1
|
Lu CW, Lin TY, Pan WJ, Chiu KM, Lee MY, Wang SJ. Cynarin protects against seizures and neuronal death in a rat model of kainic acid-induced seizures. Food Funct 2025; 16:3048-3063. [PMID: 40138216 DOI: 10.1039/d4fo05464d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The potential therapeutic value of cynarin, a phenolic compound derived from artichoke, in treating epilepsy has not yet been reported. The present study evaluated the effects of cynarin on a kainic acid (KA)-induced seizure rat model and its potential mechanism. Cynarin was administered through oral gavage at a dosage of 10 mg kg-1 daily for 7 days before the induction of seizures with KA (15 mg kg-1) via intraperitoneal injection. The results showed that pretreatment with cynarin effectively attenuated the KA-induced seizure score and electroencephalogram (EEG) changes and prevented neuronal loss and glial cell activation in the hippocampi of KA-treated rats. In addition, pretreatment with cynarin dramatically prevented the aberrant levels of high mobility group box 1 (HMGB1), toll-like receptor-4 (TLR4), p-IκB, p65-NFκB, interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) induced by KA administration in hippocampal tissues. Additionally, KA substantially increased hippocampal glutamate levels and decreased cerebral blood flow, which were significantly alleviated by pretreatment with cynarin. The observed effects of cynarin were comparable to those of the antiepileptic drug carbamazepine (CBZ). Furthermore, there was no significant difference in the serum AST, ALT, creatinine, or bilirubin levels between the cynarin-treated rats and the control rats. Cynarin has a neuroprotective effect on a rat model of seizures induced by KA, reducing seizures, gliosis, inflammatory cytokines, and glutamate elevation and increasing cerebral blood flow. Thus, cynarin has therapeutic potential for preventing epilepsy.
Collapse
Affiliation(s)
- Cheng-Wei Lu
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Wun-Jing Pan
- Ph.D. Program in Pharmaceutical Biotechnology, School of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei 22060, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan 24205.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| |
Collapse
|
2
|
Xu D, Ren Q, Liu Q, Liu M, Gong H, Liu Y, Yin Z, Zeng Z, Xia S, Zhang Y, Li J, Gao Q, Wang J, Li X. Hippocampal Glutamate Levels and Their Correlation With Subregion Volume in School-Aged Children With MRI-Negative Epilepsy: A Preliminary Study. J Magn Reson Imaging 2025; 61:1258-1268. [PMID: 38970314 DOI: 10.1002/jmri.29514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Abnormal levels of glutamate constitute a key pathophysiologic mechanism in epilepsy. The use of glutamate chemical exchange saturation transfer (GluCEST) imaging to measure glutamate levels in pediatric epilepsy is rarely reported in research. PURPOSE To investigate hippocampal glutamate level variations in pediatric epilepsy and the correlation between glutamate and hippocampal subregional volumes. STUDY TYPE Cross-sectional, prospective. SUBJECTS A total of 38 school-aged pediatric epilepsy patients with structurally normal MRI as determined by at least two independent radiologists (60% males; 8.7 ± 2.5 years; including 20 cases of focal pediatric epilepsy [FE] and 18 cases of generalized pediatric epilepsy [GE]) and 17 healthy controls (HC) (41% males; 9.0 ± 2.5 years). FIELD STRENGTH/SEQUENCE 3.0 T; 3D magnetization prepared rapid gradient echo (MPRAGE) and 2D turbo spin echo GluCEST sequences. ASSESSMENT The relative concentration of glutamate was calculated through pixel-wise magnetization transfer ratio asymmetry (MTRasym) analysis of the GluCEST data. Hippocampal subfield volumes were computed from MPRAGE data using FreeSurfer. STATISTICAL TESTS This study used t tests, one-way analysis of variance, Kruskal-Wallis tests, and Pearson correlation analysis. P < 0.05 was considered statistically significant. RESULTS The MTRasym values of both the left and right hippocampi were significantly elevated in GE (left: 2.51 ± 0.23 [GE] vs. 2.31 ± 0.12 [HCs], right: 2.50 ± 0.22 [GE] vs. 2.27 ± 0.22 [HCs]). The MTRasym values of the ipsilateral hippocampus were significantly elevated in FE (2.49 ± 0.28 [ipsilateral] vs. 2.29 ± 0.16 [HCs]). The MTRasym values of the ipsilateral hippocampus were significantly increased compared to the contralateral hippocampus in FE (2.49 ± 0.28 [ipsilateral] vs. 2.35 ± 0.34 [contralateral]). No significant differences in hippocampal volume were found between different groups (left hippocampus, P = 0.87; right hippocampus, P = 0.87). DATA CONCLUSION GluCEST imaging have potential for the noninvasive measurement of glutamate levels in the brains of children with epilepsy. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Donghao Xu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Qingfa Ren
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Quanyuan Liu
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Miaomiao Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - He Gong
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Yuwei Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Zhijie Yin
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Zhen Zeng
- Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Shuyuan Xia
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Yanyan Zhang
- Department of Pediatric Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Jie Li
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Quansheng Gao
- Environmental & Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China
| | - Jing Wang
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| |
Collapse
|
3
|
Singh P, Nisa K, Mavi R, Yadav S, Kumar R. Recent Progresses in Development of Heterocyclic Compounds for Epilepsy Treatment: Key Research Highlights from 2019-2024. Chem Biodivers 2025; 22:e202401620. [PMID: 39235237 DOI: 10.1002/cbdv.202401620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/06/2024]
Abstract
Epilepsy which is a chronic neurological disorder is characterized by recurrent seizure poses a significant challenge to healthcare professionals worldwide. Most of antiepileptic drugs have serious side effects that might affect the quality of life such as fatigue, dizziness, weight gain and cognitive impairments. In this context, the search for more effective and potential antiepileptic drug candidate has led to a growing interest in the field of synthesis of heterocyclic compounds. This review will focus on the utilization of heterocyclic moieties including imidazole, indole, thiazole, triazine, quinazoline and oxazole which show remarkable anticonvulsant properties. Furthermore, the exploration of various methodologies for the synthesis of heterocyclic anticonvulsant drugs such as green methodologies and microwave assisted protocols have contributed to the development of environment friendly, more efficient and potential approaches. The review will distinguish from previous ones by specifically focusing on innovative synthetic methodologies, including greener methodologies and micro-assisted techniques, that contribute to eco-friendly and environment benign approaches during 2019-2024. In addition to this, the review will focus on the Structure Activity Relationship (SAR) studies of heterocyclic compounds in order to offer insight into the design of next generation antiepileptic drugs with improved efficacy and reduced side effects.
Collapse
Affiliation(s)
- Preeti Singh
- Department of Chemistry, Faculty of Science, Swami Vivekanand Subharti University, Meerut, 250005, U.P. India
| | - Kharu Nisa
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology, Srinagar, 190006, India
| | - Renu Mavi
- Department of Chemistry, Faculty of Science, Swami Vivekanand Subharti University, Meerut, 250005, U.P. India
| | - Soni Yadav
- Department of Chemistry, Faculty of Science, Meerut Institute of Engineering & Technology, Meerut, 250005, India
| | - Ravi Kumar
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology, Srinagar, 190006, India
| |
Collapse
|
4
|
Sunyer-Caldú A, Quintana G, Diaz-Cruz MS. Factors driving PPCPs uptake by crops after wastewater irrigation and human health implications. ENVIRONMENTAL RESEARCH 2023; 237:116923. [PMID: 37598843 DOI: 10.1016/j.envres.2023.116923] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/10/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Currently, water scarcity affects more than three billion people. Nevertheless, the volume of treated wastewater discharged into the environment is estimated to exceed 100 m3 per inhabitant/year. These water resources are regularly used in agriculture worldwide to overcome water shortages. Such a practice, however, entails the uptake of waterborne pollutants, such as pharmaceuticals and personal care products (PPCPs), by crops and their further access to the food web, constituting an additional route of human exposure to PPCPs, with potential health outcomes. In this study, the occurrence of 56 PPCPs in tomatoes, lettuce, and carrot, together with soil and irrigation water, was evaluated using a QuEChERS-based methodology for extraction and LC-MS/MS for analysis. The influence of the selected cultivation conditions on the plant uptake levels of PPCPs was assessed. Two irrigation water qualities (secondary and tertiary treatment effluents), two soil compositions (sandy and clayey), two irrigation systems (dripping and sprinkling), and three crop types (lettuce, tomato, and carrot) were tested. Carrots showed the highest load of PPCPs (7787 ng/g dw), followed by tomatoes (1692 ng/g dw) and lettuces (1248 ng/g dw). The most translocated PPCPs were norfluoxetine (fluoxetine antidepressant main metabolite) (521 ng/g dw), and the anti-inflammatory diclofenac (360 ng/g dw). Nine PPCPs, are reported to be accumulated in crops for the first time. Water quality was the most important factor for reducing PPCPs' plant uptake. Overall, the best conditions for reducing PPCP uptake by crops were irrigation with reclaimed water by sprinkling in soils with higher clay content. The risk assessment performed revealed that the crops' consumption posed no risk to human health. This study serves as the first comprehensive assessment of the relevance of diverse cultivation factors on PPCPs' plant uptake under field agricultural practices.
Collapse
Affiliation(s)
- Adrià Sunyer-Caldú
- Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain; Department of Environmental Science (ACES, Exposure & Effects), Science for Life Laboratory, Stockholm University, Stockholm, 106 91, Sweden
| | - Gerard Quintana
- Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - M Silvia Diaz-Cruz
- Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain.
| |
Collapse
|
5
|
Escobar AP, Bonansco C, Cruz G, Dagnino-Subiabre A, Fuenzalida M, Negrón I, Sotomayor-Zárate R, Martínez-Pinto J, Jorquera G. Central and Peripheral Inflammation: A Common Factor Causing Addictive and Neurological Disorders and Aging-Related Pathologies. Int J Mol Sci 2023; 24:10083. [PMID: 37373230 PMCID: PMC10298583 DOI: 10.3390/ijms241210083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Many diseases and degenerative processes affecting the nervous system and peripheral organs trigger the activation of inflammatory cascades. Inflammation can be triggered by different environmental conditions or risk factors, including drug and food addiction, stress, and aging, among others. Several pieces of evidence show that the modern lifestyle and, more recently, the confinement associated with the COVID-19 pandemic have contributed to increasing the incidence of addictive and neuropsychiatric disorders, plus cardiometabolic diseases. Here, we gather evidence on how some of these risk factors are implicated in activating central and peripheral inflammation contributing to some neuropathologies and behaviors associated with poor health. We discuss the current understanding of the cellular and molecular mechanisms involved in the generation of inflammation and how these processes occur in different cells and tissues to promote ill health and diseases. Concomitantly, we discuss how some pathology-associated and addictive behaviors contribute to worsening these inflammation mechanisms, leading to a vicious cycle that promotes disease progression. Finally, we list some drugs targeting inflammation-related pathways that may have beneficial effects on the pathological processes associated with addictive, mental, and cardiometabolic illnesses.
