1
|
Shandra O, Wang Y, Coles LD, Mowrey WB, Li Q, Liu W, Moshé SL, Galanopoulou AS. Efficacy and tolerability of celastrol and edaravone in the multiple-hit rat model of infantile spasms. Epilepsy Behav 2025; 162:110159. [PMID: 39577370 PMCID: PMC11681605 DOI: 10.1016/j.yebeh.2024.110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
OBJECTIVE To test whether anti-inflammatory and antioxidant drugs that inhibit the nuclear factor kappa light chain enhancer of activated B cells (NF-kB), celastrol and edaravone, suppress spasms and improve developmental outcomes in the multiple-hit rat model of refractory infantile spasms (IS) due to structural lesions. METHODS Postnatal day 3 (PN3) Sprague-Dawley rats were treated according to the multiple-hit IS model protocol. Using a randomized, blinded, vehicle-controlled, dose- and time-response study design, we tested the effects of single celastrol [1, 2, or 4 mg/kg intraperitoneally (i.p.), 10-14 rats/group] or edaravone (1, 10 or 30 mg/kg i.p., 14-17 rats/group) injections vs their vehicles on behavioral and electroclinical spasms and developmental milestones. Video-EEG monitoring was done on PN6-7 (n = 11-12 rats/group). Pulse celastrol treatment effects (PN4: 4 mg/kg, PN5-6: 2 mg/kg/day i.p.) were determined on spasms, developmental milestones and Barnes maze. Celastrol and edaravone pharmacokinetics in plasma and neocortex were assessed. Linear mixed model analysis of raw or normalized log-transformed spasm frequencies, considering repeated observations was used. RESULTS Single (2-4 mg/kg i.p) or pulse celastrol, but not edaravone, reduced behavioral and electroclinical spasms frequencies within 5hrs. Pulse celastrol did not affect spasm-freedom, survival, developmental milestones or Barnes maze performance. Celastrol had erratic i.p. absorption with maximum concentrations observed between 2-4 h, when effects on spasms were seen. Edaravone had low blood-to-brain permeability. CONCLUSIONS Celastrol's efficacy on spasms is partially explained by its better brain penetration than edaravone's. NFkB inhibitors may be useful in treating drug-resistant IS but delivery methods with improved bioavailability and brain permeability are needed.
Collapse
Affiliation(s)
- Oleksii Shandra
- Albert Einstein College of Medicine, Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Bronx, NY, USA
| | - Yongjun Wang
- Albert Einstein College of Medicine, Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Bronx, NY, USA
| | - Lisa D Coles
- University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Wenzhu B Mowrey
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qianyun Li
- Albert Einstein College of Medicine, Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Bronx, NY, USA
| | - Wei Liu
- Albert Einstein College of Medicine, Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Bronx, NY, USA
| | - Solomon L Moshé
- Albert Einstein College of Medicine, Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Bronx, NY, USA; Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aristea S Galanopoulou
- Albert Einstein College of Medicine, Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Bronx, NY, USA; Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Sills GJ. Pharmacological diversity amongst approved and emerging antiseizure medications for the treatment of developmental and epileptic encephalopathies. Ther Adv Neurol Disord 2023; 16:17562864231191000. [PMID: 37655228 PMCID: PMC10467199 DOI: 10.1177/17562864231191000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are rare neurodevelopmental disorders characterised by early-onset and often intractable seizures and developmental delay/regression, and include Dravet syndrome and Lennox-Gastaut syndrome (LGS). Rufinamide, fenfluramine, stiripentol, cannabidiol and ganaxolone are antiseizure medications (ASMs) with diverse mechanisms of action that have been approved for treating specific DEEs. Rufinamide is thought to suppress neuronal hyperexcitability by preventing the functional recycling of voltage-gated sodium channels from the inactivated to resting state. It is licensed for adjunctive treatment of seizures associated with LGS. Fenfluramine increases extracellular serotonin levels and may reduce seizures via activation of specific serotonin receptors and positive modulation of the sigma-1 receptor. Fenfluramine is licensed for adjunctive treatment of seizures associated with Dravet syndrome and LGS. Stiripentol is a positive allosteric modulator of type-A gamma-aminobutyric acid (GABAA) receptors. As a broad-spectrum inhibitor of cytochrome P450 enzymes, its antiseizure effects may additionally arise through pharmacokinetic interactions with co-administered ASMs. Stiripentol is licensed for treating seizures associated with Dravet syndrome in patients taking clobazam and/or valproate. The mechanism(s) of action of cannabidiol remains largely unclear although multiple targets have been proposed, including transient receptor potential vanilloid 1, G protein-coupled receptor 55 and equilibrative nucleoside transporter 1. Cannabidiol is licensed as adjunctive treatment in conjunction with clobazam for seizures associated with Dravet syndrome and LGS, and as adjunctive treatment of seizures associated with tuberous sclerosis complex. Like stiripentol, ganaxolone is a positive allosteric modulator at GABAA receptors. It has recently been licensed in the USA for the treatment of seizures associated with cyclin-dependent kinase-like 5 deficiency disorder. Greater understanding of the causes of DEEs has driven research into the potential use of other novel and repurposed agents. Putative ASMs currently in clinical development for use in DEEs include soticlestat, carisbamate, verapamil, radiprodil, clemizole and lorcaserin.
Collapse
Affiliation(s)
- Graeme J. Sills
- School of Life Sciences, University of Glasgow, Room 341, Sir James Black Building, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Hung TY, Wu SN, Huang CW. Concerted suppressive effects of carisbamate, an anti-epileptic alkyl-carbamate drug, on voltage-gated Na + and hyperpolarization-activated cation currents. Front Cell Neurosci 2023; 17:1159067. [PMID: 37293624 PMCID: PMC10244622 DOI: 10.3389/fncel.2023.1159067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Carisbamate (CRS, RWJ-333369) is a new anti-seizure medication. It remains unclear whether and how CRS can perturb the magnitude and/or gating kinetics of membrane ionic currents, despite a few reports demonstrating its ability to suppress voltage-gated Na+ currents. In this study, we observed a set of whole-cell current recordings and found that CRS effectively suppressed the voltage-gated Na+ (INa) and hyperpolarization-activated cation currents (Ih) intrinsically in electrically excitable cells (GH3 cells). The effective IC50 values of CRS for the differential suppression of transient (INa(T)) and late INa (INa(L)) were 56.4 and 11.4 μM, respectively. However, CRS strongly decreased the strength (i.e., Δarea) of the nonlinear window component of INa (INa(W)), which was activated by a short ascending ramp voltage (Vramp); the subsequent addition of deltamethrin (DLT, 10 μM) counteracted the ability of CRS (100 μM, continuous exposure) to suppress INa(W). CRS strikingly decreased the decay time constant of INa(T) evoked during pulse train stimulation; however, the addition of telmisartan (10 μM) effectively attenuated the CRS (30 μM, continuous exposure)-mediated decrease in the decay time constant of the current. During continued exposure to deltamethrin (10 μM), known to be a pyrethroid insecticide, the addition of CRS resulted in differential suppression of the amplitudes of INa(T) and INa(L). The amplitude of Ih activated by a 2-s membrane hyperpolarization was diminished by CRS in a concentration-dependent manner, with an IC50 value of 38 μM. For Ih, CRS altered the steady-state I-V relationship and attenuated the strength of voltage-dependent hysteresis (Hys(V)) activated by an inverted isosceles-triangular Vramp. Moreover, the addition of oxaliplatin effectively reversed the CRS-mediated suppression of Hys(V). The predicted docking interaction between CRS and with a model of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel or between CRS and the hNaV1.7 channel reflects the ability of CRS to bind to amino acid residues in HCN or hNaV1.7 channel via hydrogen bonds and hydrophobic interactions. These findings reveal the propensity of CRS to modify INa(T) and INa(L) differentially and to effectively suppress the magnitude of Ih. INa and Ih are thus potential targets of the actions of CRS in terms of modulating cellular excitability.
