1
|
Al-Dhahi AS, Al-Kuraishy HM, Albuhadily AK, Al-Gareeb AI, Abdelaziz AM, Alexiou A, Papadakis M, Alruwaili M, El-Saber Batiha G. The possible role of neurogenesis activators in temporal lobe epilepsy: State of art and future perspective. Eur J Pharmacol 2025:177646. [PMID: 40258399 DOI: 10.1016/j.ejphar.2025.177646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025]
Abstract
Neurogenesis is a complex process by which the neurons and supporting cells of the central nervous system (CNS) are generated by neural stem cells. Adult hippocampal neurogenesis (AHN) in the human brain is an active process during life and plays a critical role in the regulation of memory, cognition, and mood. It has been shown that epilepsy is linked with dysregulation of AHN. Of note, AHN is very sensitive to the pathological electrical stimuli during epileptic seizures, which result in the induction of neurogenesis in acute epilepsy and inhibition of neurogenesis in chronic epilepsy. Epileptic seizure-induced neurodegeneration activates the mobilization of neural stem cells during neurogenesis to substitute for neural loss in temporal lobe epilepsy (TLE), which is the most refractory type of epilepsy. Moreover, recurrent epileptic seizures in TLE trigger neurogenesis in certain brain regions. However, AHN is a transient acute epileptic seizure that terminated with 1-4 weeks following status epilepticus (SE). Nevertheless, adult AHN is dramatically reduced in chronic epilepsy and associated with the development of cognitive impairment in TLE. These findings indicate that impairment of AHN is linked with the severity of epileptic seizures. Hence, neurogenesis activators may attenuate the pathogenesis of TLE. Therefore, this review aims to discuss and explain the beneficial role of AHN in TLE and how neurogenesis activators could be effective in the management of epilepsy.
Collapse
Affiliation(s)
- Ahmed Salem Al-Dhahi
- Consultant Neurology, Department of Neuroscience, King Fahad Specialist Hospital, Tabuk, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq; Jabir ibn Hayyan Medical University Al-Ameer Qu./ Najaf - Iraq Po. Box (13) Kufa, Iraq.
| | - Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Arish Branch, Arish 45511, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Research & Development, Funogen, Athens, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten, Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur 22511, AlBeheira, Egypt.
| |
Collapse
|
2
|
Li Z, Chen L, Fei F, Wang W, Yang L, Wang Y, Cheng H, Xu Y, Xu C, Wang S, Gu Y, Han F, Chen Z, Wang Y. Enriched Environment Reduces Seizure Susceptibility via Entorhinal Cortex Circuit Augmented Adult Neurogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410927. [PMID: 39435757 PMCID: PMC11633471 DOI: 10.1002/advs.202410927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Enriched environment (EE), characterized by multi-sensory stimulation, represents a non-invasive alternative for alleviating epileptic seizures. However, the mechanism by which EE exerts its therapeutic impact remains incompletely understood. Here, it is elucidated that EE mitigates seizure susceptibility through the augmentation of adult neurogenesis within the entorhinal cortex (EC) circuit. A substantial upregulation of adult hippocampal neurogenesis concomitant with a notable reduction in seizure susceptibility has been found following exposure to EE. EE-enhanced adult-born dentate granule cells (abDGCs) are functionally activated during seizure events. Importantly, the selective activation of abDGCs mimics the anti-seizure effects observed with EE, while their inhibition negates these effects. Further, whole-brain c-Fos mapping demonstrates increased activity in DG-projecting EC CaMKIIα+ neurons in response to EE. Crucially, EC CaMKIIα+ neurons exert bidirectional modulation over the proliferation and maturation of abDGCs that can activate local GABAergic interneurons; thus, they are essential components for the anti-seizure effects mediated by EE. Collectively, this study provides compelling evidence regarding the circuit mechanisms underlying the effects of EE treatment on epileptic seizures, shedding light on the involvement of the EC-DG circuit in augmenting the functionality of abDGCs. This may help for the translational application of EE for epilepsy management.