Collapse
Affiliation(s)
- Angélica P. Escobar
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Alexies Dagnino-Subiabre
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ignacio Negrón
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile
| |
Collapse
|
6
|
Abstract
Epilepsy is a common neurological disease in both humans and domestic dogs, making dogs an ideal translational model of epilepsy. In both species, epilepsy is a complex brain disease characterized by an enduring predisposition to generate spontaneous recurrent epileptic seizures. Furthermore, as in humans, status epilepticus is one of the more common neurological emergencies in dogs with epilepsy. In both species, epilepsy is not a single disease but a group of disorders characterized by a broad array of clinical signs, age of onset, and underlying causes. Brain imaging suggests that the limbic system, including the hippocampus and cingulate gyrus, is often affected in canine epilepsy, which could explain the high incidence of comorbid behavioral problems such as anxiety and cognitive alterations. Resistance to antiseizure medications is a significant problem in both canine and human epilepsy, so dogs can be used to study mechanisms of drug resistance and develop novel therapeutic strategies to benefit both species. Importantly, dogs are large enough to accommodate intracranial EEG and responsive neurostimulation devices designed for humans. Studies in epileptic dogs with such devices have reported ictal and interictal events that are remarkably similar to those occurring in human epilepsy. Continuous (24/7) EEG recordings in a select group of epileptic dogs for >1 year have provided a rich dataset of unprecedented length for studying seizure periodicities and developing new methods for seizure forecasting. The data presented in this review substantiate that canine epilepsy is an excellent translational model for several facets of epilepsy research. Furthermore, several techniques of inducing seizures in laboratory dogs are discussed as related to therapeutic advances. Importantly, the development of vagus nerve stimulation as a novel therapy for drug-resistant epilepsy in people was based on a series of studies in dogs with induced seizures. Dogs with naturally occurring or induced seizures provide excellent large-animal models to bridge the translational gap between rodents and humans in the development of novel therapies. Furthermore, because the dog is not only a preclinical species for human medicine but also a potential patient and pet, research on this species serves both veterinary and human medicine.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
7
|
Schmidt T, Meller S, Talbot SR, Berk BA, Law TH, Hobbs SL, Meyerhoff N, Packer RMA, Volk HA. Urinary Neurotransmitter Patterns Are Altered in Canine Epilepsy. Front Vet Sci 2022; 9:893013. [PMID: 35651965 PMCID: PMC9150448 DOI: 10.3389/fvets.2022.893013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is the most common chronic neurological disease in humans and dogs. Epilepsy is thought to be caused by an imbalance of excitatory and inhibitory neurotransmission. Intact neurotransmitters are transported from the central nervous system to the periphery, from where they are subsequently excreted through the urine. In human medicine, non-invasive urinary neurotransmitter analysis is used to manage psychological diseases, but not as yet for epilepsy. The current study aimed to investigate if urinary neurotransmitter profiles differ between dogs with epilepsy and healthy controls. A total of 223 urine samples were analysed from 63 dogs diagnosed with idiopathic epilepsy and 127 control dogs without epilepsy. The quantification of nine urinary neurotransmitters was performed utilising mass spectrometry technology. A significant difference between urinary neurotransmitter levels (glycine, serotonin, norepinephrine/epinephrine ratio, ɤ-aminobutyric acid/glutamate ratio) of dogs diagnosed with idiopathic epilepsy and the control group was found, when sex and neutering status were accounted for. Furthermore, an influence of antiseizure drug treatment upon the urinary neurotransmitter profile of serotonin and ɤ-aminobutyric acid concentration was revealed. This study demonstrated that the imbalances in the neurotransmitter system that causes epileptic seizures also leads to altered neurotransmitter elimination in the urine of affected dogs. Urinary neurotransmitters have the potential to serve as valuable biomarkers for diagnostics and treatment monitoring in canine epilepsy. However, more research on this topic needs to be undertaken to understand better the association between neurotransmitter deviations in the brain and urine neurotransmitter concentrations in dogs with idiopathic epilepsy.
Collapse
Affiliation(s)
- Teresa Schmidt
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Steven R. Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Benjamin A. Berk
- BrainCheck.Pet – Tierärztliche Praxis für Epilepsie, Sachsenstraße, Mannheim, Germany
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Tsz H. Law
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Sarah L. Hobbs
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Nina Meyerhoff
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Rowena M. A. Packer
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
8
|
de Miranda LLR, Harvey KE, Ahmed A, Harvey SC. UV-filter pollution: current concerns and future prospects. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:840. [PMID: 34822005 DOI: 10.1007/s10661-021-09626-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/12/2021] [Indexed: 05/20/2023]
Abstract
UV-filters are widely used in cosmetics and personal care products to protect users' skin from redamage caused by ultraviolet (UV) radiation from the sun. Globally, an estimated 16,000 to 25,000 tonnes of products containing UV-filters were used in 2014 with modern consumption likely to be much higher. Beyond this use in cosmetics and personal care products, UV-filters are also widely used to provide UV-stability in industrial products such as paints and plastics. This review discusses the main routes by which UV-filters enter aquatic environments and summarises the conclusions of studies from the past 10 years that have investigated the effects of UV-filters on environmentally relevant species including corals, microalgae, fish, and marine mammals. Safety data regarding the potential impact of UV-filters on human health are also discussed. Finally, we explore the challenges surrounding UV-filter removal and research on more environmentally friendly alternatives to current UV-filters.
Collapse
Affiliation(s)
- L L R de Miranda
- Biomolecular Research Group, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, CT1 1QU, UK
| | - K E Harvey
- Biomolecular Research Group, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, CT1 1QU, UK
| | - A Ahmed
- Biomolecular Research Group, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, CT1 1QU, UK
| | - S C Harvey
- Biomolecular Research Group, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, CT1 1QU, UK.
| |
Collapse
|
9
|
Sarlo GL, Holton KF. Brain concentrations of glutamate and GABA in human epilepsy: A review. Seizure 2021; 91:213-227. [PMID: 34233236 DOI: 10.1016/j.seizure.2021.06.028] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/27/2022] Open
Abstract
An imbalance between excitation and inhibition has been a longstanding proposed mechanism regarding ictogenesis and epileptogenesis. This imbalance is related to increased extracellular glutamate in the brain and/or reduction in GABA concentrations, leading to excitotoxicity, seizures, and cell death. This review aims to summarize the microdialysis and magnetic resonance spectroscopy (MRS) literature investigating glutamate and GABA concentrations in epilepsy patients, present limitations, and suggest future directions to help direct the search for novel epilepsy treatments. The majority of microdialysis studies demonstrated increased glutamate in epileptic regions either compared to control regions or to baseline levels; however, sample sizes were small, with some statistical comparisons missing. For the MRS research, two of six studies reported significant changes in glutamate levels compared to controls, though the results were mixed, with one reporting increased and the other reporting decreased glutamate levels. Eleven of 20 studies reported significant changes in Glx (glutamate + glutamine) or Glx ratios, with most reporting increased levels, except for a few epilepsy syndromes where reduced levels were reported. Few studies investigated GABA concentrations, with one microdialysis and four spectroscopy studies reporting increased GABA levels, and one study reporting decreased GABA in a different brain region. Based on this review, future research should account for medication use; include measurements of GABA, glutamate, and glutamine; use high-tesla strength MRI; and further evaluate the timing of microdialysis. Understanding the importance of brain glutamate and GABA levels in epilepsy may provide direction for future therapies and treatments.
Collapse
Affiliation(s)
- Gabrielle L Sarlo
- Department of Psychology, Behavior, Cognition and Neuroscience Program, American University, Washington DC, United States
| | - Kathleen F Holton
- Department of Health Studies, American University, Washington DC, United States; Center for Behavioral Neuroscience, American University, Washington DC, United States.
| |
Collapse
|
10
|
Gagne C, Piot A, Brake WG. Depression, Estrogens, and Neuroinflammation: A Preclinical Review of Ketamine Treatment for Mood Disorders in Women. Front Psychiatry 2021; 12:797577. [PMID: 35115970 PMCID: PMC8804176 DOI: 10.3389/fpsyt.2021.797577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Ketamine has been shown to acutely and rapidly ameliorate depression symptoms and suicidality. Given that women suffer from major depression at twice the rate of men, it is important to understand how ketamine works in the female brain. This review explores three themes. First, it examines our current understanding of the etiology of depression in women. Second, it examines preclinical research on ketamine's antidepressant effects at a neurobiological level as well as how ovarian hormones present a unique challenge in interpreting these findings. Lastly, the neuroinflammatory hypothesis of depression is highlighted to help better understand how ovarian hormones might interact with ketamine in the female brain.
Collapse
Affiliation(s)
- Collin Gagne
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| | - Alexandre Piot
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| | - Wayne G Brake
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| |
Collapse
|
11
|
Verhoog QP, Holtman L, Aronica E, van Vliet EA. Astrocytes as Guardians of Neuronal Excitability: Mechanisms Underlying Epileptogenesis. Front Neurol 2020; 11:591690. [PMID: 33324329 PMCID: PMC7726323 DOI: 10.3389/fneur.2020.591690] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are key homeostatic regulators in the central nervous system and play important roles in physiology. After brain damage caused by e.g., status epilepticus, traumatic brain injury, or stroke, astrocytes may adopt a reactive phenotype. This process of reactive astrogliosis is important to restore brain homeostasis. However, persistent reactive astrogliosis can be detrimental for the brain and contributes to the development of epilepsy. In this review, we will focus on physiological functions of astrocytes in the normal brain as well as pathophysiological functions in the epileptogenic brain, with a focus on acquired epilepsy. We will discuss the role of astrocyte-related processes in epileptogenesis, including reactive astrogliosis, disturbances in energy supply and metabolism, gliotransmission, and extracellular ion concentrations, as well as blood-brain barrier dysfunction and dysregulation of blood flow. Since dysfunction of astrocytes can contribute to epilepsy, we will also discuss their role as potential targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Quirijn P. Verhoog
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Linda Holtman
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Erwin A. van Vliet
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Zhang Y, Liu Y, Jia Y, Zhao Y, Ma C, Bao X, Meng X, Dou W, Wang X, Ge W. Proteomic profiling of sclerotic hippocampus revealed dysregulated packaging of vesicular neurotransmitters in temporal lobe epilepsy. Epilepsy Res 2020; 166:106412. [DOI: 10.1016/j.eplepsyres.2020.106412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/31/2022]
|
13
|
Sharma AA, Szaflarski JP. In Vivo Imaging of Neuroinflammatory Targets in Treatment-Resistant Epilepsy. Curr Neurol Neurosci Rep 2020; 20:5. [PMID: 32166626 DOI: 10.1007/s11910-020-1025-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Recent evidence indicates that chronic, low-level neuroinflammation underlies epileptogenesis. Targeted imaging of key neuroinflammatory cells, receptors, and tissues may enable localizing epileptogenic onset zone, especially in those patients who are treatment-resistant and considered MRI-negative. Finding a specific, sensitive neuroimaging-based biomarker could aid surgical planning and improve overall prognosis in eligible patients. This article reviews recent research on in vivo imaging of neuroinflammatory targets in patients with treatment-resistant, non-lesional epilepsy. RECENT FINDINGS A number of advanced approaches based on imaging neuroinflammation are being implemented in order to assist localization of epileptogenic onset zone. The most exciting tools are based on radioligand-based nuclear imaging or revisiting of existing technology in novel ways. The greatest limitations stem from gaps in knowledge about the exact function of neuroinflammatory targets (e.g., neurotoxic or neuroprotective). Further, lingering questions about each approach's specificity, reliability, and sensitivity must be addressed, and clinical utility must be validated before any novel method is incorporated into mainstream clinical practice. Current applications of imaging neuroinflammation in humans are limited and underutilized, but offer hope for finding sensitive and specific neuroimaging-based biomarker(s). Future work necessitates appreciation of investigations to date, significant findings, and neuroinflammatory targets worth exploring further.