Collapse
Affiliation(s)
- Te-Yu Hung
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- College of Medicine, Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Ryner RF, Derera ID, Armbruster M, Kansara A, Sommer ME, Pirone A, Noubary F, Jacob M, Dulla CG. Cortical Parvalbumin-Positive Interneuron Development and Function Are Altered in the APC Conditional Knockout Mouse Model of Infantile and Epileptic Spasms Syndrome. J Neurosci 2023; 43:1422-1440. [PMID: 36717229 PMCID: PMC9987578 DOI: 10.1523/jneurosci.0572-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023] Open
Abstract
Infantile and epileptic spasms syndrome (IESS) is a childhood epilepsy syndrome characterized by infantile or late-onset spasms, abnormal neonatal EEG, and epilepsy. Few treatments exist for IESS, clinical outcomes are poor, and the molecular and circuit-level etiologies of IESS are not well understood. Multiple human IESS risk genes are linked to Wnt/β-catenin signaling, a pathway that controls developmental transcriptional programs and promotes glutamatergic excitation via β-catenin's role as a synaptic scaffold. We previously showed that deleting adenomatous polyposis coli (APC), a component of the β-catenin destruction complex, in excitatory neurons (APC cKO mice, APCfl/fl x CaMKIIαCre) increased β-catenin levels in developing glutamatergic neurons and led to infantile behavioral spasms, abnormal neonatal EEG, and adult epilepsy. Here, we tested the hypothesis that the development of GABAergic interneurons (INs) is disrupted in APC cKO male and female mice. IN dysfunction is implicated in human IESS, is a feature of other rodent models of IESS, and may contribute to the manifestation of spasms and seizures. We found that parvalbumin-positive INs (PV+ INs), an important source of cortical inhibition, were decreased in number, underwent disproportionate developmental apoptosis, and had altered dendrite morphology at P9, the peak of behavioral spasms. PV+ INs received excessive excitatory input, and their intrinsic ability to fire action potentials was reduced at all time points examined (P9, P14, P60). Subsequently, GABAergic transmission onto pyramidal neurons was uniquely altered in the somatosensory cortex of APC cKO mice at all ages, with both decreased IPSC input at P14 and enhanced IPSC input at P9 and P60. These results indicate that inhibitory circuit dysfunction occurs in APC cKOs and, along with known changes in excitation, may contribute to IESS-related phenotypes.SIGNIFICANCE STATEMENT Infantile and epileptic spasms syndrome (IESS) is a devastating epilepsy with limited treatment options and poor clinical outcomes. The molecular, cellular, and circuit disruptions that cause infantile spasms and seizures are largely unknown, but inhibitory GABAergic interneuron dysfunction has been implicated in rodent models of IESS and may contribute to human IESS. Here, we use a rodent model of IESS, the APC cKO mouse, in which β-catenin signaling is increased in excitatory neurons. This results in altered parvalbumin-positive GABAergic interneuron development and GABAergic synaptic dysfunction throughout life, showing that pathology arising in excitatory neurons can initiate long-term interneuron dysfunction. Our findings further implicate GABAergic dysfunction in IESS, even when pathology is initiated in other neuronal types.
Collapse
Affiliation(s)
- Rachael F Ryner
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Cell, Molecular, and Developmental Biology Graduate Program, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts 02111
| | - Isabel D Derera
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Anar Kansara
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Mary E Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Antonella Pirone
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Farzad Noubary
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| | - Michele Jacob
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
5
|
Velíšková J, Velíšek L. Animal models of infantile spasms: Focus on new treatments. HANDBOOK OF ANIMAL MODELS IN NEUROLOGICAL DISORDERS 2023:265-275. [DOI: 10.1016/b978-0-323-89833-1.00053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Barrett KT, Choudhary A, Charkhand B, Scantlebury MH. Animal Models in Epileptic Spasms and the Development of Novel Treatment Options. J Clin Neurophysiol 2022; 39:529-537. [PMID: 35323127 DOI: 10.1097/wnp.0000000000000496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SUMMARY The infantile spasms (IS) syndrome is a catastrophic developmental epileptic encephalopathy syndrome characterized by an age-specific expression of epileptic spasms that are associated with extremely abnormal, oftentimes described as chaotic, interictal EEG pattern known as hypsarrhythmia. Patients with IS generally have poor neurodevelopmental outcomes, in large part because of the frequent epileptic spasms and interictal EEG abnormalities. Current first-line treatments such as adrenocorticotropic hormone or vigabatrin are often ineffective and are associated with major toxic side effects. There is therefore a need for better and safer treatments for patients with IS, especially for the intractable population. Hope is on the horizon as, over the past 10 years, there has been robust progress in the development of etiology-specific animal models of IS. These models have been used to identify potential new treatments for IS and are beginning to provide some important insights into the pathophysiological substrates for this disease. In this review, we will highlight strengths and weaknesses of the currently available animal models of IS in addition to new insights into the pathophysiology and treatment options derived from these models.
Collapse
Affiliation(s)
- Karlene T Barrett
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; and
| | - Anamika Choudhary
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; and
| | - Behshad Charkhand
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; and
| | - Morris H Scantlebury
- Department of Pediatrics, Clinical Neurosciences, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Akman O, Briggs SW, Mowrey WB, Moshé SL, Galanopoulou AS. Antiepileptogenic effects of rapamycin in a model of infantile spasms due to structural lesions. Epilepsia 2021; 62:1985-1999. [PMID: 34212374 DOI: 10.1111/epi.16975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Infantile spasms may evolve into persistent epilepsies including Lennox-Gastaut syndrome. We compared adult epilepsy outcomes in models of infantile spasms due to structural etiology (multiple-hit model) or focal cortical inflammation and determined the anti-epileptogenic effects of pulse-rapamycin, previously shown to stop spasms in multiple-hit rats. METHODS Spasms were induced in 3-day-old male rats via right intracerebral doxorubicin/lipopolysaccharide (multiple-hit model) infusions. Controls and sham rats were used. Separate multiple-hit rats received pulse-rapamycin or vehicle intraperitoneally between postnatal days 4 and 6. In adult mice, video-EEG (electroencephalography) scoring for seizures and sleep and histology were done blinded to treatment. RESULTS Motor-type seizures developed in 66.7% of multiple-hit rats, usually from sleep, but were reduced in the pulse-rapamycin-treated group (20%, p = .043 vs multiple-hit) and rare in other groups (0-9.1%, p < .05 vs multiple-hit). Spike-and-wave bursts had a slower frequency in multiple-hit rats (5.4-5.8Hz) than in the other groups (7.6-8.3Hz) (p < .05); pulse rapamycin had no effect on the hourly spike-and-wave burst rates in adulthood. Rapamycin, however, reduced the time spent in slow-wave-sleep (17.2%), which was increased in multiple-hit rats (71.6%, p = .003). Sham rats spent more time in wakefulness (43.7%) compared to controls (30.6%, p = .043). Multiple-hit rats, with or without rapamycin treatment, had right more than left corticohippocampal, basal ganglia lesions. There was no macroscopic pathology in the other groups. SIGNIFICANCE Structural corticohippocampal/basal ganglia lesions increase the risk for post-infantile spasms epilepsy, Lennox-Gastaut syndrome features, and sleep dysregulation. Pulse rapamycin treatment for infantile spasms has anti-epileptogenic effects, despite the structural lesions, and decreases the time spent in slow wave sleep.