Collapse
Affiliation(s)
- Zhongxia Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
- Zhejiang Rehabilitation Medical Center DepartmentThe Third Affiliated HospitalZhejiang Chinese Medical UniversityHangzhouZhejiang310061China
| | - Liying Chen
- Department of PharmacySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016China
- Epilepsy CenterThe Second Affiliated Hospital & School of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310027China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Wenqi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Heming Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Yingwei Xu
- Epilepsy CenterThe Second Affiliated Hospital & School of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310027China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Shuang Wang
- Epilepsy CenterThe Second Affiliated Hospital & School of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310027China
| | - Yan Gu
- Epilepsy CenterThe Second Affiliated Hospital & School of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310027China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular MedicineDrug Target and Drug Discovery CenterSchool of PharmacyNanjing Medical UniversityNanjingJiangsu211166China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
- Epilepsy CenterThe Second Affiliated Hospital & School of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310027China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
- Zhejiang Rehabilitation Medical Center DepartmentThe Third Affiliated HospitalZhejiang Chinese Medical UniversityHangzhouZhejiang310061China
- Epilepsy CenterThe Second Affiliated Hospital & School of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310027China
| |
Collapse
|
3
|
Chen L, Xu Y, Cheng H, Li Z, Lai N, Li M, Ruan Y, Zheng Y, Fei F, Xu C, Ma J, Wang S, Gu Y, Han F, Chen Z, Wang Y. Adult-born neurons in critical period maintain hippocampal seizures via local aberrant excitatory circuits. Signal Transduct Target Ther 2023; 8:225. [PMID: 37280192 DOI: 10.1038/s41392-023-01433-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 03/15/2023] [Accepted: 04/06/2023] [Indexed: 06/08/2023] Open
Abstract
Temporal lobe epilepsy (TLE), one common type of medically refractory epilepsy, is accompanied with altered adult-born dentate granule cells (abDGCs). However, the causal role of abDGCs in recurrent seizures of TLE is not fully understood. Here, taking advantage of optogenetic and chemogenetic tools to selectively manipulate abDGCs in a reversible manner, combined with Ca2+ fiber photometry, trans-synaptic viral tracing, in vivo/vitro electrophysiology approaches, we aimed to test the role of abDGCs born at different period of epileptogenic insult in later recurrent seizures in mouse TLE models. We found that abDGCs were functionally inhibited during recurrent seizures. Optogenetic activation of abDGCs significantly extended, while inhibition curtailed, the seizure duration. This seizure-modulating effect was attributed to specific abDGCs born at a critical early phase after kindled status, which experienced specific type of circuit re-organization. Further, abDGCs extended seizure duration via local excitatory circuit with early-born granule cells (ebDGCs). Repeated modulation of "abDGC-ebDGC" circuit may easily induce a change of synaptic plasticity, and achieve long-term anti-seizure effects in both kindling and kainic acid-induced TLE models. Together, we demonstrate that abDGCs born at a critical period of epileptogenic insult maintain seizure duration via local aberrant excitatory circuits, and inactivation of these aberrant circuits can long-termly alleviate severity of seizures. This provides a deeper and more comprehensive understanding of the potential pathological changes of abDGCs circuit and may be helpful for the precise treatment in TLE.
Collapse
Affiliation(s)
- Liying Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingwei Xu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Heming Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongxia Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nanxi Lai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Menghan Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fan Fei
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiao Ma
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Gu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yi Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
4
|
Kulikov AA, Naumova AA, Aleksandrova EP, Glazova MV, Chernigovskaya EV. Audiogenic kindling stimulates aberrant neurogenesis, synaptopodin expression, and mossy fiber sprouting in the hippocampus of rats genetically prone to audiogenic seizures. Epilepsy Behav 2021; 125:108445. [PMID: 34837844 DOI: 10.1016/j.yebeh.2021.108445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
Temporal lobe epilepsy is associated with considerable structural changes in the hippocampus. Pharmacological and electrical models of temporal lobe epilepsy in animals strongly suggest that hippocampal reorganization is based on seizure-stimulated aberrant neurogenesis but the data are often controversial and hard to interpret. The aim of the present study was to estimate neurogenesis and synaptic remodeling in the hippocampus of Krushinsky-Molodkina (KM) rats genetically prone to audiogenic seizures (AGS). In our experiments we exposed KM rats to audiogenic kindling of different durations (4, 14, and 21 AGS) to model different stages of epilepsy development. Naïve KM rats were used as a control. Our results showed that even 4 AGS stimulated proliferation in the subgranular layer of the dentate gyrus (DG) accompanied with increase in number of doublecortin (DCX)-positive immature granular cells. Elevated number of proliferating cells was also observed in the hilus indicating the enhancement of abnormal migration of neural progenitors. In contrast to the DG, all DCX-positive cells in the hilus expressed VGLUT1/2 and their number was increased indicating that seizure activity accelerates glutamatergic differentiation of ectopic hilar cells. 14-day kindling further stimulated proliferation, abnormal migration, and glutamatergic differentiation of new neurons both in the DG granular and subgranular layers and in the hilus. However, after 21 AGS increased proliferation was observed only in the DG, while the numbers of immature neurons expressed VGLUT1/2 were still enhanced in both hippocampal areas. Audiogenic kindling also stimulated sprouting of mossy fibers and enhanced expression of synaptopodin in the hippocampus indicating generation of new synaptic contacts between granular cells, mossy cells, and CA3 pyramid neurons. Thus, our data suggest that epilepsy progression is associated with exacerbation of aberrant neurogenesis and reorganization of hippocampal neural circuits that contribute to the enhancement and spreading of epileptiform activity.
Collapse
Affiliation(s)
- Alexey A Kulikov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| | - Ekaterina P Aleksandrova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia.
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| |
Collapse
|
5
|
Chen L, Wang Y, Chen Z. Adult Neurogenesis in Epileptogenesis: An Update for Preclinical Finding and Potential Clinical Translation. Curr Neuropharmacol 2021; 18:464-484. [PMID: 31744451 PMCID: PMC7457402 DOI: 10.2174/1570159x17666191118142314] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
Epileptogenesis refers to the process in which a normal brain becomes epileptic, and is characterized by hypersynchronous spontaneous recurrent seizures involving a complex epileptogenic network. Current available pharmacological treatment of epilepsy is generally symptomatic in controlling seizures but is not disease-modifying in epileptogenesis. Cumulative evidence suggests that adult neurogenesis, specifically in the subgranular zone of the hippocampal dentate gyrus, is crucial in epileptogenesis. In this review, we describe the pathological changes that occur in adult neurogenesis in the epileptic brain and how adult neurogenesis is involved in epileptogenesis through different interventions. This is followed by a discussion of some of the molecular signaling pathways involved in regulating adult neurogenesis, which could be potential druggable targets for epileptogenesis. Finally, we provide perspectives on some possible research directions for future studies.
