1
|
Taherpour J, Jaber M, Voges B, Apostolova I, Sauvigny T, House PM, Lanz M, Lindenau M, Klutmann S, Martens T, Stodieck S, Buchert R. Predicting the outcome of epilepsy surgery by covariance pattern analysis of ictal perfusion SPECT. J Nucl Med 2021; 63:925-930. [PMID: 34593599 DOI: 10.2967/jnumed.121.262702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Previous studies on the utility of specific perfusion patterns in ictal brain perfusion SPECT for predicting the outcome of temporal lobe epilepsy surgery used qualitative visual pattern classification, semi-quantitative region-of-interest analysis or conventional univariate voxel-based testing, which are limited by intra- and inter-rater variability and/or low sensitivity to capture functional interactions among brain regions. The present study performed covariance pattern analysis of ictal perfusion SPECT using the Scaled Subprofile Model for unbiased identification of predictive covariance patterns. Methods: The study retrospectively included 18 responders to temporal lobe epilepsy surgery (Engel I-A at 12 months follow-up) and 18 non-responders (≥ Engel I-B). Ictal SPECT images were analyzed with the Scaled Subprofile Model blinded to group membership for unbiased identification of the 16 covariance patterns explaining the highest proportion of variance in the whole data set. Individual expression scores of the covariance patterns were evaluated for predicting seizure freedom after temporal lobe surgery by ROC analysis. Kaplan-Meier analysis including all available follow-up data (up to 60 months after surgery) was also performed. Results: Amongst the 16 covariance patterns only one showed a different expression between responders and non-responders (P = 0.03). This 'favorable ictal perfusion pattern' resembled the typical ictal perfusion pattern in temporomesial epilepsy. The expression score of the pattern provided an area of 0.744 (95%-confidence interval 0.577-0.911, P = 0.004) under the ROC curve. Kaplan-Meier analysis revealed a statistical trend towards longer seizure freedom in patients with positive expression score (P = 0.06). The median estimated seizure free time was 48 months in patients with positive expression score versus 6 months in patients with negative expression score. Conclusion: The expression of the 'favorable ictal perfusion pattern' identified by covariance analysis of ictal brain perfusion SPECT provides independent (from demographical and clinical variables) information for the prediction of seizure freedom after temporal lobe epilepsy surgery. The expression of this pattern is easily computed for new ictal SPECT images and, therefore, might be used to support the decision for or against temporal lobe surgery in clinical patient care.
Collapse
Affiliation(s)
| | - Marian Jaber
- University Medical Center Hamburg-Eppendorf, Germany
| | | | | | | | | | | | | | | | | | | | - Ralph Buchert
- University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
2
|
Kessler M, Schierholz I, Mamach M, Wilke F, Hahne A, Büchner A, Geworski L, Bengel FM, Sandmann P, Berding G. Combined Brain-Perfusion SPECT and EEG Measurements Suggest Distinct Strategies for Speech Comprehension in CI Users With Higher and Lower Performance. Front Neurosci 2020; 14:787. [PMID: 32848560 PMCID: PMC7431776 DOI: 10.3389/fnins.2020.00787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/06/2020] [Indexed: 11/29/2022] Open
Abstract
Cochlear implantation constitutes a successful therapy of inner ear deafness, with the majority of patients showing good outcomes. There is, however, still some unexplained variability in outcomes with a number of cochlear-implant (CI) users, showing major limitations in speech comprehension. The current study used a multimodal diagnostic approach combining single-photon emission computed tomography (SPECT) and electroencephalography (EEG) to examine the mechanisms underlying speech processing in postlingually deafened CI users (N = 21). In one session, the participants performed a speech discrimination task, during which a 96-channel EEG was recorded and the perfusions marker 99mTc-HMPAO was injected intravenously. The SPECT scan was acquired 1.5 h after injection to measure the cortical activity during the speech task. The second session included a SPECT scan after injection without stimulation at rest. Analysis of EEG and SPECT data showed N400 and P600 event-related potentials (ERPs) particularly evoked by semantic violations in the sentences, and enhanced perfusion in a temporo-frontal network during task compared to rest, involving the auditory cortex bilaterally and Broca's area. Moreover, higher performance in testing for word recognition and verbal intelligence strongly correlated to the activation in this network during the speech task. However, comparing CI users with lower and higher speech intelligibility [median split with cutoff + 7.6 dB signal-to-noise ratio (SNR) in the Göttinger sentence test] revealed for CI users with higher performance additional activations of parietal and occipital regions and for those with lower performance stronger activation of superior frontal areas. Furthermore, SPECT activity was tightly coupled with EEG and cognitive abilities, as indicated by correlations between (1) cortical activation and the amplitudes in EEG, N400 (temporal and occipital areas)/P600 (parietal and occipital areas) and (2) between cortical activation in left-sided temporal and bilateral occipital/parietal areas and working memory capacity. These results suggest the recruitment of a temporo-frontal network in CI users during speech processing and a close connection between ERP effects and cortical activation in CI users. The observed differences in speech-evoked cortical activation patterns for CI users with higher and lower speech intelligibility suggest distinct processing strategies during speech rehabilitation with CI.
