP-induced skin reactions. An integrated NMR and mass spectrometry approach has been developed to discover and quantify stable urinary metabolite biomarkers indicative of NVP bioactivation in patients. Two isomeric NVP mercapturates were identified in the urine of HIV-positive patients undergoing standard antiretroviral chemotherapy. The same conjugates were found in rat bile and urine. The mercapturates were isolated from rat bile and characterized definitively by NMR as thioethers substituted at the C-3 and exocyclic C-12 positions of the methylpyrido ring of NVP. It is proposed that NVP undergoes bioactivation to arene oxide and quinone methide intermediates. The purified major mercapturate was quantified by NMR and used to calibrate a mass spectrometric assay of the corresponding metabolite in patient urine. This is the first evidence for metabolic activation of NVP in humans, and only the second minimum estimate in patients of bioactivation of a widely prescribed drug associated with idiosyncratic toxicities. The method can be used as a template for comparative estimations of bioactivation of any drug in patients.
Collapse
Affiliation(s)
- Abhishek Srivastava
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, School of Biomedical Sciences, the University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Traditionally, only circulating concentrations of parent drug have been measured in the rodent and nonrodent test species used for drug safety assessments and served as an index of systemic exposure for comparisons to human exposures. Circulating concentrations of metabolites have generally only been measured in specialized circumstances (e.g., parent compound was extensively metabolized). Measurement of only the parent compound is usually sufficient when the metabolite profile in humans is similar to that in at least one of the animal species used in the nonclinical safety assessment. However, it is possible that metabolites formed in humans might not be present in the rodent and nonrodent test species used for drug safety assessments or the metabolites are formed at disproportionately higher concentrations in humans than in the animal test species. Generally, metabolites identified only in human plasma or metabolites present at disproportionately higher concentrations in humans than in any of the animal test species should be considered for safety assessment. The Center for Drug Evaluation and Research (CDER) published a Guidance for Industry on Safety Testing of Drug Metabolites that provides current thinking within CDER on the nonclinical safety assessment of human drug metabolites derived from drug products. The CDER guidance defines human metabolites that can raise a safety concern as those formed at greater than 10% of parent drug systemic exposure at a steady state. By contrast, the more recent International Conference on Harmonization: Guideline on Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals (ICH M3[R2]) describes the threshold as 10% of total drug-related exposure. Where they differ, the ICH guidance supersedes the CDER Guidance. The purpose of this article is to provide a perspective on the important details of these guidances from a regulatory review standpoint, as well as discuss some concerns that have arisen from the regulated industry regarding the CDER guidance. Such issues include parent drug that is extensively metabolized, metabolism by intestinal bacteria and metabolites formed by nonclinical test species but not humans.
Collapse
|
22
|
|
23
|
Jian W, Yao M, Zhang D, Zhu M. Rapid Detection and Characterization of in Vitro and Urinary N-Acetyl-l-cysteine Conjugates Using Quadrupole-Linear Ion Trap Mass Spectrometry and Polarity Switching. Chem Res Toxicol 2009; 22:1246-55. [DOI: 10.1021/tx900035j] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenying Jian
- Bioanalysis and Discovery Analytical Research and Biotransforamtion, Pharmaceutical Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543
| | - Ming Yao
- Bioanalysis and Discovery Analytical Research and Biotransforamtion, Pharmaceutical Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543
| | - Duxi Zhang
- Bioanalysis and Discovery Analytical Research and Biotransforamtion, Pharmaceutical Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543
| | - Mingshe Zhu
- Bioanalysis and Discovery Analytical Research and Biotransforamtion, Pharmaceutical Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543
| |
Collapse
|
24
|
Patsalos PN, Berry DJ, Bourgeois BFD, Cloyd JC, Glauser TA, Johannessen SI, Leppik IE, Tomson T, Perucca E. Antiepileptic drugs--best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia 2008; 49:1239-76. [PMID: 18397299 DOI: 10.1111/j.1528-1167.2008.01561.x] [Citation(s) in RCA: 731] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although no randomized studies have demonstrated a positive impact of therapeutic drug monitoring (TDM) on clinical outcome in epilepsy, evidence from nonrandomized studies and everyday clinical experience does indicate that measuring serum concentrations of old and new generation antiepileptic drugs (AEDs) can have a valuable role in guiding patient management provided that concentrations are measured with a clear indication and are interpreted critically, taking into account the whole clinical context. Situations in which AED measurements are most likely to be of benefit include (1) when a person has attained the desired clinical outcome, to establish an individual therapeutic concentration which can be used at subsequent times to assess potential causes for a change in drug response; (2) as an aid in the diagnosis of clinical toxicity; (3) to assess compliance, particularly in patients with uncontrolled seizures or breakthrough seizures; (4) to guide dosage adjustment in situations associated with increased pharmacokinetic variability (e.g., children, the elderly, patients with associated diseases, drug formulation changes); (5) when a potentially important pharmacokinetic change is anticipated (e.g., in pregnancy, or when an interacting drug is added or removed); (6) to guide dose adjustments for AEDs with dose-dependent pharmacokinetics, particularly phenytoin.