Collapse
Affiliation(s)
- Ozlem Akman
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Bronx, New York, USA
| | - Stephen W Briggs
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Bronx, New York, USA
| | - Wenzhu B Mowrey
- Division of Biostatistics, Department of Epidemiology and Population Health, Bronx, New York, USA
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Bronx, New York, USA.,Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Montefiore/Einstein Epilepsy Center, Bronx, New York, USA.,Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Bronx, New York, USA.,Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Montefiore/Einstein Epilepsy Center, Bronx, New York, USA
| |
Collapse
|
8
|
Velíšek L, Velíšková J. Modeling epileptic spasms during infancy: Are we heading for the treatment yet? Pharmacol Ther 2020; 212:107578. [PMID: 32417271 PMCID: PMC7299814 DOI: 10.1016/j.pharmthera.2020.107578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/07/2020] [Indexed: 12/22/2022]
Abstract
Infantile spasms (IS or epileptic spasms during infancy) were first described by Dr. William James West (aka West syndrome) in his own son in 1841. While rare by definition (occurring in 1 per 3200-3400 live births), IS represent a major social and treatment burden. The etiology of IS varies - there are many (>200) different known pathologies resulting in IS and still in about one third of cases there is no obvious reason. With the advancement of genetic analysis, role of certain genes (such as ARX or CDKL5 and others) in IS appears to be important. Current treatment strategies with incomplete efficacy and serious potential adverse effects include adrenocorticotropin (ACTH), corticosteroids (prednisone, prednisolone) and vigabatrin, more recently also a combination of hormones and vigabatrin. Second line treatments include pyridoxine (vitamin B6) and ketogenic diet. Additional treatment approaches use rapamycin, cannabidiol, valproic acid and other anti-seizure medications. Efficacy of these second line medications is variable but usually inferior to hormonal treatments and vigabatrin. Thus, new and effective models of this devastating condition are required for the search of additional treatment options as well as for better understanding the mechanisms of IS. Currently, eight models of IS are reviewed along with the ideas and mechanisms behind these models, drugs tested using the models and their efficacy and usefulness. Etiological variety of IS is somewhat reflected in the variety of the models. However, it seems that for finding precise personalized approaches, this variety is necessary as there is no "one-size-fits-all" approach possible for both IS in particular and epilepsy in general.
Collapse
Affiliation(s)
- Libor Velíšek
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA; Departments of Pediatrics, New York Medical College, Valhalla, NY, USA; Departments of Neurology, New York Medical College, Valhalla, NY, USA.
| | - Jana Velíšková
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA; Departments of Neurology, New York Medical College, Valhalla, NY, USA; Departments of Obstetrics & Gynecology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
9
|
Specchio N, Pietrafusa N, Ferretti A, De Palma L, Santarone ME, Pepi C, Trivisano M, Vigevano F, Curatolo P. Treatment of infantile spasms: why do we know so little? Expert Rev Neurother 2020; 20:551-566. [PMID: 32316776 DOI: 10.1080/14737175.2020.1759423] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Infantile spasm (IS) is an epileptic syndrome with typical onset within the first 2 years of life. This condition might be caused by several etiologies. IS is associated with pathological neuronal networks; however, definite hypotheses on neurobiological processes are awaited. AREAS COVERED Changes in NMDA and GABAB receptors and increase of Ca2+ conductance are some of the possible pathophysiological mechanisms. Animal models can help, but most have only some features of IS. Outcome is strongly affected by etiology and the timing of treatment, which relies still on ACTH, oral steroids, and vigabatrin. No significant differences in terms of efficacy have been documented, though a combination of ACTH and vigabatrin seems to be associated with better long-term outcomes. Despite the increasing knowledge about the etiology and pathophysiology of IS, in the last years, no new treatment approaches have been recognized to be able to modify the neurobiological process underlying IS. Precision medicine has far to come in IS. EXPERT OPINION Recently, no new therapeutic options for IS have emerged, probably due to the lack of reliable animal models and to the extreme variability in etiologies. Consequently, the outlook for patients and families is poor and early recognition and intervention remain research priorities.
Collapse
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS , Rome, 00165, Italy.,Member of European Reference Network EpiCARE
| | - Nicola Pietrafusa
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS , Rome, 00165, Italy
| | - Alessandro Ferretti
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS , Rome, 00165, Italy
| | - Luca De Palma
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS , Rome, 00165, Italy
| | - Marta Elena Santarone
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS , 00165, Rome, Italy
| | - Chiara Pepi
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS , Rome, 00165, Italy.,Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University , 00133, Rome, Italy
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS , Rome, 00165, Italy
| | - Federico Vigevano
- Member of European Reference Network EpiCARE.,Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS , 00165, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University , 00133, Rome, Italy
| |
Collapse
|
10
|
Infantile Spasms: An Update on Pre-Clinical Models and EEG Mechanisms. CHILDREN-BASEL 2020; 7:children7010005. [PMID: 31935804 PMCID: PMC7023485 DOI: 10.3390/children7010005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/06/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022]
Abstract
Infantile spasms (IS) is an epileptic encephalopathy with unique clinical and electrographic features, which affects children in the middle of the first year of life. The pathophysiology of IS remains incompletely understood, despite the heterogeneity of IS etiologies, more than 200 of which are known. In particular, the neurobiological basis of why multiple etiologies converge to a relatively similar clinical presentation has defied explanation. Treatment options for this form of epilepsy, which has been described as “catastrophic” because of the poor cognitive, developmental, and epileptic prognosis, are limited and not fully effective. Until the pathophysiology of IS is better clarified, novel treatments will not be forthcoming, and preclinical (animal) models are essential for advancing this knowledge. Here, we review preclinical IS models, update information regarding already existing models, describe some novel models, and discuss exciting new data that promises to advance understanding of the cellular mechanisms underlying the specific EEG changes seen in IS—interictal hypsarrhythmia and ictal electrodecrement.
Collapse
|
11
|
Molinero I, Galanopoulou AS, Moshé SL. Rodent models: Where it all started with these "truths". Eur J Paediatr Neurol 2020; 24:61-65. [PMID: 31875833 PMCID: PMC7179510 DOI: 10.1016/j.ejpn.2019.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/06/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Isaac Molinero
- Isabelle Rapin Division of Child Neurology and Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, and Comprehensive Einstein/Montefiore Epilepsy Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA; 111 East 210th Street, Montefiore Medical Center, Bronx, NY, 10467, USA.
| | - Aristea S Galanopoulou
- Isabelle Rapin Division of Child Neurology and Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, and Comprehensive Einstein/Montefiore Epilepsy Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; 1410 Pelham Parkway South, Kennedy Center Rm 306, Bronx, NY, 10461, USA.