Collapse
Affiliation(s)
- Mariella Kessler
- Department of Nuclear Medicine, Hannover Medical School, Hanover, Germany
- Cluster of Excellence Hearing4all, Hannover Medical School, University of Oldenburg, Oldenburg, Germany
| | - Irina Schierholz
- Cluster of Excellence Hearing4all, Hannover Medical School, University of Oldenburg, Oldenburg, Germany
- Department of Otorhinolaryngology, Hannover Medical School, Hanover, Germany
- Department of Otorhinolaryngology, University of Cologne, Cologne, Germany
| | - Martin Mamach
- Cluster of Excellence Hearing4all, Hannover Medical School, University of Oldenburg, Oldenburg, Germany
- Department of Medical Physics and Radiation Protection, Hannover Medical School, Hanover, Germany
| | - Florian Wilke
- Department of Medical Physics and Radiation Protection, Hannover Medical School, Hanover, Germany
| | - Anja Hahne
- Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Saxonian Cochlear Implant Center, Technical University Dresden, Dresden, Germany
| | - Andreas Büchner
- Cluster of Excellence Hearing4all, Hannover Medical School, University of Oldenburg, Oldenburg, Germany
- Department of Otorhinolaryngology, Hannover Medical School, Hanover, Germany
| | - Lilli Geworski
- Department of Medical Physics and Radiation Protection, Hannover Medical School, Hanover, Germany
| | - Frank M. Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hanover, Germany
| | - Pascale Sandmann
- Department of Otorhinolaryngology, University of Cologne, Cologne, Germany
| | - Georg Berding
- Department of Nuclear Medicine, Hannover Medical School, Hanover, Germany
- Cluster of Excellence Hearing4all, Hannover Medical School, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
3
|
Delorme C, Adanyeguh I, Bendetowicz D, Le Ber I, Ponchel A, Kas A, Habert MO, Mochel F. Multimodal neurometabolic investigation of the effects of zolpidem on leukoencephalopathy-related apathy. Eur J Neurol 2020; 27:2297-2302. [PMID: 32757342 DOI: 10.1111/ene.14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE The symptomatic effect of zolpidem on apathy has been reported in neurological disorders such as strokes and post-anoxic brain injuries, but not in white-matter disease of the brain. METHODS A 38-year-old patient presenting with severe apathy related to a genetic leukoencephalopathy but showing marked improvement of apathy after taking 10 mg of zolpidem was studied. To understand what may mediate such a clinical effect, a multimodal neurometabolic approach using 18 F fluorodeoxyglucose positron emission tomography (FDG-PET) and a dedicated magnetic resonance spectroscopy (MRS) sequence for gamma aminobutyric acid (GABA) and glutamine + glutamate metabolism was undertaken. RESULTS Pre-zolpidem FDG-PET showed hypometabolism in the orbitofrontal cortex, dorsolateral cortex and basal ganglia compared to healthy controls. Post-zolpidem, FDG-PET displayed increased metabolism in the orbitofrontal cortex together with improvement in the emotional and auto-activation domains of apathy. There was no improvement in the cognitive domain of apathy, and no change in metabolism in the dorsolateral frontal cortex. Post-zolpidem, MRS showed increased GABA and glutamine + glutamate levels in the frontal cortex and pallidum. CONCLUSION Our multimodal neurometabolic study suggests that the effects of zolpidem on apathy are related to increased metabolism in the orbitofrontal cortex and basal ganglia secondary to GABA modulation. Zolpidem may improve apathy in other white-matter disorders.
Collapse
Affiliation(s)
- C Delorme
- Department of Neurology, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - I Adanyeguh
- UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Paris, France.,Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - D Bendetowicz
- Department of Neurology, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France.,UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Paris, France
| | - I Le Ber
- UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Paris, France.,Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Reference Centre for Rare or Early Dementias, IM2A, Paris, France.,Institut du Cerveau et de la Moelle Epiniere (ICM), Frontlab, Paris, France
| | - A Ponchel
- Department of Neurology, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France.,UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Paris, France
| | - A Kas
- Laboratoire d'Imagerie Biomédicale, LIB, CNRS, INSERM, Sorbonne Université, Paris, France.,Médecine Nucléaire, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - M-O Habert
- Laboratoire d'Imagerie Biomédicale, LIB, CNRS, INSERM, Sorbonne Université, Paris, France.,Médecine Nucléaire, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - F Mochel
- UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Paris, France.,Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
4
|
Rocha L, Cinar R, Guevara-Guzmán R, Alonso-Vanegas M, San-Juan D, Martínez-Juárez I, Castañeda-Cabral JL, Carmona-Cruz F. Endocannabinoid System and Cannabinoid 1 Receptors in Patients With Pharmacoresistant Temporal Lobe Epilepsy and Comorbid Mood Disorders. Front Behav Neurosci 2020; 14:52. [PMID: 32435186 PMCID: PMC7218130 DOI: 10.3389/fnbeh.2020.00052] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/20/2020] [Indexed: 12/23/2022] Open
Abstract
Experimental evidence points out that the activation of the endocannabinoid system induces neuroprotective effects and reduces mood disorders. In the hippocampus of patients with mesial temporal lobe epilepsy (MTLE), studies indicated augmented cannabinoid 1 receptor (CB1R) binding, in spite of its low mRNA and protein expressions. Although this situation suggests an enhanced CB1R-induced neurotransmission in patients with MTLE, especially those with pharmacoresistant seizures, which present important neuronal damage and high comorbid mood disorders. The present study focused to investigate the status of CB1R and the endocannabinoid system by obtaining CB1R-induced G-protein signaling efficacy and measuring the tissue levels of endocannabinoids in the hippocampus and the temporal neocortex of patients with pharmacoresistant MTLE. Furthermore, the obtained results were correlated with comorbid anxiety and depression. The experiments revealed that patients with MTLE present increased CB1R-induced G-protein signaling efficacy (Emax) as well as an augmented tissue content of anandamide and oleoylethanolamine and low 2-arachidonoylglycerol. Some of these changes were more evident in patients with MTLE without mood disorders. The current findings indicate that pharmacoresistant MTLE is associated with increased CB1R-induced transductional mechanisms as well as augmented tissue content of specific endocannabinoids in the hippocampus and the temporal neocortex. The enhanced endocannabinoid neurotransmission may be involved in the absence of comorbid mood disorders in some patients with MTLE.
