1
|
Kubová H, Mikulecká A, Mareš P. The outcome of early life status epilepticus—lessons from laboratory animals. Epilepsia Open 2022; 8 Suppl 1:S90-S109. [PMID: 36352789 PMCID: PMC10173850 DOI: 10.1002/epi4.12664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Status epilepticus (SE) is the most common neurologic emergency in children. Both clinical and laboratory studies have demonstrated that SE in early life can cause brain damage and permanent behavioral abnormalities, trigger epileptogenesis, and interfere with normal brain development. In experimental rodent models, the consequences of seizures are dependent upon age, the model used, and seizure duration. In studies involving neonatal and infantile animals, the model used, experimental design, conditions during the experiment, and manipulation of animals can significantly affect the course of the experiments as well as the results obtained. Standardization of laboratory approaches, harmonization of scientific methodology, and improvement in data collection can improve the comparability of data among laboratories.
Collapse
Affiliation(s)
- Hana Kubová
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| | - Anna Mikulecká
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| | - Pavel Mareš
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| |
Collapse
|
2
|
Chaihu plus Longgu Muli Decoction Alleviated Brain Injury in Pentylenetetrazole-Kindled Epileptic Mice by Regulating Cyclooxygenase-2/Prostaglandin E2/Multidrug Transporter Pathway. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6652195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective. To evaluate the effect of CLMD administration on epileptic seizures and brain injury in pentylenetetrazole- (PZT-) kindled mice. Methods. The effect of pretreatment with CLMD (5, 10, and 20 ml/kg (mg/kg) by gavage) for seven days on PTZ-induced kindling, duration and grade of kindling-induced seizures, and pathological injury in the cortex and hippocampus was evaluated. Male BALB/c mice with adenosine A1 receptor knockout were subjected to intraperitoneal injection of PTZ (35 mg/kg) once every day until kindling was successfully induced. Quantitative reverse transcription polymerase chain reaction, immunofluorescence, and western blot were performed to assess the mRNA and protein levels of p-glycoprotein (PGP), multidrug resistance-associated protein 1 (MRP1), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and adenylate kinase (ADK) in the cortex and hippocampus. Results. PTZ successfully induced kindling in mice after 21 days, wherein CLMD showed an obvious dose-dependent antiepileptic effect. High-dose CLMD significantly increased the latency of epileptic seizures, decreased the sustained time of epileptic seizures and the seizure grade, and ameliorated the histopathological changes in the cortex and hippocampus. Furthermore, PTZ kindling induced significantly higher levels of PGP, MRP1, COX-2, PGE2, and ADK, but this effect was inhibited by pretreatment with CLMD in a dose-dependent manner. Conclusion. Pretreatment with CLMD attenuates PTZ-kindled convulsions and brain injury in mice. The mechanism may be related to the cyclooxygenase-2/prostaglandin E2/multidrug transporter pathway.
Collapse
|
3
|
Rawat C, Kukal S, Dahiya UR, Kukreti R. Cyclooxygenase-2 (COX-2) inhibitors: future therapeutic strategies for epilepsy management. J Neuroinflammation 2019; 16:197. [PMID: 31666079 PMCID: PMC6822425 DOI: 10.1186/s12974-019-1592-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 09/23/2019] [Indexed: 01/15/2023] Open
Abstract
Epilepsy, a common multifactorial neurological disease, affects about 69 million people worldwide constituting nearly 1% of the world population. Despite decades of extensive research on understanding its underlying mechanism and developing the pharmacological treatment, very little is known about the biological alterations leading to epileptogenesis. Due to this gap, the currently available antiepileptic drug therapy is symptomatic in nature and is ineffective in 30% of the cases. Mounting evidences revealed the pathophysiological role of neuroinflammation in epilepsy which has shifted the focus of epilepsy researchers towards the development of neuroinflammation-targeted therapeutics for epilepsy management. Markedly increased expression of key inflammatory mediators in the brain and blood-brain barrier may affect neuronal function and excitability and thus may increase seizure susceptibility in preclinical and clinical settings. Cyclooxygenase-2 (COX-2), an enzyme synthesizing the proinflammatory mediators, prostaglandins, has widely been reported to be induced during seizures and is considered to be a potential neurotherapeutic target for epilepsy management. However, the efficacy of such therapy involving COX-2 inhibition depends on various factors viz., therapeutic dose, time of administration, treatment duration, and selectivity of COX-2 inhibitors. This article reviews the preclinical and clinical evidences supporting the role of COX-2 in seizure-associated neuroinflammation in epilepsy and the potential clinical use of COX-2 inhibitors as a future strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ujjwal Ranjan Dahiya
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India. .,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India.