Collapse
Affiliation(s)
- Philip N Patsalos
- Institute of Neurology/The National Hospital for Neurology and Neurosurgery, London and The Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Inoue O, Kanno E, Kasai K, Ukai H, Okamoto S, Ikeda M. Benzylmercapturic acid is superior to hippuric acid and o-cresol as a urinary marker of occupational exposure to toluene. Toxicol Lett 2004; 147:177-86. [PMID: 14757321 DOI: 10.1016/j.toxlet.2003.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study was initiated to examine whether urinary benzylmercapturic acid (or N-acetyl-S-benzyl cysteine, BMA), a mercapturate metabolite of toluene, increases in relation to the intensity of toluene exposure, and whether this metabolite is a better marker of occupational exposure to toluene than two traditional markers, hippuric acid and o-cresol. Accordingly, end-of-shift urine samples were collected from 122 printers and 30 office clerks (all men) in the second half of a working week. Solvent (toluene) exposure of the day (8 h) was monitored by means of diffusive sampling. Quantitative relation with toluene showed that BMA had a greater correlation coefficient with toluene (r = 0.7) than hippuric acid (r = 0.6) or o-cresol (r = 0.6). The levels in the urine of the non-exposed control subjects were below the detection limit of 0.2 microg/l for BMA, whereas it was at substantial levels for hippuric acid and o-cresol (239 mg/l and 32 microg/l as a geometric mean, respectively). Thus, BMA, hippuric acid and o-cresol could separate the exposed from the non-exposed when toluene was at < 1, 50 and 3 ppm, respectively. Overall, therefore, it appeared reasonable to conclude that BMA is superior to hippuric acid and o-cresol as a marker of occupational exposure to toluene.
Collapse
Affiliation(s)
- O Inoue
- Tohoku Rosai Hospital, Sendai 981-0911, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Dieckhaus CM, Thompson CD, Roller SG, Macdonald TL. Mechanisms of idiosyncratic drug reactions: the case of felbamate. Chem Biol Interact 2002; 142:99-117. [PMID: 12399158 DOI: 10.1016/s0009-2797(02)00057-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Idiosyncratic drug reactions (IDR) are a specific type of drug toxicity characterized by their delayed onset, low incidence and reactive metabolite formation with little, if any, correlation between pharmacokinetics or pharmacodynamics and the toxicological outcome. As the name implies, IDR are unpredictable and often result in the post marketing failure of otherwise useful therapies. Examples of drugs, which have failed as a result of IDR in recent years, include trovafloxacin, zileuton, troglitazone, tolcapone and felbamate. To date there exists no pre-clinical model to predict these adverse drug reactions and a mechanistic understanding of these toxicities remains limited. In an attempt to better understand this class of drug toxicities and gain mechanistic insight, we have studied the IDR associated with a model compound, felbamate. Our studies with felbamate are consistent with the theory that compounds which cause IDR undergo bioactivation to a highly reactive electrophilic metabolite that is capable of forming covalent protein adducts in vivo. In additon, our data suggest that under normal physiological conditions glutathione plays a protective role in preventing IDR during felbamate therapy, further emphasizing a correlation between reactive metabolite formation and a toxic outcome. Clinical studies with felbamate have been able to demonstrate an association between reactive metabolite formation and a clinically relevant toxicity; however, additional research is required to more fully understand the link between reactive metabolite formation and the events which elicit toxicity. Going forward, it seems reasonable that screening for reactive metabolite formation in early drug discovery may be an important tool in eliminating the post-marketing failure of otherwise useful therapies.
