1
|
Carosella CM, Johnson EL. Special Issues in Medical Management: Hormones and Pregnancy in Epilepsy. Semin Neurol 2025. [PMID: 40179957 DOI: 10.1055/a-2551-0688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The relationship between sex hormones and epilepsy involves intricate interactions that influence seizure susceptibility, reproductive health, and treatment approaches. Estrogen generally exhibits proconvulsant effects, while progesterone and its metabolite allopregnanolone have anticonvulsant properties. Variability in hormone levels during the menstrual cycle can exacerbate seizures, a phenomenon known as catamenial epilepsy. Effective management often requires a tailored combination of antiseizure medications (ASMs) and hormonal therapies. Women and others of childbearing potential face unique challenges, including higher rates of menstrual dysfunction, potential exacerbation of seizures during pregnancy, and increased risks associated with hormonal contraception and menopause. Careful ASM selection is critical to ensure maternal and fetal safety, with lamotrigine, levetiracetam, and oxcarbazepine being preferred options. Postpartum ASM adjustments and breastfeeding considerations are also essential for optimizing outcomes. Emerging research highlights the impact of hormonal interactions in transgender individuals undergoing gender-affirming therapies. For transwomen, estrogen could heighten seizure risk. Close monitoring and collaboration between health care providers are crucial for personalized care. The complex interplay between hormones and epilepsy underscores the need for ongoing research and individualized approaches to optimize seizure control and address the unique reproductive health needs of people with epilepsy.
Collapse
Affiliation(s)
| | - Emily L Johnson
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Abdelmissih S, Hosny SA, Elwi HM, Sayed WM, Eshra MA, Shaker OG, Samir NF. Chronic Caffeine Consumption, Alone or Combined with Agomelatine or Quetiapine, Reduces the Maximum EEG Peak, As Linked to Cortical Neurodegeneration, Ovarian Estrogen Receptor Alpha, and Melatonin Receptor 2. Psychopharmacology (Berl) 2024; 241:2073-2101. [PMID: 38842700 PMCID: PMC11442587 DOI: 10.1007/s00213-024-06619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
RATIONALE Evidence of the effects of chronic caffeine (CAFF)-containing beverages, alone or in combination with agomelatine (AGO) or quetiapine (QUET), on electroencephalography (EEG), which is relevant to cognition, epileptogenesis, and ovarian function, remains lacking. Estrogenic, adenosinergic, and melatonergic signaling is possibly linked to the dynamics of these substances. OBJECTIVES The brain and ovarian effects of CAFF were compared with those of AGO + CAFF and QUET + CAFF. The implications of estrogenic, adenosinergic, and melatonergic signaling and the brain-ovarian crosstalk were investigated. METHODS Adult female rats were administered AGO (10 mg/kg), QUET (10 mg/kg), CAFF, AGO + CAFF, or QUET + CAFF, once daily for 8 weeks. EEG, estrous cycle progression, and microstructure of the brain and ovaries were examined. Brain and ovarian 17β-estradiol (E2), antimullerian hormone (AMH), estrogen receptor alpha (E2Rα), adenosine receptor 2A (A2AR), and melatonin receptor 2 (MT2R) were assessed. RESULTS CAFF, alone or combined with AGO or QUET, reduced the maximum EEG peak, which was positively linked to ovarian E2Rα, negatively correlated to cortical neurodegeneration and ovarian MT2R, and associated with cystic ovaries. A large corpus luteum emerged with AGO + CAFF and QUET + CAFF, antagonizing the CAFF-mediated increased ovarian A2AR and reduced cortical E2Rα. AGO + CAFF provoked TTP delay and increased ovarian AMH, while QUET + CAFF slowed source EEG frequency to δ range and increased brain E2. CONCLUSIONS CAFF treatment triggered brain and ovarian derangements partially antagonized with concurrent AGO or QUET administration but with no overt affection of estrus cycle progression. Estrogenic, adenosinergic, and melatonergic signaling and brain-ovarian crosstalk may explain these effects.
Collapse
Affiliation(s)
- Sherine Abdelmissih
- Department of Medical Pharmacology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt.
| | - Sara Adel Hosny
- Department of Medical Histology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Heba M Elwi
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Walaa Mohamed Sayed
- Department of Anatomy and Embryology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Mohamed Ali Eshra
- Department of Medical Physiology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Olfat Gamil Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Nancy F Samir
- Department of Medical Physiology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
de Nys R, van Eyk CL, Ritchie T, Møller RS, Scheffer IE, Marini C, Bhattacharjee R, Kumar R, Gecz J. Multiomic analysis implicates nuclear hormone receptor signalling in clustering epilepsy. Transl Psychiatry 2024; 14:65. [PMID: 38280856 PMCID: PMC10821879 DOI: 10.1038/s41398-024-02783-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/29/2024] Open
Abstract
Clustering Epilepsy (CE) is an epileptic disorder with neurological comorbidities caused by heterozygous variants of the X chromosome gene Protocadherin 19 (PCDH19). Recent studies have implicated dysregulation of the Nuclear Hormone Receptor (NHR) pathway in CE pathogenesis. To obtain a comprehensive overview of the impact and mechanisms of loss of PCDH19 function in CE pathogenesis, we have performed epigenomic, transcriptomic and proteomic analysis of CE relevant models. Our studies identified differential regulation and expression of Androgen Receptor (AR) and its targets in CE patient skin fibroblasts. Furthermore, our cell culture assays revealed the repression of PCDH19 expression mediated through ERα and the co-regulator FOXA1. We also identified a protein-protein interaction between PCDH19 and AR, expanding upon the intrinsic link between PCDH19 and the NHR pathway. Together, these results point to a novel mechanism of NHR signaling in the pathogenesis of CE that can be explored for potential therapeutic options.
