1
|
Hernández-Martín N, Pozo-Cabanell I, Fernández de la Rosa R, García-García L, Gómez-Oliver F, Pozo MÁ, Brackhan M, Bascuñana P. Preclinical PET imaging in epileptogenesis: towards identification of biomarkers and therapeutic targets. EJNMMI Res 2025; 15:43. [PMID: 40249560 PMCID: PMC12008110 DOI: 10.1186/s13550-025-01237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/05/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Epilepsy is a neurological disorder that affects a significant portion of the global population. However, its complexity and the lack of biomarkers hinder the study of its etiology, resulting in a lack of effective treatments to slow down or halt disease development, also called epileptogenesis. MAIN BODY Animal models have proven to be a crucial tool for studying epileptogenesis, many exhibiting cellular, molecular, and functional alterations that resemble those found in human patients. This review examines preclinical studies that have utilized positron emission tomography, a non-invasive neuroimaging technique that has demonstrated correlation with the pathological features and behavioral comorbidities of the disease and a high predictive value for the severity of epileptogenesis. CONCLUSION Positron emission tomography imaging has fostered the knowledge of the mechanisms driving epileptogenesis. This translational technique might be crucial for identifying biomarkers of epilepsy, identifying novel treatment targets and selecting and monitoring patients for potential future therapies.
Collapse
Affiliation(s)
- Nira Hernández-Martín
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Ignacio Pozo-Cabanell
- Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Rubén Fernández de la Rosa
- Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- BioImaC, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis García-García
- Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Cartografía Cerebral, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisca Gómez-Oliver
- Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Cartografía Cerebral, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Miguel Ángel Pozo
- Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Cartografía Cerebral, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Mirjam Brackhan
- Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain.
- Cartografía Cerebral, Hospital Clínico San Carlos, IdISSC, Madrid, Spain.
- Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Calle del Prof Martín Lagos s/n, Madrid, 28040, Spain.
| | - Pablo Bascuñana
- Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Cartografía Cerebral, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
- Servicio de Medicina Nuclear, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| |
Collapse
|
2
|
Mairinger S, Leterrier S, Filip T, Löbsch M, Pahnke J, Hernández-Lozano I, Stanek J, Tournier N, Zeitlinger M, Hacker M, Langer O, Wanek T. [ 11C]metoclopramide is a sensitive radiotracer to measure moderate decreases in P-glycoprotein function at the blood-brain barrier. J Cereb Blood Flow Metab 2024; 44:142-152. [PMID: 37728771 PMCID: PMC10905639 DOI: 10.1177/0271678x231202336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/21/2023]
Abstract
The efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier limits the cerebral uptake of various xenobiotics. To assess the sensitivity of [11C]metoclopramide to measure decreased cerebral P-gp function, we performed [11C]metoclopramide PET scans without (baseline) and with partial P-gp inhibition by tariquidar in wild-type, heterozygous Abcb1a/b(+/-) and homozygous Abcb1a/b(-/-) mice as models with controlled levels of cerebral P-gp expression. Brains were collected to quantify P-gp expression with immunohistochemistry. Brain uptake of [11C]metoclopramide was expressed as the area under the brain time-activity curve (AUCbrain) and compared with data previously obtained with (R)-[11C]verapamil and [11C]N-desmethyl-loperamide. Abcb1a/b(+/-) mice had intermediate P-gp expression compared to wild-type and Abcb1a/b(-/-) mice. In baseline scans, all three radiotracers were able to discriminate Abcb1a/b(-/-) from wild-type mice (2.5- to 4.6-fold increased AUCbrain, p ≤ 0.0001). However, only [11C]metoclopramide could discriminate Abcb1a/b(+/-) from wild-type mice (1.46-fold increased AUCbrain, p ≤ 0.001). After partial P-gp inhibition, differences in [11C]metoclopramide AUCbrain between Abcb1a/b(+/-) and wild-type mice (1.39-fold, p ≤ 0.001) remained comparable to baseline. There was a negative correlation between baseline [11C]metoclopramide AUCbrain and ex-vivo-measured P-gp immunofluorescence (r = -0.9875, p ≤ 0.0001). Our data suggest that [11C]metoclopramide is a sensitive radiotracer to measure moderate, but (patho-)physiologically relevant decreases in cerebral P-gp function without the need to co-administer a P-gp inhibitor.
Collapse
Affiliation(s)
- Severin Mairinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Sarah Leterrier
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Thomas Filip
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, Vienna, Austria
- Institute of Animal Breeding and Genetics & Biomodels Austria, University of Veterinary Medicine, Vienna, Austria
| | - Mathilde Löbsch
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, Vienna, Austria
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology Research, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
- Drug Development and Chemical Biology Lab, Lübeck Institute of Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Rīga, Latvia
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Johann Stanek
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Nicolas Tournier
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Wanek
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Auvin S, Galanopoulou AS, Moshé SL, Potschka H, Rocha L, Walker MC. Revisiting the concept of drug-resistant epilepsy: A TASK1 report of the ILAE/AES Joint Translational Task Force. Epilepsia 2023; 64:2891-2908. [PMID: 37676719 PMCID: PMC10836613 DOI: 10.1111/epi.17751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Despite progress in the development of anti-seizure medications (ASMs), one third of people with epilepsy have drug-resistant epilepsy (DRE). The working definition of DRE, proposed by the International League Against Epilepsy (ILAE) in 2010, helped identify individuals who might benefit from presurgical evaluation early on. As the incidence of DRE remains high, the TASK1 workgroup on DRE of the ILAE/American Epilepsy Society (AES) Joint Translational Task Force discussed the heterogeneity and complexity of its presentation and mechanisms, the confounders in drawing mechanistic insights when testing treatment responses, and barriers in modeling DRE across the lifespan and translating across species. We propose that it is necessary to revisit the current definition of DRE, in order to transform the preclinical and clinical research of mechanisms and biomarkers, to identify novel, effective, precise, pharmacologic treatments, allowing for earlier recognition of drug resistance and individualized therapies.
Collapse
Affiliation(s)
| | - Stéphane Auvin
- Institut Universitaire de France, Paris, France; Paediatric Neurology, Assistance Publique - Hôpitaux de Paris, EpiCARE ERN Member, Robert-Debré Hospital, Paris, France; University Paris-Cité, Paris, France
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Luisa Rocha
- Pharmacobiology Department. Center for Research and Advanced Studies (CINVESTAV). Mexico City, Mexico
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
4
|
Harris WJ, Asselin MC, Hinz R, Parkes LM, Allan S, Schiessl I, Boutin H, Dickie BR. In vivo methods for imaging blood-brain barrier function and dysfunction. Eur J Nucl Med Mol Imaging 2023; 50:1051-1083. [PMID: 36437425 PMCID: PMC9931809 DOI: 10.1007/s00259-022-05997-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
The blood-brain barrier (BBB) is the interface between the central nervous system and systemic circulation. It tightly regulates what enters and is removed from the brain parenchyma and is fundamental in maintaining brain homeostasis. Increasingly, the BBB is recognised as having a significant role in numerous neurological disorders, ranging from acute disorders (traumatic brain injury, stroke, seizures) to chronic neurodegeneration (Alzheimer's disease, vascular dementia, small vessel disease). Numerous approaches have been developed to study the BBB in vitro, in vivo, and ex vivo. The complex multicellular structure and effects of disease are difficult to recreate accurately in vitro, and functional aspects of the BBB cannot be easily studied ex vivo. As such, the value of in vivo methods to study the intact BBB cannot be overstated. This review discusses the structure and function of the BBB and how these are affected in diseases. It then discusses in depth several established and novel methods for imaging the BBB in vivo, with a focus on MRI, nuclear imaging, and high-resolution intravital fluorescence microscopy.
Collapse
Affiliation(s)
- William James Harris
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Marie-Claude Asselin
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Laura Michelle Parkes
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Stuart Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Herve Boutin
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
| | - Ben Robert Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Zhao J, Wang C, Sun W, Li C. Tailoring Materials for Epilepsy Imaging: From Biomarkers to Imaging Probes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203667. [PMID: 35735191 DOI: 10.1002/adma.202203667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Excising epileptic foci (EF) is the most efficient approach for treating drug-resistant epilepsy (DRE). However, owing to the vast heterogeneity of epilepsies, EF in one-third of patients cannot be accurately located, even after exhausting all current diagnostic strategies. Therefore, identifying biomarkers that truly represent the status of epilepsy and fabricating probes with high targeting specificity are prerequisites for identifying the "concealed" EF. However, no systematic summary of this topic has been published. Herein, the potential biomarkers of EF are first summarized and classified into three categories: functional, molecular, and structural aberrances during epileptogenesis, a procedure of nonepileptic brain biasing toward epileptic tissue. The materials used to fabricate these imaging probes and their performance in defining the EF in preclinical and clinical studies are highlighted. Finally, perspectives for developing the next generation of probes and their challenges in clinical translation are discussed. In general, this review can be helpful in guiding the development of imaging probes defining EF with improved accuracy and holds promise for increasing the number of DRE patients who are eligible for surgical intervention.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
| | - Cong Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
- Academy for Engineering and Technology, Fudan University, 20 Handan Road, Yangpu District, Shanghai, 200433, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 200031, China
| | - Wanbing Sun
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
- State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
6
|
Kumar A, Shandal V, Juhász C, Chugani HT. PET imaging in epilepsy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
Vázquez M, Fagiolino P. The role of efflux transporters and metabolizing enzymes in brain and peripheral organs to explain drug-resistant epilepsy. Epilepsia Open 2021; 7 Suppl 1:S47-S58. [PMID: 34560816 PMCID: PMC9340310 DOI: 10.1002/epi4.12542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/08/2022] Open
Abstract
Drug‐resistant epilepsy has been explained by different mechanisms. The most accepted one involves overexpression of multidrug transporters proteins at the blood brain barrier and brain metabolizing enzymes. This hypothesis is one of the main pharmacokinetic reasons that lead to the lack of response of some antiseizure drug substrates of these transporters and enzymes due to their limited entrance into the brain and limited stay at the sites of actions. Although uncontrolled seizures can be the cause of the overexpression, some antiseizure medications themselves can cause such overexpression leading to treatment failure and thus refractoriness. However, it has to be taken into account that the inductive effect of some drugs such as carbamazepine or phenytoin not only impacts on the brain but also on the rest of the body with different intensity, influencing the amount of drug available for the central nervous system. Such induction is not only local drug concentration but also time dependent. In the case of valproic acid, the deficient disposition of ammonia due to a malfunction of the urea cycle, which would have its origin in an intrinsic deficiency of L‐carnitine levels in the patient or by its depletion caused by the action of this antiseizure drug, could lead to drug‐resistant epilepsy. Many efforts have been made to change this situation. In order to name some, the administration of once‐daily dosing of phenytoin or the coadministration of carnitine with valproic acid would be preferable to avoid iatrogenic refractoriness. Another could be the use of an adjuvant drug that down‐regulates the expression of transporters. In this case, the use of cannabidiol with antiseizure properties itself and able to diminish the overexpression of these transporters in the brain could be a novel therapy in order to allow penetration of other antiseizure medications into the brain.
Collapse
Affiliation(s)
- Marta Vázquez
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Pietro Fagiolino
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
8
|
Head-to-head comparison of (R)-[ 11C]verapamil and [ 18F]MC225 in non-human primates, tracers for measuring P-glycoprotein function. Eur J Nucl Med Mol Imaging 2021; 48:4307-4317. [PMID: 34117508 PMCID: PMC8566421 DOI: 10.1007/s00259-021-05411-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/11/2021] [Indexed: 11/03/2022]
Abstract
Purpose P-glycoprotein (P-gp) function is altered in several brain disorders; thus, it is of interest to monitor the P-gp function in vivo using PET. (R)-[11C]verapamil is considered the gold standard tracer to measure the P-gp function; however, it presents some drawbacks that limit its use. New P-gp tracers have been developed with improved properties, such as [18F]MC225. This study compares the characteristics of (R)-[11C]verapamil and [18F]MC225 in the same subjects. Methods Three non-human primates underwent 4 PET scans: 2 with (R)-[11C]verapamil and 2 with [18F]MC225, at baseline and after P-gp inhibition. The 30-min PET data were analyzed using 1-Tissue Compartment Model (1-TCM) and metabolite-corrected plasma as input function. Tracer kinetic parameters at baseline and after inhibition were compared. Regional differences and simplified methods to quantify the P-gp function were also assessed. Results At baseline, [18F]MC225 VT values were higher, and k2 values were lower than those of (R)-[11C]verapamil, whereas K1 values were not significantly different. After inhibition, VT values of the 2 tracers were similar; however, (R)-[11C]verapamil K1 and k2 values were higher than those of [18F]MC225. Significant regional differences between tracers were found at baseline, which disappeared after inhibition. The positive slope of the SUV-TAC was positively correlated to the K1 and VT of both tracers. Conclusion [18F]MC225 and (R)-[11C]verapamil show comparable sensitivity to measure the P-gp function in non-human primates. Moreover, this study highlights the 30-min VT as the best parameter to measure decreases in the P-gp function with both tracers. [18F]MC225 may become the first radiofluorinated tracer able to measure decreases and increases in the P-gp function due to its higher baseline VT. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05411-2.