Collapse
Affiliation(s)
- Ayushe A Sharma
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35249-0021, USA.
| | - Jerzy P Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35249-0021, USA.,University of Alabama at Birmingham Epilepsy Center, Birmingham, AL, USA
| |
Collapse
|
14
|
Nikolic L, Nobili P, Shen W, Audinat E. Role of astrocyte purinergic signaling in epilepsy. Glia 2019; 68:1677-1691. [DOI: 10.1002/glia.23747] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Ljiljana Nikolic
- Institute for Biological Research Siniša Stanković, University of Belgrade Serbia
| | | | - Weida Shen
- Zhejiang University City College Zhejiang Hangzhou China
| | - Etienne Audinat
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM Montpellier France
| |
Collapse
|
15
|
Gao F, Cai X, Xiao G, Song Y, Wang M, Li Z, Zhang Y, Xu S, Xie J, Yin H. Recording of Neural Activity With Modulation of Photolysis of Caged Compounds Using Microelectrode Arrays in Rats With Seizures. IEEE Trans Biomed Eng 2019; 66:3080-3087. [DOI: 10.1109/tbme.2019.2900251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Huyghe D, Denninger AR, Voss CM, Frank P, Gao N, Brandon N, Waagepetersen HS, Ferguson AD, Pangalos M, Doig P, Moss SJ. Phosphorylation of Glutamine Synthetase on Threonine 301 Contributes to Its Inactivation During Epilepsy. Front Mol Neurosci 2019; 12:120. [PMID: 31178690 PMCID: PMC6536897 DOI: 10.3389/fnmol.2019.00120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
The astrocyte-specific enzyme glutamine synthetase (GS), which catalyzes the amidation of glutamate to glutamine, plays an essential role in supporting neurotransmission and in limiting NH4+ toxicity. Accordingly, deficits in GS activity contribute to epilepsy and neurodegeneration. Despite its central role in brain physiology, the mechanisms that regulate GS activity are poorly defined. Here, we demonstrate that GS is directly phosphorylated on threonine residue 301 (T301) within the enzyme’s active site by cAMP-dependent protein kinase (PKA). Phosphorylation of T301 leads to a dramatic decrease in glutamine synthesis. Enhanced T301 phosphorylation was evident in a mouse model of epilepsy, which may contribute to the decreased GS activity seen during this trauma. Thus, our results highlight a novel molecular mechanism that determines GS activity under both normal and pathological conditions.
Collapse
Affiliation(s)
- Deborah Huyghe
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Andrew R Denninger
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Caroline M Voss
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Frank
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ning Gao
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Nicholas Brandon
- Neuroscience, IMED Biotech Unit, AstraZeneca, Boston, MA, United States.,AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA, United States
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew D Ferguson
- Structure & Biophysics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | | | - Peter Doig
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,Department of Neuroscience, Physiology and Pharmacology, University College, London, United Kingdom
| |
Collapse
|
17
|
Yang H, Shan W, Zhu F, Yu T, Fan J, Guo A, Li F, Yang X, Wang Q. C-Fos mapping and EEG characteristics of multiple mice brain regions in pentylenetetrazol-induced seizure mice model. Neurol Res 2019; 41:749-761. [PMID: 31038018 DOI: 10.1080/01616412.2019.1610839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Purpose: To confirm different local brain activities characterized in pentylenetetrazol (PTZ)-induced seizure model. Methods: we induced seizure response by a single dose of PTZ injection (45 mg/kg, i.p.). Local activity was recorded in different brain regions by EEG in time and c-Fos staining at different time points (0.5 h, 1 h, 2 h, 4 h) after PTZ treatment. Results: EEG recordings showed distinctive features of activation in different brain areas. With the aggravation of behavioral manifestations of seizures, the frequency and amplitude of the discharges on EEG were increasing gradually. The epileptic response on EEG immediately ended after reaching the maximum stage of seizures, followed by a short period of suppression. The labeling of c-Fos was enhanced in the medial prefrontal cortex, the piriform cortex, the amygdala, hippocampal CA1, CA3 and dentate gyrus, but inapparent in the striatum. The most potent changes in c-Fos were observed in cortex, amygdala nuclei, and dentate gyrus. EEG and c-Fos immunolabeling in neuronal activation showed discrepancies in the striatum. For each brain region, the maximum c-Fos labeling was observed at 2 h after injection and diminished at 4 h. The level of c-Fos immunoreactivity was even lower than the control group, which was accompanied by increased labeling of parvalbumin neurons (PVNs). Conclusions: These findings validated PTZ-induced seizure as a seizure model with a specific spatial-temporal profile. Neuronal activity was enhanced and then subsequently inhibited during seizure evolution. Abbreviations: AEDs: anti-epileptic drugs; AF: Alexa Fluor; CA1: Cornu Ammonis area 1; CA3: Cornu Ammonis area 3; DAB, 3: 3P-diaminobenzidine; DAPI: 4',6-diamidino-2-phenylindole; DG: dentate gyrus; EEG: electroencephalogram; GABA: gamma-aminobutyric acid; IEG: immediate early gene; mPFC: medial prefrontal cortex; NAc: nucleus accumbens; PB: phosphate buffer; PBS: phosphate buffered saline; PBST: phosphate buffered saline with Tween; PFA, paraformaldehyde; PTZ: pentylenetetrazol; PVN: parvalbumin neuron; ROI: regions of interest; SE: status epilepticus.
Collapse
Affiliation(s)
- Huajun Yang
- a Department of Neurology, Beijing Tiantan Hospital, Capital Medical University , Beijing , P.R.China.,b Beijing Institute for Brain Disorders , Beijing , P.R.China.,c National Center for Clinical Medicine of Neurological Diseases , Beijing , P.R.China
| | - Wei Shan
- a Department of Neurology, Beijing Tiantan Hospital, Capital Medical University , Beijing , P.R.China.,b Beijing Institute for Brain Disorders , Beijing , P.R.China.,c National Center for Clinical Medicine of Neurological Diseases , Beijing , P.R.China
| | - Fei Zhu
- a Department of Neurology, Beijing Tiantan Hospital, Capital Medical University , Beijing , P.R.China.,b Beijing Institute for Brain Disorders , Beijing , P.R.China.,c National Center for Clinical Medicine of Neurological Diseases , Beijing , P.R.China
| | - Tingting Yu
- a Department of Neurology, Beijing Tiantan Hospital, Capital Medical University , Beijing , P.R.China.,b Beijing Institute for Brain Disorders , Beijing , P.R.China.,c National Center for Clinical Medicine of Neurological Diseases , Beijing , P.R.China
| | - Jingjing Fan
- a Department of Neurology, Beijing Tiantan Hospital, Capital Medical University , Beijing , P.R.China.,b Beijing Institute for Brain Disorders , Beijing , P.R.China.,c National Center for Clinical Medicine of Neurological Diseases , Beijing , P.R.China
| | - Anchen Guo
- b Beijing Institute for Brain Disorders , Beijing , P.R.China.,c National Center for Clinical Medicine of Neurological Diseases , Beijing , P.R.China
| | - Fei Li
- d Beijing institute of pharmacology and toxicology , Beijing , P.R.China
| | - Xiaofeng Yang
- b Beijing Institute for Brain Disorders , Beijing , P.R.China
| | - Qun Wang
- a Department of Neurology, Beijing Tiantan Hospital, Capital Medical University , Beijing , P.R.China.,b Beijing Institute for Brain Disorders , Beijing , P.R.China.,c National Center for Clinical Medicine of Neurological Diseases , Beijing , P.R.China
| |
Collapse
|
18
|
Zestos AG, Luna-Munguia H, Stacey WC, Kennedy RT. Use and Future Prospects of in Vivo Microdialysis for Epilepsy Studies. ACS Chem Neurosci 2019; 10:1875-1883. [PMID: 30001105 DOI: 10.1021/acschemneuro.8b00271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epilepsy is a common neurological disease characterized by recurrent unpredictable seizures. For the last 30 years, microdialysis sampling has been used to measure changes in excitatory and inhibitory neurotransmitter concentrations before, during, and after seizures. These advances have fostered breakthroughs in epilepsy research by identifying neurochemical changes associated with seizures and correlating them to electrophysiological data. Recent advances in methodology may be useful in further delineating the chemical underpinnings of seizures. A new model of ictogenesis has been developed that allows greater control over the timing of seizures that are similar to spontaneous seizures. This model will facilitate making chemical measurements before and during a seizure. Recent advancements in microdialysis sampling, including the use of segmented flow, "fast" liquid chromatography (LC), and capillary electrophoresis with laser-induced fluorescence (CE-LIF) have significantly improved temporal resolution to better than 1 min, which could be used to measure transient, spontaneous neurochemical changes associated with seizures. Microfabricated sampling probes that are markedly smaller than conventional probes and allow for a much greater spatial resolution have been developed. They may allow the targeting of specific brain regions important to epilepsy studies. Coupling microdialysis sampling to optogenetics and light-stimulated release of neurotransmitters may also prove useful for studying epileptic seizures.
Collapse
Affiliation(s)
- Alexander G. Zestos
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016, United States
| | - Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, Queretaro 76230, Mexico
| | - William C. Stacey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
19
|
The Impact of Stress and Major Depressive Disorder on Hippocampal and Medial Prefrontal Cortex Morphology. Biol Psychiatry 2019; 85:443-453. [PMID: 30470559 PMCID: PMC6380948 DOI: 10.1016/j.biopsych.2018.09.031] [Citation(s) in RCA: 329] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/25/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Volumetric reductions in the hippocampus and medial prefrontal cortex (mPFC) are among the most well-documented neural abnormalities in major depressive disorder (MDD). Hippocampal and mPFC structural reductions have been specifically tied to MDD illness progression markers, including greater number of major depressive episodes (MDEs), longer illness duration, and nonremission/treatment resistance. Chronic stress plays a critical role in the development of hippocampal and mPFC deficits, with some studies suggesting that these deficits occur irrespective of MDE occurrence. However, preclinical and human research also points to other stress-mediated neurotoxic processes, including enhanced inflammation and neurotransmitter disturbances, which may require the presence of an MDE and contribute to further brain structural decline as the illness advances. Specifically, hypothalamic-pituitary-adrenal axis dysfunction, enhanced inflammation and oxidative stress, and neurotransmitter abnormalities (e.g., serotonin, glutamate, gamma-aminobutyric acid) likely interact to facilitate illness progression in MDD. Congruent with stress sensitization models of MDD, with each consecutive MDE it may take lower levels of stress to trigger these neurotoxic pathways, leading to more pronounced brain volumetric reductions. Given that stress and MDD have overlapping and distinct influences on neurobiological pathways implicated in hippocampal and mPFC structural decline, further work is needed to clarify which precise mechanisms ultimately contribute to MDD development and maintenance.
Collapse
|
20
|
Pannasch U, Dossi E, Ezan P, Rouach N. Astroglial Cx30 sustains neuronal population bursts independently of gap-junction mediated biochemical coupling. Glia 2019; 67:1104-1112. [PMID: 30794327 PMCID: PMC6519011 DOI: 10.1002/glia.23591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 11/06/2022]
Abstract
Astroglial networks mediated by gap junction channels contribute to neurotransmission and promote neuronal coordination. Connexin 30, one of the two main astroglial gap junction forming protein, alters at the behavioral level the reactivity of mice to novel environment and at the synaptic level excitatory transmission. However, the role and function of Cx30 at the neuronal network level remain unclear. We thus investigated whether Cx30 regulates neuronal population bursts and associated convulsive behavior. We found in vivo that Cx30 is upregulated by kainate-induced seizures and that it regulates in turn the severity of associated behavioral seizures. Using electrophysiology ex vivo, we report that Cx30 regulates aberrant network activity via control of astroglial glutamate clearance independently of gap-junction mediated biochemical coupling. Altogether, our results indicate that astroglial Cx30 is an important player in orchestrating neuronal network activity.