Collapse
Affiliation(s)
- Rebekah de Nys
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Clare L van Eyk
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tarin Ritchie
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine (member of ERN EpiCARE), Danish Epilepsy Centre, Filadelfia, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Ingrid E Scheffer
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Neurology, The Royal Children's Hospital, Parkville, VIC, 3052, Australia
- Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Carla Marini
- Child Neurology and Psychiatry Unit Children's Hospital "G. Salesi" Azienda Ospedaliero-Universitaria delle Marche Ancona, Ancona, Italy
| | - Rudrarup Bhattacharjee
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Raman Kumar
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
4
|
Herlopian A. Non-dominant, Lesional Hemispheric Epilepsy. EPILEPSY SURGERY: A PRACTICAL CASE-BASED APPROACH 2024:653-666. [DOI: 10.1007/978-3-031-23828-4_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Kawano S, Itoh K, Ishihara Y. Suppressive Effects of Docosahexaenoic Acid Intake on Increased Seizure Susceptibility after Growth Due to Febrile Seizures in Infancy. Biol Pharm Bull 2023; 46:1184-1193. [PMID: 37661397 DOI: 10.1248/bpb.b23-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Febrile seizures are seizures accompanied by a fever and frequently occur in children six months to five years of age. Febrile seizures are classified as simple or complex, and complex febrile seizures increase the risk of temporal lobe epilepsy after growth. Therefore, it is important to interfere with epileptogenesis after febrile seizures to prevent post-growth epilepsy. The present study challenged nutritional intervention using docosahexaenoic acid (DHA). Febrile seizures were induced in mice at the age of 10 d using a heat chamber, and seizure sensitivity was examined using pentylenetetrazol (PTZ) administration after growth. PTZ increased the seizure score and shortened the latency in the complex febrile seizure group compared to the control, hyperthermia and simple febrile seizure groups. Mice in the complex febrile seizure group showed abnormal electroencephalograms pre- and post-PTZ administration. Therefore, seizure susceptibility increases the episodes of complex febrile seizures. DHA supplementation after febrile seizures clearly suppressed the increased seizure susceptibility due to complex febrile seizures experienced in infancy. DHA also attenuated microglial activation after complex febrile seizures. Taken together, DHA suppressed microglial activation following complex febrile seizures, which may contribute to protecting the brain from post-growth seizures. The intake of DHA in infancy may protect children from high fever-induced developmental abnormalities.
Collapse
Affiliation(s)
- Shinji Kawano
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| |
Collapse
|
6
|
Ke B, Li C, Shang H. Sex hormones and risk of epilepsy: A bidirectional Mendelian randomization study. Front Mol Neurosci 2023; 16:1153907. [PMID: 37113268 PMCID: PMC10126428 DOI: 10.3389/fnmol.2023.1153907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Background Multiple evidence has suggested complex interaction between sex hormones and epilepsy. However, whether there exists a causal association and the effect direction remains controversial. Here we aimed to examine the causative role of hormones in the risk of epilepsy and vice versa. Methods We conducted a bidirectional two-sample Mendelian randomization analysis using summary statistics from genome-wide association studies of major sex hormones including testosterone (N = 425,097), estradiol (N = 311,675) and progesterone (N = 2,619), together with epilepsy (N = 44,889). We further performed sex-stratified analysis, and verified the significant results using summary statistics from another study on estradiol in males (N = 206,927). Results Genetically determined higher estradiol was associated with a reduced risk of epilepsy (OR: 0.90, 95% CI: 0.83-0.98, P = 9.51E-03). In the sex-stratified analysis, the protective effect was detected in males (OR: 0.92, 95% CI: 0.88-0.97, P = 9.18E-04), but not in females. Such association was further verified in the replication stage (OR: 0.44, 95% CI: 0.23-0.87, P = 0.017). In contrast, no association was identified between testosterone, progesterone and the risk of epilepsy. In the opposite direction, epilepsy was not causally associated with sex hormones. Conclusion These results demonstrated higher estradiol could reduce the risk of epilepsy, especially in males. Future development of preventive or therapeutic interventions in clinical trials could attach importance to this.
Collapse
|
7
|
Panarese A, Vissani M, Meneghetti N, Vannini E, Cracchiolo M, Micera S, Caleo M, Mazzoni A, Restani L. Disruption of layer-specific visual processing in a model of focal neocortical epilepsy. Cereb Cortex 2022; 33:4173-4187. [PMID: 36089833 DOI: 10.1093/cercor/bhac335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/12/2022] Open
Abstract
The epileptic brain is the result of a sequence of events transforming normal neuronal populations into hyperexcitable networks supporting recurrent seizure generation. These modifications are known to induce fundamental alterations of circuit function and, ultimately, of behavior. However, how hyperexcitability affects information processing in cortical sensory circuits is not yet fully understood. Here, we investigated interlaminar alterations in sensory processing of the visual cortex in a mouse model of focal epilepsy. We found three main circuit dynamics alterations in epileptic mice: (i) a spreading of visual contrast-driven gamma modulation across layers, (ii) an increase in firing rate that is layer-unspecific for excitatory units and localized in infragranular layers for inhibitory neurons, and (iii) a strong and contrast-dependent locking of firing units to network activity. Altogether, our data show that epileptic circuits display a functional disruption of layer-specific organization of visual sensory processing, which could account for visual dysfunction observed in epileptic subjects. Understanding these mechanisms paves the way to circuital therapeutic interventions for epilepsy.