Collapse
Affiliation(s)
- Luisa Rocha
- Department of Pharmacobiology, Center of Research and Advanced Studies, Mexico City, Mexico
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | | | - Mario Alonso-Vanegas
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez", Mexico City, Mexico
| | - Daniel San-Juan
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez", Mexico City, Mexico
| | - Iris Martínez-Juárez
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez", Mexico City, Mexico
| | | | - Francia Carmona-Cruz
- Department of Pharmacobiology, Center of Research and Advanced Studies, Mexico City, Mexico
| |
Collapse
|
5
|
Diagnostica per immagini funzionale nell’epilessia. Neurologia 2020. [DOI: 10.1016/s1634-7072(20)43296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Corballis MC. Mirror-Image Equivalence and Interhemispheric Mirror-Image Reversal. Front Hum Neurosci 2018; 12:140. [PMID: 29706878 PMCID: PMC5907058 DOI: 10.3389/fnhum.2018.00140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/27/2018] [Indexed: 11/23/2022] Open
Abstract
Mirror-image confusions are common, especially in children and in some cases of neurological impairment. They can be a special impediment in activities such as reading and writing directional scripts, where mirror-image patterns (such as b and d) must be distinguished. Treating mirror images as equivalent, though, can also be adaptive in the natural world, which carries no systematic left-right bias and where the same object or event can appear in opposite viewpoints. Mirror-image equivalence and confusion are natural consequences of a bilaterally symmetrical brain. In the course of learning, mirror-image equivalence may be established through a process of symmetrization, achieved through homotopic interhemispheric exchange in the formation of memory circuits. Such circuits would not distinguish between mirror images. Learning to discriminate mirror-image discriminations may depend either on existing brain asymmetries, or on extensive learning overriding the symmetrization process. The balance between mirror-image equivalence and mirror-image discrimination may nevertheless be precarious, with spontaneous confusions or reversals, such as mirror writing, sometimes appearing naturally or as a manifestation of conditions like dyslexia.
Collapse
|
7
|
Navarro V, Kas A, Apartis E, Chami L, Rogemond V, Levy P, Psimaras D, Habert MO, Baulac M, Delattre JY, Honnorat J. Motor cortex and hippocampus are the two main cortical targets in LGI1-antibody encephalitis. Brain 2016; 139:1079-93. [PMID: 26945884 DOI: 10.1093/brain/aww012] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022] Open
Abstract
Encephalitis associated with antibodies against leucine-rich glioma-inactivated 1 (LGI1) protein is increasingly recognized as an auto-immune disorder associated with characteristic tonic-dystonic seizures. The cortical or subcortical origin of these motor events is not clear. Some patients also present with different epileptic seizures and with cognitive impairment. The frequency of these features and their timing during the natural history of this encephalitis have not been fully described. We therefore reviewed data from 34 patients harbouring antibodies against LGI1 protein (21-81 years, median age 64) referred to the French Reference Centre for Neurological Paraneoplastic Syndrome. Three types of evidence suggested tonic-dystonic seizures were of cortical origin: (i) a slow, unilateral, frontal electroencephalographic wave, of duration ∼580 ms and amplitude ∼71 µV, preceded the contralateral tonic-dystonic seizures in simultaneous electroencephalographic and myographic records from seven of seven patients tested; (ii) 18-Fluorodeoxyglucose imaging revealed a strong hypermetabolism in primary motor cortex, controlateral to the affected limb, during encephalitis for five patients tested, as compared with data from the same patients after remission or from 16 control subjects; and (iii) features of polymyographic records of tonic-dystonic seizure events pointed to a cortical origin. Myoclonic patterns with brief, rhythmic bursts were present in three of five patients tested and a premyoclonic potential was identified in the cortex of one patient. Initially during encephalitis, 11 of 34 patients exhibited tonic-dystonic seizures (32%). Distinct epileptic syndromes were evident in 13 patients (38%). They were typically simple, focal seizures from the temporal lobe, consisting of vegetative symptoms or fear. At later stages, 22 of 32 patients displayed tonic-dystonic seizures (68%) and 29 patients presented frequent seizures (91%) including status epilepticus. Cognitive impairment, either anterograde amnesia or confusion was evident in 30 of 34 patients (88%). Brain imaging was normal in patients with isolated tonic-dystonic seizures; in patients with limbic symptoms it revealed initially a hippocampal hyperintensity in 8 of 19 patients (42%) and 17 of 24 patients (70%) at later stages. Our data suggest that the major signs of LGI1-antibody encephalitis can be linked to involvement of motor cortex and hippocampus. They occur in parallel with striatum involvement. One of these cortical targets is involved, often unilaterally at disease onset. As the encephalitis progresses, in the absence of immunomodulatory treatment, the second cortical target is affected and effects become bilateral. Progression to the second cortical target occurs with a variable delay of days to several months.
