1
|
Fan C, Hao C, Li K, Chen L, Wang Y, Gao H, Li W, Qian S. Clinical and genetic characteristics of RANBP2 mutations in children with acute necrotizing encephalopathy. Neurol Sci 2025; 46:1817-1826. [PMID: 39710814 DOI: 10.1007/s10072-024-07911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND This study investigated RANBP2 mutations in children with acute necrotizing encephalopathy (ANE) and conducted a systematic review of the differences in clinical characteristics between with or without RANBP2 mutations. METHODS Whole-exome sequencing was performed on 19 pediatric ANE patients at Beijing Children's Hospital affiliated to Capital Medical University between 2017 and 2020. A systematic literature review was also conducted on the clinical characteristics and spectrum analysis of RANBP2 mutations. RESULTS Besides the common mutation site c.1754 C > T, new mutation sites were identified, including c.7454G > T, c.7474 A > G, c.7807 C > T, c.7918 C > A, and c.872 A > G. These sites are highly conserved. Twenty-four publications describing 38 ANE children were reviewed, of which 22 cases had the RANBP2 mutations. When combined with our study, the data included 54 ANE children aged from 3 months to 120 months, and divided into RANBP2 mutation group (n = 26) and non-mutation group (n = 28). No significant differences were observed in initial presentations, neuroimaging, treatment, or outcomes between these two groups. However, children with RANBP2 mutations had slightly elevated blood ammonia levels and a broader etiological spectrum, especially involving non-influenza pathogens. CONCLUSION This study highlights novel RANBP2 mutation sites in ANE children and associates these mutations with higher blood ammonia levels and diverse etiologies.
Collapse
Affiliation(s)
- Chaonan Fan
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Chanjuan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Kechun Li
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yeqing Wang
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Hengmiao Gao
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Suyun Qian
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan-Li-Shi Road, Beijing, 100045, China.
| |
Collapse
|
2
|
Kimura-Ohba S, Kitamura M, Tsukamoto Y, Kogaki S, Sakai S, Fushimi H, Matsuoka K, Takeuchi M, Itoh K, Ueda K, Kimura T. Viral entry and translation in brain endothelia provoke influenza-associated encephalopathy. Acta Neuropathol 2024; 147:77. [PMID: 38687393 PMCID: PMC11061015 DOI: 10.1007/s00401-024-02723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Influenza-associated encephalopathy (IAE) is extremely acute in onset, with high lethality and morbidity within a few days, while the direct pathogenesis by influenza virus in this acute phase in the brain is largely unknown. Here we show that influenza virus enters into the cerebral endothelium and thereby induces IAE. Three-weeks-old young mice were inoculated with influenza A virus (IAV). Physical and neurological scores were recorded and temporal-spatial analyses of histopathology and viral studies were performed up to 72 h post inoculation. Histopathological examinations were also performed using IAE human autopsy brains. Viral infection, proliferation and pathogenesis were analyzed in cell lines of endothelium and astrocyte. The effects of anti-influenza viral drugs were tested in the cell lines and animal models. Upon intravenous inoculation of IAV in mice, the mice developed encephalopathy with brain edema and pathological lesions represented by micro bleeding and injured astrocytic process (clasmatodendrosis) within 72 h. Histologically, massive deposits of viral nucleoprotein were observed as early as 24 h post infection in the brain endothelial cells of mouse models and the IAE patients. IAV inoculated endothelial cell lines showed deposition of viral proteins and provoked cell death, while IAV scarcely amplified. Inhibition of viral transcription and translation suppressed the endothelial cell death and the lethality of mouse models. These data suggest that the onset of encephalopathy should be induced by cerebral endothelial infection with IAV. Thus, IAV entry into the endothelium, and transcription and/or translation of viral RNA, but not viral proliferation, should be the key pathogenesis of IAE.
Collapse
Affiliation(s)
- Shihoko Kimura-Ohba
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Reverse Translational Research Project, Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, Osaka, Japan.
- KAGAMI Project, Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, Osaka, Japan.