Collapse
Affiliation(s)
- Liying Chen
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Akyuz E, Eroglu E. Envisioning the crosstalk between environmental enrichment and epilepsy: A novel perspective. Epilepsy Behav 2021; 115:107660. [PMID: 33328107 DOI: 10.1016/j.yebeh.2020.107660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/31/2022]
Abstract
Epilepsies are a diverse group of neurological disorders characterized by an unprovoked seizure and a brain that has an enduring predisposition to seizures. The lack of disease-modifying treatment strategies against the same has led to the exploration of novel treatment strategies that could halt epileptic seizures. In this regard, environmental enrichment (EE) has gained increased attention in recent days. EE modulates the effects of interactions between the genes and the environment on the structure and function of the brain. EE therapy can improve seizure-related symptoms in neurological diseases such as epilepsy. EE therapy can have a significant effect on cognitive disorders such as learning and memory impairments associated with seizures. EE therapy in epileptic hippocampus tissue can improve seizure-related symptoms by inducing enhanced neurogenesis and neuroprotective mechanisms. In this context, the efficiency of EE is regulated in the epilepsy by the brain-derived neurotrophic factor (BDNF)/extracellular signal-regulated kinase (ERK) signaling pathway regulated by extracellular signaling. Herein, we provide experimental evidence supporting the beneficial effects of EE in epileptic seizures and its underlying mechanism.
Collapse
Affiliation(s)
- Enes Akyuz
- Yozgat Bozok University, Medical School, Department of Biophysics, 66100 Yozgat, Turkey.
| | - Ece Eroglu
- Yozgat Bozok University, Medical School, 66100 Yozgat, Turkey.
| |
Collapse
|
7
|
Lourenço DM, Ribeiro-Rodrigues L, Sebastião AM, Diógenes MJ, Xapelli S. Neural Stem Cells and Cannabinoids in the Spotlight as Potential Therapy for Epilepsy. Int J Mol Sci 2020; 21:E7309. [PMID: 33022963 PMCID: PMC7582633 DOI: 10.3390/ijms21197309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
Epilepsy is one of the most common brain diseases worldwide, having a huge burden in society. The main hallmark of epilepsy is the occurrence of spontaneous recurrent seizures, having a tremendous impact on the lives of the patients and of their relatives. Currently, the therapeutic strategies are mostly based on the use of antiepileptic drugs, and because several types of epilepsies are of unknown origin, a high percentage of patients are resistant to the available pharmacotherapy, continuing to experience seizures overtime. Therefore, the search for new drugs and therapeutic targets is highly important. One key aspect to be targeted is the aberrant adult hippocampal neurogenesis (AHN) derived from Neural Stem Cells (NSCs). Indeed, targeting seizure-induced AHN may reduce recurrent seizures and shed some light on the mechanisms of disease. The endocannabinoid system is a known modulator of AHN, and due to the known endogenous antiepileptic properties, it is an interesting candidate for the generation of new antiepileptic drugs. However, further studies and clinical trials are required to investigate the putative mechanisms by which cannabinoids can be used to treat epilepsy. In this manuscript, we will review how cannabinoid-induced modulation of NSCs may promote neural plasticity and whether these drugs can be used as putative antiepileptic treatment.
Collapse
Affiliation(s)
- Diogo M. Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria J. Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
8
|
Lucassen PJ, Fitzsimons CP, Salta E, Maletic-Savatic M. Adult neurogenesis, human after all (again): Classic, optimized, and future approaches. Behav Brain Res 2020; 381:112458. [DOI: 10.1016/j.bbr.2019.112458] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/29/2019] [Accepted: 12/28/2019] [Indexed: 02/08/2023]
|
9
|
Bielefeld P, Durá I, Danielewicz J, Lucassen P, Baekelandt V, Abrous D, Encinas J, Fitzsimons C. Insult-induced aberrant hippocampal neurogenesis: Functional consequences and possible therapeutic strategies. Behav Brain Res 2019; 372:112032. [DOI: 10.1016/j.bbr.2019.112032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
|
10
|
Hiragi T, Ikegaya Y, Koyama R. Microglia after Seizures and in Epilepsy. Cells 2018; 7:cells7040026. [PMID: 29597334 PMCID: PMC5946103 DOI: 10.3390/cells7040026] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 01/23/2023] Open
Abstract
Microglia are the resident immune cells in the brain that constitute the brain’s innate immune system. Recent studies have revealed various functions of microglia in the development and maintenance of the central nervous system (CNS) in both health and disease. However, the role of microglia in epilepsy remains largely undiscovered, partly because of the complex phenotypes of activated microglia. Activated microglia likely exert different effects on brain function depending on the phase of epileptogenesis. In this review, we mainly focus on the animal models of temporal lobe epilepsy (TLE) and discuss the proepileptic and antiepileptic roles of activated microglia in the epileptic brain. Specifically, we focus on the roles of microglia in the production of inflammatory cytokines, regulation of neurogenesis, and surveillance of the surrounding environment in epilepsy.