Collapse
Affiliation(s)
- Christine M Dieckhaus
- Merck Research Laboratories, WP75-100, PO Box 4, Sumneytown Pike, West Point, PA 19486-0004, USA.
| | | | | | | |
Collapse
|
27
|
Walsh JS, Reese MJ, Thurmond LM. The metabolic activation of abacavir by human liver cytosol and expressed human alcohol dehydrogenase isozymes. Chem Biol Interact 2002; 142:135-54. [PMID: 12399160 DOI: 10.1016/s0009-2797(02)00059-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abacavir (ZIAGEN) is a reverse transcriptase inhibitor marketed for the treatment of HIV-1 infection. A small percentage of patients experience a hypersensitivity reaction indicating immune system involvement and bioactivation. A major route of metabolism for abacavir is oxidation of a primary betagamma unsaturated alcohol to a carboxylic acid via an aldehyde intermediate. This process was shown to be mediated in vitro by human cytosol and NAD, and subsequently the alphaalpha and gamma2gamma2 human isoforms of alcohol dehydrogenase (ADH). The alphaalpha isoform effected two sequential oxidation steps to form the acid metabolite and two isomers, qualitatively reflective of in vitro cytosolic profiles. The gamma2gamma2 isozyme generated primarily an isomer of abacavir, which was minor in the alphaalpha profiles. The aldehyde intermediate could be trapped in incubations with both isozymes as an oxime derivative. These metabolites can be rationalized as arising via the aldehyde which undergoes isomerization and further oxidation by the alphaalpha enzyme or reduction by the gamma2gamma2 isozyme. Non-extractable abacavir protein residues were generated in cytosol, and with alphaalpha and gamma2gamma2 incubations in the presence of human serum albumin (HSA). Metabolism and residue formation were blocked by the ADH inhibitor 4-methyl pyrazole (4-MP). The residues generated by the alphaalpha and gamma2gamma2 incubations were analyzed by SDS-PAGE with immunochemical detection. The binding of rabbit anti-abacavir antibody to abacavir-HSA was shown to be dependent on metabolism (i.e. NAD-dependent and 4-MP sensitive). The mechanism of covalent binding remains to be established, but significantly less abacavir-protein residue was detected with an analog of abacavir in which the double bond was removed, suggestive of a double bond migration and 1,4 addition process.
Collapse
Affiliation(s)
- John S Walsh
- Division of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, NC 27709-3398, USA.