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology and Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, and Comprehensive Einstein/Montefiore Epilepsy Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; 1410 Pelham Parkway South, Kennedy Center Rm 316, Bronx, NY, 10461, USA.
| |
Collapse
|
12
|
Chern CR, Chern CJ, Velíšková J, Velíšek L. AQB-565 shows promise in preclinical testing in the model of epileptic spasms during infancy: Head-to-head comparison with ACTH. Epilepsy Res 2019; 152:31-34. [PMID: 30875634 DOI: 10.1016/j.eplepsyres.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/18/2019] [Accepted: 03/09/2019] [Indexed: 10/27/2022]
Abstract
Epileptic spasms during infancy (infantile spasms) represent a serious treatment and social problem despite their rare occurrence. Current treatments include hormonal therapy (adrenocorticotropin-ACTH or corticosteroids) or vigabatrin (per se or in the combination). These treatments are partially effective and with potentially significant adverse effects. Thus, the search for new effective drugs is warranted. We tested efficacy of a novel fusion peptide AQB-565 developed by Aequus Biopharma in a model of infantile spasms consisting of prenatal exposure to betamethasone and repeated postnatal trigger of spasms with N-methyl-d-aspartic acid (NMDA). AQB-565 molecule includes the first 24 amino acids of ACTH, a ten amino acid linker and a modified melanocyte-stimulating hormone molecule. In contrast to ACTH with almost uniform activity over all peripheral and central melanocortin receptor isoforms, AQB is preferentially active on central melanocortin receptors MC3 and MC4. Here, we used equivalent doses of rat ACTH (full molecule) and AQB-565 and compared their efficacy in a prospective randomized test against of repeated bouts of spasms on postnatal days (P)12, P13 and P15 in the rat model. All doses of ACTH (range 0.02-1.0 mg/kg s.c.) and all doses but one of AQB-565 in the same range suppressed spasms in P15 rats (treatment stopped on P14). There was no dose-dependent effect and both compounds had all-or-none effect that is similar to clinical outcome of hormonal treatment of infantile spasms in children. Thus, AQB-565 may represent a novel treatment of infantile spasms similarly effective as ACTH but with potentially limited side effects.
Collapse
Affiliation(s)
- Chian-Ru Chern
- Department of Cell Biology & Anatomy, New York Medical College School of Medicine, Valhalla, NY, 10595, USA
| | - Chian-Jiang Chern
- Department of Cell Biology & Anatomy, New York Medical College School of Medicine, Valhalla, NY, 10595, USA
| | - Jana Velíšková
- Department of Cell Biology & Anatomy, New York Medical College School of Medicine, Valhalla, NY, 10595, USA; Department of Obstetrics & Gynecology, New York Medical College School of Medicine, Valhalla, NY, 10595, USA; Department of Neurology, New York Medical College School of Medicine, Valhalla, NY, 10595, USA
| | - Libor Velíšek
- Department of Cell Biology & Anatomy, New York Medical College School of Medicine, Valhalla, NY, 10595, USA; Department of Neurology, New York Medical College School of Medicine, Valhalla, NY, 10595, USA; Department of Pediatrics, New York Medical College School of Medicine, Valhalla, NY, 10595, USA.
| |
Collapse
|
13
|
Akman O, Raol YH, Auvin S, Cortez MA, Kubova H, de Curtis M, Ikeda A, Dudek FE, Galanopoulou AS. Methodologic recommendations and possible interpretations of video-EEG recordings in immature rodents used as experimental controls: A TASK1-WG2 report of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2018; 3:437-459. [PMID: 30525114 PMCID: PMC6276777 DOI: 10.1002/epi4.12262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 01/30/2023] Open
Abstract
The use of immature rodents to study physiologic aspects of cortical development requires high-quality recordings electroencephalography (EEG) with simultaneous video recording (vEEG) of behavior. Normative developmental vEEG data in control animals are fundamental for the study of abnormal background activity in animal models of seizures or other neurologic disorders. Electrical recordings from immature, freely behaving rodents can be particularly difficult because of the small size of immature rodents, their thin and soft skull, interference with the recording apparatus by the dam, and other technical challenges. In this report of the TASK1 Working Group 2 (WG2) of the International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force, we provide suggestions that aim to optimize future vEEG recordings from immature rodents, as well as their interpretation. We focus on recordings from immature rodents younger than 30 days old used as experimental controls, because the quality and correct interpretation of such recordings is important when interpreting the vEEG results of animals serving as models of neurologic disorders. We discuss the technical aspects of such recordings and compare tethered versus wireless approaches. We also summarize the appearance of common artifacts and various patterns of electrical activity seen in young rodents used as controls as a function of behavioral state, age, and (where known) sex and strain. The information herein will hopefully help improve the methodology of vEEG recordings from immature rodents and may lead to results and interpretations that are more consistent across studies from different laboratories.
Collapse
Affiliation(s)
- Ozlem Akman
- Department of PhysiologyFaculty of MedicineIstanbul Bilim UniversityIstanbulTurkey
| | - Yogendra H. Raol
- Division of NeurologyDepartment of PediatricsSchool of MedicineTranslational Epilepsy Research ProgramUniversity of ColoradoAuroraColoradoU.S.A
| | - Stéphane Auvin
- PROTECT, INSERM UMR1141APHPUniversity Paris DiderotSorbonne Paris CitéParisFrance
- University Hospital Robert‐DebréService of Pediatric NeurologyParisFrance
| | - Miguel A. Cortez
- Department of PediatricsUniversity of TorontoTorontoOntarioCanada
- Program of Neurosciences and Mental HealthPeter Gilgan Center for Research and LearningSickKids Research InstituteTorontoOntarioCanada
- Division of NeurologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Hana Kubova
- Department of Developmental EpileptologyInstitute of the Czech Academy of SciencesCzech Academy of SciencesPragueCzech Republic
| | - Marco de Curtis
- Epilepsy UnitCarlo Besta Neurological Institute FoundationMilanItaly
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders, and PhysiologyKyoto University Graduate School of MedicineKyotoJapan
| | - F. Edward Dudek
- Department of NeurosurgeryUniversity of Utah School of MedicineSalt Lake CityUtahU.S.A
| | - Aristea S. Galanopoulou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyDominick P. Purpura Department of NeuroscienceIsabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineEinstein/Montefiore Epilepsy CenterMontefiore Medical CenterBronxNew YorkU.S.A
| |
Collapse
|
14
|
Katsarou AM, Li Q, Liu W, Moshé SL, Galanopoulou AS. Acquired parvalbumin-selective interneuronopathy in the multiple-hit model of infantile spasms: A putative basis for the partial responsiveness to vigabatrin analogs? Epilepsia Open 2018; 3:155-164. [PMID: 30564774 PMCID: PMC6293059 DOI: 10.1002/epi4.12280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
West syndrome, an age-specific epileptic encephalopathy, manifests with infantile spasms (IS) and impaired neurodevelopmental outcomes and epilepsy. The multiple-hit rat model of IS is a chronic model of IS due to structural etiology, in which spasms respond partially to vigabatrin analogs. Using this model, we investigated whether IS due to structural etiology may have deficits in parvalbumin (PRV) and somatostatin (SST) immunoreactive (-ir) interneurons, and calretinin-ir (CR-ir) neurons of the primary somatosensory cortex of postnatal day (PN) 20-24 rats, using specific immunohistochemical assays. PN3 Sprague-Dawley male rats underwent the multiple-hit induction protocol, were monitored until PN20-24, and were transcardially perfused to collect brains for histology. Age-matched sham and naive control male rats were also used. Coronal brain cryosections were stained with anti-PRV, anti-CR, and anti-SST antibodies, and regions of interest (ROIs) from the primary somatosensory cortices were selected to determine PRV-, CR-, and SST-ir cell counts and cortical ROI volumes, with blinding to experimental group. Statistical analyses were done using a linear mixed model accounting for repeated measures. We found PRV-ir interneuronal selective reduction, sparing of the CR-ir and SST-ir neurons, and bilateral cortical atrophy. Our findings provide evidence for acquired PRV-selective interneuronopathy, possibly underlying the pathogenesis of IS, neurodevelopmental deficits, and epilepsy, and potentially contributing to the partial response to vigabatrin analogs in this model.