Collapse
Affiliation(s)
- Toshimitsu Hiragi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan.
| |
Collapse
|
11
|
|
12
|
Thodeson DM, Brulet R, Hsieh J. Neural stem cells and epilepsy: functional roles and disease-in-a-dish models. Cell Tissue Res 2017; 371:47-54. [PMID: 28831605 DOI: 10.1007/s00441-017-2675-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/20/2017] [Indexed: 01/07/2023]
Abstract
Epilepsy is a disorder of the central nervous system characterized by spontaneous recurrent seizures. Although current therapies exist to control the number and severity of clinical seizures, there are no pharmacological cures or disease-modifying treatments available. Use of transgenic mouse models has allowed an understanding of neural stem cells in their relation to epileptogenesis in mesial temporal lobe epilepsy. Further, with the significant discovery of factors necessary to reprogram adult somatic cell types into pluripotent stem cells, it has become possible to study monogenic epilepsy-in-a-dish using patient-derived neurons. This discovery along with some of the newest technological advances in recapitulating brain development in a dish has brought us closer than ever to a platform in which to study and understand the mechanisms of this disease. These technologies will be critical in understanding the mechanism of epileptogenesis and ultimately lead to improved therapies and precision medicine for patients with epilepsy.
Collapse
Affiliation(s)
- Drew M Thodeson
- Departments of Pediatrics and Neurology and Neurotherapeutics, Division of Child Neurology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rebecca Brulet
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jenny Hsieh
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
13
|
Korn MJ, Mandle QJ, Parent JM. Conditional Disabled-1 Deletion in Mice Alters Hippocampal Neurogenesis and Reduces Seizure Threshold. Front Neurosci 2016; 10:63. [PMID: 26941603 PMCID: PMC4766299 DOI: 10.3389/fnins.2016.00063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/10/2016] [Indexed: 11/13/2022] Open
Abstract
Many animal models of temporal lobe epilepsy (TLE) exhibit altered neurogenesis arising from progenitors within the dentate gyrus subgranular zone (SGZ). Aberrant integration of new neurons into the existing circuit is thought to contribute to epileptogenesis. In particular, adult-born neurons that exhibit ectopic migration and hilar basal dendrites (HBDs) are suggested to be pro-epileptogenic. Loss of reelin signaling may contribute to these morphological changes in patients with epilepsy. We previously demonstrated that conditional deletion of the reelin adaptor protein, disabled-1 (Dab1), from postnatal mouse SGZ progenitors generated dentate granule cells (DGCs) with abnormal dendritic development and ectopic placement. To determine whether the early postnatal loss of reelin signaling is epileptogenic, we conditionally deleted Dab1 in neural progenitors and their progeny on postnatal days 7–8 and performed chronic video-EEG recordings 8–10 weeks later. Dab1-deficient mice did not have spontaneous seizures but exhibited interictal epileptiform abnormalities and a significantly reduced latency to pilocarpine-induced status epilepticus. After chemoconvulsant treatment, over 90% of mice deficient for Dab1 developed generalized motor convulsions with tonic-clonic movements, rearing, and falling compared to <20% of wild-type mice. Recombination efficiency, measured by Cre reporter expression, inversely correlated with time to the first sustained seizure. These pro-epileptogenic changes were associated with decreased neurogenesis and increased numbers of hilar ectopic DGCs. Interestingly, neurons co-expressing the Cre reporter comprised a fraction of these hilar ectopic DGCs cells, suggesting a non-cell autonomous effect for the loss of reelin signaling. We also noted a dispersion of the CA1 pyramidal layer, likely due to hypomorphic effects of the conditional Dab1 allele, but this abnormality did not correlate with seizure susceptibility. These findings suggest that the misplacement or reduction of postnatally-generated DGCs contributes to aberrant circuit development and hyperexcitability, but aberrant neurogenesis after conditional Dab1 deletion alone is not sufficient to produce spontaneous seizures.
Collapse
Affiliation(s)
- Matthew J Korn
- Department of Neurology, University of Michigan Medical Center Ann Arbor, MI, USA
| | - Quinton J Mandle
- Department of Neurology, University of Michigan Medical Center Ann Arbor, MI, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan Medical CenterAnn Arbor, MI, USA; VA Ann Arbor Healthcare SystemAnn Arbor, MI, USA
| |
Collapse
|
14
|
Abstract
Seizure activity in the hippocampal region strongly affects stem cell-associated plasticity in the adult dentate gyrus. Here, we describe how seizures in rodent models of mesial temporal lobe epilepsy (mTLE) affect multiple steps in the developmental course from the dividing neural stem cell to the migrating and integrating newborn neuron. Furthermore, we discuss recent evidence indicating either that seizure-induced aberrant neurogenesis may contribute to the epileptic disease process or that altered neurogenesis after seizures may represent an attempt of the injured brain to repair itself. Last, we describe how dysfunction of adult neurogenesis caused by chronic seizures may play an important role in the cognitive comorbidities associated with mTLE.