| |
Collapse
|
4
|
van Vliet EA, Aronica E, Vezzani A, Ravizza T. Review: Neuroinflammatory pathways as treatment targets and biomarker candidates in epilepsy: emerging evidence from preclinical and clinical studies. Neuropathol Appl Neurobiol 2018; 44:91-111. [DOI: 10.1111/nan.12444] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/28/2017] [Indexed: 12/12/2022]
Affiliation(s)
- E. A. van Vliet
- Department of (Neuro)pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - E. Aronica
- Department of (Neuro)pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
- Swammerdam Institute for Life Sciences; Center for Neuroscience; University of Amsterdam; Amsterdam The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN); Cruquius The Netherlands
| | - A. Vezzani
- Department of Neuroscience; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; Milano Italy
| | - T. Ravizza
- Department of Neuroscience; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; Milano Italy
| |
Collapse
|
5
|
Auvin S, Cilio MR, Vezzani A. Current understanding and neurobiology of epileptic encephalopathies. Neurobiol Dis 2016; 92:72-89. [PMID: 26992889 DOI: 10.1016/j.nbd.2016.03.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 03/01/2016] [Accepted: 03/09/2016] [Indexed: 12/25/2022] Open
Abstract
Epileptic encephalopathies are a group of diseases in which epileptic activity itself contributes to severe cognitive and behavioral impairments above and beyond what might be expected from the underlying pathology alone. These impairments can worsen over time. This concept has been continually redefined since its introduction. A few syndromes are considered epileptic encephalopathies: early myoclonic encephalopathy and Ohtahara syndrome in the neonatal period, epilepsy of infancy with migrating focal seizures, West syndrome or infantile spasms, Dravet syndrome during infancy, Lennox-Gastaut syndrome, epileptic encephalopathy with continuous spikes-and-waves during sleep, and Landau-Kleffner syndrome during childhood. The inappropriate use of this term to refer to all severe epilepsy syndromes with intractable seizures and severe cognitive dysfunction has led to confusion regarding the concept of epileptic encephalopathy. Here, we review our current understanding of those epilepsy syndromes considered to be epileptic encephalopathies. Genetic studies have provided a better knowledge of neonatal and infantile epilepsy syndromes, while neuroimaging studies have shed light on the underlying causes of childhood-onset epileptic encephalopathies such as Lennox-Gastaut syndrome. Apart from infantile spasm models, we lack animal models to explain the neurobiological mechanisms at work in these conditions. Experimental studies suggest that neuroinflammation may be a common neurobiological pathway that contributes to seizure refractoriness and cognitive involvement in the developing brain.
Collapse
Affiliation(s)
- Stéphane Auvin
- Université Paris Diderot, Sorbonne Paris Cité, INSERM UMR1141, 75019 Paris, France; AP-HP, Hôpital Robert Debré, Service de Neurologie Pédiatrique, 75019 Paris, France.