Collapse
Affiliation(s)
- Anna-Maria Katsarou
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A
| | - Qianyun Li
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A
| | - Wei Liu
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A
| | - Solomon L Moshé
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A.,Laboratory of Developmental Epilepsy Isabelle Rapin Division of Child Neurology Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine Einstein/Montefiore Epilepsy Center Montefiore Medical Center Bronx New York U.S.A.,Department of Pediatrics Albert Einstein College of Medicine Einstein/Montefiore Epilepsy Center Montefiore Medical Center Bronx New York U.S.A
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A.,Laboratory of Developmental Epilepsy Isabelle Rapin Division of Child Neurology Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine Einstein/Montefiore Epilepsy Center Montefiore Medical Center Bronx New York U.S.A
| |
Collapse
|
15
|
Moshé SL. The 2017 Sachs Lecture: Kindling Knowledge in Epilepsy. Pediatr Neurol 2018; 85:5-12. [PMID: 29958806 DOI: 10.1016/j.pediatrneurol.2018.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Solomon L Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York; Dominick P. Purpura Department of Neuroscience, Montefiore/Einstein Epilepsy Center, Albert Einstein College of Medicine, Bronx, New York; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
16
|
|
17
|
Katsarou A, Moshé SL, Galanopoulou AS. INTERNEURONOPATHIES AND THEIR ROLE IN EARLY LIFE EPILEPSIES AND NEURODEVELOPMENTAL DISORDERS. Epilepsia Open 2017; 2:284-306. [PMID: 29062978 PMCID: PMC5650248 DOI: 10.1002/epi4.12062] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 12/22/2022] Open
Abstract
GABAergic interneurons control the neural circuitry and network activity in the brain. The advances in genetics have identified genes that control the development, maturation and integration of GABAergic interneurons and implicated them in the pathogenesis of epileptic encephalopathies or neurodevelopmental disorders. For example, mutations of the Aristaless-Related homeobox X-linked gene (ARX) may result in defective GABAergic interneuronal migration in infants with epileptic encephalopathies like West syndrome (WS), Ohtahara syndrome or X-linked lissencephaly with abnormal genitalia (XLAG). The concept of "interneuronopathy", i.e. impaired development, migration or function of interneurons, has emerged as a possible etiopathogenic mechanism for epileptic encephalopathies. Treatments that enhance GABA levels, may help seizure control but do not necessarily show disease modifying effect. On the other hand, interneuronopathies can be seen in other conditions in which epilepsy may not be the primary manifestation, such as autism. In this review, we plan to outline briefly the current state of knowledge on the origin, development, and migration and integration of GABAergic interneurons, present neurodevelopmental conditions, with or without epilepsy, that have been associated with interneuronopathies and discuss the evidence linking certain types of interneuronal dysfunction with epilepsy and/or cognitive or behavioral deficits.
Collapse
Affiliation(s)
- Anna‐Maria Katsarou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Solomon L. Moshé
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Aristea S. Galanopoulou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| |
Collapse
|
18
|
Galanopoulou AS, Mowrey WB, Liu W, Li Q, Shandra O, Moshé SL. Preclinical Screening for Treatments for Infantile Spasms in the Multiple Hit Rat Model of Infantile Spasms: An Update. Neurochem Res 2017; 42:1949-1961. [PMID: 28462453 DOI: 10.1007/s11064-017-2282-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/20/2017] [Accepted: 04/22/2017] [Indexed: 12/16/2022]
Abstract
Infantile spasms are the typical seizures of West syndrome, an infantile epileptic encephalopathy with poor outcomes. There is an increasing need to identify more effective and better tolerated treatments for infantile spasms. We have optimized the rat model of infantile spasms due to structural etiology, the multiple-hit rat model, for therapy discovery. Here, we test three compounds administered after spasms induction in the multiple hit model for efficacy and tolerability. Specifically, postnatal day 3 (PN3) male Sprague-Dawley rats were induced by right intracerebral injections of doxorubicin and lipopolysaccharide. On PN5 p-chlorophenylalanine was given intraperitoneally (i.p.). Daily monitoring of weights and developmental milestones was done and rats were intermittently video monitored. A blinded, randomized, vehicle-controlled study design was followed. The caspase 1 inhibitor VX-765 (50-200 mg/kg i.p.) and the GABAB receptor inhibitor CGP35348 (12.5-100 mg/kg i.p.) each was administered in different cohorts as single intraperitoneal injections on PN4, using a dose- and time-response design with intermittent monitoring till PN5. 17β-estradiol (40 ng/g/day subcutaneously) was given daily between PN3-10 and intermittent monitoring was done till PN12. None of the treatments demonstrated acute or delayed effects on spasms, yet all were well tolerated. We discuss the implications for therapy discovery and challenges of replication trials.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA.
- Dominick P. Purpura Department of Neuroscience, Montefiore/Einstein Epilepsy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Kennedy Center Rm 306, Bronx, NY, 10461, USA.
| | - Wenzhu B Mowrey
- Division of Biostatistics, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wei Liu
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qianyun Li
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Oleksii Shandra
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Montefiore/Einstein Epilepsy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Kennedy Center Rm 306, Bronx, NY, 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
19
|
Shandra O, Moshé SL, Galanopoulou AS. Inflammation in Epileptic Encephalopathies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 108:59-84. [PMID: 28427564 DOI: 10.1016/bs.apcsb.2017.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
West syndrome (WS) is an infantile epileptic encephalopathy that manifests with infantile spasms (IS), hypsarrhythmia (in ~60% of infants), and poor neurodevelopmental outcomes. The etiologies of WS can be structural-metabolic pathologies (~60%), genetic (12%-15%), or of unknown origin. The current treatment options include hormonal treatment (adrenocorticotropic hormone and high-dose steroids) and the GABA aminotransferase inhibitor vigabatrin, while ketogenic diet can be given as add-on treatment in refractory IS. There is a need to identify new therapeutic targets and more effective treatments for WS. Theories about the role of inflammatory pathways in the pathogenesis and treatment of WS have emerged, being supported by both clinical and preclinical data from animal models of WS. Ongoing advances in genetics have revealed numerous genes involved in the pathogenesis of WS, including genes directly or indirectly involved in inflammation. Inflammatory pathways also interact with other signaling pathways implicated in WS, such as the neuroendocrine pathway. Furthermore, seizures may also activate proinflammatory pathways raising the possibility that inflammation can be a consequence of seizures and epileptogenic processes. With this targeted review, we plan to discuss the evidence pro and against the following key questions. Does activation of inflammatory pathways in the brain cause epilepsy in WS and does it contribute to the associated comorbidities and progression? Can activation of certain inflammatory pathways be a compensatory or protective event? Are there interactions between inflammation and the neuroendocrine system that contribute to the pathogenesis of WS? Does activation of brain inflammatory signaling pathways contribute to the transition of WS to Lennox-Gastaut syndrome? Are there any lead candidates or unexplored targets for future therapy development for WS targeting inflammation?