Collapse
Affiliation(s)
| | - Jack M Parent
- Department of Neurology, University of Michigan Medical Center and VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48109
| |
Collapse
|
15
|
Kondratiuk I, Plucinska G, Miszczuk D, Wozniak G, Szydlowska K, Kaczmarek L, Filipkowski RK, Lukasiuk K. Epileptogenesis following Kainic Acid-Induced Status Epilepticus in Cyclin D2 Knock-Out Mice with Diminished Adult Neurogenesis. PLoS One 2015; 10:e0128285. [PMID: 26020770 PMCID: PMC4447381 DOI: 10.1371/journal.pone.0128285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/27/2015] [Indexed: 11/19/2022] Open
Abstract
The goal of this study was to determine whether a substantial decrease in adult neurogenesis influences epileptogenesis evoked by the intra-amygdala injection of kainic acid (KA). Cyclin D2 knockout (cD2 KO) mice, which lack adult neurogenesis almost entirely, were used as a model. First, we examined whether status epilepticus (SE) evoked by an intra-amygdala injection of KA induces cell proliferation in cD2 KO mice. On the day after SE, we injected BrdU into mice for 5 days and evaluated the number of DCX- and DCX/BrdU-immunopositive cells 3 days later. In cD2 KO control animals, only a small number of DCX+ cells was observed. The number of DCX+ and DCX/BrdU+ cells/mm of subgranular layer in cD2 KO mice increased significantly following SE (p<0.05). However, the number of newly born cells was very low and was significantly lower than in KA-treated wild type (wt) mice. To evaluate the impact of diminished neurogenesis on epileptogenesis and early epilepsy, we performed video-EEG monitoring of wt and cD2 KO mice for 16 days following SE. The number of animals with seizures did not differ between wt (11 out of 15) and cD2 KO (9 out of 12) mice. The median latency to the first spontaneous seizure was 4 days (range 2 – 10 days) in wt mice and 8 days (range 2 – 16 days) in cD2 KO mice and did not differ significantly between groups. Similarly, no differences were observed in median seizure frequency (wt: 1.23, range 0.1 – 3.4; cD2 KO: 0.57, range 0.1 – 2.0 seizures/day) or median seizure duration (wt: 51 s, range 23 – 103; cD2 KO: 51 s, range 23 – 103). Our results indicate that SE-induced epileptogenesis is not disrupted in mice with markedly reduced adult neurogenesis. However, we cannot exclude the contribution of reduced neurogenesis to the chronic epileptic state.
Collapse
Affiliation(s)
- Ilona Kondratiuk
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Gabriela Plucinska
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Diana Miszczuk
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Wozniak
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Kinga Szydlowska
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Robert K. Filipkowski
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Biological Psychology, University of Finance and Management in Warsaw, Warsaw, Poland
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Lukasiuk
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
16
|
Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat Commun 2015; 6:6606. [PMID: 25808087 PMCID: PMC4375780 DOI: 10.1038/ncomms7606] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/10/2015] [Indexed: 12/18/2022] Open
Abstract
Acute seizures after a severe brain insult can often lead to epilepsy and cognitive impairment. Aberrant hippocampal neurogenesis follows the insult but the role of adult-generated neurons in the development of chronic seizures or associated cognitive deficits remains to be determined. Here we show that the ablation of adult neurogenesis before pilocarpine-induced acute seizures in mice leads to a reduction in chronic seizure frequency. We also show that ablation of neurogenesis normalizes epilepsy-associated cognitive deficits. Remarkably, the effect of ablating adult neurogenesis before acute seizures is long lasting as it suppresses chronic seizure frequency for nearly 1 year. These findings establish a key role of neurogenesis in chronic seizure development and associated memory impairment and suggest that targeting aberrant hippocampal neurogenesis may reduce recurrent seizures and restore cognitive function following a pro-epileptic brain insult. Aberrant hippocampal neurogenesis often occurs after acute seizures that produce epilepsy and cognitive impairment but the role of neurogenesis in the development of epilepsy is unclear. Here the authors suppress adult neurogenesis in mice preceding seizures and show that it reduces subsequent chronic seizure frequency and epilepsy-associated cognitive decline.
Collapse
|
17
|
Iyengar SS, LaFrancois JJ, Friedman D, Drew LJ, Denny CA, Burghardt NS, Wu MV, Hsieh J, Hen R, Scharfman HE. Suppression of adult neurogenesis increases the acute effects of kainic acid. Exp Neurol 2015; 264:135-49. [PMID: 25476494 PMCID: PMC4800819 DOI: 10.1016/j.expneurol.2014.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 01/17/2023]
Abstract
Adult neurogenesis, the generation of new neurons in the adult brain, occurs in the hippocampal dentate gyrus (DG) and the olfactory bulb (OB) of all mammals, but the functions of these new neurons are not entirely clear. Originally, adult-born neurons were considered to have excitatory effects on the DG network, but recent studies suggest a net inhibitory effect. Therefore, we hypothesized that selective removal of newborn neurons would lead to increased susceptibility to the effects of a convulsant. This hypothesis was tested by evaluating the response to the chemoconvulsant kainic acid (KA) in mice with reduced adult neurogenesis, produced either by focal X-irradiation of the DG, or by pharmacogenetic deletion of dividing radial glial precursors. In the first 4 hrs after KA administration, when mice have the most robust seizures, mice with reduced adult neurogenesis had more severe convulsive seizures, exhibited either as a decreased latency to the first convulsive seizure, greater number of convulsive seizures, or longer convulsive seizures. Nonconvulsive seizures did not appear to change or they decreased. Four-21 hrs after KA injection, mice with reduced adult neurogenesis showed more interictal spikes (IIS) and delayed seizures than controls. Effects were greater when the anticonvulsant ethosuximide was injected 30 min prior to KA administration; ethosuximide allows forebrain seizure activity to be more easily examined in mice by suppressing seizures dominated by the brainstem. These data support the hypothesis that reduction of adult-born neurons increases the susceptibility of the brain to effects of KA.