Collapse
Affiliation(s)
- Ulrike Pannasch
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France
| | - Elena Dossi
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France
| | - Pascal Ezan
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France
| |
Collapse
|
21
|
Aucubin Alleviates Seizures Activity in Li-Pilocarpine-Induced Epileptic Mice: Involvement of Inhibition of Neuroinflammation and Regulation of Neurotransmission. Neurochem Res 2019; 44:472-484. [DOI: 10.1007/s11064-018-2700-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022]
|
22
|
Lam J, DuBois JM, Rowley J, González-Otárula KA, Soucy JP, Massarweh G, Hall JA, Guiot MC, Rosa-Neto P, Kobayashi E. In vivo metabotropic glutamate receptor type 5 abnormalities localize the epileptogenic zone in mesial temporal lobe epilepsy. Ann Neurol 2019; 85:218-228. [PMID: 30597619 DOI: 10.1002/ana.25404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Surgical specimens from patients with mesial temporal lobe epilepsy (MTLE) show abnormalities in tissue concentrations of metabotropic glutamate receptor type 5 (mGluR5). To clarify whether these abnormalities are specific to the epileptogenic zone (EZ), we characterized in vivo whole-brain mGluR5 availability in MTLE patients using positron emission tomography (PET) and [11 C]ABP688, a radioligand that binds specifically to the mGluR5 allosteric site. METHODS Thirty-one unilateral MTLE patients and 30 healthy controls underwent [11 C]ABP688 PET. We compared partial volume corrected [11 C]ABP688 nondisplaceable binding potentials (BPND ) between groups using region-of-interest and whole-brain voxelwise analyses. [18 F]Fluorodeoxyglucose (FDG) PET was acquired in 15 patients, for whom we calculated asymmetry indices of [11 C]ABP688 BPND and [18 F]FDG uptake to compare lateralization and localization differences. RESULTS [11 C]ABP688 BPND was focally reduced in the epileptogenic hippocampal head and amygdala (p < 0.001). Patients with hippocampal atrophy showed more extensive abnormalities, including the ipsilateral temporal neocortex (p = 0.006). [11 C]ABP688 BPND showed interhemispheric differences of higher magnitude and discriminated the epileptogenic structures more accurately when compared to [18 F]FDG uptake, which showed more widespread hypometabolism. Among 23 of 25 operated patients with >1 year of follow-up, 13 were seizure-free (Engel Ia) and showed significantly lower [11 C]ABP688 BPND in the ipsilateral entorhinal cortex. INTERPRETATION [11 C]ABP688 PET provides a focal biomarker for the EZ in MTLE with higher spatial accuracy compared to [18 F]FDG PET. Focally reduced mGluR5 availability in the EZ might reflect receptor internalization or conformational changes in response to excessive extracellular glutamate, supporting a potential role for mGluR5 as therapeutic target in human MTLE. Ann Neurol 2019; 1-11 ANN NEUROL 2019;85:218-228.
Collapse
Affiliation(s)
- Jack Lam
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jonathan M DuBois
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jared Rowley
- Translational Neuroimaging Laboratory, McGill University, Montreal, Quebec, Canada
| | - Karina A González-Otárula
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jean-Paul Soucy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,PET Unit, McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
| | - Gassan Massarweh
- PET Unit, McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
| | - Jeffery A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Marie-Christine Guiot
- Department of Pathology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Translational Neuroimaging Laboratory, McGill University, Montreal, Quebec, Canada.,PET Unit, McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
| | - Eliane Kobayashi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Lu CW, Hsieh HL, Lin TY, Hsieh TY, Huang SK, Wang SJ. Echinacoside, an Active Constituent of Cistanche Herba, Exerts a Neuroprotective Effect in a Kainic Acid Rat Model by Inhibiting Inflammatory Processes and Activating the Akt/GSK3β Pathway. Biol Pharm Bull 2018; 41:1685-1693. [DOI: 10.1248/bpb.b18-00407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Cheng Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital
- Department of Mechanical Engineering, Yuan Ze University
| | - Hsi Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology
- Department of Neurology, Chang Gung Memorial Hospital
| | - Tzu Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital
- Department of Mechanical Engineering, Yuan Ze University
| | - Ting Yang Hsieh
- P.H.D. Program in Neutrition & Food Science, Fu Jen Catholic University
| | - Shu Kuei Huang
- Department of Anesthesiology, Far-Eastern Memorial Hospital
| | - Su Jane Wang
- School of Medicine, Fu Jen Catholic University
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology
| |
Collapse
|
24
|
Mathieu ML, de Bellescize J, Till M, Flurin V, Labalme A, Chatron N, Sanlaville D, Chemaly N, des Portes V, Ostrowsky K, Arzimanoglou A, Lesca G. Electrical status epilepticus in sleep, a constitutive feature of Christianson syndrome? Eur J Paediatr Neurol 2018; 22:1124-1132. [PMID: 30126759 DOI: 10.1016/j.ejpn.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
Christianson syndrome (CS) is a X-linked neurodevelopmental disorder, including severe intellectual disability (ID), progressive microcephaly, ataxia, autistic behaviour (ASD), near absent speech, and epilepsy. Electrical status epilepticus in sleep (ESES) has been reported in two patients. We describe five male patients from three unrelated families with Christianson syndrome caused by a pathogenic nucleotide variation or a copy-number variation involving SLC9A6. ESES was present in three out of the five patients in the critical age window between 4 and 8 years. All patients presented with severe intellectual disability, autistic features, and hyperactivity. Epilepsy onset occurred within the first two years of life. Seizures were of various types. In the two boys with a 20-years follow-up, epilepsy was drug-resistant during childhood, and became less active in early adolescence. Psychomotor regression was noted in two patients presenting with ESES. It was difficult to assess to what extent ESES could have contributed to the pathophysiological process, leading to regression of the already very limited communication skills. The two published case reports and our observation suggests that ESES could be a constitutive feature of Christianson syndrome, as it has already been shown for other Mendelian epileptic disorders, such as GRIN2A and CNKSR2-related developmental epileptic encephalopathies. Sleep EEG should be performed in patients with Christianson syndrome between 4 and 8 years of age. ESES occurring in the context of ID, ASD and severe speech delay, could be helpful to make a diagnosis of CS.
Collapse
Affiliation(s)
- Marie-Laure Mathieu
- Neuropaediatrics Department, Femme Mère Enfant Hospital, Lyon, France; Claude Bernard Lyon 1 University, Lyon, France
| | - Julitta de Bellescize
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the European Reference Network EpiCARE, Hospices Civils de Lyon, Lyon, France
| | - Marianne Till
- Department of Medical Genetics, Lyon University Hospital, Lyon, France
| | - Vincent Flurin
- Department of Paediatric Intensive Care, Le Mans Hospital, Le Mans, France
| | - Audrey Labalme
- Department of Medical Genetics, Lyon University Hospital, Lyon, France
| | - Nicolas Chatron
- Department of Medical Genetics, Lyon University Hospital, Lyon, France; Claude Bernard Lyon 1 University, Lyon, France; INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Centre (CRNL), Lyon, France
| | - Damien Sanlaville
- Department of Medical Genetics, Lyon University Hospital, Lyon, France; Claude Bernard Lyon 1 University, Lyon, France; INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Centre (CRNL), Lyon, France
| | - Nicole Chemaly
- Reference Centre for Rare Epilepsies, APHP, Necker-Enfants Malades Hospital, Imagine Institute, Paris, France; INSERM U1129, Paris, France; Paris Descartes University, CEA, Gif sur Yvette, France
| | - Vincent des Portes
- Neuropaediatrics Department, Femme Mère Enfant Hospital, Lyon, France; Claude Bernard Lyon 1 University, Lyon, France
| | - Karine Ostrowsky
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the European Reference Network EpiCARE, Hospices Civils de Lyon, Lyon, France
| | - Alexis Arzimanoglou
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the European Reference Network EpiCARE, Hospices Civils de Lyon, Lyon, France; DYCOG Team, Lyon Neuroscience Research Centre (CRNL), INSERM U1028, CNRS UMR 5292, Lyon, France
| | - Gaëtan Lesca
- Department of Medical Genetics, Lyon University Hospital, Lyon, France; Claude Bernard Lyon 1 University, Lyon, France; INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Centre (CRNL), Lyon, France.
| |
Collapse
|
25
|
Luna-Munguia H, Zestos AG, Gliske SV, Kennedy RT, Stacey WC. Chemical biomarkers of epileptogenesis and ictogenesis in experimental epilepsy. Neurobiol Dis 2018; 121:177-186. [PMID: 30304705 DOI: 10.1016/j.nbd.2018.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/29/2022] Open
Abstract
Epilepsy produces chronic chemical changes induced by altered cellular structures, and acute ones produced by conditions leading into individual seizures. Here, we aim to quantify 24 molecules simultaneously at baseline and during periods of lowered seizure threshold in rats. Using serial hippocampal microdialysis collections starting two weeks after the pilocarpine-induced status epilepticus, we evaluated how this chronic epilepsy model affects molecule levels and their interactions. Then, we quantified the changes occurring when the brain moves into a pro-seizure state using a novel model of physiological ictogenesis. Compared with controls, pilocarpine animals had significantly decreased baseline levels of adenosine, homovanillic acid, and serotonin, but significantly increased levels of choline, glutamate, phenylalanine, and tyrosine. Step-wise linear regression identified that choline, homovanillic acid, adenosine, and serotonin are the most important features to characterize the difference in the extracellular milieu between pilocarpine and control animals. When increasing the hippocampal seizure risk, the concentrations of normetanephrine, serine, aspartate, and 5-hydroxyindoleacetic acid were the most prominent; however, there were no specific, consistent changes prior to individual seizures.