| | | | | |
Collapse
|
28
|
Kapetanovic IM, Torchin CD, Strong JM, Yonekawa WD, Lu C, Li AP, Dieckhaus CM, Santos WL, Macdonald TL, Sofia RD, Kupferberg HJ. Reactivity of atropaldehyde, a felbamate metabolite in human liver tissue in vitro. Chem Biol Interact 2002; 142:119-34. [PMID: 12399159 DOI: 10.1016/s0009-2797(02)00058-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Antiepileptic therapy with a broad spectrum drug felbamate (FBM) has been limited due to reports of hepatotoxicity and aplastic anemia associated with its use. It was proposed that a bioactivation of FBM leading to formation of alpha,beta-unsaturated aldehyde, atropaldehyde (ATPAL) could be responsible for toxicities associated with the parent drug. Other members of this class of compounds, acrolein and 4-hydroxynonenal (HNE), are known for their reactivity and toxicity. It has been proposed that the bioactivation of FBM to ATPAL proceeds though a more stable cyclized product, 4-hydroxy-5-phenyltetrahydro-1,3-oxazin-2-one (CCMF) whose formation has been shown recently. Aldehyde dehydrogenase (ALDH) and glutathione transferase (GST) are detoxifying enzymes and targets for reactive aldehydes. This study examined effects of ATPAL and its precursor, CCMF on ALDH, GST and cell viability in liver, the target tissue for its metabolism and toxicity. A known toxin, HNE, which is also a substrate for ALDH and GST, was used for comparison. Interspecies difference in metabolism of FBM is well documented, therefore, human tissue was deemed most relevant and used for these studies. ATPAL inhibited ALDH and GST activities and led to a loss of hepatocyte viability. Several fold greater concentrations of CCMF were necessary to demonstrate a similar degree of ALDH inhibition or cytotoxicity as observed with ATPAL. This is consistent with CCMF requiring prior conversion to the more proximate toxin, ATPAL. GSH was shown to protect against ALDH inhibition by ATPAL. In this context, ALDH and GST are detoxifying pathways and their inhibition would lead to an accumulation of reactive species from FBM metabolism and/or metabolism of other endogenous or exogenous compounds and predisposing to or causing toxicity. Therefore, mechanisms of reactive aldehydes toxicity could include direct interaction with critical cellular macromolecules or indirect interference with cellular detoxification mechanisms.
Collapse
Affiliation(s)
- Izet M Kapetanovic
- Laboratory of Clinical Pharmacology, CDER, US FDA, MOD-1, Laurel, MD 20708, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The introduction of numerous effective, well tolerated and safe new antiepileptic drugs (AEDs) in the last decade of the 20th century has widened the choice of treatment options in epilepsy and improved the tolerability and the ease of use of treating patients with epilepsy. Nevertheless, significant safety and efficacy deficits continue to exist. Severe idiosyncratic reactions and organ toxicity have hampered the wide use of some of the newer AEDs. As a decade before, about one third of patients with chronic epilepsy is resistant to current pharmacotherapy. Even in patients in whom pharmacotherapy is efficacious, current AED do not seem to affect the progression or the underlying natural history of epilepsy. In addition, there is currently no drug available which prevents the development of epilepsy, e.g. after head trauma. Thus, there is an unmet need for safer and more effective drugs, especially for chronic, drug-resistant epilepsy. To stimulate the development of even better compounds, the demonstrated benefits and risks of current new AEDs are reviewed.
Collapse
Affiliation(s)
- Dieter Schmidt
- Epilepsy Research Group, Goethestrasse 5, Berlin, Germany.
| |
Collapse
|
30
|
Vonck K, Van Laere K, Dedeurwaerdere S, Caemaert J, De Reuck J, Boon P. The mechanism of action of vagus nerve stimulation for refractory epilepsy: the current status. J Clin Neurophysiol 2001; 18:394-401. [PMID: 11709643 DOI: 10.1097/00004691-200109000-00002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Vagus nerve stimulation (VNS) is a neurophysiologic treatment for patients with medically or surgically refractory epilepsy. Since the first human implant in 1989, more than 10,000 patients have been treated with VNS. The precise mechanism of action remains to be elucidated. Animal experiments with VNS were initially performed to demonstrate efficacy and safety preceding the clinical trials in human patients. Mechanism of action research involving animal experiments can provide essential clues. Animal experiments are often labor-intensive even in the hands of experienced researchers, however, and the results remain only a reflection of the complicated pathophysiologic systems of the human brain. Mechanism of action research in human patients treated with VNS is particularly challenging because of safety concerns, the large number of patients required, and the heterogeneous nature of various small patient series. This study provides an overview of the progress that has been made in the past 10 years through neurophysiologic, neuroanatomic, neurochemical, and cerebral blood flow studies in animals and patients treated with VNS. Further elucidation of the mechanism of action of VNS may increase its clinical efficacy. It may also provide inspiration for the development of new therapeutic modalities for refractory epilepsy.