Collapse
Affiliation(s)
- Alessandro Panarese
- The Biorobotics Institute, Scuola Superiore Sant'Anna, viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.,Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 56127 Pisa, Italy
| | - Matteo Vissani
- The Biorobotics Institute, Scuola Superiore Sant'Anna, viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.,Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 56127 Pisa, Italy
| | - Nicolò Meneghetti
- The Biorobotics Institute, Scuola Superiore Sant'Anna, viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.,Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 56127 Pisa, Italy
| | - Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy
| | - Marina Cracchiolo
- The Biorobotics Institute, Scuola Superiore Sant'Anna, viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.,Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 56127 Pisa, Italy
| | - Silvestro Micera
- The Biorobotics Institute, Scuola Superiore Sant'Anna, viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.,Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 56127 Pisa, Italy.,Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202 Geneva, Switzerland
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy.,Department of Biomedical Sciences, University of Padua, via G. Colombo 3, 35121 Padua, Italy
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.,Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 56127 Pisa, Italy
| | - Laura Restani
- Neuroscience Institute, National Research Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
8
|
Grant AD, Upton TJ, Terry JR, Smarr BL, Zavala E. Analysis of wearable time series data in endocrine and metabolic research. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 25:100380. [PMID: 36632470 PMCID: PMC9823090 DOI: 10.1016/j.coemr.2022.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many hormones in the body oscillate with different frequencies and amplitudes, creating a dynamic environment that is essential to maintain health. In humans, disruptions to these rhythms are strongly associated with increased morbidity and mortality. While mathematical models can help us understand rhythm misalignment, translating this insight into personalised healthcare technologies requires solving additional challenges. Here, we discuss how combining minimally invasive, high-frequency biosampling technologies with wearable devices can assist the development of hormonal surrogates. We review bespoke algorithms that can help analyse multidimensional, noisy, time series data and identify wearable signals that could constitute clinical proxies of endocrine rhythms. These techniques can support the development of computational biomarkers to support the diagnosis and management of endocrine and metabolic conditions.
Collapse
Affiliation(s)
- Azure D. Grant
- Helen Wills Neuroscience Institute, University of California, Berkeley, 94720, United States of America
| | - Thomas J. Upton
- Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, BS1 3NY, United Kingdom
| | - John R. Terry
- Centre for Systems Modelling & Quantitative Biomedicine, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - Benjamin L. Smarr
- Department of Bioengineering, University of California, San Diego, 92093, United States of America,Halıcıoğlu Data Science Institute, University of California, San Diego, 92093, United States of America,Corresponding author. Smarr, Benjamin L.
| | - Eder Zavala
- Centre for Systems Modelling & Quantitative Biomedicine, University of Birmingham, Edgbaston, B15 2TT, United Kingdom,Corresponding author. Zavala, Eder twitter icon
| |
Collapse
|
9
|
Kloc ML, Marchand DH, Holmes GL, Pressman RD, Barry JM. Cognitive impairment following experimental febrile seizures is determined by sex and seizure duration. Epilepsy Behav 2022; 126:108430. [PMID: 34902661 PMCID: PMC8748413 DOI: 10.1016/j.yebeh.2021.108430] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Febrile seizures are the most common type of seizures in children. While in most children the outcome is favorable, children with febrile status epilepticus may exhibit modest cognitive impairment. Whether children with other forms of complex febrile seizure, such as repetitive febrile seizures within the same illness are at risk of cognitive deficits is not known. In this study, we used a well-established model of experimental febrile seizures in rat pups to compare the effects of febrile status epilepticus and recurrent febrile seizures on subsequent spatial cognition and anxiety. METHODS Male and female rat pups were subjected to hyperthermic seizures at postnatal day 10 and were divided into groups of rats with continuous seizures for ≥40 min or recurrent febrile seizures. They were then tested as adults in the active avoidance and spatial accuracy tests to assess spatial learning and memory and the elevated plus maze to measure anxiety. RESULTS Febrile status epilepticus rats demonstrated impaired spatial cognition in active avoidance and spatial accuracy and exhibited reduced anxiety-like behavior in the elevated plus maze. Rats with recurrent febrile seizures did not differ significantly from the controls on any measures. There were also significant sex-related differences with females with FSE performing far better than males with FSE in active avoidance but demonstrating a navigational learning impairment relative to CTL females in spatial accuracy. However, once learned, females with FSE performed the spatial accuracy task as well as CTL females. CONCLUSION There is a duration-dependent effect of febrile seizures on subsequent cognitive and behavioral outcomes. Febrile status epilepticus resulted in spatial cognitive deficits and reduced anxiety-related behaviors whereas rats with recurrent febrile seizures did not differ from controls. Sex had a remarkable effect on spatial cognitive outcome where males with FSE fared worse than females with FSE. The results demonstrate that sex should be considered as a biological variable in studies evaluating the effects of seizures on the developing brain.
Collapse
|
10
|
Dolejší E, Szánti-Pintér E, Chetverikov N, Nelic D, Randáková A, Doležal V, Kudová E, Jakubík J. Neurosteroids and steroid hormones are allosteric modulators of muscarinic receptors. Neuropharmacology 2021; 199:108798. [PMID: 34555368 DOI: 10.1016/j.neuropharm.2021.108798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022]
Abstract
The membrane cholesterol was found to bind and modulate the function of several G-protein coupled receptors including muscarinic acetylcholine receptors. We investigated the binding of 20 steroidal compounds including neurosteroids and steroid hormones to muscarinic receptors. Corticosterone, progesterone and some neurosteroids bound to muscarinic receptors with the affinity of 100 nM or greater. We established a structure-activity relationship for steroid-based allosteric modulators of muscarinic receptors. Further, we show that corticosterone and progesterone allosterically modulate the functional response of muscarinic receptors to acetylcholine at physiologically relevant concentrations. It can play a role in stress control or in pregnancy, conditions where levels of these hormones dramatically oscillate. Allosteric modulation of muscarinic receptors via the cholesterol-binding site represents a new pharmacological approach at diseases associated with altered cholinergic signalling.