| | - Maria Roberta Cilio
- Benioff Children's Hospital, Department of Neurology, University of California San Francisco, San Francisco, USA
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-"Mario Negri" Institute for Pharmacological Research, Milano, Italy
| |
Collapse
|
6
|
Rojas A, Ganesh T, Lelutiu N, Gueorguieva P, Dingledine R. Inhibition of the prostaglandin EP2 receptor is neuroprotective and accelerates functional recovery in a rat model of organophosphorus induced status epilepticus. Neuropharmacology 2015; 93:15-27. [PMID: 25656476 PMCID: PMC4387070 DOI: 10.1016/j.neuropharm.2015.01.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 11/20/2022]
Abstract
Exposure to high levels of organophosphorus compounds (OP) can induce status epilepticus (SE) in humans and rodents via acute cholinergic toxicity, leading to neurodegeneration and brain inflammation. Currently there is no treatment to combat the neuropathologies associated with OP exposure. We recently demonstrated that inhibition of the EP2 receptor for PGE2 reduces neuronal injury in mice following pilocarpine-induced SE. Here, we investigated the therapeutic effects of an EP2 inhibitor (TG6-10-1) in a rat model of SE using diisopropyl fluorophosphate (DFP). We tested the hypothesis that EP2 receptor inhibition initiated well after the onset of DFP-induced SE reduces the associated neuropathologies. Adult male Sprague-Dawley rats were injected with pyridostigmine bromide (0.1 mg/kg, sc) and atropine methylbromide (20 mg/kg, sc) followed by DFP (9.5 mg/kg, ip) to induce SE. DFP administration resulted in prolonged upregulation of COX-2. The rats were administered TG6-10-1 or vehicle (ip) at various time points relative to DFP exposure. Treatment with TG6-10-1 or vehicle did not alter the observed behavioral seizures, however six doses of TG6-10-1 starting 80-150 min after the onset of DFP-induced SE significantly reduced neurodegeneration in the hippocampus, blunted the inflammatory cytokine burst, reduced microglial activation and decreased weight loss in the days after status epilepticus. By contrast, astrogliosis was unaffected by EP2 inhibition 4 d after DFP. Transient treatments with the EP2 antagonist 1 h before DFP, or beginning 4 h after DFP, were ineffective. Delayed mortality, which was low (10%) after DFP, was unaffected by TG6-10-1. Thus, selective inhibition of the EP2 receptor within a time window that coincides with the induction of cyclooxygenase-2 by DFP is neuroprotective and accelerates functional recovery of rats.
Collapse
Affiliation(s)
- Asheebo Rojas
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| | - Thota Ganesh
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Nadia Lelutiu
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Paoula Gueorguieva
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Raymond Dingledine
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Barr GA, Hunter DA. Interactions between glia, the immune system and pain processes during early development. Dev Psychobiol 2014; 56:1698-710. [PMID: 24910104 DOI: 10.1002/dev.21229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/15/2014] [Indexed: 01/10/2023]
Abstract
Pain is a serious problem for infants and children and treatment options are limited. Moreover, infants born prematurely or hospitalized for illness likely have concurrent infection that activates the immune system. It is now recognized that the immune system in general and glia in particular influence neurotransmission and that the neural bases of pain are intimately connected to immune function. We know that injuries that induce pain activate immune function and suppressing the immune system alleviates pain. Despite this advance in our understanding, virtually nothing is known of the role that the immune system plays in pain processing in infants and children, even though pain is a serious clinical issue in pediatric medicine. This brief review summarizes the existing data on immune-neural interactions in infants, providing evidence for the immaturity of these interactions.
Collapse
Affiliation(s)
- Gordon A Barr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104.
| | | |
Collapse
|
8
|
Mlsna LM, Koh S. Maturation-dependent behavioral deficits and cell injury in developing animals during the subacute postictal period. Epilepsy Behav 2013; 29:190-7. [PMID: 23973645 PMCID: PMC3927371 DOI: 10.1016/j.yebeh.2013.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 11/17/2022]
Abstract
Prolonged early-life seizures are associated with disruptions of affective and cognitive function. Postictal disturbances, temporary functional deficits that persist for hours to days after seizures, have not yet been thoroughly characterized. Here, we used kainic acid (KA) to induce status epilepticus (SE) in immature rats at three developmental stages (postnatal day (P) 15, 21, or 30) and subsequently assessed spatial learning and memory in a Barnes maze, exploratory behavior in an open field, and the spatiotemporal distribution of cell injury during the first 7-10 days of the postictal period. At 1 day post-SE, P15-SE rats showed no deficit in the Barnes maze but were hyperexploratory in an open field compared with their littermate controls. In contrast, P21- and P30-SE rats exhibited markedly impaired performance in the Barnes maze and exhibited significantly reduced open field exploration suggestive of anxiety-like behavior. These behavioral changes were transient in P15 rats but more persistent in P21 and enduring in P30 rats after KA-SE. The time course of behavioral deficits in P21 and P30 rats was temporally correlated with the presence of neuronal injury in the lateral septal nuclei, amygdala, and ventral subiculum/CA1, regions involved in modulation of the hypothalamic-pituitary-adrenal stress response.