Collapse
Affiliation(s)
- Oleksii Shandra
- Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Solomon L Moshé
- Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, United States; Montefiore/Einstein Epilepsy Center, Montefiore Medical Center, Bronx, NY, United States
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, United States; Montefiore/Einstein Epilepsy Center, Montefiore Medical Center, Bronx, NY, United States.
| |
Collapse
|
20
|
Galanopoulou AS, Mowrey WB. Not all that glitters is gold: A guide to critical appraisal of animal drug trials in epilepsy. Epilepsia Open 2016; 1:86-101. [PMID: 28497130 PMCID: PMC5421644 DOI: 10.1002/epi4.12021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Preclinical studies have produced numerous drugs with antiseizure properties that currently are the standard of care. One third of the human population with epilepsy still continues to have seizures despite the ongoing discoveries. The recognized clinical gaps of care that need to be addressed are the identification of antiepileptogenic and disease‐modifying treatments, and treatments for refractory seizures or for seizures and epilepsies with limited or unsatisfactory treatments, such as early life epileptic encephalopathies. In this invited review, we provide a historical summary of the international efforts to reevaluate the strategies adopted in preclinical epilepsy therapy discovery studies. We discuss issues that may affect the quality, interpretation, and validation of preclinical studies and their translation to successful therapies for humans affected with epilepsy. These include the selection of animal models and the study design; research practices that affect rigor (such as appropriate use of statistics and reporting of study methods and results, their validation across models, labs, and preclinical‐clinical studies); the need to harmonize research methods and outcome assessment; and the importance of improving translation to clinically appropriate situations. The epilepsy research community is incrementally adopting collaborative research, including consortia or multicenter studies to meet these needs. Improving the infrastructure that can support these efforts will be instrumental in future success.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Montefiore / Einstein Epilepsy Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx NY USA
| | - Wenzhu B Mowrey
- Division of Biostatistics, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx NY USA
| |
Collapse
|
21
|
Current understanding and neurobiology of epileptic encephalopathies. Neurobiol Dis 2016; 92:72-89. [PMID: 26992889 DOI: 10.1016/j.nbd.2016.03.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 03/01/2016] [Accepted: 03/09/2016] [Indexed: 12/25/2022] Open
|
22
|
Shao LR, Stafstrom CE. Pediatric Epileptic Encephalopathies: Pathophysiology and Animal Models. Semin Pediatr Neurol 2016; 23:98-107. [PMID: 27544466 DOI: 10.1016/j.spen.2016.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Epileptic encephalopathies are syndromes in which seizures or interictal epileptiform activity contribute to or exacerbate brain function, beyond that caused by the underlying pathology. These severe epilepsies begin early in life, are associated with poor lifelong outcome, and are resistant to most treatments. Therefore, they represent an immense challenge for families and the medical care system. Furthermore, the pathogenic mechanisms underlying the epileptic encephalopathies are poorly understood, hampering attempts to devise novel treatments. This article reviews animal models of the three classic epileptic encephalopathies-West syndrome (infantile spasms), Lennox-Gastaut syndrome, and continuous spike waves during sleep or Landau-Kleffner syndrome-with discussion of how animal models are revealing underlying pathophysiological mechanisms that might be amenable to targeted therapy.
Collapse
Affiliation(s)
- Li-Rong Shao
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
23
|
Galanopoulou AS, Moshé SL. Neonatal and Infantile Epilepsy: Acquired and Genetic Models. Cold Spring Harb Perspect Med 2015; 6:a022707. [PMID: 26637437 DOI: 10.1101/cshperspect.a022707] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The incidence of seizures and epilepsies is particularly high during the neonatal and infantile periods. We will review selected animal models of early-life epileptic encephalopathies that have addressed the dyscognitive features of frequent interictal spikes, the pathogenesis and treatments of infantile spasms (IS) or Dravet syndrome, disorders with mammalian target of rapamycin (mTOR) dysregulation, and selected early-life epilepsies with genetic defects. Potentially pathogenic mechanisms in these conditions include interneuronopathies in IS or Dravet syndrome and mTOR dysregulation in brain malformations, tuberous sclerosis, and related genetic disorders, or IS of acquired etiology. These models start to generate the first therapeutic drugs, which have been specifically developed in immature animals. However, there are challenges in translating preclinical discoveries into clinically relevant findings. The advances made so far hold promise that the new insights may potentially have curative or disease-modifying potential for many of these devastating conditions.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10461 Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
24
|
Galanopoulou AS, Moshé SL. Pathogenesis and new candidate treatments for infantile spasms and early life epileptic encephalopathies: A view from preclinical studies. Neurobiol Dis 2015; 79:135-49. [PMID: 25968935 DOI: 10.1016/j.nbd.2015.04.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 12/26/2022] Open
Abstract
Early onset and infantile epileptic encephalopathies (EIEEs) are usually associated with medically intractable or difficult to treat epileptic seizures and prominent cognitive, neurodevelopmental and behavioral consequences. EIEEs have numerous etiologies that contribute to the inter- and intra-syndromic phenotypic variability. Etiologies include structural and metabolic or genetic etiologies although a significant percentage is of unknown cause. The need to better understand their pathogenic mechanisms and identify better therapies has driven the development of animal models of EIEEs. Several rodent models of infantile spasms have emerged that recapitulate various aspects of the disease. The acute models manifest epileptic spasms after induction and include the NMDA rat model, the NMDA model with prior prenatal betamethasone or perinatal stress exposure, and the γ-butyrolactone induced spasms in a mouse model of Down syndrome. The chronic models include the tetrodotoxin rat model, the aristaless related homeobox X-linked (Arx) mouse models and the multiple-hit rat model of infantile spasms. We will discuss the main features and findings from these models on target mechanisms and emerging therapies. Genetic models have also provided interesting data on the pathogenesis of Dravet syndrome and proposed new therapies for testing. The genetic associations of many of the EIEEs have also been tested in rodent models as to their pathogenicity. Finally, several models have tested the impact of subclinical epileptiform discharges on brain function. The impact of these advances in animal modeling for therapy development will be discussed.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
25
|
Mangubat EZ, Kellogg RG, Harris TJ, Rossi MA. On-demand pulsatile intracerebral delivery of carisbamate with closed-loop direct neurostimulation therapy in an electrically induced self-sustained focal-onset epilepsy rat model. J Neurosurg 2015; 122:1283-92. [PMID: 25723302 DOI: 10.3171/2015.1.jns14946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECT The authors evaluated the preclinical feasibility of acutely stabilizing an active bihemispheric limbic epileptic circuit using closed-loop direct neurostimulation therapy in tandem with "on-demand'" convection-enhanced intracerebral delivery of the antiepileptic drug (AED) carisbamate. A rat model of electrically induced self-sustained focal-onset epilepsy was employed. METHODS A 16-contact depth-recording microelectrode was implanted bilaterally in the dentate gyrus (DG) of the hippocampus of Fischer 344 rats. The right microelectrode array included an integrated microcatheter for drug delivery at the distal tip. Bihemispheric spontaneous self-sustained limbic status epilepticus (SSLSE) was induced in freely moving rats using a 90-minute stimulation paradigm delivered to the right medial perforant white matter pathway. Immediately following SSLSE induction, closed-loop right PP stimulation therapy concurrent with on-demand nanoboluses of the AED [(14)C]-carisbamate (n = 4), or on-demand [(14)C]-carisbamate alone (n = 4), was introduced for a mean of 10 hours. In addition, 2 reference groups received either closed-loop stimulation therapy alone (n = 4) or stimulation therapy with saline vehicle only (n = 4). All animals were sacrificed after completing the specified therapy regimen. In situ [(14)C]-autoradiography was used to determine AED distribution. RESULTS Closed-loop direct stimulation therapy delivered unilaterally in the right PP aborted ictal runs detected in either ipsi- or contralateral hippocampi. Freely moving rats receiving closed-loop direct stimulation therapy with ondemand intracerebral carisbamate delivery experienced a significant reduction in seizure frequency (p < 0.001) and minimized seizure frequency variability during the final 50% of the therapy/recording session compared with closed-loop stimulation therapy alone. CONCLUSIONS Unilateral closed-loop direct stimulation therapy delivered to afferent hippocampal white matter pathways concurrent with on-demand ipsilateral intracerebral delivery of nano-bolused carisbamate can rapidly decrease the frequency of electrographic seizures in an active bihemispheric epileptic network. Additionally, direct pulsatile delivery of carisbamate can stabilize seizure frequency variability compared with direct stimulation therapy alone.