Collapse
|
9
|
García-Varela L, García DV, Kakiuchi T, Ohba H, Nishiyama S, Tago T, Elsinga PH, Tsukada H, Colabufo NA, Dierckx RAJO, van Waarde A, Toyohara J, Boellaard R, Luurtsema G. Pharmacokinetic Modeling of ( R)-[ 11C]verapamil to Measure the P-Glycoprotein Function in Nonhuman Primates. Mol Pharm 2020; 18:416-428. [PMID: 33315404 PMCID: PMC7788571 DOI: 10.1021/acs.molpharmaceut.0c01014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
(R)-[11C]verapamil is a radiotracer
widely used for the evaluation of the P-glycoprotein (P-gp) function
at the blood–brain barrier (BBB). Several studies have evaluated
the pharmacokinetics of (R)-[11C]verapamil
in rats and humans under different conditions. However, to the best
of our knowledge, the pharmacokinetics of (R)-[11C]verapamil have not yet been evaluated in nonhuman primates.
Our study aims to establish (R)-[11C]verapamil
as a reference P-gp tracer for comparison of a newly developed P-gp
positron emission tomography (PET) tracer in a species close to humans.
Therefore, the study assesses the kinetics of (R)-[11C]verapamil and evaluates the effect of scan duration and
P-gp inhibition on estimated pharmacokinetic parameters. Three nonhuman
primates underwent two dynamic 91 min PET scans with arterial blood
sampling, one at baseline and another after inhibition of the P-gp
function. The (R)-[11C]verapamil data
were analyzed using 1-tissue compartment model (1-TCM) and 2-tissue
compartment model fits using plasma-corrected for polar radio-metabolites
or non-corrected for radio-metabolites as an input function and with
various scan durations (10, 20, 30, 60, and 91 min). The preferred
model was chosen according to the Akaike information criterion and
the standard errors (SE %) of the estimated parameters. 1-TCM was
selected as the model of choice to analyze the (R)-[11C]verapamil data at baseline and after inhibition
and for all scan durations tested. The volume of distribution (VT) and the efflux constant k2 estimations were affected by the evaluated scan durations,
whereas the influx constant K1 estimations
remained relatively constant. After P-gp inhibition (tariquidar, 8
mg/kg), in a 91 min scan duration, the whole-brain VT increased significantly up to 208% (p < 0.001) and K1 up to 159% (p < 0.001) compared with baseline scans. The k2 values decreased significantly after P-gp
inhibition in all the scan durations except for the 91 min scans.
This study suggests the use of K1, calculated
with 1-TCM and using short PET scans (10 to 30 min), as a suitable
parameter to measure the P-gp function at the BBB of nonhuman primates.
Collapse
Affiliation(s)
- Lara García-Varela
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, The Netherlands
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, The Netherlands
| | - Takeharu Kakiuchi
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita, Hamamatsu 434-8601, Shizuoka, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita, Hamamatsu 434-8601, Shizuoka, Japan
| | - Shingo Nishiyama
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita, Hamamatsu 434-8601, Shizuoka, Japan
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, The Netherlands
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita, Hamamatsu 434-8601, Shizuoka, Japan
| | - Nicola A Colabufo
- Department of Pharmacy, University of Bari Aldo Moro, Bari 70125, Italy.,Biofordrug, Spin-off Università degli Studi di Bari "A. Moro", via Dante 99, Triggiano, Bari 70019, Italy
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, The Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, The Netherlands
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, The Netherlands
| |
Collapse
|
10
|
Imagerie TEP pour l’étude des répercussions fonctionnelles de la P-glycoprotéine en neuropharmacocinétique. Therapie 2020; 75:623-632. [DOI: 10.1016/j.therap.2020.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/03/2019] [Accepted: 02/17/2020] [Indexed: 11/20/2022]
|
11
|
Ilyas-Feldmann M, Asselin MC, Wang S, McMahon A, Anton-Rodriguez J, Brown G, Hinz R, Duncan JS, Sisodiya SM, Koepp M. P-glycoprotein overactivity in epileptogenic developmental lesions measured in vivo using (R)-[ 11 C]verapamil PET. Epilepsia 2020; 61:1472-1480. [PMID: 32627849 DOI: 10.1111/epi.16581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Overexpression of the drug transporter P-glycoprotein (P-gp) is thought to be involved in drug-resistance in epilepsy by extrusion of antiepileptic drugs (AEDs). We used positron emission tomography (PET) and the P-gp substrate radiotracer (R)-[11 C]verapamil (VPM) together with the third-generation P-gp inhibitor tariquidar (TQD) to evaluate P-gp function in individuals with drug-resistant epileptogenic developmental lesions. METHODS Twelve healthy controls (7 male, median age 45, range 35-55 years), and two patients with epileptogenic developmental lesions (2 male, aged 24 and 62 years) underwent VPM-PET scans before and 60 minutes after a 30-minute infusion of 2 and 3 mg/kg TQD. The influx rate constant, VPM-K1 , was estimated from the first 10 minutes of dynamic data using a single-tissue compartment model with a VPM plasma input function. Statistical parametric mapping (SPM) analysis was used to compare individual patients with the healthy controls. RESULTS At baseline, SPM voxel-based analysis revealed significantly lower uptake of VPM corresponding to the area of the epileptogenic developmental lesion compared to 12 healthy controls (P < .048). This was accentuated following P-gp inhibition with TQD. After TQD, the uptake of VPM was significantly lower in the area of the epileptogenic developmental lesion compared to controls (P < .002). SIGNIFICANCE This study provides further evidence of P-gp overactivity in patients with drug-resistant epilepsy, irrespective of the type of lesion. Identifying P-gp overactivity as an underlying contributor to drug-resistance in individual patients will enable novel treatment strategies aimed at overcoming or reversing P-gp overactivity.
Collapse
Affiliation(s)
- Maria Ilyas-Feldmann
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Bucks, UK.,Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.,Department of Neurology, Epilepsy-Center Berlin-Brandenburg, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Shaonan Wang
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.,Global Pharmacometrics, Boehringer Ingelheim, Ingelheim am Rhein, Germany
| | - Adam McMahon
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | | | - Gavin Brown
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Bucks, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Bucks, UK
| | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Bucks, UK
| |
Collapse
|
12
|
Seo J, Lee C, Paeng JC, Kwon HW, Lee D, Kim S, Han J, Ku J, Chae JH, Lim BC, Choi M. Biallelic mutations in ABCB1 display recurrent reversible encephalopathy. Ann Clin Transl Neurol 2020; 7:1443-1449. [PMID: 32627353 PMCID: PMC7448192 DOI: 10.1002/acn3.51125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022] Open
Abstract
The clinical phenotype linked with mutations in ABCB1, encoding P‐glycoprotein, has never been reported. Here, we describe twin sisters with biallelic mutations in ABCB1 who showed recurrent reversible encephalopathy accompanied by acute febrile or afebrile illness. Whole‐exome sequencing was performed on one of the twin and her healthy parents, and revealed compound heterozygous loss‐of‐function variants in ABCB1. The patient brains displayed substantial loss of xenobiotic clearance ability, as demonstrated by [11C]verapamil positron emission tomography (PET) study, linking this phenotype with ABCB1 function. The endogenous cytokine clearance from the brain was also decreased in LPS‐treated ABCB1 knockout mice compared to controls. The results provide insights into the physiological requirement of ABCB1 in maintaining homeostasis of various compounds for normal brain function.
Collapse
Affiliation(s)
- Jieun Seo
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | - Cho‐Rong Lee
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | - Jin Chul Paeng
- Department of Nuclear MedicineSeoul National University College of MedicineSeoulRepublic of Korea
| | - Hyun W. Kwon
- Department of Nuclear MedicineKorea University Anam HospitalSeoulRepublic of Korea
| | - Duckgue Lee
- Soonchunhyang Institute of Medi‐Bio ScienceSoonchunhyang UniversityCheonanRepublic of Korea
| | - Soon‐Chan Kim
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | - Jaeseok Han
- Soonchunhyang Institute of Medi‐Bio ScienceSoonchunhyang UniversityCheonanRepublic of Korea
| | - Ja‐Lok Ku
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | - Jong Hee Chae
- Department of PediatricsSeoul National University College of MedicineSeoulRepublic of Korea
| | - Byung Chan Lim
- Department of PediatricsSeoul National University College of MedicineSeoulRepublic of Korea
| | - Murim Choi
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
13
|
Sharma AA, Szaflarski JP. In Vivo Imaging of Neuroinflammatory Targets in Treatment-Resistant Epilepsy. Curr Neurol Neurosci Rep 2020; 20:5. [PMID: 32166626 DOI: 10.1007/s11910-020-1025-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Recent evidence indicates that chronic, low-level neuroinflammation underlies epileptogenesis. Targeted imaging of key neuroinflammatory cells, receptors, and tissues may enable localizing epileptogenic onset zone, especially in those patients who are treatment-resistant and considered MRI-negative. Finding a specific, sensitive neuroimaging-based biomarker could aid surgical planning and improve overall prognosis in eligible patients. This article reviews recent research on in vivo imaging of neuroinflammatory targets in patients with treatment-resistant, non-lesional epilepsy. RECENT FINDINGS A number of advanced approaches based on imaging neuroinflammation are being implemented in order to assist localization of epileptogenic onset zone. The most exciting tools are based on radioligand-based nuclear imaging or revisiting of existing technology in novel ways. The greatest limitations stem from gaps in knowledge about the exact function of neuroinflammatory targets (e.g., neurotoxic or neuroprotective). Further, lingering questions about each approach's specificity, reliability, and sensitivity must be addressed, and clinical utility must be validated before any novel method is incorporated into mainstream clinical practice. Current applications of imaging neuroinflammation in humans are limited and underutilized, but offer hope for finding sensitive and specific neuroimaging-based biomarker(s). Future work necessitates appreciation of investigations to date, significant findings, and neuroinflammatory targets worth exploring further.
Collapse
Affiliation(s)
- Ayushe A Sharma
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35249-0021, USA.
| | - Jerzy P Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35249-0021, USA.,University of Alabama at Birmingham Epilepsy Center, Birmingham, AL, USA
| |
Collapse
|
14
|
ABC transporters in drug-resistant epilepsy: mechanisms of upregulation and therapeutic approaches. Pharmacol Res 2019; 144:357-376. [PMID: 31051235 DOI: 10.1016/j.phrs.2019.04.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Drug-resistant epilepsy (DRE) affects approximately one third of epileptic patients. Among various theories that try to explain multidrug resistance, the transporter hypothesis is the most extensively studied. Accordingly, the overexpression of efflux transporters in the blood-brain barrier (BBB), mainly from the ATP binding cassette (ABC) superfamily, may be responsible for hampering the access of antiepileptic drugs into the brain. P-glycoprotein and other efflux transporters are known to be upregulated in endothelial cells, astrocytes and neurons of the neurovascular unit, a functional barrier critically involved in the brain penetration of drugs. Inflammation and oxidative stress involved in the pathophysiology of epilepsy together with uncontrolled recurrent seizures, drug-associated induction and genetic polymorphisms are among the possible causes of ABC transporters overexpression in DRE. The aforementioned pathological mechanisms will be herein discussed together with the multiple strategies to overcome the activity of efflux transporters in the BBB - from direct transporters inhibition to down-regulation of gene expression resorting to RNA interference (RNAi), or by targeting key modulators of inflammation and seizure-mediated signalling.