Collapse
Affiliation(s)
- Vincent Navarro
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, Epilepsy Unit and Neurophysiology Department, Pitié-Salpêtrière Hospital, Paris, F-75013, France Institut du Cerveau et de la Moelle épinière (ICM; INSERM UMRS1127, CNRS UMR7225, UPMC), Paris, France French Reference Centre on Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, Bron, F-69677, France
| | - Aurélie Kas
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, Nuclear Medicine Department, Pitié-Salpêtrière Hospital and CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, 75013, France
| | - Emmanuelle Apartis
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, Neurophysiology Department, Saint-Antoine Hospital, Paris, F-75011, France
| | - Linda Chami
- French Reference Centre on Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, Bron, F-69677, France Lyon Neuroscience Research Centre INSERM U1028/CNRS UMR 5292, Lyon, F-69372, France Université De Lyon - Université Claude Bernard Lyon 1, Lyon, F-69372, France
| | - Véronique Rogemond
- French Reference Centre on Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, Bron, F-69677, France Lyon Neuroscience Research Centre INSERM U1028/CNRS UMR 5292, Lyon, F-69372, France Université De Lyon - Université Claude Bernard Lyon 1, Lyon, F-69372, France
| | - Pierre Levy
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, Inserm UMR S 1136 (EPAR team), Département de Santé Publique, GH Tenon-Saint Antoine, Paris, F-75020, France
| | - Dimitri Psimaras
- Institut du Cerveau et de la Moelle épinière (ICM; INSERM UMRS1127, CNRS UMR7225, UPMC), Paris, France Sorbonne Universités, UPMC Univ Paris 06, AP-HP, Neurology 2 Department, Pitié-Salpêtrière Hospital, Paris, F-75013, France
| | - Marie-Odile Habert
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, Nuclear Medicine Department, Pitié-Salpêtrière Hospital and CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, 75013, France
| | - Michel Baulac
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, Epilepsy Unit and Neurophysiology Department, Pitié-Salpêtrière Hospital, Paris, F-75013, France Institut du Cerveau et de la Moelle épinière (ICM; INSERM UMRS1127, CNRS UMR7225, UPMC), Paris, France
| | - Jean-Yves Delattre
- Institut du Cerveau et de la Moelle épinière (ICM; INSERM UMRS1127, CNRS UMR7225, UPMC), Paris, France Sorbonne Universités, UPMC Univ Paris 06, AP-HP, Neurology 2 Department, Pitié-Salpêtrière Hospital, Paris, F-75013, France
| | - Jérome Honnorat
- French Reference Centre on Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, Bron, F-69677, France Lyon Neuroscience Research Centre INSERM U1028/CNRS UMR 5292, Lyon, F-69372, France Université De Lyon - Université Claude Bernard Lyon 1, Lyon, F-69372, France
| | | |
Collapse
|
8
|
Tousseyn S, Dupont P, Goffin K, Sunaert S, Van Paesschen W. Sensitivity and Specificity of Interictal EEG-fMRI for Detecting the Ictal Onset Zone at Different Statistical Thresholds. Front Neurol 2014; 5:131. [PMID: 25101049 PMCID: PMC4101337 DOI: 10.3389/fneur.2014.00131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 07/03/2014] [Indexed: 02/05/2023] Open
Abstract
There is currently a lack of knowledge about electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) specificity. Our aim was to define sensitivity and specificity of blood oxygen level dependent (BOLD) responses to interictal epileptic spikes during EEG-fMRI for detecting the ictal onset zone (IOZ). We studied 21 refractory focal epilepsy patients who had a well-defined IOZ after a full presurgical evaluation and interictal spikes during EEG-fMRI. Areas of spike-related BOLD changes overlapping the IOZ in patients were considered as true positives; if no overlap was found, they were treated as false-negatives. Matched healthy case-controls had undergone similar EEG-fMRI in order to determine true-negative and false-positive fractions. The spike-related regressor of the patient was used in the design matrix of the healthy case-control. Suprathreshold BOLD changes in the brain of controls were considered as false positives, absence of these changes as true negatives. Sensitivity and specificity were calculated for different statistical thresholds at the voxel level combined with different cluster size thresholds and represented in receiver operating characteristic (ROC)-curves. Additionally, we calculated the ROC-curves based on the cluster containing the maximal significant activation. We achieved a combination of 100% specificity and 62% sensitivity, using a Z-threshold in the interval 3.4–3.5 and cluster size threshold of 350 voxels. We could obtain higher sensitivity at the expense of specificity. Similar performance was found when using the cluster containing the maximal significant activation. Our data provide a guideline for different EEG-fMRI settings with their respective sensitivity and specificity for detecting the IOZ. The unique cluster containing the maximal significant BOLD activation was a sensitive and specific marker of the IOZ.