Collapse
Affiliation(s)
| | | | - Timothy J Harris
- 2Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Marvin A Rossi
- 2Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
26
|
Pardo CA, Nabbout R, Galanopoulou AS. Mechanisms of epileptogenesis in pediatric epileptic syndromes: Rasmussen encephalitis, infantile spasms, and febrile infection-related epilepsy syndrome (FIRES). Neurotherapeutics 2014; 11:297-310. [PMID: 24639375 PMCID: PMC3996116 DOI: 10.1007/s13311-014-0265-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The mechanisms of epileptogenesis in pediatric epileptic syndromes are diverse, and may involve disturbances of neurodevelopmental trajectories, synaptic homeostasis, and cortical connectivity, which may occur during brain development, early infancy, or childhood. Although genetic or structural/metabolic factors are frequently associated with age-specific epileptic syndromes, such as infantile spasms and West syndrome, other syndromes may be determined by the effect of immunopathogenic mechanisms or energy-dependent processes in response to environmental challenges, such as infections or fever in normally-developed children during early or late childhood. Immune-mediated mechanisms have been suggested in selected pediatric epileptic syndromes in which acute and rapidly progressive encephalopathies preceded by fever and/or infections, such as febrile infection-related epilepsy syndrome, or in chronic progressive encephalopathies, such as Rasmussen encephalitis. A definite involvement of adaptive and innate immune mechanisms driven by cytotoxic CD8(+) T lymphocytes and neuroglial responses has been demonstrated in Rasmussen encephalitis, although the triggering factor of these responses remains unknown. Although the beneficial response to steroids and adrenocorticotropic hormone of infantile spasms, or preceding fever or infection in FIRES, may support a potential role of neuroinflammation as pathogenic factor, no definite demonstration of such involvement has been achieved, and genetic or metabolic factors are suspected. A major challenge for the future is discovering pathogenic mechanisms and etiological factors that facilitate the introduction of novel targets for drug intervention aimed at interfering with the disease mechanisms, therefore providing putative disease-modifying treatments in these pediatric epileptic syndromes.
Collapse
Affiliation(s)
- Carlos A Pardo
- Department of Neurology, Division of Neuroimmunology and Neuroinfectious Disorders, Center for Pediatric Rasmussen Syndrome, Johns Hopkins University School of Medicine, Baltimore, MD, USA,
| | | | | |
Collapse
|
27
|
Briggs SW, Mowrey W, Hall CB, Galanopoulou AS. CPP-115, a vigabatrin analogue, decreases spasms in the multiple-hit rat model of infantile spasms. Epilepsia 2013; 55:94-102. [PMID: 24321005 DOI: 10.1111/epi.12424] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2013] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Infantile spasms (IS) have poor outcomes and limited treatment options, including vigabatrin, a γ-aminobutyric acid (GABA) aminotransferase inactivator. Vigabatrin has been associated with retinal toxicity. A high affinity vigabatrin analogue (CPP-115; Catalyst Pharmaceutical Partners, Inc., Coral Gables, FL, U.S.A.) has shown lower risk of retinal toxicity. Here, we test the efficacy of CPP-115 in reducing spasms and its tolerability in the multiple-hit rat model of IS, in which daily vigabatrin reduced spasms for only one day, but was not well tolerated. METHODS Male rats were treated with the protocol of the multiple-hit model of IS on postnatal day 3 (PN3). Using a randomized, blinded, vehicle-controlled, dose-response study design, CPP-115 (0.1, 1, or 5 mg/kg intraperitoneally [i.p.]) or vehicle was given daily (PN4-12) or as a single injection (PN7) after spasm onset. Intermittent video- or video-electroencephalography (EEG) monitoring was done. Secondary end points included the following: daily weights, survival, performance on open field activity, surface righting time, and negative geotaxis (PN3-20), horizontal bar (PN13-20), and Barnes maze (PN16-19). Statistics used a linear mixed model of raw or normalized log-transformed data, taking into account the repeated observations on each animal. RESULTS The lower CPP-115 doses (0.1-1 mg/kg/day, PN4-12) reduced spasms between PN6 and 7 without increasing mortality. CPP-115 at 5 mg/kg/day (PN4-12) reduced spasms earlier (PN5), but was eventually lethal. A single CPP-115 injection (1 mg/kg, i.p.) decreased electroclinical spasms acutely but transiently. CPP-115 transiently improved the probability to >50% reduction of spasms, but did not accelerate spasm cessation. CPP-115 did not alter neurodevelopmental outcomes or visuospatial learning. SIGNIFICANCE We provide proof-of-concept evidence that CPP-115, a vigabatrin analogue, decreases spasms in the multiple-hit rat model of IS at considerably lower and better tolerated doses than vigabatrin did in our previous studies. Further optimization of the treatment protocol is needed. CPP-115 may be a promising new candidate treatment for IS with better tolerability than vigabatrin.