Collapse
|
15
|
Hubert V, Chauveau F, Dumot C, Ong E, Berner LP, Canet-Soulas E, Ghersi-Egea JF, Wiart M. Clinical Imaging of Choroid Plexus in Health and in Brain Disorders: A Mini-Review. Front Mol Neurosci 2019; 12:34. [PMID: 30809124 PMCID: PMC6379459 DOI: 10.3389/fnmol.2019.00034] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/25/2019] [Indexed: 11/18/2022] Open
Abstract
The choroid plexuses (ChPs) perform indispensable functions for the development, maintenance and functioning of the brain. Although they have gained considerable interest in the last years, their involvement in brain disorders is still largely unknown, notably because their deep location inside the brain hampers non-invasive investigations. Imaging tools have become instrumental to the diagnosis and pathophysiological study of neurological and neuropsychiatric diseases. This review summarizes the knowledge that has been gathered from the clinical imaging of ChPs in health and brain disorders not related to ChP pathologies. Results are discussed in the light of pre-clinical imaging studies. As seen in this review, to date, most clinical imaging studies of ChPs have used disease-free human subjects to demonstrate the value of different imaging biomarkers (ChP size, perfusion/permeability, glucose metabolism, inflammation), sometimes combined with the study of normal aging. Although very few studies have actually tested the value of ChP imaging biomarkers in patients with brain disorders, these pioneer studies identified ChP changes that are promising data for a better understanding and follow-up of diseases such as schizophrenia, epilepsy and Alzheimer’s disease. Imaging of immune cell trafficking at the ChPs has remained limited to pre-clinical studies so far but has the potential to be translated in patients for example using MRI coupled with the injection of iron oxide nanoparticles. Future investigations should aim at confirming and extending these findings and at developing translational molecular imaging tools for bridging the gap between basic molecular and cellular neuroscience and clinical research.
Collapse
Affiliation(s)
- Violaine Hubert
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France
| | - Fabien Chauveau
- CNRS UMR5292, INSERM U1028, BIORAN Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Lyon, France.,CNRS, Lyon, France
| | - Chloé Dumot
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France.,HCL, Lyon, France
| | - Elodie Ong
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France.,HCL, Lyon, France
| | | | - Emmanuelle Canet-Soulas
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France
| | - Jean-François Ghersi-Egea
- CNRS UMR5292, INSERM U1028, Fluid Team and BIP Facility, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Lyon, France
| | - Marlène Wiart
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France.,CNRS, Lyon, France
| |
Collapse
|
16
|
Abstract
Transporter systems involved in the permeation of drugs and solutes across biological membranes are recognized as key determinants of pharmacokinetics. Typically, the action of membrane transporters on drug exposure to tissues in living organisms is inferred from invasive procedures, which cannot be applied in humans. In recent years, imaging methods have greatly progressed in terms of instruments, synthesis of novel imaging probes as well as tools for data analysis. Imaging allows pharmacokinetic parameters in different tissues and organs to be obtained in a non-invasive or minimally invasive way. The aim of this overview is to summarize the current status in the field of molecular imaging of drug transporters. The overview is focused on human studies, both for the characterization of transport systems for imaging agents as well as for the determination of drug pharmacokinetics, and makes reference to animal studies where necessary. We conclude that despite certain methodological limitations, imaging has a great potential to study transporters at work in humans and that imaging will become an important tool, not only in drug development but also in medicine. Imaging allows the mechanistic aspects of transport proteins to be studied, as well as elucidating the influence of genetic background, pathophysiological states and drug-drug interactions on the function of transporters involved in the disposition of drugs.
Collapse
Affiliation(s)
- Nicolas Tournier
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Lassen ML, Muzik O, Beyer T, Hacker M, Ladefoged CN, Cal-González J, Wadsak W, Rausch I, Langer O, Bauer M. Reproducibility of Quantitative Brain Imaging Using a PET-Only and a Combined PET/MR System. Front Neurosci 2017; 11:396. [PMID: 28769742 PMCID: PMC5511842 DOI: 10.3389/fnins.2017.00396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/23/2017] [Indexed: 01/02/2023] Open
Abstract
The purpose of this study was to test the feasibility of migrating a quantitative brain imaging protocol from a positron emission tomography (PET)-only system to an integrated PET/MR system. Potential differences in both absolute radiotracer concentration as well as in the derived kinetic parameters as a function of PET system choice have been investigated. Five healthy volunteers underwent dynamic (R)-[11C]verapamil imaging on the same day using a GE-Advance (PET-only) and a Siemens Biograph mMR system (PET/MR). PET-emission data were reconstructed using a transmission-based attenuation correction (AC) map (PET-only), whereas a standard MR-DIXON as well as a low-dose CT AC map was applied to PET/MR emission data. Kinetic modeling based on arterial blood sampling was performed using a 1-tissue-2-rate constant compartment model, yielding kinetic parameters (K1 and k2) and distribution volume (V T ). Differences for parametric values obtained in the PET-only and the PET/MR systems were analyzed using a 2-way Analysis of Variance (ANOVA). Comparison of DIXON-based AC (PET/MR) with emission data derived from the PET-only system revealed average inter-system differences of -33 ± 14% (p < 0.05) for the K1 parameter and -19 ± 9% (p < 0.05) for k2. Using a CT-based AC for PET/MR resulted in slightly lower systematic differences of -16 ± 18% for K1 and -9 ± 10% for k2. The average differences in V T were -18 ± 10% (p < 0.05) for DIXON- and -8 ± 13% for CT-based AC. Significant systematic differences were observed for kinetic parameters derived from emission data obtained from PET/MR and PET-only imaging due to different standard AC methods employed. Therefore, a transfer of imaging protocols from PET-only to PET/MR systems is not straightforward without application of proper correction methods. Clinical Trial Registration: www.clinicaltrialsregister.eu, identifier 2013-001724-19.
Collapse
Affiliation(s)
- Martin L Lassen
- Center for Medical Physics and Biomedical Engineering, Medical University of ViennaVienna, Austria
| | - Otto Muzik
- Department of Radiology, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University School of MedicineDetroit, MI, United States
| | - Thomas Beyer
- Center for Medical Physics and Biomedical Engineering, Medical University of ViennaVienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaVienna, Austria
| | - Claes Nøhr Ladefoged
- Department of Clinical Physiology, Nuclear Medicine and PETRigshospitalet, Copenhagen, Denmark
| | - Jacobo Cal-González
- Center for Medical Physics and Biomedical Engineering, Medical University of ViennaVienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaVienna, Austria.,CBmed GmbH, Center for Biomarker Research in MedicineGraz, Austria
| | - Ivo Rausch
- Center for Medical Physics and Biomedical Engineering, Medical University of ViennaVienna, Austria
| | - Oliver Langer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaVienna, Austria.,Department for Clinical Pharmacology, Medical University of ViennaVienna, Austria.,Health and Environment Department, AIT Austrian Institute of Technology GmbHSeibersdorf, Austria
| | - Martin Bauer
- Department for Clinical Pharmacology, Medical University of ViennaVienna, Austria
| |
Collapse
|
18
|
Tang F, Hartz AMS, Bauer B. Drug-Resistant Epilepsy: Multiple Hypotheses, Few Answers. Front Neurol 2017; 8:301. [PMID: 28729850 PMCID: PMC5498483 DOI: 10.3389/fneur.2017.00301] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/12/2017] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is a common neurological disorder that affects over 70 million people worldwide. Despite the recent introduction of new antiseizure drugs (ASDs), about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Early identification of patients who will become refractory to ASDs could help direct such patients to appropriate non-pharmacological treatment, but the complexity in the temporal patterns of epilepsy could make such identification difficult. The target hypothesis and transporter hypothesis are the most cited theories trying to explain refractory epilepsy, but neither theory alone fully explains the neurobiological basis of pharmacoresistance. This review summarizes evidence for and against several major theories, including the pharmacokinetic hypothesis, neural network hypothesis, intrinsic severity hypothesis, gene variant hypothesis, target hypothesis, and transporter hypothesis. The discussion is mainly focused on the transporter hypothesis, where clinical and experimental data are discussed on multidrug transporter overexpression, substrate profiles of ASDs, mechanism of transporter upregulation, polymorphisms of transporters, and the use of transporter inhibitors. Finally, future perspectives are presented for the improvement of current hypotheses and the development of treatment strategies as guided by the current understanding of refractory epilepsy.
Collapse
Affiliation(s)
- Fei Tang
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States.,Epilepsy Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
19
|
Bauer M, Wulkersdorfer B, Karch R, Philippe C, Jäger W, Stanek J, Wadsak W, Hacker M, Zeitlinger M, Langer O. Effect of P-glycoprotein inhibition at the blood-brain barrier on brain distribution of (R)-[ 11 C]verapamil in elderly vs. young subjects. Br J Clin Pharmacol 2017; 83:1991-1999. [PMID: 28401570 DOI: 10.1111/bcp.13301] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/22/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022] Open
Abstract
AIMS The efflux transporter P-glycoprotein (ABCB1) acts at the blood-brain barrier (BBB) to restrict the distribution of many different drugs from blood to the brain. Previous data suggest an age-associated decrease in the expression and function of ABCB1 at the BBB. In the present study, we investigated the influence of age on the magnitude of an ABCB1-mediated drug-drug interaction (DDI) at the BBB. METHODS We performed positron emission tomography scans using the model ABCB1 substrate (R)-[11 C]verapamil in five young [26 ± 1 years, (mean ± standard deviation)] and five elderly (68 ± 6 years) healthy male volunteers before and after intravenous administration of a low dose of the ABCB1 inhibitor tariquidar (3 mg kg-1 ). RESULTS In baseline scans, the total distribution volume (VT ) of (R)-[11 C]verapamil in whole-brain grey matter was not significantly different between the elderly (VT = 0.78 ± 0.15) and young (VT = 0.79 ± 0.10) group. After partial (incomplete) ABCB1 inhibition, VT values were significantly higher (P = 0.040) in the elderly (VT = 1.08 ± 0.15) than in the young (VT = 0.80 ± 0.18) group. The percentage increase in (R)-[11 C]verapamil VT following partial ABCB1 inhibition was significantly greater (P = 0.032) in elderly (+40 ± 17%) than in young (+2 ± 17%) volunteers. Tariquidar plasma concentrations were not significantly different between the young (786 ± 178 nmol l-1 ) and elderly (1116 ± 347 nmol l-1 ) group. CONCLUSIONS Our results provide the first direct evidence of an increased risk for ABCB1-mediated DDIs at the BBB in elderly persons, which may have important consequences for pharmacotherapy of the elderly.
Collapse
Affiliation(s)
- Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Rudolf Karch
- Centre for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Johann Stanek
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.,Centre for Biomarker Research in Medicine - CBmed GmbH, Graz, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.,Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| |
Collapse
|
20
|
Savolainen H, Windhorst AD, Elsinga PH, Cantore M, Colabufo NA, Willemsen AT, Luurtsema G. Evaluation of [ 18F]MC225 as a PET radiotracer for measuring P-glycoprotein function at the blood-brain barrier in rats: Kinetics, metabolism, and selectivity. J Cereb Blood Flow Metab 2017; 37:1286-1298. [PMID: 27354093 PMCID: PMC5453451 DOI: 10.1177/0271678x16654493] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
P-glycoprotein is a protective efflux transporter at the blood-brain barrier showing altered function in many neurological disorders. The purpose of this study was to validate [18F]MC225 as a radiotracer for measuring P-glycoprotein function with positron emission tomography. Three groups of Sprague-Dawley rats were used to assess tracer uptake at baseline (group 1), after inhibition of P-glycoprotein (group 2), and after inhibition of both P-glycoprotein and breast cancer resistance protein (Bcrp, group 3). A two-tissue compartment model with a metabolite-corrected plasma input function provided the best fit to the positron emission tomography data, but parameter estimates were more reliable in a one-tissue compartment model, which was selected as the preferred model. Regional distribution volumes ( VT) in the control group ranged from 6 to 11, which is higher than for other radiotracers. [18F]MC225 showed transporter selectivity, since inhibition of P-glycoprotein caused a two to fourfold increase in the cerebral VT values, but additional inhibition of Bcrp did not cause any further increase. Metabolic stability of [18F]MC225 was moderate (at 1 h post-injection 15% of plasma radioactivity and 76% of brain radioactivity represented intact parent). Thus, [18F]MC225 may be a useful radiotracer to measure especially increases of P-glycoprotein function at the blood-brain barrier.
Collapse
Affiliation(s)
- Heli Savolainen
- 1 Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Albert D Windhorst
- 2 Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Philip H Elsinga
- 1 Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mariangela Cantore
- 3 Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Bari, Italy.,4 Biofordrug slr, Bari, Italy
| | - Nicola A Colabufo
- 3 Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Bari, Italy.,4 Biofordrug slr, Bari, Italy
| | - Antoon Tm Willemsen
- 1 Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gert Luurtsema
- 1 Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
21
|
Kumar A, Chugani HT. The Role of Radionuclide Imaging in Epilepsy, Part 1: Sporadic Temporal and Extratemporal Lobe Epilepsy. J Nucl Med Technol 2017; 45:14-21. [PMID: 28258205 DOI: 10.2967/jnumed.112.114397] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/06/2013] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is one of the most common yet diverse neurologic disorders, affecting almost 1%-2% of the population. Presently, radionuclide imaging such as PET and SPECT is not used in the primary diagnosis or evaluation of recent-onset epilepsy. However, it can play a unique and important role in certain specific situations, such as in noninvasive presurgical localization of epileptogenic brain regions in intractable-seizure patients being considered for epilepsy surgery. Radionuclide imaging can be particularly useful if MR imaging is either negative for lesions or shows several lesions of which only 1 or 2 are suspected to be epileptogenic and if electroencephalogram changes are equivocal or discordant with the structural imaging. Similarly, PET and SPECT can also be useful for evaluating the functional integrity of the rest of the brain and may provide useful information on the possible pathogenesis of the neurocognitive and behavioral abnormalities frequently observed in these patients.