Collapse
Affiliation(s)
- Sloka S Iyengar
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | - John J LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | - Daniel Friedman
- Department of Neurology, New York University Langone Medical Center, New York, NY 10016
| | - Liam J Drew
- WIBR, University College of London, London, UK WC1E 6BT
| | - Christine A Denny
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY 10032
| | - Nesha S Burghardt
- Department of Psychology, Hunter College, City University of New York, New York, NY 10065
| | - Melody V Wu
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY 10032
| | - Jenny Hsieh
- Department of Molecular Neurobiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - René Hen
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY 10032; Department of Molecular Neurobiology, University of Texas Southwestern Medical Center, Dallas, TX 75390; New York State Psychiatric Institute, New York, NY 10032
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962; Departments of Child & Adolescent Psychiatry, Physiology & Neuroscience, and Psychiatry, New York University Langone Medical Center, New York, NY 10016.
| |
Collapse
|
18
|
Bielefeld P, van Vliet EA, Gorter JA, Lucassen PJ, Fitzsimons CP. Different subsets of newborn granule cells: a possible role in epileptogenesis? Eur J Neurosci 2013; 39:1-11. [DOI: 10.1111/ejn.12387] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Pascal Bielefeld
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Erwin A. van Vliet
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
- Epilepsy Institute in The Netherlands Foundation (Stichting Epilepsie Instellingen Nederland SEIN); Heemstede The Netherlands
| | - Jan A. Gorter
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Paul J. Lucassen
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Carlos P. Fitzsimons
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
19
|
Hung YW, Yang DI, Huang PY, Lee TS, Kuo TBJ, Yiu CH, Shih YH, Lin YY. The duration of sustained convulsive seizures determines the pattern of hippocampal neurogenesis and the development of spontaneous epilepsy in rats. Epilepsy Res 2011; 98:206-15. [PMID: 22014748 DOI: 10.1016/j.eplepsyres.2011.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 09/15/2011] [Accepted: 09/24/2011] [Indexed: 01/01/2023]
Abstract
The duration of sustained seizures (SS) plays a crucial role in the occurrence of spontaneous recurrent seizures (SRS) in experimental animals. We tested whether rats with varying durations of initial convulsive SS exhibited differential neurogenesis patterns in the hippocampal dentate gyrus that may be related to subsequent epileptogenesis. Sprague-Dawley rats with pilocarpine-induced convulsive SS were divided into short SS (30 min) and long SS (2 h) groups. Their behavior was monitored to identify convulsive SRS. From 1 to 28 days post-SS, cell proliferation was evaluated by 5'-bromo-2'-deoxyuridine (BrdU) labeling and immature neuroblasts in the dentate gyrus were identified by doublecortin immunohistochemistry. Convulsive SRS was detected in 8 out of the 9 long SS rats, but not in the 9 short SS rats. During day 1-3, proliferative cells were diffusely localized throughout the hippocampus in the long SS rats but were primarily confined within the subgranular zone in the short SS rats. Within the subgranular zone, a significant increase in the number of BrdU-positive cells was found at days 3 and 7 after the long SS and on day 1 after the short SS. Notably, abnormal dendritic outgrowth and hilar-ectopic localization of doublecortin-positive cells were present in the long SS rats. In conclusion, aberrant hippocampal neurogenesis following long SS may contribute to the development of SRS.
Collapse
Affiliation(s)
- Yu-Wen Hung
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pekcec A, Lüpke M, Baumann R, Seifert H, Potschka H. Modulation of neurogenesis by targeted hippocampal irradiation fails to affect kindling progression. Hippocampus 2010; 21:866-76. [PMID: 20865736 DOI: 10.1002/hipo.20802] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2010] [Indexed: 12/31/2022]
Abstract
Changes in the rate of dentate granule cell neurogenesis and in the fate of newborn granule cells have been implicated in the development and progression of epilepsies. Strategies to normalize neurogenesis in chronic epilepsy models are thought to increase our understanding of the functional consequences of aberrant neurogenesis in the epileptic brain. Therefore, we modulated neurogenesis in an amygdala kindling paradigm in rats by targeted irradiation of the hippocampus using a medical linear accelerator device. Selective irradiation normalized the hippocampal cell proliferation rate in kindled animals. Both, in kindled and nonkindled rats the number of BrdU/NeuN-labeled newborn neurons was reduced in response to irradiation. Whereas kindling resulted in a pronounced increase in the number of neuroblasts identified based on doublecortin-labeling, irradiation prevented the expansion of the neuroblast population. Moreover, irradiation counteracted the kindling-associated increase in hilar basal dendrites, and kept the fraction of cells with basal dendrites at control levels. Despite the efficacious modulation of neurogenesis, irradiation did not affect the rate of kindling progression. Both, the number of stimulations as well as the cumulative afterdischarge duration to reach respective seizure stages were comparable in animals with and without irradiation. In addition, pre- and postkindling thresholds as well as seizure parameters recorded at threshold stimulation remained unaffected by irradiation. In conclusion, the fact that the efficacious modulation of neurogenesis by irradiation did not exert any effects on kindling acquisition and kindled seizures suggests that newborn neurons do not critically contribute to the hyperexcitable state in the chronic epilepsy model used.