Collapse
Affiliation(s)
- Eva Dolejší
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| | - Eszter Szánti-Pintér
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences, Prague, Czech Republic
| | | | - Dominik Nelic
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Randáková
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimír Doležal
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| | - Eva Kudová
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences, Prague, Czech Republic.
| | - Jan Jakubík
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
11
|
Kawano S, Itoh K, Ishihara Y. Maternal intake of docosahexaenoic acid decreased febrile seizure sensitivity by increasing estrogen synthesis in offspring. Epilepsy Behav 2021; 121:108038. [PMID: 34052639 DOI: 10.1016/j.yebeh.2021.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Febrile seizures, which are convulsion in children, are caused by an abrupt increase in body temperature. They are sometimes recurrent, and the more seizures are triggered, the higher the risk of epilepsy and psychiatric disorders increase after growing up. Prevention of febrile seizure is considered to be one of the effective countermeasures in protecting the future health of children; however, pharmacological prevention in the developmental stage is not realistic from the health aspects of the offspring. Docosahexaenoic acid (DHA) is an important nutrient especially during pregnancy and childhood and is reported to suppress several types of epilepsy. The purpose of this study was to examine the effect of DHA intake during pregnancy and infancy on febrile seizures in mice. We used a heat chamber for febrile seizure induction in offspring at the age of from 10 to 11 days old. Intake of DHA during pregnancy and infancy significantly increased the amount of DHA in the brain of offspring. Although DHA had no effect on seizure severity, DHA significantly prolonged the seizure latency and increased body temperature at which the first seizure occurred, indicating that maternal DHA intake decreases febrile seizure sensitivity. Brain estrogen levels significantly increased by DHA intake and administration of an inhibitor for cytochrome P450 aromatase, which is a rate-limiting enzyme for estrogen synthesis, clearly decreased seizure latency and body temperature at which the first seizure occurred. Taken together, DHA could reduce susceptibility to febrile seizures owing to increases in brain estrogen contents. DHA intake during pregnancy and infancy is of significance in protecting infant from seizures as well as conserving health after growth.
Collapse
Affiliation(s)
- Shinji Kawano
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan.
| |
Collapse
|
12
|
Niedecker RW, Kloc ML, Holmes GL, Barry JM. Effects of early life seizures on coordination of hippocampal-prefrontal networks: Influence of sex and dynamic brain states. Epilepsia 2021; 62:1701-1714. [PMID: 34002378 PMCID: PMC8260466 DOI: 10.1111/epi.16927] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Early life seizures (ELSs) alter activity-dependent maturation of neuronal circuits underlying learning and memory. The pathophysiological mechanisms underpinning seizure-induced cognitive impairment are not fully understood, and critical variables such as sex and dynamic brain states with regard to cognitive outcomes have not been explored. We hypothesized that in comparison to control (CTL) rats, ELS rats would exhibit deficits in spatial cognition correlating with impaired dynamic neural signal coordination between the hippocampus and medial prefrontal cortex (mPFC). METHODS Male and female rat pups were given 50 flurothyl-induced seizures over 10 days starting at postnatal Day 15. As adults, spatial cognition was tested through active avoidance on a rotating arena. Microwire tetrodes were implanted in the mPFC and CA1 subfield. Single cells and local field potentials were recorded and analyzed in each region during active avoidance and sleep. RESULTS ELS males exhibited avoidance impairments, whereas female rats were unaffected. During avoidance, hippocampus-mPFC coherence was higher in CTL females than CTL males across bandwidths. In comparison to CTL males, ELS male learners exhibit increased coherence within theta bandwidth as well as altered burst-timing in mPFC cell activity. Hippocampus-mPFC coherence levels are predictive of cognitive outcome in the active avoidance spatial task. SIGNIFICANCE Spatial cognitive outcome post-ELS is sex-dependent, as females fare better than males. ELS males that learn the task exhibit increased mPFC coherence levels at low-theta frequency, which may compensate for ELS effects on mPFC cell timing. These results suggest that coherence may serve as a biomarker for spatial cognitive outcome post-ELS and emphasize the significance of analyzing sex and dynamic cognition as variables in understanding seizure effects on the developing brain.
Collapse
Affiliation(s)
- Rhys W Niedecker
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Michelle L Kloc
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Gregory L Holmes
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jeremy M Barry
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
13
|
Gautam M, Thapa G. Cytochrome P450-mediated estrogen catabolism therapeutic avenues in epilepsy. Acta Neurol Belg 2021; 121:603-612. [PMID: 32743748 DOI: 10.1007/s13760-020-01454-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/23/2020] [Indexed: 01/11/2023]
Abstract
Epilepsy is a neuropsychiatric disorder, which does not have any identifiable cause. However, experimental and clinical results have asserted that the sex hormone estrogen level and endocrine system function influence the seizure and epileptic episodes. There are available drugs to control epilepsy, which passes through the metabolism process. Cytochrome P-450 family 1 (CYP1A1) is a heme-containing mono-oxygenase that are induced several folds in most of the tissues and cells contributing to their differential expression, which regulates various metabolic processes upon administration of therapeutics. CYP1A1 gene family has been found to metabolize estrogen, a female sex hormone, which plays a central role in maintaining the health of brain altering the level of estrogen active neuropsychiatric disorder like epilepsy. Hence, in this article, we endeavor to provide an opinion of estrogen, its effects on epilepsy and catamenial epilepsy, their metabolism by CYP1A1 and new way forward to differential diagnosis and clinical management of epilepsy in future.