Collapse
Affiliation(s)
- K Vonck
- Epilepsy Monitoring Unit, Department of Neurology, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
This article describes the mechanisms of idiosyncratic drug reactions (IDRs) and provides an analysis of potential methods for identifying patients at high risk for antiepileptic idiosyncratic drug reactions. IDRs may be caused by toxic metabolites, either directly or indirectly (by way of an immunologic response or a free radical-mediated process). Four methods to potentially identify patients at high risk for AED IDRs are discussed: development of an "at-risk" clinical profile for a particular AED: identification of biomarkers that measure the formation of a toxic metabolite by a previously unrecognized bioactivation pathway for a particular AED; identification of biomarkers indicating deficient detoxification abilities [e.g., deficient free radical scavenging enzyme activities or low calculated oxidative protection (COP) ratios 1 and 2]; and identification of at-risk genetic markers. Clinical profiles for patients receiving valproic acid (VPA), felbamate (FBM), and lamotrigine (LTG) and who are at risk for development of AED IDRs are presented. Patients with VPA IDRs have deficient erythrocyte glutathione peroxidase activity, low plasma selenium concentrations, low COP1 ratios, and low COP2 ratios compared with age-matched controls. Patients with FBM-associated aplastic anemia have deficient erythrocyte glutathione peroxidase, superoxide dismutase (SOD), and glutathione reductase activities compared with age-matched controls. Use of at-risk clinical profiles (for VPA, FBM, and LTG) and measurement of erythrocyte glutathione peroxidase activity, erythrocyte SOD activity, and calculation of COP1 and COP2 ratios (for VPA and FBM) are inexpensive, simple methods of identifying high-risk patients for IDRs. Research is needed to further characterize the mechanism of IDRs, to investigate the clinical utility of free radical-scavenging enzyme activity measurement and calculation of COP ratios for other AED IDRs, and to develop additional methods of identifying patients at high risk for AED IDRs.
Collapse
Affiliation(s)
- T A Glauser
- Department of Neurology, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| |
Collapse
|
32
|
Bialer M, Johannessen SI, Kupferberg HJ, Levy RH, Loiseau P, Perucca E. Progress report on new antiepileptic drugs: a summary of the Fifth Eilat Conference (EILAT V). Epilepsy Res 2001; 43:11-58. [PMID: 11137386 DOI: 10.1016/s0920-1211(00)00171-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Fifth Eilat Conference on New Antiepileptic Drugs (AEDs) took place at the Dan Hotel, Eilat, Israel, 25-29 June 2000. Basic scientists, clinical pharmacologists and neurologists from 20 countries attended the conference, whose main themes included recognition of unexpected adverse effects, new indications of AEDs, and patient-tailored AED therapy. According to tradition, the central part of the conference was devoted to a review of AEDs in development, as well to updates on AEDs that have been marketed in recent years. This article summarizes the information presented on drugs in preclinical and clinical development, including AWD 131-138, DP-valproate, harkoseride, LY300164, NPS 1776, NW 1015, pregabalin, remacemide, retigabine, rufinamide and valrocemide. The potential value of an innovative strategy, porcine embryonic GABAergic cell transplants, is also discussed. Finally, updates on felbamate, fosphenytoin, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, tiagabine, topiramate, vigabatrin, zonisamide, and the antiepileptic vagal stimulator device are presented.