Collapse
Affiliation(s)
- Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, Queretaro, Mexico
| | - Alexander G Zestos
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington D.C. 20016, USA
| | - Stephen V Gliske
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William C Stacey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Zeng X, Hu K, Chen L, Zhou L, Luo W, Li C, Zong W, Chen S, Gao Q, Zeng G, Jiang D, Li X, Zhou H, Ouyang DS. The Effects of Ginsenoside Compound K Against Epilepsy by Enhancing the γ-Aminobutyric Acid Signaling Pathway. Front Pharmacol 2018; 9:1020. [PMID: 30254585 PMCID: PMC6142013 DOI: 10.3389/fphar.2018.01020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/22/2018] [Indexed: 01/15/2023] Open
Abstract
The imbalance between the GABA-mediated inhibition and the glutamate-mediated excitation is the primary pathological mechanism of epilepsy. GABAergic and glutamatergic neurotransmission have become the most important targets for controlling epilepsy. Ginsenoside compound K (GCK) is a main metabolic production of the ginsenoside Rb1, Rb2, and Rc in the intestinal microbiota. Previous studies show that GCK promoted the release of GABA from the hippocampal neurons and enhanced the activity of GABAA receptors. GCK is shown to reduce the expression of NMDAR and to attenuate the function of the NMDA receptors in the brain. The anti-seizure effects of GCK have not been reported so far. Therefore, this study aimed to investigate the effects of GCK on epilepsy and its potential mechanism. The rat model of seizure or status epilepticus (SE) was established with either Pentylenetetrazole or Lithium chloride-pilocarpine. The Racine's scale was used to evaluate seizure activity. The levels of the amino acid neurotransmitters were detected in the pilocarpine-induced epileptic rats. The expression levels of GABAARα1, NMDAR1, KCC2, and NKCC1 protein in the hippocampus were determined via western blot or immunohistochemistry after SE. We found that GCK had deceased seizure intensity and prolonged the latency of seizures. GCK increased the contents of GABA, while the contents of glutamate remained unchanged. GCK enhanced the expression of GABAARα1 in the brain and exhibited a tendency to decrease the expression of NMDAR1 protein in the hippocampus. The expression of KCC2 protein was elevated by the treatment of GCK after SE, while the expression of NKCC1 protein was reversely down-regulated. These findings suggested that GCK exerted anti-epileptic effects by promoting the hippocampal GABA release and enhancing the GABAAR-mediated inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Kai Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lulu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Luping Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wei Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Chaopeng Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wenjing Zong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Siyu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Qing Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Guirong Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| | - Dejian Jiang
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Dong-Sheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| |
Collapse
|
27
|
Santana-Gómez CE, Valle-Dorado MG, Domínguez-Valentín AE, Hernández-Moreno A, Orozco-Suárez S, Rocha L. Neuroprotective effects of levetiracetam, both alone and combined with propylparaben, in the long-term consequences induced by lithium-pilocarpine status epilepticus. Neurochem Int 2018; 120:224-232. [PMID: 30213635 DOI: 10.1016/j.neuint.2018.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/23/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022]
Abstract
Status epilepticus (SE) is a neurological condition that frequently induces severe neuronal injury in the hippocampus, subsequent epileptogenesis and pharmacoresistant spontaneous recurrent seizures (SRS). The repeated administration of LEV (a broad-spectrum antiepileptic drug) during the post-SE period does not prevent the subsequent development of SRS. However, this treatment reduces SE-induced neurodegeneration in the hippocampus. Conversely, propylparaben (PPB) is a widely used antimicrobial that blocks voltage-dependent Na+ channels, induces neuroprotection and reduces epileptiform activity in vitro. The present study attempted to determine if the neuroprotective effects induced by LEV are augmented when combined with a sub-effective dose of PPB. Long-term SE-induced consequences (hyperexcitability, high glutamate release, neuronal injury and volume loss) were evaluated in the hippocampus of rats. LEV alone, as well as combined with PPB, did not prevent the occurrence of SRS. However, animals treated with LEV plus PPB showed high prevalence of low frequency oscillations (0.1-4 Hz and 8-90 bands, p < 0.001) and low prevalence of high frequency activity (90-250 bands, p < 0.001) during the interictal period. In addition, these animals presented lower extracellular levels of glutamate, decreased rate of neurodegeneration and a similar hippocampal volume compared to the control conditions. This study's results suggest that LEV associated with PPB could represent a new therapeutic strategy to reduce long-term consequences induced by SE that facilitate pharmacoresistant SRS.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Orozco-Suárez
- Unit for Medical Research in Neurological Diseases, Specialties Hospital, National Medical Center SXXI, Mexican Institute of Social Security (IMSS), Mexico City, Mexico
| | - Luisa Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico.
| |
Collapse
|
28
|
Freitas MLD, Oliveira CVD, Mello FK, Funck VR, Fighera MR, Royes LFF, Furian AF, Larrick JW, Oliveira MS. Na +, K +-ATPase Activating Antibody Displays in vitro and in vivo Beneficial Effects in the Pilocarpine Model of Epilepsy. Neuroscience 2018. [PMID: 29522855 DOI: 10.1016/j.neuroscience.2018.02.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Na+, K+-ATPase is an important regulator of brain excitability. Accordingly, compelling evidence indicates that impairment of Na+, K+-ATPase activity contributes to seizure activity in epileptic mice and human with epilepsy. In addition, this enzyme is crucial for plasma membrane transport of water, glucose and several chemical mediators, including glutamate, the major excitatory transmitter in the mammalian brain. Since glucose hypometabolism and increased glutamate levels occur in clinical and experimental epilepsy, we aimed the present study to investigate whether activation of Na+, K+-ATPase activity with specific antibody (DRRSAb) would improve glucose uptake and glutamate release in pilocarpine-treated mice. We found decreased uptake of the glucose fluorescent analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-il)amino]-2-desoxi-d-glucose (2-NBDG) in cerebral slices from pilocarpine-treated animals. Interestingly, decreased 2-NBDG uptake was not detected in DRRSAb-treated slices, suggesting a protective effect of the Na+, K+-ATPase activator. Moreover, DRRSAb prevented the increase in glutamate levels in the incubation media of slices from pilocarpine-treated mice. In addition, in vivo intrahippocampal injection of DRRSAb restored crossing activity of pilocarpine-treated mice in the open-field test. Overall, the present data further support the hypothesis that activation of the Na+, K+-ATPase is a promising therapeutic strategy for epilepsy.
Collapse
Affiliation(s)
| | | | | | - Vinícius Rafael Funck
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michele Rechia Fighera
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Ana Flávia Furian
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - James W Larrick
- Panorama Research Institute, 1230 Bordeaux Dr, Sunnyvale, CA 94089, United States
| | | |
Collapse
|
29
|
Li Z, Song Y, Xiao G, Gao F, Xu S, Wang M, Zhang Y, Guo F, Liu J, Xia Y, Cai X. Bio-electrochemical microelectrode arrays for glutamate and electrophysiology detection in hippocampus of temporal lobe epileptic rats. Anal Biochem 2018; 550:123-131. [PMID: 29723519 DOI: 10.1016/j.ab.2018.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 11/29/2022]
Abstract
Temporal Lobe Epilepsy (TLE) is a chronic neurological disorder, characterized by sudden, repeated and transient central nervous system dysfunction. For better understanding of TLE, bio-nanomodified microelectrode arrays (MEA) are designed, for the achievement of high-quality simultaneous detection of glutamate signals (Glu) and multi-channel electrophysiological signals including action potentials (spikes) and local field potentials (LFPs). The MEA was fabricated by Micro-Electro-Mechanical System fabrication technology and all recording sites were modified with platinum black nano-particles, the average impedance decreased by nearly 90 times. Additionally, glutamate oxidase was also modified for the detection of Glu. The average sensitivity of the electrode in Glu solution was 1.999 ± 0.032 × 10-2pA/μM·μm2(n = 3) and linearity was R = 0.9986, with a good selectivity of 97.82% for glutamate and effective blocking of other interferents. In the in-vivo experiments, the MEA was subjected in hippocampus to electrophysiology and Glu concentration detection. During seizures, the fire rate of spikes increases, and the interspike interval is concentrated within 30 ms. The amplitude of LFPs increases by 3 times and the power increases. The Glu level (4.22 μM, n = 4) was obviously higher than normal rats (2.24 μM, n = 4). The MEA probe provides an advanced tool for the detection of dual-mode signals in the research of neurological diseases.
Collapse
Affiliation(s)
- Ziyue Li
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 10090, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 10090, China
| | - Guihua Xiao
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 10090, China
| | - Fei Gao
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 10090, China
| | - Shengwei Xu
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 10090, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 10090, China
| | - Yu Zhang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 10090, China
| | - Fengru Guo
- University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jie Liu
- University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yang Xia
- University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 10090, China.
| |
Collapse
|
30
|
Shan W, Nagai T, Tanaka M, Itoh N, Furukawa-Hibi Y, Nabeshima T, Sokabe M, Yamada K. Neuronal PAS domain protein 4 (Npas4) controls neuronal homeostasis in pentylenetetrazole-induced epilepsy through the induction of Homer1a. J Neurochem 2017; 145:19-33. [DOI: 10.1111/jnc.14274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Wei Shan
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Motoki Tanaka
- Mechanobiology Laboratory; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Norimichi Itoh
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Yoko Furukawa-Hibi
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory; Graduate School of Health Sciences; Fujita Health University; Toyoake Japan
- Aino University; Ibaraki Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
31
|
|
32
|
Bartnik-Olson BL, Ding D, Howe J, Shah A, Losey T. Glutamate metabolism in temporal lobe epilepsy as revealed by dynamic proton MRS following the infusion of [U 13-C] glucose. Epilepsy Res 2017; 136:46-53. [PMID: 28763722 DOI: 10.1016/j.eplepsyres.2017.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 12/27/2022]
Abstract
Focal metabolic dysfunction commonly observed in temporal lobe epilepsy (TLE), and is associated with the development of medical intractability and neurocognitive deficits. It has not been established if this dysfunction is due to cell loss or biochemical dysfunction in metabolic pathways. To explore this question, dynamic 1H MRS following an infusion of [U13- C] glucose was performed to measure glutamate (Glu) metabolism. Subjects (n=6) showed reduced Glu levels (p<0.01) in the ipsilateral mesial temporal lobe (MTL) compared with controls (n=4). However, the rate of 13C incorporation into Glu did not differ between those with epilepsy and controls (p=0.77). This suggests that reduced Glu concentrations in the region of the seizure focus are not due to disruptions in metabolic pathways, but may instead be due to neuronal loss or simplification.
Collapse
Affiliation(s)
| | - Daniel Ding
- School of Medicine, Loma Linda University, Loma Linda CA, United States
| | - John Howe
- School of Medicine, Loma Linda University, Loma Linda CA, United States
| | - Amul Shah
- School of Medicine, Loma Linda University, Loma Linda CA, United States
| | - Travis Losey
- Department of Neurology, Loma Linda University, Loma Linda CA, United States.