Collapse
Affiliation(s)
- Anton Pekcec
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | |
Collapse
|
21
|
Scharfman HE, McCloskey DP. Postnatal neurogenesis as a therapeutic target in temporal lobe epilepsy. Epilepsy Res 2009; 85:150-61. [PMID: 19369038 PMCID: PMC2713813 DOI: 10.1016/j.eplepsyres.2009.03.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 02/08/2009] [Accepted: 03/08/2009] [Indexed: 01/30/2023]
Abstract
After it was first identified that seizures increase neurogenesis in the adult brain of laboratory animals, the idea that postnatal neurogenesis may be involved in epilepsy became a topic of widespread interest. Since that time, two perspectives have developed. They primarily address temporal lobe epilepsy (TLE), because the data have either been based on animal models of TLE or patients with intractable TLE. The first perspective is that postnatal neurogenesis contributes to the predisposition for seizures in TLE. This premise is founded in the observations showing that there is a dramatic rise in neurogenesis after many types of insults or injuries which ultimately lead to TLE. As a result of the increase in neurogenesis, several changes in the dentate gyrus occur, and the net effect appears to be an increase in excitability. One of the changes is the formation of a population of granule cells (GCs) that mismigrate, leading to ectopic granule cells in the hilus (hilar EGCs) that exhibit periodic bursts of action potentials, and contribute to recurrent excitatory circuitry. Atypical dendrites also form on a subset of GCs, and project into the hilus (hilar basal dendrites). Hilar basal dendrites appear to preferentially increase the glutamatergic input relative to GABAergic synapses, increasing excitability of the subset of GCs that form hilar basal dendrites. The alternate view is that postnatal neurogenesis is a homeostatic mechanism in epilepsy that maintains normal excitability. This idea is supported by studies showing that some of the new GCs that are born after seizures, and migrate into the correct location, have normal or reduced excitability. Here we suggest that both perspectives may be important when considering a therapeutic strategy. It would seem advantageous to limit the numbers of mismigrating GCs and hilar basal dendrites, but maintain normal neurogenesis because it is potentially homeostatic. Maintaining normal neurogenesis is also important because it has been suggested that a decrease in dentate gyrus neurogenesis contributes to depression. It is challenging to design a strategy that would achieve these goals, and it is also difficult to propose how one could administer such a therapy prophylactically, that is, as an "antiepileptogenic" approach. Another issue to address is how a therapeutic intervention with these goals could be successful if it were administered after chronic seizures develop, when most patients seek therapy. Although difficult, a number of approaches are possible, and technical advances suggest that there are more on the horizon.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, United States.
| | | |
Collapse
|
22
|
Raedt R, Van Dycke A, Van Melkebeke D, De Smedt T, Claeys P, Wyckhuys T, Vonck K, Wadman W, Boon P. Seizures in the intrahippocampal kainic acid epilepsy model: characterization using long-term video-EEG monitoring in the rat. Acta Neurol Scand 2009; 119:293-303. [PMID: 19388152 DOI: 10.1111/j.1600-0404.2008.01108.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Intrahippocampal injection of kainic acid (KA) in rats evokes a status epilepticus (SE) and leads to spontaneous seizures. However to date, precise electroencephalographic (EEG) and clinical characterization of spontaneous seizures in this epilepsy model using long-term video-EEG monitoring has not been performed. MATERIALS AND METHODS Rats were implanted with bipolar hippocampal depth electrodes and a cannula for the injection of KA (0.4 lg /0.2 ll) in the right hippocampus. Video-EEG monitoring was used to determine habitual parameters of spontaneous seizures such as seizure frequency, severity, progression and day-night rhythms. RESULTS Spontaneous seizures were detected in all rats with 13 out of 15 animals displaying seizures during the first eight weeks after SE. A considerable fraction (35%) of the spontaneous seizures did not generalize secondarily. Seizure frequency was quite variable and the majority of the KA treated animals had less than one seizure per day. A circadian rhythm was observed in all rats that showed sufficient seizures per day. CONCLUSIONS This study shows that the characteristics of spontaneous seizures in the intrahippocampal KA model display many similarities to other SE models and human temporal lobe epilepsy.
Collapse
Affiliation(s)
- R Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Department of Neurology, University Hospital Ghent, De Pintelaan 185, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The mammalian brain contains a population of neurons that are continuously generated from late embryogenesis through adulthood-after the generation of almost all other neuronal types. This brain region-the hippocampal dentate gyrus-is in a sense, therefore, persistently immature. Postnatal and adult neurogenesis is likely an essential feature of the dentate, which is critical for learning and memory. Protracted neurogenesis after birth would allow the new cells to develop in conjunction with external events-but it may come with a price: while neurogenesis in utero occurs in a protected environment, children and adults are exposed to any number of hazards, such as toxins and infectious agents. Mature neurons might be resistant to such exposures, but new neurons may be vulnerable. Consistent with this prediction, in adult rodents seizures disrupt the integration of newly generated granule cells, whereas mature granule cells are comparatively unaffected. Significantly, abnormally interconnected cells may contribute to epileptogenesis and/or associated cognitive and memory deficits. Finally, studies increasingly indicate that new granule cells are extremely sensitive to a host of endogenous and exogenous factors, raising the possibility that disrupted granule cell integration may be a common feature of many neurological diseases.