Collapse
Affiliation(s)
- Megha Gautam
- Department of Biological Science, Faculty of Science and Engineering, Health Research Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Ganesh Thapa
- Department of Biological Science, Faculty of Science and Engineering, Health Research Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
- Biohazards and Biosafety, Estates and Facilities, Trinity College of Dublin, The University of Dublin, College Green, Dublin 2, D02 PN40, Ireland.
| |
Collapse
|
14
|
Kumar D, Iltaf S, Umer A, Fatima M, Zaheer M, Waqar K, Girdhari K. The Frequency of Catamenial Epilepsy in Female Epileptic Patients of Reproductive Age Group Presented to the Tertiary Care Hospital. Cureus 2020; 12:e11635. [PMID: 33376647 PMCID: PMC7755724 DOI: 10.7759/cureus.11635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2020] [Indexed: 11/05/2022] Open
Abstract
Background and aim Catamenial epilepsy is the type of seizures during the reproductive phase of menstruation due to hormonal changes during the different phases of menstruation. This study aims to evaluate the frequency of epileptic seizures in women during the menstruation cycle and its management. Material and methods This study was conducted at the neurology department of Jinnah Postgraduate Medical Centre (JPMC), Karachi, Pakistan. The study's duration was six months, from the 22nd of January 2020 to the 22nd of July 2020. The sample size for catamenial epilepsy in female epileptic patients of reproductive age was 78%. After approval by the ethical committee of JPMC, data collection started. Data was collected and analyzed in the Statistical Package for the Social Sciences (SPSS, version 22; IBM Inc., Armonk, USA). Mean, and the standard deviation was calculated for age, duration of epilepsy, duration of antiepileptic, and antiepileptic drug. A Chi-square test was applied, and p≤0.05 was considered a statistically significant difference. Results A total of 184 female patients of reproductive age were selected for this study. The mean duration of epilepsy was 15.96 ± 8.85 months. The mean duration of antiepileptic drugs was 11.16 ± 7.53 months. In 73 patients (39.7%), EEG showed increased seizure activity during particular phases of the menstrual cycle. Catamenial epilepsy was seen in 73 patients (39.7%). The stratification according to age, duration of epilepsy, duration of antiepileptic drugs, the antiepileptic drug was done to observe the effect of these modifiers on catamenial epilepsy. Conclusion Catamenial epilepsy is relatively common epilepsy. The physician should evaluate patients when the seizures are refractory to the treatment. The females should manage a seizure diary, which will be beneficial in the management of epilepsy. In women with epilepsy, catamenial epilepsy should be considered in the diagnosis when the seizures are refractory to optimal treatment.
Collapse
Affiliation(s)
- Deepak Kumar
- Neurology, Ghulam Muhammad Mahar Medical College, Sukkur, PAK
| | - Samar Iltaf
- Neurology, Dow University of Health Sciences, Karachi, PAK
| | - Anila Umer
- Neurology, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | - Meraj Fatima
- Neurology, Dow University of Health Sciences, Dow International Medical College, Karachi, PAK
| | | | - Kiran Waqar
- Neurology, Fazia Ruth Pfau Medical College Karachi, Karachi, PAK
| | - Komal Girdhari
- Internal Medicine, Ghulam Muhammad Mahar Medical College, Sukkur, PAK
| |
Collapse
|
15
|
Vyas P, Tulsawani RK, Vohora D. Loss of Protection by Antiepileptic Drugs in Lipopolysaccharide-primed Pilocarpine-induced Status Epilepticus is Mediated via Inflammatory Signalling. Neuroscience 2020; 442:1-16. [PMID: 32592825 DOI: 10.1016/j.neuroscience.2020.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/22/2022]
Abstract
The evidences from various studies show the association of peripheral and neuronal inflammation with complex pathophysiology of status epilepticus (SE). In this view, the present work attempted to develop a model of neuronal inflammation mediated SE by combining both epileptic and inflammatory components of the disease and also to mimic SE co-morbid with systemic inflammation by peripheral administration of the lipopolysaccharide (LPS) 2 h prior to the pilocarpine (PILO) induction in C57BL/6 mice. We evaluated the anti-convulsant and neuroprotective effects of 7-day prophylactic treatment with three conventional anti-epileptic drugs (Sodium valproate, SVP 300 mg/kg p.o.; Carbamazepine CBZ 100 mg/kg p.o.; Levetiracetam; LEV 200 mg/kg p.o.) of widespread clinical use. Morris water maze and Rota rod tests were carried out 24-h post-exposure to evaluate the neurobehavioral co-morbidities associated with neuroinflammation-mediated status epilepticus. Upon priming with LPS, the loss of protection against PILO-induced seizures was observed by SVP and CBZ, however, LEV showed protection by delaying the seizures. Dramatic elevation in the seizure severity and neuronal loss demonstrated the possible pro-convulsant effect of LPS in the PILO model. Also, the decreased cytokine levels by the AEDs showed their association with NF-κB, IL-1β, IL-6, TNF-α and TGF-β pathways in PILO model. The loss of protective activities of SVP and CBZ in LPS+PILO model was due to increased cytokine levels associated with over-activation of neuroinflammatory pathways, however, partial efficacy of LEV is possibly due to association of other neuroinflammatory mechanisms. The current work provides direct evidence of the contribution of increased peripheral and neuronal inflammation in seizures via regulation of inflammatory pathways in the brain.