| |
Collapse
|
33
|
Caciagli L, Bernasconi A, Wiebe S, Koepp MJ, Bernasconi N, Bernhardt BC. A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy: Time is brain? Neurology 2017; 89:506-516. [PMID: 28687722 DOI: 10.1212/wnl.0000000000004176] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/21/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE It remains unclear whether drug-resistant temporal lobe epilepsy (TLE) is associated with cumulative brain damage, with no expert consensus and no quantitative syntheses of the available evidence. METHODS We conducted a systematic review and meta-analysis of MRI studies on progressive atrophy, searching PubMed and Ovid MEDLINE databases for cross-sectional and longitudinal quantitative MRI studies on drug-resistant TLE. RESULTS We screened 2,976 records and assessed eligibility of 248 full-text articles. Forty-two articles met the inclusion criteria for quantitative evaluation. We observed a predominance of cross-sectional studies, use of different clinical indices of progression, and high heterogeneity in age-control procedures. Meta-analysis of 18/1 cross-sectional/longitudinal studies on hippocampal atrophy (n = 979 patients) yielded a pooled effect size of r = -0.42 for ipsilateral atrophy related to epilepsy duration (95% confidence interval [CI] -0.51 to -0.32; p < 0.0001; I2 = 65.22%) and r = -0.35 related to seizure frequency (95% CI -0.47 to -0.22; p < 0.0001; I2 = 61.97%). Sensitivity analyses did not change the results. Narrative synthesis of 25/3 cross-sectional/longitudinal studies on whole brain atrophy (n = 1,504 patients) indicated that >80% of articles reported duration-related progression in extratemporal cortical and subcortical regions. Detailed analysis of study design features yielded low to moderate levels of evidence for progressive atrophy across studies, mainly due to dominance of cross-sectional over longitudinal investigations, use of diverse measures of seizure estimates, and absence of consistent age control procedures. CONCLUSIONS While the neuroimaging literature is overall suggestive of progressive atrophy in drug-resistant TLE, published studies have employed rather weak designs to directly demonstrate it. Longitudinal multicohort studies are needed to unequivocally differentiate aging from disease progression.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- From the Neuroimaging of Epilepsy Laboratory (L.C., A.B., N.B., B.C.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), Montreal Neurological Institute and Hospital, McGill University; Department of Clinical Neurosciences (S.W.), University of Calgary, Canada; and Department of Clinical and Experimental Epilepsy (L.C., M.J.K.), UCL Institute of Neurology, London, UK
| | - Andrea Bernasconi
- From the Neuroimaging of Epilepsy Laboratory (L.C., A.B., N.B., B.C.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), Montreal Neurological Institute and Hospital, McGill University; Department of Clinical Neurosciences (S.W.), University of Calgary, Canada; and Department of Clinical and Experimental Epilepsy (L.C., M.J.K.), UCL Institute of Neurology, London, UK
| | - Samuel Wiebe
- From the Neuroimaging of Epilepsy Laboratory (L.C., A.B., N.B., B.C.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), Montreal Neurological Institute and Hospital, McGill University; Department of Clinical Neurosciences (S.W.), University of Calgary, Canada; and Department of Clinical and Experimental Epilepsy (L.C., M.J.K.), UCL Institute of Neurology, London, UK
| | - Matthias J Koepp
- From the Neuroimaging of Epilepsy Laboratory (L.C., A.B., N.B., B.C.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), Montreal Neurological Institute and Hospital, McGill University; Department of Clinical Neurosciences (S.W.), University of Calgary, Canada; and Department of Clinical and Experimental Epilepsy (L.C., M.J.K.), UCL Institute of Neurology, London, UK
| | - Neda Bernasconi
- From the Neuroimaging of Epilepsy Laboratory (L.C., A.B., N.B., B.C.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), Montreal Neurological Institute and Hospital, McGill University; Department of Clinical Neurosciences (S.W.), University of Calgary, Canada; and Department of Clinical and Experimental Epilepsy (L.C., M.J.K.), UCL Institute of Neurology, London, UK
| | - Boris C Bernhardt
- From the Neuroimaging of Epilepsy Laboratory (L.C., A.B., N.B., B.C.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), Montreal Neurological Institute and Hospital, McGill University; Department of Clinical Neurosciences (S.W.), University of Calgary, Canada; and Department of Clinical and Experimental Epilepsy (L.C., M.J.K.), UCL Institute of Neurology, London, UK.
| |
Collapse
|
34
|
Kanamori K. Faster flux of neurotransmitter glutamate during seizure - Evidence from 13C-enrichment of extracellular glutamate in kainate rat model. PLoS One 2017; 12:e0174845. [PMID: 28403176 PMCID: PMC5389799 DOI: 10.1371/journal.pone.0174845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/16/2017] [Indexed: 01/05/2023] Open
Abstract
The objective is to examine how the flux of neurotransmitter glutamate from neurons to the extracellular fluid, as measured by the rate of 13C enrichment of extracellular glutamate (GLUECF), changes in response to seizures in the kainate-induced rat model of temporal-lobe epilepsy. Following unilateral intrahippocampal injection of kainate, GLUECF was collected by microdialysis from the CA1/CA3 region of awake rats, in combination with EEG recording of chronic-phase recurrent seizures and intravenous infusion of [2,5-13C]glucose. The 13C enrichment of GLUECF C5 at ~ 10 picomol level was measured by gas-chromatography mass-spectrometry. The rate of 13C enrichment, expressed as the increase of the fractional enrichment/min, was 0.0029 ± 0.0001/min in frequently seizing rats (n = 4); this was significantly higher (p < 0.01) than in the control (0.00167 ± 0.0001/min; n = 6) or in rats with infrequent seizures (0.00172 ± 0.0001/min; n = 6). This result strongly suggests that the flux of the excitatory neurotransmitter from neurons to the extracellular fluid is significantly increased by frequent seizures. The extracellular [12C + 13C]glutamate concentration increased progressively in frequently seizing rats. Taken together, these results strongly suggest that the observed seizure-induced high flux of glutamate overstimulated glutamate receptors, which triggered a chain reaction of excitation in the CA3 recurrent glutamatergic networks. The rate of 13C enrichment of extracellular glutamine (GLNECF) at C5 was 0.00299 ± 0.00027/min in frequently seizing rats, which was higher (p < 0.05) than in controls (0.00227 ± 0.00008/min). For the first time in vivo, this study examined the effects of epileptic seizures on fluxes of the neurotransmitter glutamate and its precursor glutamine in the extracellular fluid of the hippocampus. The advantages, limitations and the potential for improvement of this approach for pre-clinical and clinical studies of temporal-lobe epilepsy are discussed.
Collapse
Affiliation(s)
- Keiko Kanamori
- Department of Epilepsy, Huntington Medical Research Institutes, Pasadena, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Chang CY, Hung CF, Huang SK, Kuo JR, Wang SJ. Amiodarone reduces depolarization-evoked glutamate release from hippocampual synaptosomes. J Pharmacol Sci 2017; 133:168-175. [PMID: 28330759 DOI: 10.1016/j.jphs.2017.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/26/2017] [Accepted: 02/22/2017] [Indexed: 12/31/2022] Open
Abstract
Decreased brain glutamate level has emerged as a new therapeutic approach for epilepsy. This study investigated the effect and mechanism of amiodarone, an anti-arrhythmic drug with antiepileptic activity, on glutamate release in the rat hippocampus. In a synaptosomal preparation, amiodarone reduced 4-aminopyridine-evoked Ca2+-dependent glutamate release and cytosolic Ca2+ concentration elevation. Amiodarone did not affect the 4-aminopyridine-evoked depolarization of the synaptosomal membrane potential or the Na+ channel activator veratridine-evoked glutamate release, indicating that the amiodarone-mediated inhibition of glutamate release is not caused by a decrease in synaptosomal excitability. The inhibitory effect of amiodarone on 4-aminopyridine-evoked glutamate release was markedly decreased in synaptosomes pretreated with the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, the calmodulin antagonists W7 and calmidazolium, or the protein kinase A inhibitors H89 and KT5720. However, the intracellular Ca2+-release inhibitors dantrolene and CGP37157 had no effect on the amiodarone-mediated inhibition of glutamate release. Furthermore, amiodarone reduced the frequency of miniature excitatory postsynaptic currents without affecting their amplitude in hippocampal slices. Our data suggest that amiodarone reduces Ca2+ influx through N- and P/Q-type Ca2+ channels, subsequently reducing the Ca2+-calmodulin/protein kinase A cascade to inhibit the evoked glutamate release from rat hippocampal nerve terminals.
Collapse
Affiliation(s)
- Chia Yu Chang
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan
| | - Chi Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu Kuei Huang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Jinn Rung Kuo
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan
| | - Su Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.
| |
Collapse
|
36
|
Nomura S, Inoue T, Imoto H, Suehiro E, Maruta Y, Hirayama Y, Suzuki M. Effects of focal brain cooling on extracellular concentrations of neurotransmitters in patients with epilepsy. Epilepsia 2017; 58:627-634. [PMID: 28225164 DOI: 10.1111/epi.13704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Brain hypothermia controls epileptic discharge and reduces extracellular concentrations of glutamate (Glu), an excitatory neurotransmitter. We aimed to determine the effects of focal brain cooling (FBC) on levels of γ-aminobutyric acid (GABA), which is a major inhibitory neurotransmitter. The relationship between Glu or GABA concentrations and the severity of epileptic symptoms was also analyzed. METHODS Patients with intractable epilepsy underwent FBC at lesionectomized (n = 11) or hippocampectomized (n = 8) regions at 15°C for 30 min using custom-made cooling devices. Concentrations of Glu (n = 18) and GABA (n = 12) were measured in extracellular fluid obtained through microdialysis using high-performance liquid chromatography (HPLC). The reduction rate of neurotransmitter levels and its relationship with electrocorticography (ECoG) signal changes in response to FBC were measured. RESULTS We found no relationship between the concentrations of Glu or GABA and seizure severity. There was a significant decrease in the concentration of Glu to 66.3% of control levels during the cooling period (p = 0.001). This rate of reduction correlated with ECoG power (r2 = 0.68). Cortical and hippocampal GABA levels significantly (p = 0.02) and nonsignificantly decreased to 47.7% and 32.4% of control levels, respectively. However, the rate of this reduction did not correlate with ECoG (r2 = 0.11). SIGNIFICANCE Although the decrease in hippocampal GABA levels was not significant due to wide variations in its concentration, the levels of cortical GABA and Glu were decreased following FBC. FBC suppresses epileptic discharge and the release of both excitatory and inhibitory neurotransmitters. The reduction in Glu levels further contributes to the reduction in epileptic discharge. However, the reduction in the levels of GABA has no impact on ECoG.
Collapse
Affiliation(s)
- Sadahiro Nomura
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan.,Epilepsy Center, Yamaguchi University Hospital, Ube, Japan
| | - Takao Inoue
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Hirochika Imoto
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan.,Epilepsy Center, Yamaguchi University Hospital, Ube, Japan
| | - Eiichi Suehiro
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Yuichi Maruta
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Yuya Hirayama
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan.,Epilepsy Center, Yamaguchi University Hospital, Ube, Japan
| |
Collapse
|
37
|
Dossi E, Vasile F, Rouach N. Human astrocytes in the diseased brain. Brain Res Bull 2017; 136:139-156. [PMID: 28212850 PMCID: PMC5766741 DOI: 10.1016/j.brainresbull.2017.02.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/23/2022]
Abstract
Astrocytes are key active elements of the brain that contribute to information processing. They not only provide neurons with metabolic and structural support, but also regulate neurogenesis and brain wiring. Furthermore, astrocytes modulate synaptic activity and plasticity in part by controlling the extracellular space volume, as well as ion and neurotransmitter homeostasis. These findings, together with the discovery that human astrocytes display contrasting characteristics with their rodent counterparts, point to a role for astrocytes in higher cognitive functions. Dysfunction of astrocytes can thereby induce major alterations in neuronal functions, contributing to the pathogenesis of several brain disorders. In this review we summarize the current knowledge on the structural and functional alterations occurring in astrocytes from the human brain in pathological conditions such as epilepsy, primary tumours, Alzheimer's disease, major depressive disorder and Down syndrome. Compelling evidence thus shows that dysregulations of astrocyte functions and interplay with neurons contribute to the development and progression of various neurological diseases. Targeting astrocytes is thus a promising alternative approach that could contribute to the development of novel and effective therapies to treat brain disorders.