Collapse
Affiliation(s)
- Lauren M Mlsna
- Neurobiology Program, Ann & Robert H. Lurie Children's Hospital of Chicago Research Center, Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60614, USA
| | | |
Collapse
|
9
|
Chung JI, Kim AY, Lee SH, Baik EJ. Seizure susceptibility in immature brain due to lack of COX-2-induced PGF2α. Exp Neurol 2013; 249:95-103. [PMID: 24005111 DOI: 10.1016/j.expneurol.2013.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 08/16/2013] [Accepted: 08/25/2013] [Indexed: 10/26/2022]
Abstract
The immature brain is prone to seizure; however, the mechanism underlying this vulnerability has not been clarified. Febrile seizure is common in young children, and the use of non-steroidal anti-inflammatory drugs for febrile seizure is not recommended. In previous studies, we established that prostaglandin (PG) F2α, a product of cyclooxygenase (COX), acts as an endogenous anticonvulsant in the adult mouse. Therefore, we assumed that COX-2 activity was involved with seizure susceptibility in early life. In the present study, immature mice (postnatal day 9) were far more prone to kainic acid (KA)-induced seizures than mature mice (after postnatal day 35). Seizure activity began later in immature mice, but was more severe and was unaffected by a potent COX inhibitor, indomethacin; in contrast, indomethacin aggravated seizure activity in mature mice. Immature mouse brains exhibited little basal COX-2 expression and little KA-induced COX-2 induction, while KA-induced COX-2 expression and PGF2α release were prominent in mature brains. During brain development, COX expression was increased and glycosylated in an age-dependent manner, which was necessary for COX enzyme activity. Intracisternal PGF2α administration also reduced KA-induced seizure activity and mortality. Taken together, low COX activity and the resulting deficiency of PGF2α may be an essential cause of increased seizure susceptibility in the immature brain.
Collapse
Affiliation(s)
- Jee-In Chung
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | | | | |
Collapse
|
10
|
Wasterlain CG, Gloss DS, Niquet J, Wasterlain AS. Epileptogenesis in the developing brain. HANDBOOK OF CLINICAL NEUROLOGY 2013; 111:427-39. [PMID: 23622191 DOI: 10.1016/b978-0-444-52891-9.00046-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The neonatal brain has poorly developed GABAergic circuits, and in many of them GABA is excitatory, favoring ictogenicity. Frequently repeated experimental seizures impair brain development in an age-dependent manner. At critical ages, they delay developmental milestones, permanently lower seizure thresholds, and can cause very specific cognitive and learning deficits, such as the permanent impairment of neuronal spatial maps. Some types of experimental status epilepticus cause neuronal necrosis and apoptosis, and are followed by chronic epilepsy with spontaneous recurrent seizures, others appear relatively benign, so that seizure-induced neuronal injury and epileptogenesis are highly age-, seizure model-, and species-dependent. Experimental febrile seizures can be epileptogenic, and hyperthermia aggravates both neuronal injury and epileptogenicity. Antiepileptic drugs, the mainstay of treatment, have major risks of their own, and can, at therapeutic or near-therapeutic doses, trigger neuronal apoptosis, which is also age-, drug-, cell type-, and species-dependent. The relevance of these experimental results to human disease is still uncertain, but while their brains are quite different, the basic biology of neurons in rodents and humans is strikingly similar. Further research is needed to elucidate the molecular mechanisms of epileptogenesis and of seizure- or drug-induced neuronal injury, in order to prevent their long-term consequences.