Collapse
Affiliation(s)
- Simon Tousseyn
- Laboratory for Epilepsy Research, UZ Leuven and KU Leuven , Leuven , Belgium ; Medical Imaging Research Center, UZ Leuven and KU Leuven , Leuven , Belgium
| | - Patrick Dupont
- Laboratory for Epilepsy Research, UZ Leuven and KU Leuven , Leuven , Belgium ; Medical Imaging Research Center, UZ Leuven and KU Leuven , Leuven , Belgium ; Laboratory for Cognitive Neurology, UZ Leuven and KU Leuven , Leuven , Belgium
| | - Karolien Goffin
- Department of Nuclear Medicine, UZ Leuven and KU Leuven , Leuven , Belgium
| | - Stefan Sunaert
- Medical Imaging Research Center, UZ Leuven and KU Leuven , Leuven , Belgium ; Radiology Department, UZ Leuven and KU Leuven , Leuven , Belgium
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, UZ Leuven and KU Leuven , Leuven , Belgium ; Medical Imaging Research Center, UZ Leuven and KU Leuven , Leuven , Belgium
| |
Collapse
|
9
|
Peng K, Nguyen DK, Tayah T, Vannasing P, Tremblay J, Sawan M, Lassonde M, Lesage F, Pouliot P. fNIRS-EEG study of focal interictal epileptiform discharges. Epilepsy Res 2013; 108:491-505. [PMID: 24439212 DOI: 10.1016/j.eplepsyres.2013.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/22/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) acquired with electroencephalography (EEG) is a relatively new non-invasive neuroimaging technique with potential for long term monitoring of the epileptic brain. Simultaneous EEG-fNIRS recording allows the spatio-temporal reconstruction of the hemodynamic response in terms of the concentration changes in oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) associated with recorded epileptic events such as interictal epileptic discharges (IEDs) or seizures. While most previous studies investigating fNIRS in epilepsy had limitations due to restricted spatial coverage and small sample sizes, this work includes a sufficiently large number of channels to provide an extensive bilateral coverage of the surface of the brain for a sample size of 40 patients with focal epilepsies. Topographic maps of significant activations due to each IED type were generated in four different views (dorsal, frontal, left and right) and were compared with the epileptic focus previously identified by an epileptologist. After excluding 5 patients due to the absence of IEDs and 6 more with mesial temporal foci too deep for fNIRS, we report that significant HbR (respectively HbO) concentration changes corresponding to IEDs were observed in 62% (resp. 38%) of patients with neocortical epilepsies. This HbR/HbO response was most significant in the epileptic focus region among all the activations in 28%/21% of patients.
Collapse
Affiliation(s)
- Ke Peng
- Département de génie électrique, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC, Canada H3C3A7
| | - Dang Khoa Nguyen
- Service de neurologie, Hôpital Notre-Dame du CHUM, 1560 Rue Sherbrooke Est, Montréal, QC, Canada H3L4M1
| | - Tania Tayah
- Service de neurologie, Hôpital Notre-Dame du CHUM, 1560 Rue Sherbrooke Est, Montréal, QC, Canada H3L4M1
| | - Phetsamone Vannasing
- Centre de recherche, Hôpital Sainte-Justine, 3175 Chemin de la côte-Sainte-Catherine, Montréal, QC, Canada H3T1C5
| | - Julie Tremblay
- Centre de recherche, Hôpital Sainte-Justine, 3175 Chemin de la côte-Sainte-Catherine, Montréal, QC, Canada H3T1C5
| | - Mohamad Sawan
- Département de génie électrique, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC, Canada H3C3A7
| | - Maryse Lassonde
- Centre de recherche, Hôpital Sainte-Justine, 3175 Chemin de la côte-Sainte-Catherine, Montréal, QC, Canada H3T1C5; Centre de recherche en neuropsychologie et cognition, Département de psychologie, Université de Montréal, Montréal, QC, Canada H3C3J7
| | - Frédéric Lesage
- Département de génie électrique, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC, Canada H3C3A7; Institut de cardiologie de Montréal, Centre de recherche, 5000 Rue Bélanger Est, Montréal, QC, Canada H1T1C8
| | - Philippe Pouliot
- Département de génie électrique, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC, Canada H3C3A7; Institut de cardiologie de Montréal, Centre de recherche, 5000 Rue Bélanger Est, Montréal, QC, Canada H1T1C8.
| |
Collapse
|
10
|
Krsek P, Kudr M, Jahodova A, Komarek V, Maton B, Malone S, Miller I, Jayakar P, Resnick T, Duchowny M. Localizing value of ictal SPECT is comparable to MRI and EEG in children with focal cortical dysplasia. Epilepsia 2013; 54:351-8. [PMID: 23293926 DOI: 10.1111/epi.12059] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2012] [Indexed: 11/28/2022]
Abstract
PURPOSE To assess the predictive value of ictal single-photon emission computed tomography (SPECT) for outcome after excisional epilepsy surgery in a large population of children with focal cortical dysplasia (FCD). METHODS One hundred seventy-three ictal SPECT studies in 106 children with histologically proven FCD were retrospectively analyzed. The extent and location of ictal hyperperfusion and completeness of surgical removal were assessed. Completeness of resection of epileptogenic regions defined by ictal SPECT, electroencephalography (EEG), and magnetic resonance imaging (MRI) were compared and correlated with postoperative seizure outcome. In addition, subcortical activation of the cerebellum, basal ganglia, and thalamus were analyzed. KEY FINDINGS The extent of hyperperfusion was focal or lobar in 58%, whereas multilobar activations occurred in only 32%; hemispheric or bilateral findings were rare. Favorable postsurgical seizure outcome was achieved in 67% patients with nonlocalized SPECT findings, 45% with nonresected ictal hyperperfusion, 36% with partially resected ictal hyperperfusion, and 86% when the zone of ictal hyperperfusion was completely resected (p = 0.000198). The favorable postsurgical outcome after complete removal of the SPECT hyperperfusion zone surpassed the 75% rate of seizure freedom in patients with removal of MRI/EEG-defined epileptogenic region. A similar predictive value of ictal SPECT for seizure outcome was found in nonoperated patients and subjects who were undergoing reoperation. Subcortical activation conferred no predictive value. SIGNIFICANCE Ictal SPECT helps to define the epileptogenic zone in a high proportion of children with FCD undergoing surgical evaluation. Complete removal of both SPECT and MRI/EEG-defined regions is a strong predictor of surgical success and has important implications for surgical planning.