Collapse
Affiliation(s)
- Elena Dossi
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Flora Vasile
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
38
|
Regulation of Physical Microglia-Neuron Interactions by Fractalkine Signaling after Status Epilepticus. eNeuro 2017; 3:eN-NWR-0209-16. [PMID: 28101527 PMCID: PMC5237828 DOI: 10.1523/eneuro.0209-16.2016] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/22/2016] [Accepted: 12/20/2016] [Indexed: 01/09/2023] Open
Abstract
Microglia, the resident immune cells of the brain, perform elaborate surveillance in which they physically interact with neuronal elements. A novel form of microglia–neuron interaction named microglial process convergence (MPC) toward neuronal axons and dendrites has recently been described. However, the molecular regulators and pathological relevance of MPC have not been explored. Here, using high-resolution two-photon imaging in vivo and ex vivo, we observed a dramatic increase in MPCs after kainic acid– or pilocarpine-induced experimental seizures that was reconstituted after glutamate treatment in slices from mice. Interestingly, a deficiency of the fractalkine receptor (CX3CR1) decreased MPCs, whereas fractalkine (CX3CL1) treatment increased MPCs, suggesting that fractalkine signaling is a critical regulator of these microglia–neuron interactions. Furthermore, we found that interleukin-1β was necessary and sufficient to trigger CX3CR1-dependent MPCs. Finally, we show that a deficiency in fractalkine signaling corresponds with increased seizure phenotypes. Together, our results identify the neuroglial CX3CL1–CX3CR1 communication axis as a modulator of potentially neuroprotective microglia–neuron physical interactions during conditions of neuronal hyperactivity.
Collapse
|
39
|
Mechanisms of Excessive Extracellular Glutamate Accumulation in Temporal Lobe Epilepsy. Neurochem Res 2016; 42:1724-1734. [DOI: 10.1007/s11064-016-2105-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
|
40
|
In vivo online magnetic resonance quantification of absolute metabolite concentrations in microdialysate. Sci Rep 2016; 6:36080. [PMID: 27811972 PMCID: PMC5095764 DOI: 10.1038/srep36080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/11/2016] [Indexed: 12/23/2022] Open
Abstract
In order to study metabolic processes in animal models of diseases and in patients, microdialysis probes have evolved as powerful tools that are minimally invasive. However, analyses of microdialysate, performed remotely, do not provide real-time monitoring of microdialysate composition. Microdialysate solutions can theoretically be analyzed online inside a preclicinal or clinical MRI scanner using MRS techniques. Due to low NMR sensitivity, acquisitions of real-time NMR spectra on very small solution volumes (μL) with low metabolite concentrations (mM range) represent a major issue. To address this challenge we introduce the approach of combining a microdialysis probe with a custom-built magnetic resonance microprobe that allows for online metabolic analysis (1H and 13C) with high sensitivity under continuous flow conditions. This system is mounted inside an MRI scanner and allows performing simultaneously MRI experiments and rapid MRS metabolic analysis of the microdialysate. The feasibility of this approach is demonstrated by analyzing extracellular brain cancer cells (glioma) in vitro and brain metabolites in an animal model in vivo. We expect that our approach is readily translatable into clinical settings and can be used for a better and precise understanding of diseases linked to metabolic dysfunction.
Collapse
|
41
|
Davis KA, Nanga RPR, Das S, Chen SH, Hadar PN, Pollard JR, Lucas TH, Shinohara RT, Litt B, Hariharan H, Elliott MA, Detre JA, Reddy R. Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy. Sci Transl Med 2016; 7:309ra161. [PMID: 26468323 DOI: 10.1126/scitranslmed.aaa7095] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
When neuroimaging reveals a brain lesion, drug-resistant epilepsy patients show better outcomes after resective surgery than do the one-third of drug-resistant epilepsy patients who have normal brain magnetic resonance imaging (MRI). We applied a glutamate imaging method, GluCEST (glutamate chemical exchange saturation transfer), to patients with nonlesional temporal lobe epilepsy based on conventional MRI. GluCEST correctly lateralized the temporal lobe seizure focus on visual and quantitative analyses in all patients. MR spectra, available for a subset of patients and controls, corroborated the GluCEST findings. Hippocampal volumes were not significantly different between hemispheres. GluCEST allowed high-resolution functional imaging of brain glutamate and has potential to identify the epileptic focus in patients previously deemed nonlesional. This method may lead to improved clinical outcomes for temporal lobe epilepsy as well as other localization-related epilepsies.
Collapse
Affiliation(s)
- Kathryn Adamiak Davis
- Penn Epilepsy Center, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Prakash Reddy Nanga
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandhitsu Das
- Penn Image Computing & Science Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie H Chen
- Penn Epilepsy Center, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter N Hadar
- Penn Epilepsy Center, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John R Pollard
- Penn Epilepsy Center, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy H Lucas
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Litt
- Penn Epilepsy Center, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hari Hariharan
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark A Elliott
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John A Detre
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Çavuş I, Romanyshyn JC, Kennard JT, Farooque P, Williamson A, Eid T, Spencer SS, Duckrow R, Dziura J, Spencer DD. Elevated basal glutamate and unchanged glutamine and GABA in refractory epilepsy: Microdialysis study of 79 patients at the yale epilepsy surgery program. Ann Neurol 2016; 80:35-45. [PMID: 27129611 DOI: 10.1002/ana.24673] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/19/2016] [Accepted: 04/17/2016] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Aberrant glutamate and γ-aminobutyric acid (GABA) neurotransmission contribute to seizure generation and the epileptic state. However, whether levels of these neurochemicals are abnormal in epileptic patients is unknown. Here, we report on interictal levels of glutamate, glutamine, and GABA in epilepsy patients at seizure onset and nonepileptic sites, cortical lesions, and from patients with poorly localized neocortical epilepsies. METHODS Subjects (n = 79) were medically refractory epilepsy patients undergoing intracranial electroencephalogram evaluation. Microdialysis probes (n = 125) coupled to depth electrodes were implanted within suspected seizure onset sites and microdialysis samples were obtained during interictal periods. Glutamate, glutamine, and GABA were measured using high-performance liquid chromatography. Probe locations were subsequently classified by consensus of expert epileptologists. RESULTS Glutamate levels were elevated in epileptogenic (p = 0.03; n = 7), nonlocalized (p < 0.001), and lesional cortical sites (p < 0.001) when compared to nonepileptogenic cortex. Glutamate was also elevated in epileptogenic (p < 0.001) compared to nonepileptogenic hippocampus. There were no statistical differences in GABA or glutamine, although GABA levels showed high variability across patients and groups. INTERPRETATION Our findings indicate that chronically elevated extracellular glutamate is a common pathological feature among epilepsies with different etiology. Contrary to our predictions, GABA and glutamine levels were not decreased in any of the measured areas. Whereas variability in GABA levels may in part be attributed to the use of GABAergic antiepileptic drugs, the stability in glutamine across patient groups indicate that extracellular glutamine levels are under tighter metabolic regulation than previously thought. Ann Neurol 2016;80:35-45.
Collapse
Affiliation(s)
- Idil Çavuş
- Department of Psychiatry, Yale School of Medicine, New Haven, CT.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT
| | | | - Jeremy T Kennard
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT
| | - Pue Farooque
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - Anne Williamson
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT
| | - Tore Eid
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT.,Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
| | - Susan S Spencer
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - Robert Duckrow
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - James Dziura
- Yale Center for Clinical Investigation Biostatistics Unit
| | - Dennis D Spencer
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT
| |
Collapse
|
43
|
Cavus I, Widi GA, Duckrow RB, Zaveri H, Kennard JT, Krystal J, Spencer DD. 50 Hz hippocampal stimulation in refractory epilepsy: Higher level of basal glutamate predicts greater release of glutamate. Epilepsia 2016; 57:288-97. [PMID: 26749134 DOI: 10.1111/epi.13269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The effect of electrical stimulation on brain glutamate release in humans is unknown. Glutamate is elevated at baseline in the epileptogenic hippocampus of patients with refractory epilepsy, and increases during spontaneous seizures. We examined the effect of 50 Hz stimulation on glutamate release and its relationship to interictal levels in the hippocampus of patients with epilepsy. In addition, we measured basal and stimulated glutamate levels in a subset of these patients where stimulation elicited a seizure. METHODS Subjects (n = 10) were patients with medically refractory epilepsy who were undergoing intracranial electroencephalography (EEG) evaluation in an epilepsy monitoring unit. Electrical stimulation (50 Hz) was delivered through implanted hippocampal electrodes (n = 11), and microdialysate samples were collected every 2 min. Basal glutamate, changes in glutamate efflux with stimulation, and the relationships between peak stimulation-associated glutamate concentrations, basal zero-flow levels, and stimulated seizures were examined. RESULTS Stimulation of epileptic hippocampi in patients with refractory epilepsy caused increases in glutamate efflux (p = 0.005, n = 10), and 4 of ten patients experienced brief stimulated seizures. Stimulation-induced increases in glutamate were not observed during the evoked seizures, but rather were related to the elevation in interictal basal glutamate (R(2) = 0.81, p = 0.001). The evoked-seizure group had lower basal glutamate levels than the no-seizure group (p = 0.04), with no stimulation-induced change in glutamate efflux (p = 0.47, n = 4). Conversely, increased glutamate was observed following stimulation in the no-seizure group (p = 0.005, n = 7). Subjects with an atrophic hippocampus had higher basal glutamate levels (p = 0.03, n = 7) and higher stimulation-induced glutamate efflux. SIGNIFICANCE Electrical stimulation of the epileptic hippocampus either increased extracellular glutamate efflux or induced seizures. The magnitude of stimulated glutamate increase was related to elevation in basal interictal glutamate, suggesting a common mechanism, possibly impaired glutamate metabolism. Divergent mechanisms may exist for seizure induction and increased glutamate in patients with epilepsy. These data highlight the potential risk of 50 Hz stimulation in patients with epilepsy.
Collapse
Affiliation(s)
- Idil Cavus
- Department of Neurosurgery, Yale University, New Haven, Connecticut, U.S.A.,Department of Psychiatry, Yale University, New Haven, Connecticut, U.S.A
| | - Gabriel A Widi
- Yale University School of Medicine, New Haven, Connecticut, U.S.A
| | - Robert B Duckrow
- Department of Neurosurgery, Yale University, New Haven, Connecticut, U.S.A.,Department of Neurology, Yale University, New Haven, Connecticut, U.S.A
| | - Hitten Zaveri
- Department of Neurology, Yale University, New Haven, Connecticut, U.S.A
| | - Jeremy T Kennard
- Department of Neurosurgery, Yale University, New Haven, Connecticut, U.S.A
| | - John Krystal
- Department of Psychiatry, Yale University, New Haven, Connecticut, U.S.A
| | - Dennis D Spencer
- Department of Neurosurgery, Yale University, New Haven, Connecticut, U.S.A
| |
Collapse
|
44
|
Esteve C, Tolner EA, Shyti R, van den Maagdenberg AMJM, McDonnell LA. Mass spectrometry imaging of amino neurotransmitters: a comparison of derivatization methods and application in mouse brain tissue. Metabolomics 2016; 12:30. [PMID: 26793043 PMCID: PMC4705126 DOI: 10.1007/s11306-015-0926-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/19/2015] [Indexed: 12/12/2022]
Abstract
The detection of small polar compounds such as amino neurotransmitters by MALDI mass spectrometry imaging has been hindered by low-detection sensitivity and background interferences. Recently, several of on-tissue chemical derivatization strategies have been independently reported that enable their detection. Here, we present a comparison between these methods, and demonstrate the visualization of the distributions of up to 23 amino metabolites in tissue. We applied this methodology to detect alterations of these compounds after inducing an experimental cortical spreading depression in mouse brain, which causes profound transient alterations in key neurotransmitters in one hemisphere and is relevant for migraine and various other neurological disorders.