Collapse
Affiliation(s)
- Ajay Kumar
- PET Center, Department of Pediatrics, Neurology, and Radiology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University School of Medicine, Detroit, Michigan
| | - Harry T Chugani
- PET Center, Department of Pediatrics, Neurology, and Radiology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
22
|
Abstract
Positron emission tomography (PET) is a neuroimaging method that offers insights into the molecular functioning of a human brain. It has been widely used to study metabolic and neurotransmitter abnormalities in people with epilepsy. This article reviews the development of several PET radioligands and their application in studying the molecular mechanisms of epilepsy. Over the last decade, tracers binding to serotonin and γ-aminobutyric acid (GABA) receptors have been used to delineate the location of the epileptic focus. PET studies have examined the role of opioids, cannabinoids, acetylcholine, and dopamine in modulating neuronal hyperexcitability and seizure termination. In vivo analyses of drug transporters, e.g., P-glycoprotein, have increased our understanding of pharmacoresistance that could inform new therapeutic strategies. Finally, PET experiments targeting neuroinflammation and glutamate receptors might guide the development of novel biomarkers of epileptogenesis.
Collapse
Affiliation(s)
- Marian Galovic
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, 33 Queen Square, London, WC1N 3BG, United Kingdom.,Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, United Kingdom
| | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, 33 Queen Square, London, WC1N 3BG, United Kingdom. .,Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, United Kingdom.
| |
Collapse
|
23
|
Mansor S, Yaqub M, Boellaard R, Froklage FE, de Vries A, Bakker ED, Voskuyl RA, Eriksson J, Schwarte LA, Verbeek J, Windhorst AD, Lammertsma AA. Parametric Methods for Dynamic 11C-Phenytoin PET Studies. J Nucl Med 2016; 58:479-483. [DOI: 10.2967/jnumed.116.178707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/29/2016] [Indexed: 01/13/2023] Open
|
24
|
Bauer M, Römermann K, Karch R, Wulkersdorfer B, Stanek J, Philippe C, Maier‐Salamon A, Haslacher H, Jungbauer C, Wadsak W, Jäger W, Löscher W, Hacker M, Zeitlinger M, Langer O. Pilot PET Study to Assess the Functional Interplay Between ABCB1 and ABCG2 at the Human Blood-Brain Barrier. Clin Pharmacol Ther 2016; 100:131-41. [PMID: 26940368 PMCID: PMC4979595 DOI: 10.1002/cpt.362] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/20/2016] [Accepted: 02/28/2016] [Indexed: 01/16/2023]
Abstract
ABCB1 and ABCG2 work together at the blood-brain barrier (BBB) to limit brain distribution of dual ABCB1/ABCG2 substrates. In this pilot study we used positron emission tomography (PET) to assess brain distribution of two model ABCB1/ABCG2 substrates ([(11) C]elacridar and [(11) C]tariquidar) in healthy subjects without (c.421CC) or with (c.421CA) the ABCG2 single-nucleotide polymorphism (SNP) c.421C>A. Subjects underwent PET scans under conditions when ABCB1 and ABCG2 were functional and during ABCB1 inhibition with high-dose tariquidar. In contrast to the ABCB1-selective substrate (R)-[(11) C]verapamil, [(11) C]elacridar and [(11) C]tariquidar showed only moderate increases in brain distribution during ABCB1 inhibition. This provides evidence for a functional interplay between ABCB1 and ABCG2 at the human BBB and suggests that both ABCB1 and ABCG2 need to be inhibited to achieve substantial increases in brain distribution of dual ABCB1/ABCG2 substrates. During ABCB1 inhibition c.421CA subjects had significantly higher increases in [(11) C]tariquidar brain distribution than c.421CC subjects, pointing to impaired cerebral ABCG2 function.
Collapse
Affiliation(s)
- M Bauer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - K Römermann
- Department of Pharmacology, Toxicology & PharmacyUniversity of Veterinary MedicineHannoverGermany
| | - R Karch
- Center for Medical Statistics, Informatics and Intelligent SystemsMedical University of ViennaViennaAustria
| | - B Wulkersdorfer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - J Stanek
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
- Health and Environment DepartmentAIT Austrian Institute of Technology GmbHSeibersdorfAustria
| | - C Philippe
- Department of Biomedical Imaging und Image‐guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | - A Maier‐Salamon
- Department of Clinical Pharmacy and DiagnosticsUniversity of ViennaViennaAustria
| | - H Haslacher
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - C Jungbauer
- Austrian Red Cross Blood Transfusion ServicesViennaAustria
| | - W Wadsak
- Department of Biomedical Imaging und Image‐guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
- Medical Imaging ClusterMedical University of ViennaViennaAustria
| | - W Jäger
- Department of Clinical Pharmacy and DiagnosticsUniversity of ViennaViennaAustria
| | - W Löscher
- Department of Pharmacology, Toxicology & PharmacyUniversity of Veterinary MedicineHannoverGermany
| | - M Hacker
- Department of Biomedical Imaging und Image‐guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
- Medical Imaging ClusterMedical University of ViennaViennaAustria
| | - M Zeitlinger
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - O Langer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
- Health and Environment DepartmentAIT Austrian Institute of Technology GmbHSeibersdorfAustria
- Department of Biomedical Imaging und Image‐guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
- Medical Imaging ClusterMedical University of ViennaViennaAustria
| |
Collapse
|
25
|
Yu X, Wang J, Liu J, Shen S, Cao Z, Pan J, Zhou S, Pang Z, Geng D, Zhang J. A multimodal Pepstatin A peptide-based nanoagent for the molecular imaging of P-glycoprotein in the brains of epilepsy rats. Biomaterials 2016; 76:173-86. [DOI: 10.1016/j.biomaterials.2015.10.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 12/21/2022]
|
26
|
Nicita F, Spalice A, Raucci U, Iannetti P, Parisi P. The possible use of the L-type calcium channel antagonist verapamil in drug-resistant epilepsy. Expert Rev Neurother 2015; 16:9-15. [PMID: 26567612 DOI: 10.1586/14737175.2016.1121097] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Multidrug transporters (MDTs) are likely to play a role in the pathogenesis of drug resistance in epilepsy, acting at the level of the blood-brain barrier by returning antiepileptic drugs to the blood vessels and lowering brain penetration and concentration (e.g. the so-called multidrug transporter hypothesis). In the last ten years experimental studies on both animal models and human brain tissues have highlighted a potential role of the P-glycoprotein-one of the multidrug transporters of the blood-brain barrier-in the pathophysiology of drug-resistant epilepsies. At the same time, verapamil has been administered to patients with drug-resistant epilepsy (e.g., Dravet syndrome, Lennox-Gastaut syndrome, focal epilepsies) or status epilepticus with promising results. In this drug profile paper the authors review current knowledge and main published studies regarding the role of the L-type calcium channel antagonist verapamil in drug-resistant epilepsy.
Collapse
Affiliation(s)
- Francesco Nicita
- a Department of Pediatrics, Child Neurology Division , Sapienza University of Rome , Rome , Italy
| | - Alberto Spalice
- a Department of Pediatrics, Child Neurology Division , Sapienza University of Rome , Rome , Italy
| | - Umberto Raucci
- b Emergency Pediatric Department , "Bambino Gesù" Children's Hospital, IRCCS , Rome , Italy
| | - Paola Iannetti
- a Department of Pediatrics, Child Neurology Division , Sapienza University of Rome , Rome , Italy
| | | |
Collapse
|
27
|
Shin JW, Chu K, Shin SA, Jung KH, Lee ST, Lee YS, Moon J, Lee DY, Lee JS, Lee DS, Lee SK. Clinical Applications of Simultaneous PET/MR Imaging Using (R)-[11C]-Verapamil with Cyclosporin A: Preliminary Results on a Surrogate Marker of Drug-Resistant Epilepsy. AJNR Am J Neuroradiol 2015; 37:600-6. [PMID: 26585254 DOI: 10.3174/ajnr.a4566] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 08/17/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The development of resistance to antiepileptic drugs is explained well by the transporter hypothesis, which suggests that drug resistance is caused by inadequate penetration of drugs into the brain barrier as a result of increased levels of efflux transporter such as p-glycoprotein. To evaluate the brain expression of p-glycoprotein in patients with drug-resistant epilepsy, including neocortical epilepsy, we developed a noninvsive quantitative analysis including asymmetry indices based on (R)-[(11)C]-verapamil PET/MR imaging with cyclosporin A, a p-glycoprotein inhibitor. MATERIALS AND METHODS Six patients with drug-resistant epilepsy, 5 patients with drug-sensitive epilepsy, and 8 healthy controls underwent dynamic (R)-[(11)C]-verapamil PET/MR imaging with an intravenous infusion of cyclosporin A. Asymmetry indices [(Right Region - Left Region)/(Right Region + Left Region) × 200%] of the standard uptake values in each of the paired lobes were calculated. RESULTS All patients with drug-resistant epilepsy had significantly different asymmetry from the healthy controls, whereas all patients with drug-sensitive epilepsy had asymmetry similar to that in healthy controls. In the temporal lobe, the asymmetry indices of patients with left temporal lobe drug-resistant epilepsy were more positive than those of healthy controls (healthy controls: 4.0413 ± 1.7452; patients: 7.2184 ± 1.8237; P = .048), and those of patients with right temporal drug-resistant epilepsy were more negative (patients: -1.6496 ± 3.4136; P = .044). In addition, specific regions that had significant asymmetry were different between the lateral and medial temporal lobe epilepsy groups. In the frontal lobe, the asymmetry index of patients with right frontal lobe drug-resistant epilepsy was more negative than that in healthy controls. CONCLUSIONS We confirmed that statistical parametric mapping analysis by using asymmetry indices of (R)-[(11)C]-verapamil PET/MR imaging with cyclosporin A could be used as a surrogate marker for drug-resistant epilepsy, and this approach might be helpful for localizing or lateralizing the epileptic zone.