Collapse
Affiliation(s)
- Pavel Krsek
- Department of Pediatric Neurology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lemonnier E, Degrez C, Phelep M, Tyzio R, Josse F, Grandgeorge M, Hadjikhani N, Ben-Ari Y. A randomised controlled trial of bumetanide in the treatment of autism in children. Transl Psychiatry 2012; 2:e202. [PMID: 23233021 PMCID: PMC3565189 DOI: 10.1038/tp.2012.124] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/07/2012] [Indexed: 02/08/2023] Open
Abstract
Gamma aminobutyric acid (GABA)-mediated synapses and the oscillations they orchestrate are altered in autism. GABA-acting benzodiazepines exert in some patients with autism paradoxical effects, raising the possibility that like in epilepsies, GABA excites neurons because of elevated intracellular concentrations of chloride. Following a successful pilot study,(1) we have now performed a double-blind clinical trial using the diuretic, chloride-importer antagonist bumetanide that reduces intracellular chloride reinforcing GABAergic inhibition. Sixty children with autism or Asperger syndrome (3-11 years old) received for 3 months placebo or bumetanide (1 mg daily), followed by 1-month wash out. Determination of the severity of autism was made with video films at day 0 (D0) and D90 by blind, independent evaluators. Bumetanide reduced significantly the Childhood Autism Rating Scale (CARS) (D90-D0; P<0.004 treated vs placebo), Clinical Global Impressions (P<0.017 treated vs placebo) and Autism Diagnostic Observation Schedule values when the most severe cases (CARS values above the mean ± s.d.; n=9) were removed (Wilcoxon test: P-value=0.031; Student's t-test: P-value=0.017). Side effects were restricted to an occasional mild hypokalaemia (3.0-3.5 mM l(-1) K(+)) that was treated with supplemental potassium. In a companion study, chronic bumetanide treatment significantly improved accuracy in facial emotional labelling, and increased brain activation in areas involved in social and emotional perception (Hadjikhani et al., submitted). Therefore, bumetanide is a promising novel therapeutic agent to treat autism. Larger trials are warranted to better determine the population best suited for this treatment.
Collapse
Affiliation(s)
- E Lemonnier
- Centre de Ressources Autisme de Bretagne, CHRU Brest Hôpital Bohars, Route de Ploudalmezeau, Bohars, France.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Nguyen DK, Tremblay J, Pouliot P, Vannasing P, Florea O, Carmant L, Lepore F, Sawan M, Lesage F, Lassonde M. Noninvasive continuous functional near-infrared spectroscopy combined with electroencephalography recording of frontal lobe seizures. Epilepsia 2012; 54:331-40. [DOI: 10.1111/epi.12011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Nguyen DK, Tremblay J, Pouliot P, Vannasing P, Florea O, Carmant L, Lepore F, Sawan M, Lesage F, Lassonde M. Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures. Epilepsy Res 2012; 99:112-26. [DOI: 10.1016/j.eplepsyres.2011.10.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/20/2011] [Accepted: 10/30/2011] [Indexed: 10/15/2022]
|
14
|
Dopamine abnormalities in the neocortex of patients with temporal lobe epilepsy. Neurobiol Dis 2012; 45:499-507. [DOI: 10.1016/j.nbd.2011.09.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/03/2011] [Accepted: 09/13/2011] [Indexed: 11/20/2022] Open
|
15
|
Navarro V, Clemenceau S, Habert MO, Hasboun D, Nguyen-Michel VH, Masson V, Plaisant O, Samson S, Dupont S, Baulac M, Adam C. [Epilepsy surgery: when thinking about? Who are the good candidates?]. Presse Med 2011; 40:293-300. [PMID: 21310584 DOI: 10.1016/j.lpm.2011.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 11/15/2022] Open
Abstract
Epilepsy surgery concerns any patient with pharmacoresistant partial epilepsy, responsible for disability. Children and adult patients can be candidates for epilepsy surgery. A presurgical evaluation, adapted to each patient, must identify the most precisely the cortical area, where the seizures originate, using converging data: the clinical and electroencephalographic semiology of the seizures, the structural and sometimes functional brain imagings, and evaluate if the removal of the epileptogenic focus may induce a neurological or cognitive deficit, using neuropsychological tests and sometimes functional brain imagings. Such therapeutical strategy should be evoked as soon as possible in patients for whom the epilepsy becomes pharmacoresistant, and these patients should be oriented in specialized centres. The results of epilepsy surgery vary according to the lobar origin of the epileptogenic focus and to the existence of a visible lesion on brain MRI. A multidisciplinary evaluation of the benefits and risks should be presented to the patient. Results of the surgery are usually excellent when a focus is clearly identified and the neuropsychological tests did not predict a deficit.
Collapse
Affiliation(s)
- Vincent Navarro
- AP-HP, hôpital de la Pitié-Salpêtrière, unité d'épilepsie, 75651 Paris cedex 13, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Role of single photon emission computed tomography in epilepsy. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2010; 2011:803920. [PMID: 21490734 PMCID: PMC3065814 DOI: 10.1155/2011/803920] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 10/25/2010] [Indexed: 11/18/2022]
Abstract
Molecular imaging with ictal single photon emission computed tomography (SPECT) is an established functional imaging modality for the presurgical evaluation of patients with refractory partial onset seizures. SPECT coregistered on to the MRI has greater sensitivity to identify the ictal onset zone. Ictal SPECT should always be interpreted in the context of other presurgical investigations. Ictal SPECT is sensitive method for the lateralization of TLE, but ictal SPECT is more sensitive when MRI is normal. Ictal SPECT and interictal PET are complementary to each other in lateralizing the side in patients with TLE and normal MRI. In extratemporal epilepsy, ictal SPECT will guide the placement of surface grid and depth electrodes.