Collapse
Affiliation(s)
- Preeti Vyas
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Raj Kumar Tulsawani
- Defense Institute of Physiology & Allied Science, Defense Research and Development Organization, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
16
|
Epilepsy and Alzheimer’s Disease: Potential mechanisms for an association. Brain Res Bull 2020; 160:107-120. [DOI: 10.1016/j.brainresbull.2020.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
|
17
|
Zuo D, Wang F, Rong W, Wen Y, Sun K, Zhao X, Ren X, He Z, Ding N, Ma L, Xu F. The novel estrogen receptor GPER1 decreases epilepsy severity and susceptivity in the hippocampus after status epilepticus. Neurosci Lett 2020; 728:134978. [PMID: 32302699 DOI: 10.1016/j.neulet.2020.134978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
Abstract
The steroid hormone 17β-estradiol (estrogen) exerts neuroprotective effects in several types of neurological disorders including epilepsy. The novel G protein-coupled estrogen receptor 1 (GPER1), also called GPR30, mediates the non-genomic effects of 17β-estradiol. However, the specific role of GPER1 in status epilepticus (SE) remains unclear. In this report, we evaluated the effects of GPER1 on the hippocampus during SE and the underlying mechanism was studied. Our results revealed that pilocarpine-induced GPER1-KD epileptic rats exhibited a shorter latency to generalized convulsions and strikingly elevated seizure severity. Additionally, the electroencephalographic seizure activity also corresponded to these results. Fast-Fourier analysis indicated an enhancement of power in the theta and alpha bands during SE in GPER1-KD rats. In addition, epilepsy-induced pathological changes were dramatically exacerbated in GPER1-KD rats, including neuron damage and neuroinflammation in hippocampus. GPER1 might be associated with the susceptibility to and severity of epileptic seizures. In summary, our results suggested that GPER1 plays a neuroprotective role in SE, and might be a candidate target for epilepsy therapy.
Collapse
Affiliation(s)
- Di Zuo
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China; School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China; Department of Neurosurgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia 750001, China
| | - Weifang Rong
- School of Basic Medical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yujun Wen
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China
| | - Kuisheng Sun
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China; Department of Neurosurgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia 750001, China
| | - Xiaopeng Zhao
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China
| | - Xiaofan Ren
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China
| | - Zhenquan He
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China
| | - Na Ding
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China
| | - Lin Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China
| | - Fang Xu
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China.
| |
Collapse
|
18
|
Coding and non-coding transcriptome of mesial temporal lobe epilepsy: Critical role of small non-coding RNAs. Neurobiol Dis 2019; 134:104612. [PMID: 31533065 DOI: 10.1016/j.nbd.2019.104612] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Our understanding of mesial temporal lobe epilepsy (MTLE), one of the most common form of drug-resistant epilepsy in humans, is derived mainly from clinical, imaging, and physiological data from humans and animal models. High-throughput gene expression studies of human MTLE have the potential to uncover molecular changes underlying disease pathogenesis along with novel therapeutic targets. Using RNA- and small RNA-sequencing in parrallel, we explored differentially expressed genes in the hippocampus and cortex of MTLE patients who had undergone surgical resection and non-epileptic controls. We identified differentially expressed genes in the hippocampus of MTLE patients and differentially expressed small RNAs across both the cortex and hippocampus. We found significant enrichment for astrocytic and microglial genes among up-regulated genes, and down regulation of neuron specific genes in the hippocampus of MTLE patients. The transcriptome profile of the small RNAs reflected disease state more robustly than mRNAs, even across brain regions which show very little pathology. While mRNAs segregated predominately by brain region for MTLE and controls, small RNAs segregated by disease state. In particular, our data suggest that specific miRNAs (e.g., let-7b-3p and let-7c-3p) may be key regulators of multiple pathways related to MTLE pathology. Further, we report a strong association of other small RNA species with MTLE pathology. As such we have uncovered novel elements that may contribute to the establishment and progression of MTLE pathogenesis and that could be leveraged as therapeutic targets.
Collapse
|
19
|
Does the age of seizure onset relate to menarche and does it matter? Seizure 2019; 69:1-6. [DOI: 10.1016/j.seizure.2019.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 01/17/2019] [Accepted: 03/24/2019] [Indexed: 11/23/2022] Open
|
20
|
Amengual-Gual M, Sánchez Fernández I, Loddenkemper T. Patterns of epileptic seizure occurrence. Brain Res 2019; 1703:3-12. [DOI: 10.1016/j.brainres.2018.02.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/03/2017] [Accepted: 02/20/2018] [Indexed: 01/03/2023]
|
21
|
Amengual-Gual M, Sánchez Fernández I, Wainwright MS. Novel drugs and early polypharmacotherapy in status epilepticus. Seizure 2018; 68:79-88. [PMID: 30473267 DOI: 10.1016/j.seizure.2018.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/05/2018] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Rescue medications for status epilepticus (SE) have a relatively high rate of failure. The purpose of this review is to summarize the evidence for the efficacy of novel drugs and early polypharmacotherapy for SE. METHOD Literature review. RESULTS New drugs and treatment strategies aim to target the pathophysiology of SE in order to improve seizure control and outcomes. Changes at the synapse level during SE include a progressive decrease in synaptic GABAA receptors and increase in synaptic NMDA receptors. These changes tend to promote self-sustaining seizures. Current SE guidelines recommend a rapid stepwise treatment using benzodiazepines in monotherapy as the first-line treatment, targeting GABAA synaptic receptors. Novel treatment approaches target GABAA synaptic and extrasynaptic receptors with allopregnanolone, and NMDA receptors with ketamine. Novel rescue treatments used for SE include topiramate, brivaracetam, and perampanel, which are already marketed in epilepsy. Some available drugs not marketed for use in epilepsy have been used in the treatment of SE, and other agents are being studied for this purpose. Early polytherapy, most frequently combining a benzodiazepine with a second-line drug or an NMDA receptor antagonist, might potentially increase seizure control with relatively minor increase in side effects. Although many preclinical studies support novel drugs and early polytherapy in SE, human studies are scarce and inconclusive. Currently, evidence is lacking to recommend specific combinations of these new agents. CONCLUSIONS Novel drugs and strategies target the underlying pathophysiology of SE with the intent to improve seizure control and outcomes.