Collapse
Affiliation(s)
- Stephen W Briggs
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, U.S.A; Laboratory of Developmental Epilepsy and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | | | | | | |
Collapse
|
28
|
Jequier Gygax M, Klein BD, White HS, Kim M, Galanopoulou AS. Efficacy and tolerability of the galanin analog NAX 5055 in the multiple-hit rat model of symptomatic infantile spasms. Epilepsy Res 2013; 108:98-108. [PMID: 24252685 DOI: 10.1016/j.eplepsyres.2013.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/14/2013] [Accepted: 10/18/2013] [Indexed: 01/04/2023]
Abstract
Infantile spasms are seizures manifesting in infantile epileptic encephalopathies that are associated with poor epilepsy and cognitive outcomes. The current therapies are not always effective or are associated with serious side effects. Early cessation of spasms has been proposed to improve long-term outcomes. To identify new therapies for infantile spasms with rapid suppression of spasms, we are using the multiple-hit rat model of infantile spasms, which is a model of refractory infantile spasms. Here, we are testing the efficacy and tolerability of a single dose of the galanin receptor 1 preferring analog, NAX 5055, in the multiple-hit model of spasms. To induce the model, postnatal day 3 (PN3) male Sprague-Dawley rats underwent right intracerebral infusions of doxorubicin and lipopolysaccharide; p-chlorophenylalanine was then injected intraperitoneally (i.p.) at PN5. After the onset of spasms at PN4, 11-14 rats/group were injected i.p. with either NAX 5055 (0.5, 1, 2, or 4mg/kg) or vehicle. Video monitoring for spasms included a 1h pre-injection period, followed by 5h of recording post-injection, and two 2h sessions on PN5. The study was conducted in a randomized, blinded manner. Neurodevelopmental reflexes were assessed daily as well as at 2h after injection. Respiratory function, heart rate, pulse distension, oximetry and blood glucose were measured 4h after injection. The relative expression of GalR1 and GalR2 mRNA over β-actin in the cerebral cortex and hippocampus was determined with real time reverse transcription polymerase chain reaction. There was no acute effect of NAX 5055 on spasm frequency after the single dose of NAX 5055 (n=11-13 rats/group, following exclusions). Neurodevelopmental reflexes, vital signs, blood glucose measured 4h post-injection, and survival were not affected. A reduction in pulse and breath distention of unclear clinical significance was observed with the 7mg/kg NAX 5055 dose. GalR1 mRNA was present in the cerebral cortex and hippocampus of PN4 and adult rats. The hippocampal - but not the cortical - GalR1 mRNA expression was significantly lower in PN4 pups than in adults. GalR1 mRNA was also at least 20 times less abundant in the PN4 cortex than GalR2 mRNA. In conclusion, a single dose of NAX 5055 has no acute efficacy on spasms or toxicity in the multiple hit rat model of medically refractory infantile spasms. Our findings cannot exclude the possibility that repetitive NAX 5055 administration may show efficacy on spasms. The higher expression of GalR2 in the PN4 cortex suggests that GalR2-preferring analogs may be of interest to test for efficacy on spasms.
Collapse
Affiliation(s)
- Marine Jequier Gygax
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA; Unité de Neurologie et Neuroréhabilitation Pédiatrique, Département Médico-Chirurgical de Pédiatrie, CHUV, Lausanne, Switzerland
| | - Brian D Klein
- NeuroAdjuvants, Inc., Salt Lake City, UT, USA; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - H Steve White
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Mimi Kim
- Department of Statistics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Einstein/Montefiore Comprehensive Epilepsy Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
29
|
Galanopoulou AS. Basic mechanisms of catastrophic epilepsy -- overview from animal models. Brain Dev 2013; 35:748-56. [PMID: 23312951 PMCID: PMC3644363 DOI: 10.1016/j.braindev.2012.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/09/2012] [Accepted: 12/10/2012] [Indexed: 12/14/2022]
Abstract
Infantile spasms are age-specific seizures of infantile epileptic encephalopathies that are usually associated with poor epilepsy and neurodevelopmental outcomes. The current treatments are not always effective and may be associated with significant side effects. Various mechanisms have been proposed as pathogenic for infantile spasms, including cortical or brainstem dysfunction, disruption of normal cortical-subcortical communications, genetic defects, inflammation, stress, developmental abnormalities. Many of these have been recently tested experimentally, resulting into the emergence of several animal models of infantile spasms. The stress theory of spasms yielded the corticotropin releasing hormone (CRH)-induced model, which showed the higher proconvulsant potency of CRH in developing rats, although only limbic seizures were observed. Models of acute induction of infantile spasms in rodents include the N-methyl-d-aspartate (NMDA) model of emprosthotonic seizures, the prenatal betamethasone and prenatal stress variants of the NMDA model, and the γ-butyrolactone induced spasms in a Down's syndrome mouse model. Chronic rodent models of infantile spasms include the tetrodotoxin model and the multiple-hit models in rats, as well as two genetic mouse models of interneuronopathies with infantile spasms due to loss of function of the aristaless X-linked homeobox-related gene (ARX). This review discusses the emerging mechanisms for generation of infantile spasms and their associated chronic epileptic and dyscognitive phenotype as well as the recent progress in identifying pathways to better treat this epileptic encephalopathy.
Collapse
|
30
|
Abstract
OPINION STATEMENT Infantile spasms (IS) represent a major therapeutic challenge, as cessation of spasms and normalization of the electroencephalogram (elimination of hypsarrhythmia) are mandatory to prevent cognitive deterioration in previously healthy infants, or to preserve neurocognitive function among those neurologically affected prior to onset of IS. Traditionally, this epilepsy syndrome has been considered a "catastrophic" epilepsy, not only for its frequent refractoriness, but mostly due to its effect on cognition. Nevertheless, a change of attitude among pediatric epileptologists is probably warranted, as enough evidence and clinical experience demonstrate that early, aggressive therapy, especially with adrenocorticotropic hormone (ACTH), may not only lead to cessation of spasms, but often leads to the cure of infants with idiopathic/cryptogenic IS. Some ACTH protocols such as that prescribed in Israel (tetracosactide ACTH) appear to be highly efficacious in guarantying a good or even excellent prognosis in idiopathic IS. Moreover, oral prednisolone is a promising and much less expensive alternative to IM ACTH. Vigabatrin does have a role as a first-line agent, especially for tuberous sclerosis patients, but evidence supports hormonal therapy as the initial treatment. The role of pyridoxine and the ketogenic diet still needs to be established; given the efficacy of a much shorter tetracosactide ACTH protocol, there may be no need for the long-term diet, despite its efficacy. Finally, a very promising drug has been developed (CP-115) that may altogether replace the current therapeutic regimens in the near future.
Collapse
|
31
|
Abstract
When mimicking epileptic processes in a laboratory setting, it is important to understand the differences between experimental models of seizures and epilepsy. Because human epilepsy is defined by the appearance of multiple spontaneous recurrent seizures, the induction of a single acute seizure without recurrence does not constitute an adequate epilepsy model. Animal models of epilepsy might be useful for various tasks. They allow for the investigation of pathophysiological mechanisms of the disease, the evaluation, or the development of new antiepileptic treatments, and the study of the consequences of recurrent seizures and neurological and psychiatric comorbidities. Although clinical relevance is always an issue, the development of models of pediatric epilepsies is particularly challenging due to the existence of several key differences in the dynamics of human and rodent brain maturation. Another important consideration in modeling pediatric epilepsy is that "children are not little adults," and therefore a mere application of models of adult epilepsies to the immature specimens is irrelevant. Herein, we review the models of pediatric epilepsy. First, we illustrate the differences between models of pediatric epilepsy and models of the adulthood consequences of a precipitating insult in early life. Next, we focus on new animal models of specific forms of epilepsies that occur in the developing brain. We conclude by emphasizing the deficiencies in the existing animal models and the need for several new models.
Collapse
|