- Department of Pediatrics and Neonatology, Osaka General Medical Center, Osaka, Japan.
| | - Mieko Kitamura
- KAGAMI Project, Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, Osaka, Japan
| | - Yusuke Tsukamoto
- Reverse Translational Research Project, Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, Osaka, Japan
- KAGAMI Project, Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, Osaka, Japan
| | - Shigetoyo Kogaki
- Department of Pediatrics and Neonatology, Osaka General Medical Center, Osaka, Japan
| | - Shinsuke Sakai
- Reverse Translational Research Project, Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, Osaka, Japan
- KAGAMI Project, Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, Osaka, Japan
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Fushimi
- Department of Pathology, Osaka General Medical Center, Osaka, Japan
| | - Keiko Matsuoka
- Department of Pathology, Osaka General Medical Center, Osaka, Japan
- Department of Pathology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Makoto Takeuchi
- Department of Pathology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Tomonori Kimura
- Reverse Translational Research Project, Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, Osaka, Japan
- KAGAMI Project, Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, Osaka, Japan
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
3
|
Nakazawa M, Abe S, Ikeno M, Shima T, Shimizu T, Okumura A. A nationwide survey of adenovirus-associated encephalitis/encephalopathy in Japan. Brain Dev 2024; 46:10-17. [PMID: 37884431 DOI: 10.1016/j.braindev.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Adenovirus is a major pathogen causing febrile illness among children. It may also cause acute encephalitis/encephalopathy. This study aimed to elucidate the clinical features of adenovirus-associated encephalitis/encephalopathy (AdVE) among children in Japan. METHODS A nationwide survey of children with AdVE was conducted. An initial survey was distributed among pediatricians to obtain information about children with AdVE treated between January 2014 and March 2019. A second survey was used to obtain the clinical information of children with AdVE from hospitals that responded to the initial survey and those identified from a literature search of the reported cases. We collected demographic data and information about symptoms of infection, neurological symptoms, laboratory parameters, treatment, and outcomes. Outcomes were determined using the Pediatric Cerebral Performance Category Score. RESULTS Clinical information was available for 23 children with a median age of 39 months. Two had preexisting neurological disorders and six had a history of febrile seizures. The outcome was good in 15 patients and poor in eight patients. Serum lactate dehydrogenase, glucose, and ammonia levels were higher among children with a poor outcome compared to those with a good outcome. Clinically mild encephalitis/encephalopathy with a reversible splenial lesion was the most common type (n = 8), followed by acute encephalopathy with biphasic seizures and late reduced diffusion (n = 7). CONCLUSION A prior history of febrile seizures was frequent in children with AdVE. Several different subtypes of acute encephalopathy were seen in children with AdVE, and the outcome was poor in those with acute encephalopathy with biphasic seizures and late reduced diffusion and hemorrhagic shock and encephalopathy syndrome. Elevated lactate dehydrogenase, glucose, and ammonia levels on admission were found to correlate with a poor outcome.
Collapse
Affiliation(s)
- Mika Nakazawa
- Department of Pediatrics, Sanikukai Hospital, Japan; Department of Pediatrics, Juntendo University, Faculty of Medicine, Japan
| | - Shinpei Abe
- Department of Pediatrics, Juntendo University, Faculty of Medicine, Japan
| | - Mitsuru Ikeno
- Department of Pediatrics, Juntendo University, Faculty of Medicine, Japan
| | - Taiki Shima
- Department of Pediatrics, Juntendo University Urayasu Hospital, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics, Juntendo University, Faculty of Medicine, Japan
| | - Akihisa Okumura
- Department of Pediatrics, Aichi Medical University School of Medicine, Japan.