Collapse
Affiliation(s)
- Claude G Wasterlain
- Department of Neurology, VA Greater Los Angeles Health Care System, and David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
11
|
Ling W, Chang L, Song Y, Lu T, Jiang Y, Li Y, Wu Y. Immunolocalization of NR1, NR2A, and PSD-95 in rat hippocampal subregions during postnatal development. Acta Histochem 2012; 114:285-95. [PMID: 21719075 DOI: 10.1016/j.acthis.2011.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 01/14/2023]
Abstract
Although the expression of NMDARs and synaptic-associated proteins has been widely studied, the temporospatial distribution of NMDAR subunits and synaptic proteins in different hippocampal subregions during postnatal development still lacks detailed information, and the relationship between NR1 or NR2 subunits and PSD-95 family proteins is controversial. In this study, we used immunofluorescent staining to assess NR1 or NR2A and PSD-95 expressions and the relationship between them in CA1, CA3, and DG of rat hippocampus on postnatal (P) days: P0, P4, P7, P10, P14, P21, P28, P56. The results showed that from P0 to P56, NR1, NR2A, and PSD-95 expressions increased gradually, and the time points of their expression peak differed in CA1, CA3, and DG during postnatal development. Interestingly, although the expression of PSD-95 was positively correlated to both NR1 and NR2A, the NR1 and PSD-95 coexpressed puncta were greatest in CA3, while NR2A and PSD-95 coexpressed puncta were greatest in CA1, compared to other subregions. Surprisingly, at P21, among different strata of CA1, the area of highest expression of NR2A was dramatically changed from stratum pyramidale to stratum polymorphum and stratum moleculare, and returned to stratum pyramidale gradually on the later observed days again, indicating that P21 may be one critical timepoint during postnatal development in CA1. The specific temporospatial distribution pattern of NR1, NR2A, and PSD-95 might be related to the different physiological functions during postnatal development. Discovering the alteration of the relationship between PSD-95 and NMDAR subunits expression may be helpful for understanding mechanisms and therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei Ling
- Department of Anatomy, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Järvelä JT, Lopez-Picon FR, Plysjuk A, Ruohonen S, Holopainen IE. Temporal profiles of age-dependent changes in cytokine mRNA expression and glial cell activation after status epilepticus in postnatal rat hippocampus. J Neuroinflammation 2011; 8:29. [PMID: 21477276 PMCID: PMC3084156 DOI: 10.1186/1742-2094-8-29] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/08/2011] [Indexed: 08/30/2023] Open
Abstract
Background Status epilepticus (SE) is proposed to lead to an age-dependent acute activation of a repertoire of inflammatory processes, which may contribute to neuronal damage in the hippocampus. The extent and temporal profiles of activation of these processes are well known in the adult brain, but less so in the developing brain. We have now further elucidated to what extent inflammation is activated by SE by investigating the acute expression of several cytokines and subacute glial reactivity in the postnatal rat hippocampus. Methods SE was induced by an intraperitoneal (i.p.) injection of kainic acid (KA) in 9- and 21-day-old (P9 and P21) rats. The mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), matrix metalloproteinase-9 (MMP-9), glial-derived neurotrophic factor (GDNF), interferon gamma (IFN-γ), and transforming growth factor-beta 1 (TGF-β1) were measured from 4 h up to 3 days after KA injection with real-time quantitative PCR (qPCR). IL-1β protein expression was studied with ELISA, GFAP expression with western blotting, and microglial and astrocyte morphology with immunohistochemistry 3 days after SE. Results SE increased mRNA expression of IL-1β, TNF-α and IL-10 mRNA in hippocampus of both P9 and P21 rats, their induction being more rapid and pronounced in P21 than in P9 rats. MMP-9 expression was augmented similarly in both age groups and GDNF expression augmented only in P21 rats, whereas neither IFN-γ nor TGF-β1 expression was induced in either age group. Microglia and astrocytes exhibited activated morphology in the hippocampus of P21 rats, but not in P9 rats 3 d after SE. Microglial activation was most pronounced in the CA1 region and also detected in the basomedial amygdala. Conclusion Our results suggest that SE provokes an age-specific cytokine expression in the acute phase, and age-specific glial cell activation in the subacute phase as verified now in the postnatal rat hippocampus. In the juvenile hippocampus, transient increases in cytokine mRNA expression after SE, in contrast to prolonged glial reactivity and region-specific microglial activity after SE, suggest that the inflammatory response is changed from a fulminant and general initial phase to a more moderate and specific subacute response.