Collapse
Affiliation(s)
- Marta Amengual-Gual
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitari Son Espases, Universitat de les Illes Balears, Palma, Spain.
| | - Iván Sánchez Fernández
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Child Neurology, Hospital Sant Joan de Déu, Universidad de Barcelona, Spain
| | - Mark S Wainwright
- Department of Neurology, Division of Pediatric Neurology. University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
22
|
McGregor C, Riordan A, Thornton J. Estrogens and the cognitive symptoms of schizophrenia: Possible neuroprotective mechanisms. Front Neuroendocrinol 2017; 47:19-33. [PMID: 28673758 DOI: 10.1016/j.yfrne.2017.06.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a complex neuropsychiatric illness with marked sex differences. Women have later onset and lesser symptoms, which has led to the hypothesis that estrogens are protective in schizophrenia. Cognitive dysfunction is a hallmark of the disease and the symptom most correlated with functional outcome. Here we describe a number of mechanisms by which estrogens may be therapeutic in schizophrenia, with a focus on cognitive symptoms. We review the relationship between estrogens and brain derived neurotrophic factor, neuroinflammation, NMDA receptors, GABA receptors, and luteinizing hormone. Exploring these pathways may enable novel treatments for schizophrenia and a greater understanding of this devastating disease.
Collapse
Affiliation(s)
- Claire McGregor
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA.
| | - Alexander Riordan
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| | - Janice Thornton
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| |
Collapse
|
23
|
Evaluating the role of astrocytes on β-estradiol effect on seizures of Pilocarpine epileptic model. Eur J Pharmacol 2017; 797:32-38. [DOI: 10.1016/j.ejphar.2017.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/03/2017] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
|
24
|
Afsordeh N, Heydari A, Salami M, Sadat Alavi S, Arbabi E, Karimi S, Hamidi G. Effect of Estradiol and Soy Extract on the Onset of PTZ-Induced Seizure in Ovariectomized Rats: Implications for Nurses and Midwives. Nurs Midwifery Stud 2016. [DOI: 10.17795/nmsjournal33428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
|
26
|
Opioid receptor-dependent sex differences in synaptic plasticity in the hippocampal mossy fiber pathway of the adult rat. J Neurosci 2015; 35:1723-38. [PMID: 25632146 DOI: 10.1523/jneurosci.0820-14.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mossy fiber (MF) pathway is critical to hippocampal function and influenced by gonadal hormones. Physiological data are limited, so we asked whether basal transmission and long-term potentiation (LTP) differed in slices of adult male and female rats. The results showed small sex differences in basal transmission but striking sex differences in opioid receptor sensitivity and LTP. When slices were made from females on proestrous morning, when serum levels of 17β-estradiol peak, the nonspecific opioid receptor antagonist naloxone (1 μm) enhanced MF transmission but there was no effect in males, suggesting preferential opioid receptor-dependent inhibition in females when 17β-estradiol levels are elevated. The μ-opioid receptor (MOR) antagonist Cys2,Tyr3,Orn5,Pen7-amide (CTOP; 300 nm) had a similar effect but the δ-opioid receptor (DOR) antagonist naltrindole (NTI; 1 μm) did not, implicating MORs in female MF transmission. The GABAB receptor antagonist saclofen (200 μm) occluded effects of CTOP but the GABAA receptor antagonist bicuculline (10 μm) did not. For LTP, a low-frequency (LF) protocol was used because higher frequencies elicited hyperexcitability in females. Proestrous females exhibited LF-LTP but males did not, suggesting a lower threshold for synaptic plasticity when 17β-estradiol is elevated. NTI blocked LF-LTP in proestrous females, but CTOP did not. Electron microscopy revealed more DOR-labeled spines of pyramidal cells in proestrous females than males. Therefore, we suggest that increased postsynaptic DORs mediate LF-LTP in proestrous females. The results show strong MOR regulation of MF transmission only in females and identify a novel DOR-dependent form of MF LTP specific to proestrus.
Collapse
|
27
|
Herzog AG. Catamenial epilepsy: Update on prevalence, pathophysiology and treatment from the findings of the NIH Progesterone Treatment Trial. Seizure 2015; 28:18-25. [PMID: 25770028 DOI: 10.1016/j.seizure.2015.02.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/08/2015] [Accepted: 02/12/2015] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To extend our knowledge and practical application of the concept of catamenial epilepsy. METHODS The review focuses on the impact of the NIH Progesterone Trial on our understanding of the pathophysiology and treatment of catamenial epilepsy. RESULTS Catamenial epilepsy refers to the cyclic exacerbation of seizures in relation to the menstrual cycle. An interaction between seizures and the menstrual cycle is suggested by variations in seizure frequency according to the day, phase and ovulatory status of the menstrual cycle. There are three commonly recognized patterns: perimenstrual (C1: Day -3 to +3), peri-ovulatory (C2: Day 10 to 3) and entire luteal phase in anovulatory cycles (C3: Day 10 to 3). Pathophysiological determinants include 1) the neuroactive properties of reproductive steroids, 2) the variation of neuroactive steroid levels across the menstrual cycle and 3) the differential susceptibility of epileptic substrates to neuroactive steroid effects. Perimenstrual seizure exacerbation may result from the premenstrual withdrawal of progesterone which is accompanied by withdrawal of allopregnanolone, a potent positive allosteric modulator of the GABAA receptor, and changes in the subunit composition of the GABAA receptor to the α4 subtype which is insensitive to benzodiazepine and GABA. Bioidentical progesterone supplement is no better than placebo in the treatment of women with focal onset epilepsy overall but shows superior efficacy in women whose seizures show robust perimenstrual exacerbation. CONCLUSION There is sound evidence for the existence of catamenial epilepsy and class 3 evidence for adjunctive progesterone treatment of the perimenstrually exacerbated subtype.