Collapse
Affiliation(s)
- M Bialer
- School of Pharmacy and David R. Bloom Centre for Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
33
|
Oliveira EJ, Watson DG. Liquid chromatography-mass spectrometry in the study of the metabolism of drugs and other xenobiotics. Biomed Chromatogr 2000; 14:351-72. [PMID: 11002274 DOI: 10.1002/1099-0801(200010)14:6<351::aid-bmc28>3.0.co;2-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The application of liquid chromatography-mass spectrometry (LC/MS) to the study of metabolism of drugs and other xenobiotics is reviewed. Original research papers covering the period from 1998 to early 2000 and concerning the use of LC/MS in the study of xenobiotic metabolism in humans and other mammalian species are reviewed. LC/MS interfaces, sample preparation steps, column types, mobile phases and additives, and the type of metabolites detected are summarized and discussed in an attempt to identify the current and future trends in the use of LC/MS for metabolism studies. Applications are listed according to the parent xenobiotic type and include substances used in therapeutics, drug candidates, compounds being evaluated in clinical trials, environmental pollutants, adulterants and naturally occurring substances.
Collapse
Affiliation(s)
- E J Oliveira
- Department of Pharmaceutical Sciences, University of Strathclyde, Strathclyde Institute of Biomedical Sciences, Glasgow G4 ONR, UK
| | | |
Collapse
|
34
|
Abstract
The treatment of Lennox-Gastaut syndrome has been improved for some patients by the introduction of adjunctive therapy with newer anticonvulsants such as lamotrigine and topiramate and the availability of vagal nerve stimulation and the re-emergence of the use of the ketogenic diet in recent years. The place of standard anticonvulsants and the role of callosotomy needs to be re-evaluated in view of the new developments. Although recommendations for the treatment of patients with Lennox-Gastaut syndrome are difficult to make in the absence of direct head-on comparative trials, the following suggested treatment recommendations are based on the best evidence available. Medical treatment should start with valproic acid (sodium valproate) and be followed by adjunctive therapy with either lamotrigine or topiramate; clobazam can be added if necessary for better seizure control while trying to reduce the dose of the other anticonvulsants. If standard treatment does not achieve sufficient seizure control or proves to be intolerable, vagal nerve stimulation, ketogenic diet, felbamate, benzodiazepines such as clonazepam, and phenobarbital (phenobarbitone) are recommended as third-line choices. Further considerations include ethosuximide, methsuximide, corticotropin (adrenocorticotropic hormone) or corticosteroids, pyridoxine (vitamin B6) and vigabatrin. If adequate drug treatment and vagal nerve stimulation provide insufficient seizure control, partial callosotomy may be an option for the treatment of frequent, intractable and disabling drop attacks. These suggestions are based on the best evidence available and do not in any way exclude the use of other treatments if compelling individual risk-benefit considerations apply.
Collapse
Affiliation(s)
- D Schmidt
- Epilepsy Research Group, Berlin, Germany.
| | | |
Collapse
|
35
|
Abstract
Until 1993, carbamazepine (CBZ), phenytoin (PHT), phenobarbital (PB), and valproate (VPA) accounted for the great majority of the prescriptions written for the treatment of epilepsy. Since 1993, five antiepileptic drugs (AEDs) have been released in the United States, and at least three additional drugs are expected to be released by the end of the year 2000. As a group, these newer drugs differ from the established drugs in terms of their pharmacokinetics, interaction potential, and adverse effects. In addition, any one of the newer drugs may achieve seizure control in situations in which an established drug had not. The newer drugs certainly represent a welcome addition to the existing options for the treatment of epilepsy in children. However, the availability of several new AEDs represents a therapeutic dilemma for the clinician because optimal use of these drugs has not yet been established. This is particularly true in children because (i) newer drugs are often studied less frequently in children, (ii) pharmacokinetics in children differ from those in adults, (iii) children may have different adverse effects, and (iv) children have a broader spectrum of various seizure types and epilepsy syndromes. In the first part of this review, the clinical pharmacology of the currently available newer AEDs is discussed individually, with special emphasis on data in children. In particular, pharmacokinetics, interactions, dosage and titration, efficacy spectrum, and adverse effect profile is discussed for each drug. In the second part, an attempt is made to determine the place for the newer drugs in the treatment of the different pediatric seizures and epilepsy syndromes.
Collapse
Affiliation(s)
- B F Bourgeois
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|