Collapse
Affiliation(s)
- Juha T Järvelä
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Itäinen Pitkäkatu 4B, FIN-20014 Turku, Finland
| | | | | | | | | |
Collapse
|
13
|
Järvelä JT, Ruohonen S, Kukko-Lukjanov TK, Plysjuk A, Lopez-Picon FR, Holopainen IE. Kainic acid-induced neurodegeneration and activation of inflammatory processes in organotypic hippocampal slice cultures: treatment with cyclooxygenase-2 inhibitor does not prevent neuronal death. Neuropharmacology 2010; 60:1116-25. [PMID: 20932983 DOI: 10.1016/j.neuropharm.2010.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 01/27/2023]
Abstract
In the postnatal rodent hippocampus status epilepticus (SE) leads to age- and region-specific excitotoxic neuronal damage, the precise mechanisms of which are still incompletely known. Recent studies suggest that the activation of inflammatory responses together with glial cell reactivity highly contribute to excitotoxic neuronal damage. However, pharmacological tools to attenuate their activation in the postnatal brain are still poorly elucidated. In this study, we investigated the role of inflammatory mediators in kainic acid (KA)-induced neuronal damage in organotypic hippocampal slice cultures (OHCs). A specific cyclooxygenase-2 (COX-2) inhibitor N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) was used to study whether or not it could ameliorate neuronal death. Our results show that KA treatment (24 h) resulted in a dose-dependent degeneration of CA3a/b pyramidal neurons. Furthermore, COX-2 immunoreactivity was pronouncedly enhanced particularly in CA3c pyramidal neurons, microglial and astrocyte morphology changed from a resting to active appearance, the expression of the microglial specific protein, Iba1, increased, and prostaglandin E₂ (PGE₂) production increased. These indicated the activation of inflammatory processes. However, the expression of neither proinflammatory cytokines, i.e. tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), nor the anti-inflammatory cytokine IL-10 mRNA was significantly altered by KA treatment as studied by real-time PCR. Despite activation of an array of inflammatory processes, neuronal damage could not be rescued either with the combined pre- and co-treatment with a specific COX-2 inhibitor, NS-398. Our results suggest that KA induces activation of a repertoire of inflammatory processes in immature OHCs, and that the timing of anti-inflammatory treatment to achieve neuroprotection is a challenge due to developmental properties and the complexity of inflammatory processes activated by noxious stimuli. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Juha T Järvelä
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Itäinen Pitkäkatu 4B, FIN-20014 Turku, Finland
| | | | | | | | | | | |
Collapse
|
14
|
Laurén HB, Lopez-Picon FR, Brandt AM, Rios-Rojas CJ, Holopainen IE. Transcriptome analysis of the hippocampal CA1 pyramidal cell region after kainic acid-induced status epilepticus in juvenile rats. PLoS One 2010; 5:e10733. [PMID: 20505763 PMCID: PMC2873964 DOI: 10.1371/journal.pone.0010733] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/28/2010] [Indexed: 11/19/2022] Open
Abstract
Molecular mechanisms involved in epileptogenesis in the developing brain remain poorly understood. The gene array approach could reveal some of the factors involved by allowing the identification of a broad scale of genes altered by seizures. In this study we used microarray analysis to reveal the gene expression profile of the laser microdissected hippocampal CA1 subregion one week after kainic acid (KA)-induced status epilepticus (SE) in 21-day-old rats, which are developmentally roughly comparable to juvenile children. The gene expression analysis with the Chipster software generated a total of 1592 differently expressed genes in the CA1 subregion of KA-treated rats compared to control rats. The KEGG database revealed that the identified genes were involved in pathways such as oxidative phosporylation (26 genes changed), and long-term potentiation (LTP; 18 genes changed). Also genes involved in Ca2+ homeostasis, gliosis, inflammation, and GABAergic transmission were altered. To validate the microarray results we further examined the protein expression for a subset of selected genes, glial fibrillary protein (GFAP), apolipoprotein E (apo E), cannabinoid type 1 receptor (CB1), Purkinje cell protein 4 (PEP-19), and interleukin 8 receptor (CXCR1), with immunohistochemistry, which confirmed the transcriptome results. Our results showed that SE resulted in no obvious CA1 neuronal loss, and alterations in the expression pattern of several genes during the early epileptogenic phase were comparable to previous gene expression studies of the adult hippocampus of both experimental epileptic animals and patients with temporal lobe epilepsy (TLE). However, some changes seem to occur after SE specifically in the juvenile rat hippocampus. Insight of the SE-induced alterations in gene expression and their related pathways could give us hints for the development of new target-specific antiepileptic drugs that interfere with the progression of the disease in the juvenile age group.
Collapse
Affiliation(s)
- Hanna B. Laurén
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Turku, Finland
- MediCity Research Laboratory, Turku, Finland
| | - Francisco R. Lopez-Picon
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Annika M. Brandt
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Clarissa J. Rios-Rojas
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Irma E. Holopainen
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Turku, Finland
- MediCity Research Laboratory, Turku, Finland
- * E-mail:
| |
Collapse
|
15
|
Repeated hypoxic episodes induce seizures and alter hippocampal network activities in mice. Neuroscience 2009; 161:599-613. [DOI: 10.1016/j.neuroscience.2009.03.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/08/2009] [Accepted: 03/15/2009] [Indexed: 11/23/2022]
|