Collapse
Affiliation(s)
- Clara Esteve
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Else A. Tolner
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Reinald Shyti
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arn M. J. M. van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Liam A. McDonnell
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
- Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| |
Collapse
|
45
|
Soukupova M, Binaschi A, Falcicchia C, Palma E, Roncon P, Zucchini S, Simonato M. Increased extracellular levels of glutamate in the hippocampus of chronically epileptic rats. Neuroscience 2015; 301:246-53. [PMID: 26073699 DOI: 10.1016/j.neuroscience.2015.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/05/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
Abstract
An increase in the release of excitatory amino acids has consistently been observed in the hippocampus during seizures, both in humans and animals. However, very little or nothing is known about the extracellular levels of glutamate and aspartate during epileptogenesis and in the interictal chronic period of established epilepsy. The aim of this study was to systematically evaluate the relationship between seizure activity and changes in hippocampal glutamate and aspartate extracellular levels under basal and high K(+)-evoked conditions, at various time-points in the natural history of experimental temporal lobe epilepsy, using in vivo microdialysis. Hippocampal extracellular glutamate and aspartate levels were evaluated: 24h after pilocarpine-induced status epilepticus (SE); during the latency period preceding spontaneous seizures; immediately after the first spontaneous seizure; in the chronic (epileptic) period. We found that (i) basal (spontaneous) glutamate outflow is increased in the interictal phases of the chronic period, whereas basal aspartate outflow remains stable for the entire course of the disease; (ii) high K(+) perfusion increased glutamate and aspartate outflow in both control and pilocarpine-treated animals, and the overflow of glutamate was clearly increased in the chronic group. Our data suggest that the glutamatergic signaling is preserved and even potentiated in the hippocampus of epileptic rats, and thus may favor the occurrence of spontaneous recurrent seizures. Together with an impairment of GABA signaling (Soukupova et al., 2014), these data suggest that a shift toward excitation occurs in the excitation/inhibition balance in the chronic epileptic state.
Collapse
Affiliation(s)
- M Soukupova
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Via Fossato di Mortara 17-19, Ferrara, Italy.
| | - A Binaschi
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Via Fossato di Mortara 17-19, Ferrara, Italy.
| | - C Falcicchia
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Via Fossato di Mortara 17-19, Ferrara, Italy.
| | - E Palma
- Department of Physiology and Pharmacology, University of Roma "Sapienza", Piazzale Aldo Moro 5, Roma, Italy; IRCCS San Raffaele, Via della Pisana 235, Roma, Italy.
| | - P Roncon
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Via Fossato di Mortara 17-19, Ferrara, Italy.
| | - S Zucchini
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Via Fossato di Mortara 17-19, Ferrara, Italy; Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Via Ludovico Ariosto 35, Ferrara, Italy.
| | - M Simonato
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Via Fossato di Mortara 17-19, Ferrara, Italy; Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Via Ludovico Ariosto 35, Ferrara, Italy.
| |
Collapse
|
46
|
Li M, Niu F, Zhu X, Wu X, Shen N, Peng X, Liu Y. PRRT2 Mutant Leads to Dysfunction of Glutamate Signaling. Int J Mol Sci 2015; 16:9134-51. [PMID: 25915028 PMCID: PMC4463582 DOI: 10.3390/ijms16059134] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 01/28/2023] Open
Abstract
Paroxysmal kinesigenic choreoathetosis (PKC) is an inherited disease of the nervous system. We previously identified PRRT2 as the causative gene of PKC. However, as little is known about the function of PRRT2, elucidating its function will benefit not only PKC studies, but also many other related disorders. Here, we reveal higher levels of glutamate in the plasma of PKC patients and the culture medium of neurons following knock-out Prrt2 expression. Using double immunostaining assays we confirm Prrt2 is located at the glutamatergic neurons in accordance with its function. Our co-immunoprecipitation assays reveal mutant PRRT2 interferes with SNAP25 and GRIA1 interactions, respectively. Furthermore, using live-labeling techniques, we confirmed co-transfection with mutant PRRT2 caused an increase in GRIA1 distribution on the cell surface. Therefore, our results suggest that mutant PRRT2, probably through its weakened interaction with SNAP25, affects glutamate signaling and glutamate receptor activity, resulting in the increase of glutamate release and subsequent neuronal hyperexcitability.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Fenghe Niu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Xilin Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Xiaopan Wu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Ning Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Ying Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
47
|
Pan JW, Kuzniecky RI. Utility of magnetic resonance spectroscopic imaging for human epilepsy. Quant Imaging Med Surg 2015; 5:313-22. [PMID: 25853088 DOI: 10.3978/j.issn.2223-4292.2015.01.03] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/15/2015] [Indexed: 01/07/2023]
Abstract
This review discusses the potential utility of broad based use of magnetic resonance (MR) spectroscopic imaging for human epilepsy and seizure localization. The clinical challenges are well known to the epilepsy community, intrinsic in the variability of location, volumetric size and network extent of epileptogenic tissue in individual patients. The technical challenges are also evident, with high performance requirements in multiple steps, including magnet homogeneity, detector performance, sequence design, speed of acquisition in addition to large territory spectral processing. We consider how MR spectroscopy and spectroscopic imaging has been informative for epilepsy thus far, with specific attention to what is measured, the interpretation of such measurements and technical performance challenges. Examples are shown from medial temporal lobe and neocortical epilepsies are considered from 4T, 7T and most recently 3T.
Collapse
Affiliation(s)
- Jullie W Pan
- 1 Departments of Neurology and Radiology, University of Pittsburgh School of Medicine, Pittsburgh, USA ; 2 Department of Neurology, NYU School of Medicine, New York, USA
| | - Ruben I Kuzniecky
- 1 Departments of Neurology and Radiology, University of Pittsburgh School of Medicine, Pittsburgh, USA ; 2 Department of Neurology, NYU School of Medicine, New York, USA
| |
Collapse
|
48
|
de Lanerolle NC, Hamid H, Kulas J, Pan JW, Czlapinski R, Rinaldi A, Ling G, Bandak FA, Hetherington HP. Concussive brain injury from explosive blast. Ann Clin Transl Neurol 2014; 1:692-702. [PMID: 25493283 PMCID: PMC4241796 DOI: 10.1002/acn3.98] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/30/2014] [Accepted: 08/04/2014] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Explosive blast mild traumatic brain injury (mTBI) is associated with a variety of symptoms including memory impairment and posttraumatic stress disorder (PTSD). Explosive shock waves can cause hippocampal injury in a large animal model. We recently reported a method for detecting brain injury in soldiers with explosive blast mTBI using magnetic resonance spectroscopic imaging (MRSI). This method is applied in the study of veterans exposed to blast. METHODS The hippocampus of 25 veterans with explosive blast mTBI, 20 controls, and 12 subjects with PTSD but without exposure to explosive blast were studied using MRSI at 7 Tesla. Psychiatric and cognitive assessments were administered to characterize the neuropsychiatric deficits and compare with findings from MRSI. RESULTS Significant reductions in the ratio of N-acetyl aspartate to choline (NAA/Ch) and N-acetyl aspartate to creatine (NAA/Cr) (P < 0.05) were found in the anterior portions of the hippocampus with explosive blast mTBI in comparison to control subjects and were more pronounced in the right hippocampus, which was 15% smaller in volume (P < 0.05). Decreased NAA/Ch and NAA/Cr were not influenced by comorbidities - PTSD, depression, or anxiety. Subjects with PTSD without blast had lesser injury, which tended to be in the posterior hippocampus. Explosive blast mTBI subjects had a reduction in visual memory compared to PTSD without blast. INTERPRETATION The region of the hippocampus injured differentiates explosive blast mTBI from PTSD. MRSI is quite sensitive in detecting and localizing regions of neuronal injury from explosive blast associated with memory impairment.
Collapse
Affiliation(s)
| | - Hamada Hamid
- Department of Neurology, Yale University New Haven, Connecticut, 06520 ; Department of Psychiatry, Yale University New Haven, Connecticut, 06520 ; Department of Neurology, West Haven VA West Haven, Connecticut, 06516
| | - Joseph Kulas
- Department of Psychiatry, Yale University New Haven, Connecticut, 06520 ; Department of Psychology, West Haven VA West Haven, Connecticut, 06516
| | - Jullie W Pan
- Department of Neurosurgery, Yale University New Haven, Connecticut, 06520
| | | | - Anthony Rinaldi
- Department of Neurology, West Haven VA West Haven, Connecticut, 06516
| | - Geoffrey Ling
- Department of Neurology, Uniformed Services University of the Health Sciences Bethesda, Maryland, 20814
| | - Faris A Bandak
- Department of Neurology, Uniformed Services University of the Health Sciences Bethesda, Maryland, 20814 ; Integrated Services Group, Inc. Potomac, Maryland, 20854
| | | |
Collapse
|
49
|
Hetherington HP, Hamid H, Kulas J, Ling G, Bandak F, de Lanerolle NC, Pan JW. MRSI of the medial temporal lobe at 7 T in explosive blast mild traumatic brain injury. Magn Reson Med 2014; 71:1358-67. [PMID: 23918077 PMCID: PMC4117409 DOI: 10.1002/mrm.24814] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/02/2013] [Accepted: 04/29/2013] [Indexed: 11/06/2022]
Abstract
PURPOSE Up to 19% of veterans returning from the wars in Iraq and Afghanistan have a history of mild traumatic brain injury with 70% associated with blast exposure. Tragically, 20-50% of this group reports persistent symptoms, including memory loss. Unfortunately, routine clinical imaging is typically normal, making diagnosis and clinical management difficult. The goal of this work was to develop methods to acquire hippocampal MRSI at 7 T and evaluate their sensitivity to detect injury in veterans with mild traumatic brain injury. METHODS At 7 T, hippocampal MRSI measurements are limited by: (1) poor B(0) homogeneity; (2) insufficient B(1)(+) strength and homogeneity; and (3) chemical shift dispersion artifacts. To overcofme these limitations we: (1) used third degree B(0) shimming; (2) an inductively decoupled transceiver array with radiofrequency shimming; and (3) a volume localized single slice sequence using radiofrequency shimming-based outer volume suppression. RESULTS In 20 controls and 25 veterans with mild traumatic brain injury due to blast exposure with memory impairment, hippocampal N-acetyl aspartate to choline (P < 0.001) and N-acetyl aspartate to creatine (P < 0.001) were decreased in comparison to control subjects. CONCLUSION With the appropriate methods robust spectroscopic imaging of the hippocampus can be carried out at 7 T. MRSI at 7 T can detect hippocampal injury in veterans with mild traumatic brain injury.
Collapse
Affiliation(s)
- Hoby P Hetherington
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Epilepsy is one of the most common chronic neurological conditions worldwide. Anti-epileptic drugs (AEDs) can suppress seizures, but do not affect the underlying epileptic state, and many epilepsy patients are unable to attain seizure control with AEDs. To cure or prevent epilepsy, disease-modifying interventions that inhibit or reverse the disease process of epileptogenesis must be developed. A major limitation in the development and implementation of such an intervention is the current poor understanding, and the lack of reliable biomarkers, of the epileptogenic process. Neuroimaging represents a non-invasive medical and research tool with the ability to identify early pathophysiological changes involved in epileptogenesis, monitor disease progression, and assess the effectiveness of possible therapies. Here we will provide an overview of studies conducted in animal models and in patients with epilepsy that have utilized various neuroimaging modalities to investigate epileptogenesis.
Collapse
Affiliation(s)
- Sandy R Shultz
- Department of Medicine, The Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Building 144, Royal Parade, Parkville, VIC, 3010, Australia,
| | | | | | | |
Collapse
|