Collapse
Affiliation(s)
- Andrew G Herzog
- Harvard Medical School, Harvard Neuroendocrine Unit, Beth Israel Deaconess Medical Center, Boston, MA 02481, USA.
| |
Collapse
|
28
|
Koppel BS, Harden CL. Gender issues in the neurobiology of epilepsy: A clinical perspective. Neurobiol Dis 2014; 72 Pt B:193-7. [DOI: 10.1016/j.nbd.2014.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 02/06/2023] Open
|
29
|
Sexual response in female rats with status epilepticus. Epilepsia 2013; 54:644-8. [DOI: 10.1111/epi.12117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2013] [Indexed: 11/26/2022]
|
30
|
Velíšková J, Desantis KA. Sex and hormonal influences on seizures and epilepsy. Horm Behav 2013; 63:267-77. [PMID: 22504305 PMCID: PMC3424285 DOI: 10.1016/j.yhbeh.2012.03.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/20/2022]
Abstract
Epilepsy is the third most common chronic neurological disorder. Clinical and experimental evidence supports the role of sex and influence of sex hormones on seizures and epilepsy as well as alterations of the endocrine system and levels of sex hormones by epileptiform activity. Conversely, seizures are sensitive to changes in sex hormone levels, which in turn may affect the seizure-induced neuronal damage. The effects of reproductive hormones on neuronal excitability and seizure-induced damage are complex to contradictory and depend on different mechanisms, which have to be accounted for in data interpretation. Both estradiol and progesterone/allopregnanolone may have beneficial effects for patients with epilepsy. Individualized hormonal therapy should be considered as adjunctive treatment in patients with epilepsy to improve seizure control as well as quality of life.
Collapse
Affiliation(s)
- Jana Velíšková
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA.
| | | |
Collapse
|
31
|
Verrotti A, D’Egidio C, Agostinelli S, Verrotti C, Pavone P. Diagnosis and management of catamenial seizures: a review. Int J Womens Health 2012; 4:535-541. [PMID: 23071424 PMCID: PMC3469236 DOI: 10.2147/ijwh.s28872] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Catamenial epilepsy is defined as a pattern of seizures that changes in severity during particular phases of the menstrual cycle, wherein estrogens are proconvulsant, increasing the neuronal excitability; and progesterone is anticonvulsant, enhancing GABA-mediated inhibition. Thus, changes in serum estradiol/progesterone ratio throughout a normal reproductive cycle bring about an increased or decreased risk of seizure occurrence. To date, there are no specific drug treatments for catamenial epilepsy however, non-hormonal and hormonal therapies have been proposed. The aim of this review is to report preclinical and clinical evidences about the relationship between female reproductive steroids and epileptic seizures, and to describe treatment approaches for catamenial epilepsy.
Collapse
Affiliation(s)
| | | | | | - Carla Verrotti
- Department of Obstetrics and Gynecology, University of Parma, Catania, Italy
| | - Piero Pavone
- Unit of Paediatrics, University Hospital “Vittorio Emanuele”, Catania, Italy
| |
Collapse
|
32
|
Abstract
BACKGROUND Non-convulsive seizures have been reported to be common in neurocritical care patients. Many jurisdictions do not have sufficient resources to enable routine continuous electroencephalography (cEEG) and instead use primarily intermittent EEG, for which the diagnostic yield remains uncertain. Determining risk factors for epileptiform activity and seizures could help identify patients who might particularly benefit from EEG monitoring. METHODS We performed a cohort study involving neurocritical care patients with admission Glascow Coma Scale (GCS) scores ≤ 12, who underwent ≥ 1 EEG. EEGs were reviewed for presence of interictal discharges, periodic epileptiform discharges (PEDs), and seizures. Multivariate analysis was used to identify predictors of these findings and to describe their prognostic implications. RESULTS 393 patients met inclusion criteria. 34 underwent cEEG, usually because epileptiform activity was first detected on a routine EEG. The prevalence of PEDs or electrographic seizures was 13%, and was highest with anoxic encephalopathy and central nervous system infections. Other independent predictors for epileptiform activity included a history of convulsive seizure(s), increasing age, deeper coma, and female gender. Although patients with epileptiform activity had higher mortality, this association disappeared after adjustment for confounders. CONCLUSION Approximately 7-8 neurocritical care patients must undergo intermittent EEG monitoring in order to diagnose one with PEDs or seizures. The predictors we identified could potentially help guide use of resources. Repeated intermittent studies, or cEEG, should be considered in patients with multiple risk factors, or when interictal discharges are identified on an initial EEG. It remains unclear whether aggressive prevention and treatment of electrographic seizures improves neurologic outcomes.
Collapse
|
33
|
Honndorf S, Lindemann C, Töllner K, Gernert M. Female Wistar rats obtained from different breeders vary in anxiety-like behavior and epileptogenesis. Epilepsy Res 2011; 94:26-38. [DOI: 10.1016/j.eplepsyres.2010.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 12/17/2010] [Accepted: 12/27/2010] [Indexed: 01/24/2023]
|