Collapse
Affiliation(s)
- J-W Shin
- From the Department of Neurology (J.-W.S., K.C., K.-H.J., S.-T.L., J.M., D.Y.L., S.K.L.), Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute Department of Neurology (J.-W.S.), CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - K Chu
- From the Department of Neurology (J.-W.S., K.C., K.-H.J., S.-T.L., J.M., D.Y.L., S.K.L.), Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute
| | - S A Shin
- Department of Nuclear Medicine (S.A.S., Y.-S.L., J.S.L., D.S.L.) Department of Biomedical Sciences (S.A.S., J.S.L.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - K-H Jung
- From the Department of Neurology (J.-W.S., K.C., K.-H.J., S.-T.L., J.M., D.Y.L., S.K.L.), Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute
| | - S-T Lee
- From the Department of Neurology (J.-W.S., K.C., K.-H.J., S.-T.L., J.M., D.Y.L., S.K.L.), Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute
| | - Y-S Lee
- Department of Nuclear Medicine (S.A.S., Y.-S.L., J.S.L., D.S.L.) Department of Molecular Medicine and Biopharmaceutical Sciences (Y.-S.L., D.S.L.), Graduate School of Convergence Science and Technology, Kyunggi, South Korea
| | - J Moon
- From the Department of Neurology (J.-W.S., K.C., K.-H.J., S.-T.L., J.M., D.Y.L., S.K.L.), Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute
| | - D Y Lee
- From the Department of Neurology (J.-W.S., K.C., K.-H.J., S.-T.L., J.M., D.Y.L., S.K.L.), Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute
| | - J S Lee
- Department of Nuclear Medicine (S.A.S., Y.-S.L., J.S.L., D.S.L.) Department of Biomedical Sciences (S.A.S., J.S.L.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - D S Lee
- Department of Nuclear Medicine (S.A.S., Y.-S.L., J.S.L., D.S.L.) Department of Molecular Medicine and Biopharmaceutical Sciences (Y.-S.L., D.S.L.), Graduate School of Convergence Science and Technology, Kyunggi, South Korea
| | - S K Lee
- From the Department of Neurology (J.-W.S., K.C., K.-H.J., S.-T.L., J.M., D.Y.L., S.K.L.), Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute
| |
Collapse
|
28
|
Liu L, Collier AC, Link JM, Domino KB, Mankoff DA, Eary JF, Spiekerman CF, Hsiao P, Deo AK, Unadkat JD. Modulation of P-glycoprotein at the Human Blood-Brain Barrier by Quinidine or Rifampin Treatment: A Positron Emission Tomography Imaging Study. Drug Metab Dispos 2015; 43:1795-804. [PMID: 26354948 PMCID: PMC4613948 DOI: 10.1124/dmd.114.058685] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/01/2015] [Indexed: 11/22/2022] Open
Abstract
Permeability-glycoprotein (P-glycoprotein, P-gp), an efflux transporter at the human blood-brain barrier (BBB), is a significant obstacle to central nervous system (CNS) delivery of P-gp substrate drugs. Using positron emission tomography imaging, we investigated P-gp modulation at the human BBB by an approved P-gp inhibitor, quinidine, or the P-gp inducer, rifampin. Cerebral blood flow (CBF) and BBB P-gp activity were respectively measured by administration of (15)O-water followed by (11)C-verapamil. In a crossover design, healthy volunteers received quinidine and 11-29 days of rifampin treatment during different study periods. CBF and P-gp activity was measured in the absence (control; prior to quinidine treatment) and presence of P-gp modulation. At clinically relevant quinidine plasma concentrations, P-gp inhibition resulted in a 60% increase in (11)C-radioactivity distribution across the human BBB as measured by the brain extraction ratio (ER) of (11)C-radioactivity. Furthermore, the magnitude of BBB P-gp inhibition by quinidine was successfully predicted by a combination of in vitro and macaque data, but not by rat data. Although our findings demonstrated that quinidine did not completely inhibit P-gp at the human BBB, it has the potential to produce clinically significant CNS drug interactions with P-gp substrate drugs that exhibit a narrow therapeutic window and are significantly excluded from the brain by P-gp. Rifampin treatment induced systemic CYP3A metabolism of (11)C-verapamil; however, it reduced the ER by 6%. Therefore, we conclude that rifampin, at its usual clinical dose, cannot be used to induce P-gp at the human BBB to a clinically meaningful extent and is unlikely to cause inadvertent BBB-inductive drug interactions.
Collapse
Affiliation(s)
- Li Liu
- Department of Pharmaceutics (L.L., P.H., A.K.D., J.D.U.), Department of Medicine (A.C.C.), Division of Nuclear Medicine (J.M.L., D.A.M., J.F.E.), Department of Anesthesiology and Pain Medicine (K.B.D.), and Department of Oral Health Sciences (C.F.S.), University of Washington, Seattle, Washington
| | - Ann C Collier
- Department of Pharmaceutics (L.L., P.H., A.K.D., J.D.U.), Department of Medicine (A.C.C.), Division of Nuclear Medicine (J.M.L., D.A.M., J.F.E.), Department of Anesthesiology and Pain Medicine (K.B.D.), and Department of Oral Health Sciences (C.F.S.), University of Washington, Seattle, Washington
| | - Jeanne M Link
- Department of Pharmaceutics (L.L., P.H., A.K.D., J.D.U.), Department of Medicine (A.C.C.), Division of Nuclear Medicine (J.M.L., D.A.M., J.F.E.), Department of Anesthesiology and Pain Medicine (K.B.D.), and Department of Oral Health Sciences (C.F.S.), University of Washington, Seattle, Washington
| | - Karen B Domino
- Department of Pharmaceutics (L.L., P.H., A.K.D., J.D.U.), Department of Medicine (A.C.C.), Division of Nuclear Medicine (J.M.L., D.A.M., J.F.E.), Department of Anesthesiology and Pain Medicine (K.B.D.), and Department of Oral Health Sciences (C.F.S.), University of Washington, Seattle, Washington
| | - David A Mankoff
- Department of Pharmaceutics (L.L., P.H., A.K.D., J.D.U.), Department of Medicine (A.C.C.), Division of Nuclear Medicine (J.M.L., D.A.M., J.F.E.), Department of Anesthesiology and Pain Medicine (K.B.D.), and Department of Oral Health Sciences (C.F.S.), University of Washington, Seattle, Washington
| | - Janet F Eary
- Department of Pharmaceutics (L.L., P.H., A.K.D., J.D.U.), Department of Medicine (A.C.C.), Division of Nuclear Medicine (J.M.L., D.A.M., J.F.E.), Department of Anesthesiology and Pain Medicine (K.B.D.), and Department of Oral Health Sciences (C.F.S.), University of Washington, Seattle, Washington
| | - Charles F Spiekerman
- Department of Pharmaceutics (L.L., P.H., A.K.D., J.D.U.), Department of Medicine (A.C.C.), Division of Nuclear Medicine (J.M.L., D.A.M., J.F.E.), Department of Anesthesiology and Pain Medicine (K.B.D.), and Department of Oral Health Sciences (C.F.S.), University of Washington, Seattle, Washington
| | - Peng Hsiao
- Department of Pharmaceutics (L.L., P.H., A.K.D., J.D.U.), Department of Medicine (A.C.C.), Division of Nuclear Medicine (J.M.L., D.A.M., J.F.E.), Department of Anesthesiology and Pain Medicine (K.B.D.), and Department of Oral Health Sciences (C.F.S.), University of Washington, Seattle, Washington
| | - Anand K Deo
- Department of Pharmaceutics (L.L., P.H., A.K.D., J.D.U.), Department of Medicine (A.C.C.), Division of Nuclear Medicine (J.M.L., D.A.M., J.F.E.), Department of Anesthesiology and Pain Medicine (K.B.D.), and Department of Oral Health Sciences (C.F.S.), University of Washington, Seattle, Washington
| | - Jashvant D Unadkat
- Department of Pharmaceutics (L.L., P.H., A.K.D., J.D.U.), Department of Medicine (A.C.C.), Division of Nuclear Medicine (J.M.L., D.A.M., J.F.E.), Department of Anesthesiology and Pain Medicine (K.B.D.), and Department of Oral Health Sciences (C.F.S.), University of Washington, Seattle, Washington
| |
Collapse
|
29
|
Mansor S, Boellaard R, Froklage FE, Bakker ED, Yaqub M, Voskuyl RA, Schwarte LA, Verbeek J, Windhorst AD, Lammertsma A. Quantification of Dynamic 11C-Phenytoin PET Studies. J Nucl Med 2015; 56:1372-7. [DOI: 10.2967/jnumed.115.158055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 06/23/2015] [Indexed: 01/27/2023] Open
|
30
|
Savolainen H, Cantore M, Colabufo NA, Elsinga PH, Windhorst AD, Luurtsema G. Synthesis and Preclinical Evaluation of Three Novel Fluorine-18 Labeled Radiopharmaceuticals for P-Glycoprotein PET Imaging at the Blood-Brain Barrier. Mol Pharm 2015; 12:2265-75. [PMID: 26043236 DOI: 10.1021/mp5008103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
P-Glycoprotein (P-gp), along with other transporter proteins at the blood-brain barrier (BBB), limits the entry of many pharmaceuticals into the brain. Altered P-gp function has been found in several neurological diseases. To study the P-gp function, many positron emission tomography (PET) radiopharmaceuticals have been developed. Most P-gp radiopharmaceuticals are labeled with carbon-11, while labeling with fluorine-18 would increase their applicability due to longer half-life. Here we present the synthesis and in vivo evaluation of three novel fluorine-18 labeled radiopharmaceuticals: 4-((6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)methyl)-2-(4-fluorophenyl)oxazole (1a), 2-biphenyl-4-yl-2-fluoroethoxy-6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline (2), and 5-(1-(2-fluoroethoxy))-[3-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-propyl]-5,6,7,8-tetrahydronaphthalen (3). Compounds were characterized as P-gp substrates in vitro, and Mdr1a/b((-/-))Bcrp1((-/-)) and wild-type mice were used to assess the substrate potential in vivo. Comparison was made to (R)-[(11)C]verapamil, which is currently the most frequently used P-gp substrate. Compound [(18)F]3 was performing the best out of the new radiopharmaceuticals; it had 2-fold higher brain uptake in the Mdr1a/b((-/-))Bcrp1((-/-)) mice compared to wild-type and was metabolically quite stable. In the plasma, 69% of the parent compound was intact after 45 min and 96% in the brain. Selectivity of [(18)F]3 to P-gp was tested by comparing the uptake in Mdr1a/b((-/-)) mice to uptake in Mdr1a/b((-/-))Bcrp1((-/-)) mice, which was statistically not significantly different. Hence, [(18)F]3 was found to be selective for P-gp and is a promising new radiopharmaceutical for P-gp PET imaging at the BBB.
Collapse
Affiliation(s)
- Heli Savolainen
- †Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Mariangela Cantore
- ‡Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, via Orabona 4, 70125 Bari, Italy.,§Biofordrug slr, via Orabona 4, 70125 Bari, Italy
| | - Nicola A Colabufo
- ‡Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, via Orabona 4, 70125 Bari, Italy.,§Biofordrug slr, via Orabona 4, 70125 Bari, Italy
| | - Philip H Elsinga
- †Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Albert D Windhorst
- ∥Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, De Boelelaan 1085 C, 1081 HV Amsterdam, Netherlands
| | - Gert Luurtsema
- †Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| |
Collapse
|
31
|
Approaching complete inhibition of P-glycoprotein at the human blood-brain barrier: an (R)-[11C]verapamil PET study. J Cereb Blood Flow Metab 2015; 35:743-6. [PMID: 25669913 PMCID: PMC4420865 DOI: 10.1038/jcbfm.2015.19] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/11/2015] [Accepted: 01/20/2015] [Indexed: 01/25/2023]
Abstract
As P-glycoprotein (Pgp) inhibition at the blood-brain barrier (BBB) after administration of a single dose of tariquidar is transient, we performed positron emission tomography (PET) scans with the Pgp substrate (R)-[(11)C]verapamil in five healthy volunteers during continuous intravenous tariquidar infusion. Total distribution volume (VT) of (R)-[(11)C]verapamil in whole-brain gray matter increased by 273 ± 78% relative to baseline scans without tariquidar, which was higher than previously reported VT increases. During tariquidar infusion whole-brain VT was comparable to VT in the pituitary gland, a region not protected by the BBB, which suggested that we were approaching complete Pgp inhibition at the human BBB.
Collapse
|
32
|
Bauer M. [MUV researcher of the month, March 2015]. Wien Klin Wochenschr 2015; 127:232-3. [PMID: 25794564 DOI: 10.1007/s00508-015-0778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Martin Bauer
- Universitätsklinik für Klinische Pharmakologie, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich,
| |
Collapse
|
33
|
Bauer M, Karch R, Zeitlinger M, Liu J, Koepp MJ, Asselin MC, Sisodiya SM, Hainfellner JA, Wadsak W, Mitterhauser M, Müller M, Pataraia E, Langer O. In vivo P-glycoprotein function before and after epilepsy surgery. Neurology 2014; 83:1326-31. [PMID: 25186858 PMCID: PMC4189097 DOI: 10.1212/wnl.0000000000000858] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 07/11/2014] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES To study the functional activity of the multidrug efflux transporter P-glycoprotein (Pgp) at the blood-brain barrier of patients with temporal lobe epilepsy using (R)-[(11)C]verapamil (VPM)-PET before and after temporal lobe surgery to assess whether postoperative changes in seizure frequency and antiepileptic drug load are associated with changes in Pgp function. METHODS Seven patients with drug-resistant temporal lobe epilepsy underwent VPM-PET scans pre- and postsurgery. Patients were followed up for a median of 6 years (range 4-7) after surgery. Pgp immunoreactivity in surgically resected hippocampal specimens was determined with immunohistochemistry. RESULTS Optimal surgical outcome, defined as seizure freedom and withdrawal of antiepileptic drugs, was associated with higher temporal lobe Pgp function before surgery, higher Pgp-positive staining in surgically resected hippocampal specimens, and reduction in global Pgp function postoperatively, compared with nonoptimal surgery outcome. CONCLUSIONS The data from our pilot study suggest that Pgp overactivity in epilepsy is dynamic, and complete seizure control and elimination of antiepileptic medication is associated with reversal of overactivity, although these findings will require confirmation in a larger patient cohort.