Collapse
|
17
|
Abstract
Neuroimaging in epilepsy is a very large and growing field. Researchers in this area have quickly adopted new methods, resulting in a lively literature. Basic features of common epilepsies are well known, but, outside of the specific area of epilepsy surgery evaluation, new methods evolving in the last few years have had limited new beneficial clinical impact. Here, an overview of the epilepsy neuroimaging literature of the last 5 years, with an emphasis on mesial temporal lobe epilepsy, idiopathic generalized epilepsies, presurgical evaluation and new developments in functional MRI is presented. The need for attention to clinical translation, as well as immediate opportunities and future trends in this field, are discussed.
Collapse
Affiliation(s)
- Mark Richardson
- P043 Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
18
|
Shon YM, Kim YI, Koo BB, Lee JM, Kim HJ, Kim WJ, Ahn KJ, Yang DW. Group-specific regional white matter abnormality revealed in diffusion tensor imaging of medial temporal lobe epilepsy without hippocampal sclerosis. Epilepsia 2010; 51:529-35. [PMID: 19817819 DOI: 10.1111/j.1528-1167.2009.02327.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Young-Min Shon
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Richardson M. Current themes in neuroimaging of epilepsy: brain networks, dynamic phenomena, and clinical relevance. Clin Neurophysiol 2010; 121:1153-75. [PMID: 20185365 DOI: 10.1016/j.clinph.2010.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 12/24/2009] [Accepted: 01/05/2010] [Indexed: 11/15/2022]
Abstract
Brain scanning methods were first applied in patients with epilepsy more than 30years ago. A very substantial literature now exists in this field, which is exponentially increasing. Contemporary neuroimaging studies in epilepsy reflect new concepts in the epilepsies, as well as current methodological developments. In particular, this area is emphasising the role of networks in epileptogenicity, the existence of dynamic phenomena which can be captured by imaging, and is beginning to validate the implementation of neuroimaging in the clinic. Here, recent studies of the last 5years are reviewed, covering the full range of neuroimaging methods with SPECT, PET and MRI in epilepsy.
Collapse
Affiliation(s)
- Mark Richardson
- P043 Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
20
|
Cho JW, Hong SB, Lee JH, Kang JW, Lee MJ, Lee JY, Park HS, Suh M, Joo EY, Seo DW. Contralateral hyperperfusion and ipsilateral hypoperfusion by ictal SPECT in patients with mesial temporal lobe epilepsy. Epilepsy Res 2010; 88:247-54. [DOI: 10.1016/j.eplepsyres.2009.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 11/30/2009] [Accepted: 12/10/2009] [Indexed: 11/16/2022]
|
21
|
What Do Changes in Brain Perfusion Induced by Etomidate Suggest about Epilepsy in Human Patients? EPILEPSY RESEARCH AND TREATMENT 2010; 2010:654265. [PMID: 22937226 PMCID: PMC3428614 DOI: 10.1155/2010/654265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/10/2009] [Accepted: 04/13/2010] [Indexed: 12/02/2022]
Abstract
Epilepsy is one of the major neurological disorders, affecting roughly 1-2% of the world's population, of which approximately 20–25% of patients are drug resistant. A variety of drugs have been used to activate and identify the epileptic area in patients during presurgical evaluation. We studied the cerebral blood flow (CBF) by single photon-emission computed tomography (SPECT) and bioelectrical brain activity responses to etomidate in
11 patients. Etomidate (0.1 mg/kg) was administered while patients were monitored by video-electroencephalography with foramen ovale electrodes (FOEs). After etomidate administration, a brief period of high-frequency activity was observed, followed by a generalized, high-voltage delta pattern. Increased regional CBF was observed bilaterally in thalamus, putamen, and posterior hippocampus. Besides, the only interhemispheric difference was observed in the posterior hippocampus, where CBF decreased in the epileptic temporal lobe. Activation by etomidate induces a specific and repetitive response in the bioelectrical activity. In addition, CBF changes induced by etomidate may serve as a diagnostic tool in the near future.
Collapse
|
22
|
Rocha L, Orozco-Suarez S, Alonso-Vanegas M, Villeda-Hernandez J, Gaona A, Páldy E, Benyhe S, Borsodi A. Temporal lobe epilepsy causes selective changes in mu opioid and nociceptin receptor binding and functional coupling to G-proteins in human temporal neocortex. Neurobiol Dis 2009; 35:466-73. [PMID: 19573600 DOI: 10.1016/j.nbd.2009.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 06/14/2009] [Accepted: 06/20/2009] [Indexed: 10/20/2022] Open
Abstract
There is no information concerning signal transduction mechanisms downstream of the opioid/nociceptin receptors in the human epileptic brain. The aim of this work was to evaluate the level of G-proteins activation mediated by DAMGO (a mu receptor selective peptide) and nociceptin, and the binding to mu and nociceptin (NOP) receptors and adenylyl cyclase (AC) in neocortex of patients with pharmacoresistant temporal lobe epilepsy. Patients with temporal lobe epilepsy associated with mesial sclerosis (MTLE) or secondary to tumor or vascular lesion showed enhanced [3H]DAMGO and [3H]forskolin binding, lower DAMGO-stimulated [35S]GTPgammaS binding and no significant changes in nociceptin-stimulated G-protein. [3H]Nociceptin binding was lower in patients with MTLE. Age of seizure onset correlated positively with [3H]DAMGO binding and DAMGO-stimulated [35S]GTPgammaS binding, whereas epilepsy duration correlated negatively with [3H]DAMGO and [3H]nociceptin binding, and positively with [3H]forskolin binding. In conclusion, our present data obtained from neocortex of epileptic patients provide strong evidence that a) temporal lobe epilepsy is associated with alterations in mu opioid and NOP receptor binding and signal transduction mechanisms downstream of these receptors, and b) clinical aspects may play an important role on these receptor changes.