Collapse
Affiliation(s)
- Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
24
|
Rao MS, Hattiangady B, Shetty AK. Status epilepticus during old age is not associated with enhanced hippocampal neurogenesis. Hippocampus 2009; 18:931-44. [PMID: 18493929 DOI: 10.1002/hipo.20449] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Increased production of new neurons in the adult dentate gyrus (DG) by neural stem/progenitor cells (NSCs) following acute seizures or status epilepticus (SE) is a well known phenomenon. However, it is unknown whether NSCs in the aged DG have similar ability to upregulate neurogenesis in response to SE. We examined DG neurogenesis after the induction of continuous stages III-V seizures (SE) for over 4 h in both young adult (5-months old) and aged (24-months old) F344 rats. The seizures were induced through 2-4 graded intraperitoneal injections of the excitotoxin kainic acid (KA). Newly born cells in the DG were labeled via daily intraperitoneal injections of the 5'-bromodeoxyuridine (BrdU) for 12 days, which commenced shortly after the induction of SE in KA-treated rats. New cells and neurons in the subgranular zone (SGZ) and the granule cell layer (GCL) were analyzed at 24 h after the last BrdU injection using BrdU and doublecortin (DCX) immunostaining, BrdU-DCX and BrdU-NeuN dual immunofluorescence and confocal microscopy, and stereological cell counting. Status epilepticus enhanced the numbers of newly born cells (BrdU(+) cells) and neurons (DCX(+) neurons) in young adult rats. In contrast, similar seizures in aged rats, though greatly increased the number of newly born cells in the SGZ/GCL, failed to increase neurogenesis due to a greatly declined neuronal fate-choice decision of newly born cells. Only 9% of newly born cells in the SGZ/GCL differentiated into neurons in aged rats that underwent SE, in comparison to the 76% neuronal differentiation observed in age-matched control rats. Moreover, the number of newly born cells that migrate abnormally into the dentate hilus (i.e., ectopic granule cells) after SE in the aged hippocampus is 92% less than that observed in the young adult hippocampus after similar SE. Thus, SE fails to increase the addition of new granule cells to the GCL in the aged DG, despite a considerable upregulation in the production of new cells, and SE during old age leads to much fewer ectopic granule cells. These results have clinical relevance because earlier studies have implied that both increased and abnormal neurogenesis occurring after SE in young animals contributes to chronic epilepsy development.
Collapse
Affiliation(s)
- Muddanna S Rao
- Medical Research & Surgery Services, Veterans Affairs Medical Center, Durham, NC 27705, USA
| | | | | |
Collapse
|
25
|
Kuruba R, Hattiangady B, Shetty AK. Hippocampal neurogenesis and neural stem cells in temporal lobe epilepsy. Epilepsy Behav 2009; 14 Suppl 1:65-73. [PMID: 18796338 PMCID: PMC2654382 DOI: 10.1016/j.yebeh.2008.08.020] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 08/28/2008] [Accepted: 08/29/2008] [Indexed: 12/12/2022]
Abstract
Virtually all mammals, including humans, exhibit neurogenesis throughout life in the hippocampus, a learning and memory center in the brain. Numerous studies in animal models imply that hippocampal neurogenesis is important for functions such as learning, memory, and mood. Interestingly, hippocampal neurogenesis is very sensitive to physiological and pathological stimuli. Certain pathological stimuli such as seizures alter both the amount and the pattern of neurogenesis, though the overall effect depends on the type of seizures. Acute seizures are classically associated with augmentation of neurogenesis and migration of newly born neurons into ectopic regions such as the hilus and the molecular layer of the dentate gyrus. Additional studies suggest that abnormally migrated newly born neurons play a role in the occurrence of epileptogenic hippocampal circuitry characteristically seen after acute seizures, status epilepticus, or head injury. Recurrent spontaneous seizures such as those typically observed in chronic temporal lobe epilepsy are associated with substantially reduced neurogenesis, which, interestingly, coexists with learning and memory impairments and depression. In this review, we discuss both the extent and the potential implications of abnormal hippocampal neurogenesis induced by acute seizures as well as recurrent spontaneous seizures. We also discuss the consequences of chronic spontaneous seizures on differentiation of neural stem cell progeny in the hippocampus and strategies that are potentially useful for normalizing neurogenesis in chronic temporal lobe epilepsy.
Collapse
Affiliation(s)
- Ramkumar Kuruba
- Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC 27710,Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC 27705
| | - Bharathi Hattiangady
- Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC 27710,Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC 27705
| | - Ashok K. Shetty
- Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC 27710,Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC 27705,Correspondence should be addressed to: Ashok K. Shetty, M.Sc., Ph.D., Professor, Division of Neurosurgery, Box 3807, Duke University Medical Center, Durham NC 27710, Phone: 919-286-0411, Ext. 7096, E-mail:
| |
Collapse
|
26
|
Shapiro LA, Ribak CE, Jessberger S. Structural changes for adult-born dentate granule cells after status epilepticus. Epilepsia 2008; 49 Suppl 5:13-8. [DOI: 10.1111/j.1528-1167.2008.01633.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Raedt R, Van Dycke A, Vonck K, Boon P. Cell therapy in models for temporal lobe epilepsy. Seizure 2007; 16:565-78. [PMID: 17566770 DOI: 10.1016/j.seizure.2007.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 04/03/2007] [Accepted: 05/08/2007] [Indexed: 12/18/2022] Open
Abstract
For patients with refractory epilepsy it is important to search for alternative treatments. One of these potential treatments could be introducing new cells or modulating endogenous neurogenesis to reconstruct damaged epileptic circuits or to bring neurotransmitter function back into balance. In this review the scientific basis of these cell therapy strategies is discussed and the results are critically evaluated. Research on cell transplantation strategies has mainly been performed in animal models for temporal lobe epilepsy, in which seizure foci or seizure propagation pathways are targeted. Promising results have been obtained, although there remains a lot of debate about the relevance of the animal models, the appropriate target for transplantation, the suitable cell source and the proper time point for transplantation. From the presented studies it should be evident that transplanted cells can survive and sometimes even integrate in an epileptic brain and in a brain that is subjected to epileptogenic interventions. There is evidence that transplanted cells can partially restore damaged structures and/or release substances that modulate existent or induced hyperexcitability. Even though several studies show encouraging results, more studies need to be done in animal models with spontaneous seizures in order to have a better comparison to the human situation.
Collapse
Affiliation(s)
- R Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Department of Neurology, Ghent University Hospital, De Pintelaan 145, B-9000 Ghent, Belgium.
| | | | | | | |
Collapse
|