Collapse
Affiliation(s)
- Martin Bauer
- From the Departments of Clinical Pharmacology (M.B., M.Z., M. Müller, O.L.) and Neurology (E.P.), Center for Medical Statistics, Informatics, and Intelligent Systems (R.K.), Institute of Neurology (J.A.H.), and Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine (W.W., M. Mitterhauser), Medical University of Vienna, Austria; Department of Clinical and Experimental Epilepsy (J.L., M.J.K., S.M.S.), UCL Institute of Neurology, London; Epilepsy Society (M.J.K., S.M.S.), Chalfont St Peter, Buckinghamshire; Institute for Population Health Wolfson Molecular Imaging Centre (M.-C.A.), University of Manchester, MAHSC, UK; and Health and Environment Department (O.L.), AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Rudolf Karch
- From the Departments of Clinical Pharmacology (M.B., M.Z., M. Müller, O.L.) and Neurology (E.P.), Center for Medical Statistics, Informatics, and Intelligent Systems (R.K.), Institute of Neurology (J.A.H.), and Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine (W.W., M. Mitterhauser), Medical University of Vienna, Austria; Department of Clinical and Experimental Epilepsy (J.L., M.J.K., S.M.S.), UCL Institute of Neurology, London; Epilepsy Society (M.J.K., S.M.S.), Chalfont St Peter, Buckinghamshire; Institute for Population Health Wolfson Molecular Imaging Centre (M.-C.A.), University of Manchester, MAHSC, UK; and Health and Environment Department (O.L.), AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Markus Zeitlinger
- From the Departments of Clinical Pharmacology (M.B., M.Z., M. Müller, O.L.) and Neurology (E.P.), Center for Medical Statistics, Informatics, and Intelligent Systems (R.K.), Institute of Neurology (J.A.H.), and Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine (W.W., M. Mitterhauser), Medical University of Vienna, Austria; Department of Clinical and Experimental Epilepsy (J.L., M.J.K., S.M.S.), UCL Institute of Neurology, London; Epilepsy Society (M.J.K., S.M.S.), Chalfont St Peter, Buckinghamshire; Institute for Population Health Wolfson Molecular Imaging Centre (M.-C.A.), University of Manchester, MAHSC, UK; and Health and Environment Department (O.L.), AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Joan Liu
- From the Departments of Clinical Pharmacology (M.B., M.Z., M. Müller, O.L.) and Neurology (E.P.), Center for Medical Statistics, Informatics, and Intelligent Systems (R.K.), Institute of Neurology (J.A.H.), and Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine (W.W., M. Mitterhauser), Medical University of Vienna, Austria; Department of Clinical and Experimental Epilepsy (J.L., M.J.K., S.M.S.), UCL Institute of Neurology, London; Epilepsy Society (M.J.K., S.M.S.), Chalfont St Peter, Buckinghamshire; Institute for Population Health Wolfson Molecular Imaging Centre (M.-C.A.), University of Manchester, MAHSC, UK; and Health and Environment Department (O.L.), AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Matthias J Koepp
- From the Departments of Clinical Pharmacology (M.B., M.Z., M. Müller, O.L.) and Neurology (E.P.), Center for Medical Statistics, Informatics, and Intelligent Systems (R.K.), Institute of Neurology (J.A.H.), and Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine (W.W., M. Mitterhauser), Medical University of Vienna, Austria; Department of Clinical and Experimental Epilepsy (J.L., M.J.K., S.M.S.), UCL Institute of Neurology, London; Epilepsy Society (M.J.K., S.M.S.), Chalfont St Peter, Buckinghamshire; Institute for Population Health Wolfson Molecular Imaging Centre (M.-C.A.), University of Manchester, MAHSC, UK; and Health and Environment Department (O.L.), AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Marie-Claude Asselin
- From the Departments of Clinical Pharmacology (M.B., M.Z., M. Müller, O.L.) and Neurology (E.P.), Center for Medical Statistics, Informatics, and Intelligent Systems (R.K.), Institute of Neurology (J.A.H.), and Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine (W.W., M. Mitterhauser), Medical University of Vienna, Austria; Department of Clinical and Experimental Epilepsy (J.L., M.J.K., S.M.S.), UCL Institute of Neurology, London; Epilepsy Society (M.J.K., S.M.S.), Chalfont St Peter, Buckinghamshire; Institute for Population Health Wolfson Molecular Imaging Centre (M.-C.A.), University of Manchester, MAHSC, UK; and Health and Environment Department (O.L.), AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Sanjay M Sisodiya
- From the Departments of Clinical Pharmacology (M.B., M.Z., M. Müller, O.L.) and Neurology (E.P.), Center for Medical Statistics, Informatics, and Intelligent Systems (R.K.), Institute of Neurology (J.A.H.), and Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine (W.W., M. Mitterhauser), Medical University of Vienna, Austria; Department of Clinical and Experimental Epilepsy (J.L., M.J.K., S.M.S.), UCL Institute of Neurology, London; Epilepsy Society (M.J.K., S.M.S.), Chalfont St Peter, Buckinghamshire; Institute for Population Health Wolfson Molecular Imaging Centre (M.-C.A.), University of Manchester, MAHSC, UK; and Health and Environment Department (O.L.), AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Johannes A Hainfellner
- From the Departments of Clinical Pharmacology (M.B., M.Z., M. Müller, O.L.) and Neurology (E.P.), Center for Medical Statistics, Informatics, and Intelligent Systems (R.K.), Institute of Neurology (J.A.H.), and Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine (W.W., M. Mitterhauser), Medical University of Vienna, Austria; Department of Clinical and Experimental Epilepsy (J.L., M.J.K., S.M.S.), UCL Institute of Neurology, London; Epilepsy Society (M.J.K., S.M.S.), Chalfont St Peter, Buckinghamshire; Institute for Population Health Wolfson Molecular Imaging Centre (M.-C.A.), University of Manchester, MAHSC, UK; and Health and Environment Department (O.L.), AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Wolfgang Wadsak
- From the Departments of Clinical Pharmacology (M.B., M.Z., M. Müller, O.L.) and Neurology (E.P.), Center for Medical Statistics, Informatics, and Intelligent Systems (R.K.), Institute of Neurology (J.A.H.), and Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine (W.W., M. Mitterhauser), Medical University of Vienna, Austria; Department of Clinical and Experimental Epilepsy (J.L., M.J.K., S.M.S.), UCL Institute of Neurology, London; Epilepsy Society (M.J.K., S.M.S.), Chalfont St Peter, Buckinghamshire; Institute for Population Health Wolfson Molecular Imaging Centre (M.-C.A.), University of Manchester, MAHSC, UK; and Health and Environment Department (O.L.), AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Markus Mitterhauser
- From the Departments of Clinical Pharmacology (M.B., M.Z., M. Müller, O.L.) and Neurology (E.P.), Center for Medical Statistics, Informatics, and Intelligent Systems (R.K.), Institute of Neurology (J.A.H.), and Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine (W.W., M. Mitterhauser), Medical University of Vienna, Austria; Department of Clinical and Experimental Epilepsy (J.L., M.J.K., S.M.S.), UCL Institute of Neurology, London; Epilepsy Society (M.J.K., S.M.S.), Chalfont St Peter, Buckinghamshire; Institute for Population Health Wolfson Molecular Imaging Centre (M.-C.A.), University of Manchester, MAHSC, UK; and Health and Environment Department (O.L.), AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Markus Müller
- From the Departments of Clinical Pharmacology (M.B., M.Z., M. Müller, O.L.) and Neurology (E.P.), Center for Medical Statistics, Informatics, and Intelligent Systems (R.K.), Institute of Neurology (J.A.H.), and Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine (W.W., M. Mitterhauser), Medical University of Vienna, Austria; Department of Clinical and Experimental Epilepsy (J.L., M.J.K., S.M.S.), UCL Institute of Neurology, London; Epilepsy Society (M.J.K., S.M.S.), Chalfont St Peter, Buckinghamshire; Institute for Population Health Wolfson Molecular Imaging Centre (M.-C.A.), University of Manchester, MAHSC, UK; and Health and Environment Department (O.L.), AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Ekaterina Pataraia
- From the Departments of Clinical Pharmacology (M.B., M.Z., M. Müller, O.L.) and Neurology (E.P.), Center for Medical Statistics, Informatics, and Intelligent Systems (R.K.), Institute of Neurology (J.A.H.), and Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine (W.W., M. Mitterhauser), Medical University of Vienna, Austria; Department of Clinical and Experimental Epilepsy (J.L., M.J.K., S.M.S.), UCL Institute of Neurology, London; Epilepsy Society (M.J.K., S.M.S.), Chalfont St Peter, Buckinghamshire; Institute for Population Health Wolfson Molecular Imaging Centre (M.-C.A.), University of Manchester, MAHSC, UK; and Health and Environment Department (O.L.), AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Oliver Langer
- From the Departments of Clinical Pharmacology (M.B., M.Z., M. Müller, O.L.) and Neurology (E.P.), Center for Medical Statistics, Informatics, and Intelligent Systems (R.K.), Institute of Neurology (J.A.H.), and Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine (W.W., M. Mitterhauser), Medical University of Vienna, Austria; Department of Clinical and Experimental Epilepsy (J.L., M.J.K., S.M.S.), UCL Institute of Neurology, London; Epilepsy Society (M.J.K., S.M.S.), Chalfont St Peter, Buckinghamshire; Institute for Population Health Wolfson Molecular Imaging Centre (M.-C.A.), University of Manchester, MAHSC, UK; and Health and Environment Department (O.L.), AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria.
| |
Collapse
|
34
|
Wanek T, Mairinger S, Langer O. Radioligands targeting P-glycoprotein and other drug efflux proteins at the blood-brain barrier. J Labelled Comp Radiopharm 2014; 56:68-77. [PMID: 24285312 DOI: 10.1002/jlcr.2993] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 10/23/2012] [Accepted: 11/06/2012] [Indexed: 02/06/2023]
Abstract
Brain penetration of radiopharmaceuticals or therapeutic drugs may be restricted by adenosine triphosphate-binding cassette (ABC) transporters, such as P-glycoprotein (Pgp), breast cancer resistance protein (BCRP), or the multidrug resistance-associated proteins. These transporters are expressed in the luminal membrane of brain capillary endothelial cells forming the blood-brain barrier (BBB), where they actively efflux a wide range of chemically unrelated compounds from the brain back into the blood. Most efforts to visualize ABC transporters at the BBB with positron emission tomography have concentrated on Pgp. Pgp imaging probes can be classified as radiolabeled substrates or inhibitors. The radiolabeled substrates (R)-[(11) C]verapamil and [(11) C]-N-desmethyl-loperamide have been successfully used to assess Pgp function at the BBB of animals and humans. Radiolabeled Pgp inhibitors, such as [(11) C]tariquidar, [(11) C]elacridar, or [(11) C]laniquidar, were developed to measure Pgp expression levels at the BBB, which has so far remained unsuccessful as these probes were unexpectedly recognized at tracer concentrations by Pgp and BCRP as substrates resulting in low brain uptake. Studies on positron emission tomography tracers for other ABC transporters than Pgp (BCRP and multidrug resistance-associated proteins) are still in their infancy. It is hoped that the experience gained with the imaging of Pgp will be successfully translated to the development of radiotracers to visualize other ABC transporters.
Collapse
Affiliation(s)
- Thomas Wanek
- Health & Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | | | | |
Collapse
|
35
|
Efficacy of verapamil as an adjunctive treatment in children with drug-resistant epilepsy: a pilot study. Seizure 2013; 23:36-40. [PMID: 24113539 DOI: 10.1016/j.seizure.2013.09.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Verapamil, a voltage-gated calcium channel blocker, has been occasionally reported to have some effect on reducing seizure frequency in drug-resistant epilepsy or status epilepticus. We aimed to investigate the efficacy of verapamil as add-on treatment in children with drug-resistant epilepsy. METHODS Seven children with drug-resistant structural-metabolic, unknown or genetic (e.g., Dravet syndrome [DS]) epilepsy received verapamil as an add-on drug to baseline antiepileptic therapy. Verapamil was slowly introduced at the dosage of 1mg/kg/day and titrated up to 1.5mg/kg/day. After completing the titration period, patients entered a 14-month maintenance period and were followed up at 3, 8, and 14 months. Heart monitoring was performed at baseline and at each follow-up. The primary outcome measure was the response of seizures to verapamil. RESULTS Three subjects with genetically determined DS showed a partial (reduction of 50-99%) response for all types of seizures. A patient with DS without known mutation showed a partial control of all types of seizures in the first 13 months; then seizures worsened and verapamil was suspended. Two patients with structural epilepsy and one with Lennox-Gastaut syndrome showed no improvement. Any side effects were recorded. CONCLUSIONS Add-on treatment with verapamil seems to have some effect in controlling seizures in patients with genetically determined DS. Our observations justify further research on the relationship between calcium channels, calcium channel blockers, and channelopathies.