Collapse
Affiliation(s)
- Luisa Rocha
- Department of Pharmacobiology, Center of Research and Advanced Studies, Mexico City, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Habert MO, Huberfeld G. [Ictal single photon computed tomography and SISCOM: methods and utility]. Neurochirurgie 2008; 54:226-30. [PMID: 18417164 DOI: 10.1016/j.neuchi.2008.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ictal single photon emission computed tomography (SPECT) reflects epileptic activity through hyperperfusion associated with ictal discharge. It provides valuable spatial information on ictal activity, but its temporal resolution is limited. Therefore, information provided by SPECT is not restricted to the epileptogenic zone, but demonstrates a larger epileptogenic network, related to the spatiotemporal dynamics of ictal processes. This review includes a description of the technique, followed by a description of the different parameters likely to influence the ictal perfusion images. SPECT gives contributes original diagnostic data to the decision-making process which will complete, the other evaluation parameters.
Collapse
Affiliation(s)
- M-O Habert
- Inserm U678 Laboratoire d'imagerie fonctionnelle, université Pierre-et-Marie-Curie, Paris-6, 75013 Paris, France.
| | | |
Collapse
|
24
|
Rocha L, Lorigados-Pedre L, Orozco-Suárez S, Morales-Chacón L, Alonso-Vanegas M, García-Maeso I, Villeda-Hernández J, Osorio-Rico L, Estupiñán B, Quintana C. Autoradiography reveals selective changes in serotonin binding in neocortex of patients with temporal lobe epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:1208-18. [PMID: 17513030 DOI: 10.1016/j.pnpbp.2007.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/18/2007] [Accepted: 04/19/2007] [Indexed: 10/23/2022]
Abstract
The main goal of the present study was to evaluate binding to serotonin in the neocortex surrounding the epileptic focus of patients with mesial temporal lobe epilepsy (MTLE). Binding to 5-HT, 5-HT(1A), 5-HT(4), 5-HT(7) receptors and serotonin transporter (5-HTT) in T1-T2 gyri of 15 patients with MTLE and their correlations with clinical data, neuronal count and volume were determined. Autopsy material acquired from subjects without epilepsy (n=6) was used as control. The neocortex from MTLE patients demonstrated decreased cell count in layers III-IV (21%). No significant changes were detected on the neuronal volume. Autoradiography experiments showed the following results: reduced 5-HT and 5-HT(1A) binding in layers I-II (24% and 92%, respectively); enhanced 5-HT(4) binding in layers V-VI (32%); no significant changes in 5-HT(7) binding; reduced 5-HTT binding in all layers (I-II, 90.3%; III-IV, 90.3%, V-VI, 86.9%). Significant correlations were found between binding to 5-HT(4) and 5-HT(7) receptors and age of seizure onset, duration of epilepsy and duration of antiepileptic treatment. The present results support an impaired serotoninergic transmission in the neocortex surrounding the epileptic focus of patients with MTLE, a situation that could be involved in the initiation and propagation of seizure activity.
Collapse
Affiliation(s)
- Luisa Rocha
- Departamento de Farmacobiología, Sede Sur del Centro de Investigación y de Estudios Avanzados, Calz. Tenorios 235, Col. Granjas Coapa, C.P. 14330, México, DF, Mexico.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Van Paesschen W, Dupont P, Sunaert S, Goffin K, Van Laere K. The use of SPECT and PET in routine clinical practice in epilepsy. Curr Opin Neurol 2007; 20:194-202. [PMID: 17351491 DOI: 10.1097/wco.0b013e328042baf6] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this article is to give a subjective review of the usefulness of single photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging in clinical practice in epilepsy for 2007. RECENT FINDINGS Both ictal perfusion SPECT and interictal fluorodeoxyglucose PET can provide new information in the presurgical evaluation of intractable partial epilepsy. These functional imaging modalities reflect dynamic seizure-related changes in cerebral cellular functions. Although asymmetry of fluorodeoxyglucose PET metabolism has been useful to localize the epileptic temporal lobe, which tends to be more hypometabolic than the contralateral one, both frontal lobes are more hypometabolic than the epileptic temporal lobe, and may represent a region of 'surround inhibition'. Due to its low temporal resolution, ictal perfusion SPECT hyperperfusion patterns often contain both the ictal onset zone and propagation pathways. These patterns often have a multilobulated 'hourglass' appearance. The largest and most intense hyperperfusion cluster often represents ictal propagation, and does not always need to be resected in order to render a patient seizure free. SUMMARY Optimized interictal FDG-PET and ictal perfusion SPECT as part of a multimodality imaging platform will be important tools to better understand the neurobiology of epilepsy and to better define the epileptogenic, ictal onset, functional deficit and surround inhibition zones in refractory partial epilepsy.
Collapse
Affiliation(s)
- Wim Van Paesschen
- Department of Neurology, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Belgium.
| | | | | | | | | |
Collapse
|