Collapse
|
36
|
Römermann K, Wanek T, Bankstahl M, Bankstahl JP, Fedrowitz M, Müller M, Löscher W, Kuntner C, Langer O. (R)-[(11)C]verapamil is selectively transported by murine and human P-glycoprotein at the blood-brain barrier, and not by MRP1 and BCRP. Nucl Med Biol 2013; 40:873-8. [PMID: 23845421 PMCID: PMC3775124 DOI: 10.1016/j.nucmedbio.2013.05.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/17/2013] [Accepted: 05/30/2013] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Positron emission tomography (PET) with [(11)C]verapamil, either in racemic form or in form of the (R)-enantiomer, has been used to measure the functional activity of the adenosine triphosphate-binding cassette (ABC) transporter P-glycoprotein (Pgp) at the blood-brain barrier (BBB). There is some evidence in literature that verapamil inhibits two other ABC transporters expressed at the BBB, i.e. multidrug resistance protein 1 (MRP1) and breast cancer resistance protein (BCRP). However, previous data were obtained with micromolar concentrations of verapamil and do not necessarily reflect the transporter selectivity of verapamil at nanomolar concentrations, which are relevant for PET experiments. The aim of this study was to assess the selectivity of verapamil, in nanomolar concentrations, for Pgp over MRP1 and BCRP. METHODS Concentration equilibrium transport assays were performed with [(3)H]verapamil (5 nM) in cell lines expressing murine or human Pgp, human MRP1, and murine Bcrp1 or human BCRP. Paired PET scans were performed with (R)-[(11)C]verapamil in female FVB/N (wild-type), Mrp1((-/-)), Mdr1a/b((-/-)), Bcrp1((-/-)) and Mdr1a/b((-/-))Bcrp1((-/-)) mice, before and after Pgp inhibition with 15 mg/kg tariquidar. RESULTS In vitro transport experiments exclusively showed directed transport of [(3)H]verapamil in Mdr1a- and MDR1-overexpressing cells which could be inhibited by tariquidar (0.5μM). In PET scans acquired before tariquidar administration, brain-to-blood ratio (Kb,brain) of (R)-[(11)C]verapamil was low in wild-type (1.3 ± 0.1), Mrp1((-/-)) (1.4 ± 0.1) and Bcrp1((-/-)) mice (1.8 ± 0.1) and high in Mdr1a/b((-/-)) (6.9 ± 0.8) and Mdr1a/b((-/-))Bcrp1((-/-)) mice (7.9 ± 0.5). In PET scans after tariquidar administration, Kb,brain was significantly increased in Pgp-expressing mice (wild-type: 5.0 ± 0.3-fold, Mrp1((-/-)): 3.2 ± 0.6-fold, Bcrp1((-/-)): 4.3 ± 0.1-fold) but not in Pgp knockout mice (Mdr1a/b((-/-)) and Mdr1a/b((-/-))Bcrp1((-/-))). CONCLUSION Our combined in vitro and in vivo data demonstrate that verapamil, in nanomolar concentrations, is selectively transported by Pgp and not by MRP1 and BCRP at the BBB, which supports the use of (R)-[(11)C]verapamil or racemic [(11)C]verapamil as PET tracers of cerebral Pgp function.
Collapse
Affiliation(s)
- Kerstin Römermann
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, and Center for Systems Neuroscience, Hannover, Germany; Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bauer M, Karch R, Zeitlinger M, Stanek J, Philippe C, Wadsak W, Mitterhauser M, Jäger W, Haslacher H, Müller M, Langer O. Interaction of 11C-tariquidar and 11C-elacridar with P-glycoprotein and breast cancer resistance protein at the human blood-brain barrier. J Nucl Med 2013; 54:1181-7. [PMID: 23833270 DOI: 10.2967/jnumed.112.118232] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The adenosine triphosphate-binding cassette transporters P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) are 2 major gatekeepers at the blood-brain barrier (BBB) that restrict brain distribution of several clinically used drugs. In this study, we investigated the suitability of the radiolabeled Pgp/BCRP inhibitors (11)C-tariquidar and (11)C-elacridar to assess Pgp density in the human brain with PET. METHODS Healthy subjects underwent a first PET scan of 120-min duration with either (11)C-tariquidar (n = 6) or (11)C-elacridar (n = 5) followed by a second PET scan of 60-min duration with (R)-(11)C-verapamil. During scan 1 (at 60 min after radiotracer injection), unlabeled tariquidar (3 mg/kg) was intravenously administered. Data were analyzed using 1-tissue 2-rate-constant (1T2K) and 2-tissue 4-rate-constant (2T4K) compartment models and either metabolite-corrected or uncorrected arterial input functions. RESULTS After injection of (11)C-tariquidar or (11)C-elacridar, the brain PET signal corrected for radioactivity in the vasculature was low (~0.1 standardized uptake value), with slow washout. In response to tariquidar injection, a moderate but statistically significant rise in brain PET signal was observed for (11)C-tariquidar (+27% ± 15%, P = 0.014, paired t test) and (11)C-elacridar (+21% ± 15%, P = 0.014) without changes in plasma activity concentrations. Low levels of radiolabeled metabolites (<25%) were detected in plasma up to 60 min after injection of (11)C-tariquidar or (11)C-elacridar. The 2T4K model provided better data fits than the 1T2K model. Model outcome parameters were similar when metabolite-corrected or uncorrected input functions were used. There was no significant correlation between distribution volumes of (11)C-tariquidar or (11)C-elacridar and distribution volumes of (R)-(11)C-verapamil in different brain regions. CONCLUSION The in vivo behavior of (11)C-tariquidar and (11)C-elacridar was consistent with that of dual Pgp/BCRP substrates. Both tracers were unable to visualize cerebral Pgp density, most likely because of insufficiently high binding affinities in relation to the low density of Pgp in human brain (∼1.3 nM). Despite their inability to visualize Pgp density, (11)C-tariquidar and (11)C-elacridar may find use as a new class of radiotracers to study the interplay of Pgp and BCRP at the human BBB in limiting brain uptake of dual substrates.
Collapse
Affiliation(s)
- Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Feldmann M, Asselin MC, Liu J, Wang S, McMahon A, Anton-Rodriguez J, Walker M, Symms M, Brown G, Hinz R, Matthews J, Bauer M, Langer O, Thom M, Jones T, Vollmar C, Duncan JS, Sisodiya SM, Koepp MJ. P-glycoprotein expression and function in patients with temporal lobe epilepsy: a case-control study. Lancet Neurol 2013; 12:777-85. [PMID: 23786896 DOI: 10.1016/s1474-4422(13)70109-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Studies in rodent models of epilepsy suggest that multidrug efflux transporters at the blood-brain barrier, such as P-glycoprotein, might contribute to pharmacoresistance by reducing target-site concentrations of antiepileptic drugs. We assessed P-glycoprotein activity in vivo in patients with temporal lobe epilepsy. METHODS We selected 16 patients with pharmacoresistant temporal lobe epilepsy who had seizures despite treatment with at least two antiepileptic drugs, eight patients who had been seizure-free on antiepileptic drugs for at least a year after 3 or more years of active temporal lobe epilepsy, and 17 healthy controls. All participants had a baseline PET scan with the P-glycoprotein substrate (R)-[(11)C]verapamil. Pharmacoresistant patients and healthy controls then received a 30-min infusion of the P-glycoprotein-inhibitor tariquidar followed by another (R)-[(11)C]verapamil PET scan 60 min later. Seizure-free patients had a second scan on the same day, but without tariquidar infusion. Voxel-by-voxel, we calculated the (R)-[(11)C]verapamil plasma-to-brain transport rate constant, K1 (mL/min/cm(3)). Low baseline K1 and attenuated K1 increases after tariquidar correspond to high P-glycoprotein activity. FINDINGS Between October, 2008, and November, 2011, we completed (R)-[(11)C]verapamil PET studies in 14 pharmacoresistant patients, eight seizure-free patients, and 13 healthy controls. Voxel-based analysis revealed that pharmacoresistant patients had lower baseline K1, corresponding to higher baseline P-glycoprotein activity, than seizure-free patients in ipsilateral amygdala (0·031 vs 0·036 mL/min/cm(3); p=0·014), bilateral parahippocampus (0·032 vs 0·037; p<0·0001), fusiform gyrus (0·036 vs 0·041; p<0·0001), inferior temporal gyrus (0·035 vs 0·041; p<0·0001), and middle temporal gyrus (0·038 vs 0·044; p<0·0001). Higher P-glycoprotein activity was associated with higher seizure frequency in whole-brain grey matter (p=0·016) and the hippocampus (p=0·029). In healthy controls, we noted a 56·8% increase of whole-brain K1 after 2 mg/kg tariquidar, and 57·9% for 3 mg/kg; in patients with pharmacoresistant temporal lobe epilepsy, whole-brain K1 increased by only 21·9% for 2 mg/kg and 42·6% after 3 mg/kg. This difference in tariquidar response was most pronounced in the sclerotic hippocampus (mean 24·5% increase in patients vs mean 65% increase in healthy controls, p<0·0001). INTERPRETATION Our results support the hypothesis that there is an association between P-glycoprotein overactivity in some regions of the brain and pharmacoresistance in temporal lobe epilepsy. If this relation is confirmed, and P-glycoprotein can be identified as a contributor to pharmacoresistance, overcoming P-glycoprotein overactivity could be investigated as a potential treatment strategy. FUNDING EU-FP7 programme (EURIPIDES number 201380).
Collapse
Affiliation(s)
- Maria Feldmann
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Müllauer J, Karch R, Bankstahl JP, Bankstahl M, Stanek J, Wanek T, Mairinger S, Müller M, Löscher W, Langer O, Kuntner C. Assessment of cerebral P-glycoprotein expression and function with PET by combined [11C]inhibitor and [11C]substrate scans in rats. Nucl Med Biol 2013; 40:755-63. [PMID: 23774004 DOI: 10.1016/j.nucmedbio.2013.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/15/2013] [Accepted: 05/04/2013] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The adenosine triphosphate-binding cassette (ABC) transporter P-glycoprotein (Pgp) protects the brain from accumulation of lipophilic compounds by active efflux transport across the blood-brain barrier. Changes in Pgp function/expression may occur in neurological disorders, such as epilepsy, Alzheimer's or Parkinson's disease. In this work we investigated the suitability of the radiolabeled Pgp inhibitors [(11)C]elacridar and [(11)C]tariquidar to visualize Pgp density in rat brain with PET. METHODS Rats underwent a first PET scan with [(11)C]elacridar (n = 5) or [(11)C]tariquidar (n = 6) followed by a second scan with the Pgp substrate (R)-[(11)C]verapamil after administration of unlabeled tariquidar at a dose which half-maximally inhibits cerebral Pgp (3 mg/kg). Compartmental modeling using an arterial input function and Logan graphical analysis were used to estimate rate constants and volumes of distribution (VT) of radiotracers in different brain regions. RESULTS Brain PET signals of [(11)C]elacridar and [(11)C]tariquidar were very low (~0.5 standardized uptake value, SUV). There was a significant negative correlation between VT and K1 (i.e. influx rate constant from plasma into brain) values of [(11)C]elacridar or [(11)C]tariquidar and VT and K1 values of (R)-[(11)C]verapamil in different brain regions which was consistent with binding of [(11)C]inhibitors to Pgp and efflux of (R)-[(11)C]verapamil by Pgp. CONCLUSION The small Pgp binding signals obtained with [(11)C]elacridar and [(11)C]tariquidar limit the applicability of these tracers to measure cerebral Pgp density. PET tracers with higher (i.e. subnanomolar) binding affinities will be needed to visualize the low density of Pgp in brain.
Collapse
Affiliation(s)
- Julia Müllauer
- Biomedical Systems, Health & Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vagus nerve stimulation inhibits seizure activity and protects blood–brain barrier integrity in kindled rats with cortical dysplasia. Life Sci 2013; 92:289-97. [DOI: 10.1016/j.lfs.2013.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 12/17/2012] [Accepted: 01/02/2013] [Indexed: 11/21/2022]
|
41
|
Syvänen S, Eriksson J. Advances in PET imaging of P-glycoprotein function at the blood-brain barrier. ACS Chem Neurosci 2013; 4:225-37. [PMID: 23421673 DOI: 10.1021/cn3001729] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) restricts substrate compounds from entering the brain and may thus contribute to pharmacoresistance observed in patient groups with refractory epilepsy and HIV. Altered P-gp function has also been implicated in neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Positron emission tomography (PET), a molecular imaging modality, has become a promising method to study the role of P-gp at the BBB. The first PET study of P-gp function was conducted in 1998, and during the past 15 years two main categories of P-gp PET tracers have been investigated: tracers that are substrates of P-gp efflux and tracers that are inhibitors of P-gp function. PET, as a noninvasive imaging technique, allows translational research. Examples of this are preclinical investigations of P-gp function before and after administering P-gp modulating drugs, investigations in various animal and disease models, and clinical investigations regarding disease and aging. The objective of the present review is to give an overview of available PET radiotracers for studies of P-gp and to discuss how such studies can be designed. Further, the review summarizes results from PET studies of P-gp function in different central nervous system disorders.
Collapse
Affiliation(s)
- Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, Rudbecklaboratoriet, 751 85 Uppsala, Sweden
| | - Jonas Eriksson
- PET Centre, Uppsala University Hospital, 751 85 Uppsala, Sweden
- Preclinical PET Platform, Department
of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 751 83 Uppsala, Sweden
| |
Collapse
|
42
|
Kalvass JC, Polli JW, Bourdet DL, Feng B, Huang SM, Liu X, Smith QR, Zhang LK, Zamek-Gliszczynski MJ. Why Clinical Modulation of Efflux Transport at the Human Blood–Brain Barrier Is Unlikely: The ITC Evidence-Based Position. Clin Pharmacol Ther 2013; 94:80-94. [DOI: 10.1038/clpt.2013.34] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
Feldmann M, Koepp M. P-glycoprotein imaging in temporal lobe epilepsy: in vivo PET experiments with the Pgp substrate [11C]-verapamil. Epilepsia 2013; 53 Suppl 6:60-3. [PMID: 23134497 DOI: 10.1111/j.1528-1167.2012.03704.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Overexpression of the multidrug efflux transporter P-glycoprotein (Pgp) at the blood-brain barrier (BBB) is thought to be involved in pharmacoresistance in epilepsy by extruding antiepileptic drugs (AEDs) from their target site. To explore this hypothesis, positron emission tomography (PET) scans were performed with the Pgp substrate-verapamil (VPM) in animal models before and after status epilepticus (SE) and in patients with temporal lobe epilepsy (TLE) and healthy controls. In addition to baseline scans, a second VPM-PET scan was performed after administration of the Pgp inhibitor tariquidar (TQD), showing that VPM uptake at baseline and its increase after Pgp inhibition are reduced in animals following SE compared to baseline, and in refractory TLE relative to healthy controls. In animal models, brain regions with increased Pgp expression (cerebellum, thalamus, and hippocampus) showed reduced influx rate constants from blood to brain, K(1), of the radiolabeled Pgp substrate relative to control animals. In human studies, preliminary findings are lower K(1) values in refractory compared to seizure-free patients and attenuated increase of K(1) for temporal lobe regions in patients with TLE compared to healthy controls. In summary, there is lower brain uptake of the Pgp substrate VPM in Pgp-rich areas of animals 2 days following SE, as well as lower increase in VPM brain uptake after TQD in patients with refractory TLE compared to healthy controls, supporting the hypothesis of increased cerebral Pgp function following prolonged seizures and as a mechanism contributing to drug resistance in refractory epilepsy. The observation of reduced VPM uptake in refractory compared to seizure-free patients with TLE is consistent with multiple mechanisms affecting Pgp function, including uncontrolled seizures.
Collapse
Affiliation(s)
- Maria Feldmann
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom
| | | |
Collapse
|
44
|
In Vivo Characterization of Interactions on Transporters. TRANSPORTERS IN DRUG DEVELOPMENT 2013. [DOI: 10.1007/978-1-4614-8229-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Abstract
Multidrug resistance P-glycoprotein (P-gp; also known as MDR1 and ABCB1) is expressed in the luminal membrane of the small intestine and blood-brain barrier, and the apical membranes of excretory cells such as hepatocytes and kidney proximal tubule epithelia. P-gp regulates the absorption and elimination of a wide range of compounds, such as digoxin, paclitaxel, HIV protease inhibitors and psychotropic drugs. Its substrate specificity is as broad as that of cytochrome P450 (CYP) 3A4, which encompasses up to 50 % of the currently marketed drugs. There has been considerable interest in variations in the ABCB1 gene as predictors of the pharmacokinetics and/or treatment outcomes of several drug classes, including antidepressants and antipsychotics. Moreover, P-gp-mediated transport activity is saturable, and is subject to modulation by inhibition and induction, which can affect the pharmacokinetics, efficacy or safety of P-gp substrates. In addition, many of the P-gp substrates overlap with CYP3A4 substrates, and several psychotropic drugs that are P-gp substrates are also CYP3A4 substrates. Therefore, psychotropic drugs that are P-gp substrates may cause a drug interaction when P-gp inhibitors and inducers are coadministered, or when psychotropic drugs or other medicines that are P-gp substrates are added to a prescription. Hence, it is clinically important to accumulate data about drug interactions through studies on P-gp, in addition to CYP3A4, to assist in the selection of appropriate psychotropic medications and in avoiding inappropriate combinations of therapeutic agents. There is currently insufficient information available on the psychotropic drug interactions related to P-gp, and therefore we summarize the recent clinical data in this review.
Collapse
Affiliation(s)
- Yumiko Akamine
- Department of Hospital Pharmacy, University of the Ryukyus, Nishihara-cho, Okinawa, Japan
| | | | | | | |
Collapse
|
46
|
Ungersboeck J, Philippe C, Haeusler D, Mitterhauser M, Lanzenberger R, Dudczak R, Wadsak W. Optimization of [11C]DASB-synthesis: vessel-based and flow-through microreactor methods. Appl Radiat Isot 2012; 70:2615-20. [PMID: 22940416 DOI: 10.1016/j.apradiso.2012.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/24/2012] [Accepted: 08/02/2012] [Indexed: 11/25/2022]
Abstract
The intention for the present study was to implement a microfluidic set-up for N-(11)C-methylations in a flow-through microreactor device with [(11)C]DASB as model-compound and [(11)C]CH(3)I and [(11)C]CH(3)OTf, respectively, as (11)C-methylation agents. Due to an observed "aging" effect of the (11)C-methylation agents' solution, this goal was not achieved. Nevertheless, based on these observations, the time consumption for the vessel-based routine production of [(11)C]DASB was reduced (34±1 min) and RCY was increased to 45.1±4.6% (EOB; 5.2±0.95 GBq EOS).
Collapse
Affiliation(s)
- Johanna Ungersboeck
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
47
|
Aronica E, Sisodiya SM, Gorter JA. Cerebral expression of drug transporters in epilepsy. Adv Drug Deliv Rev 2012; 64:919-29. [PMID: 22138133 DOI: 10.1016/j.addr.2011.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 10/03/2011] [Accepted: 11/20/2011] [Indexed: 12/26/2022]
Abstract
Over-expression of drug efflux transporters at the level of the blood-brain barrier (BBB) has been proposed as a mechanism responsible for multidrug resistance. Drug transporters in epileptogenic tissue are not only expressed in endothelial cells at the BBB, but also in other brain parenchymal cells, such as astrocytes, microglia and neurons, suggesting a complex cell type-specific regulation under pathological conditions associated with epilepsy. This review focuses on the cerebral expression patterns of several classes of well-known membrane drug transporters such as P-glycoprotein (Pgp), and multidrug resistance-associated proteins (MRPs) in the epileptogenic brain. Both experimental and clinical evidence of epilepsy-associated cerebral drug transporter regulation and the possible mechanisms underlying drug transporter regulation are discussed. Knowledge of the cerebral expression patterns of drug transporters in normal and epileptogenic brain will provide relevant information to guide strategies attempting to overcome drug resistance by targeting specific transporters.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
48
|
Potschka H. Role of CNS efflux drug transporters in antiepileptic drug delivery: overcoming CNS efflux drug transport. Adv Drug Deliv Rev 2012; 64:943-52. [PMID: 22210135 DOI: 10.1016/j.addr.2011.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 01/16/2023]
Abstract
Experimental support for the transporter hypothesis of drug resistance in epilepsies has triggered efforts developing and validating approaches to overcome enhanced blood-brain barrier efflux transport. Testing in rodent models has rendered proof-of-concept for an add-on therapy with antiepileptic drugs. However, further development of the approach would require tolerability considerations as efflux transporters serve an important protective function throughout the body limiting distribution of harmful xenobiotics. Relevant progress has been made in the elucidation of mechanisms driving up-regulation of the multidrug transporter P-glycoprotein in response to seizure activity. Based on this knowledge, novel strategies have been evaluated targeting the signaling cascade that regulates P-glycoprotein in the epileptic brain. Further concepts might include by-passing blood-brain barrier transporters by intracerebral administration or by encapsulation of antiepileptic drugs in nano-sized carrier systems. It is important to note that the future perspectives of respective approaches are still questionable based on the limited evidence for a clinical relevance of transporter expression. Thus, techniques are urgently needed for non-invasive assessment of blood-brain barrier transporter function. Respective techniques would allow testing for a clinical correlation between pharmacosensitivity and transporter function, validating therapeutic strategies targeting efflux transporters and selecting patients with transporter over-expression for respective clinical trials. Provided that further clinical data render support for the transporter hypothesis, the main question remains whether patients exist in which transporter over-expression is the predominant mechanism of drug resistance and in which overcoming drug efflux is equivalent with overcoming drug resistance. Imaging techniques might provide a tool to address these questions in clinical epileptology. However, the complex pharmacological interactions between antiepileptic drugs, radiotracers, and transporter modulators used in these approaches as well as interindividual differences in the brain pathology might hamper clear-cut conclusions and limit the diagnostic significance.
Collapse
|
49
|
Zhang C, Kwan P, Zuo Z, Baum L. The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Deliv Rev 2012; 64:930-42. [PMID: 22197850 DOI: 10.1016/j.addr.2011.12.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 12/05/2011] [Accepted: 12/07/2011] [Indexed: 01/16/2023]
Abstract
Epilepsy is the most common serious chronic neurological disorder. Current data show that one-third of patients do not respond to anti-epileptic drugs (AEDs). Most non-responsive epilepsy patients are resistant to several, often all, AEDs, even though the drugs differ from each other in pharmacokinetics, mechanisms of action, and interaction potential. The mechanisms underlying drug resistance of epilepsy patients are still not clear. In recent years, one of the potential mechanisms interesting researchers is over-expression of P-glycoprotein (P-gp, also known as ABCB1 or MDR1) in endothelial cells of the blood-brain barrier (BBB) in epilepsy patients. P-gp plays a central role in drug absorption and distribution in many organisms. The expression of P-gp is greater in drug-resistant than in drug-responsive patients. Some studies also indicate that several AEDs are substrates or inhibitors of P-gp, implying that P-gp may play an important role in drug resistance in refractory epilepsy. In this article, we review the clinical and laboratory evidence that P-gp expression is increased in epileptic brain tissues and that AEDs are substrates of P-gp in vitro and in vivo. We discuss criteria for identifying the substrate status of AEDs and use structure-activity relationship (SAR) models to predict which AEDs act as P-gp substrates.
Collapse
|
50
|
Yasuda CL, Cendes F. Neuroimaging for the prediction of response to medical and surgical treatment in epilepsy. ACTA ACUST UNITED AC 2012; 6:295-308. [PMID: 23480740 DOI: 10.1517/17530059.2012.683408] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Approximately 30% of patients with epilepsy do not respond to adequate medication and are candidates for surgical treatment. Outcome predictors can improve the selection of more suitable treatment options for each patient. Therefore, the authors aimed to review the role of neuroimaging studies in predicting outcomes for both clinical and surgical treatment of epilepsy. AREAS COVERED This review analyzes studies that investigated different neuroimaging techniques as predictors of clinical and surgical treatment outcome in epilepsy. Studies involving both structural (i.e., T1-weighted images and diffusion tensor images) and functional MRI (fMRI) were identified, as well as other modalities such as spectroscopy, PET, SPECT and MEG. The authors also evaluated the importance of fMRI in predicting memory outcome after surgical resections in temporal lobe epilepsy. EXPERT OPINION The identification of reliable biomarkers to predict response to medical and surgical treatments are much needed in order to provide more adequate patient counseling about prognosis and treatment options individually. Different neuroimaging techniques may provide combined measurements that potentially may become these biomarkers in the near future.
Collapse
Affiliation(s)
- Clarissa Lin Yasuda
- University of Campinas/UNICAMP, Department of Neurology, Neuroimaging Laboratory , Cidade Universitária Zeferino Vaz, Rua Tessália Vieira de Camargo, 126. Cx postal 6111, Campinas, SP. CEP 13083-970 , Brazil
| | | |
Collapse
|