| |
Collapse
|
4
|
de Pedro Baena S, Sariego Jamardo A, Castro P, López González FJ, Sánchez Carpintero R, Cerisola A, Troncoso M, Witting S, Barrios A, Fons C, López Pisón J, Ortigoza‐Escobar JD. Exploring the Spectrum of RHOBTB2 Variants Associated with Developmental Encephalopathy 64: A Case Series and Literature Review. Mov Disord Clin Pract 2023; 10:1671-1679. [PMID: 37982109 PMCID: PMC10654829 DOI: 10.1002/mdc3.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 11/21/2023] Open
Abstract
Background Rho-related BTB domain-containing protein 2 (RHOBTB2) is a protein that interacts with cullin-3, a crucial E3 ubiquitin ligase for mitotic cell division. RHOBTB2 has been linked to early infantile epileptic encephalopathy, autosomal dominant type 64 (OMIM618004), in 34 reported patients. Methods We present a case series of seven patients with RHOBTB2-related disorders (RHOBTB2-RD), including a description of a novel heterozygous variant. We also reviewed previously published cases of RHOBTB2-RD. Results The seven patients had ages ranging from 2 years and 8 months to 26 years, and all had experienced seizures before the age of one (onset, 4-12 months, median, 4 months), including various types of seizures. All patients in this cohort also had a movement disorder (onset, 0.3-14 years, median, 1.5 years). Six of seven had a baseline movement disorder, and one of seven only had paroxysmal dystonia. Stereotypies were noted in four of six, choreodystonia in three of six, and ataxia in one case with multiple movement phenotypes at baseline. Paroxysmal movement disorders were observed in six of seven patients for whom carbamazepine or oxcarbazepine treatment was effective in controlling acute or paroxysmal movement disorders. Four patients had acute encephalopathic episodes at ages 4 (one patient) and 6 (three patients), which improved following treatment with methylprednisolone. Magnetic resonance imaging scans revealed transient fluid-attenuated inversion recovery abnormalities during these episodes, as well as myelination delay, thin corpus callosum, and brain atrophy. One patient had a novel RHOBTB2 variant (c.359G>A/p.Gly120Glu). Conclusion RHOBTB2-RD is characterized by developmental delay or intellectual disability, early-onset seizures, baseline movement disorders, acute or paroxysmal motor phenomena, acquired microcephaly, and episodes of acute encephalopathy. Early onsets of focal dystonia, acute encephalopathic episodes, episodes of tongue protrusion, or peripheral vasomotor disturbances are important diagnostic clues. Treatment with carbamazepine or oxcarbazepine was found to be effective in controlling acute or paroxysmal movement disorders. Our study highlights the clinical features and treatment response of RHOBTB2-RD.
Collapse
Affiliation(s)
| | - Andrea Sariego Jamardo
- Pediatric Neurology DepartmentHospital Universitario Marqués de ValdecillaSantanderSpain
| | - Pedro Castro
- Department of Pediatric NeurologyHospital Gregorio MarañónMadridSpain
| | | | | | - Alfredo Cerisola
- Pediatric Neurology DepartmentInstitut de Recerca, Hospital Sant Joan de Déu BarcelonaBarcelonaSpain
| | - Mónica Troncoso
- Centro de Referencia Nacional en Defectos Congénitos y Enfermedades Raras (CRENADECER) del Banco de Previsión Social (BPS), Uruguay; Cátedra de Neuropediatría, Facultad de MedicinaUniversidad de la RepúblicaMontevideoUruguay
| | - Scarlet Witting
- Centro de Referencia Nacional en Defectos Congénitos y Enfermedades Raras (CRENADECER) del Banco de Previsión Social (BPS), Uruguay; Cátedra de Neuropediatría, Facultad de MedicinaUniversidad de la RepúblicaMontevideoUruguay
| | - Andrés Barrios
- Centro de Referencia Nacional en Defectos Congénitos y Enfermedades Raras (CRENADECER) del Banco de Previsión Social (BPS), Uruguay; Cátedra de Neuropediatría, Facultad de MedicinaUniversidad de la RepúblicaMontevideoUruguay
| | - Carmen Fons
- Pediatric Neurology DepartmentInstitut de Recerca, Hospital Sant Joan de Déu BarcelonaBarcelonaSpain
| | - Javier López Pisón
- Child Neurology ServiceHospital San Borja Arriarán, Universidad de ChileSantiagoChile
| | - Juan Darío Ortigoza‐Escobar
- Pediatric Neurology DepartmentHospital Infantil Universitario Miguel ServetZaragozaSpain
- Movement Disorders Unit, Pediatric Neurology DepartmentInstitut de Recerca, Hospital Sant Joan de Déu BarcelonaBarcelonaSpain
- U‐703 Centre for Biomedical Research on Rare Diseases (CIBER‐ER)Instituto de Salud Carlos IIIBarcelonaSpain
- European Reference Network for Rare Neurological Diseases (ERN‐RND)BarcelonaSpain
| |
Collapse
|
5
|
Two Perspectives on Dravet Syndrome: Viewpoints from the Clinician and the Caregiver. Neurol Ther 2023; 12:343-350. [PMID: 36795289 PMCID: PMC10043082 DOI: 10.1007/s40120-023-00450-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Dravet syndrome (DS) is a severe genetic epilepsy characterized by early-life onset, seizures, and neurodevelopmental delays that have major impacts on affected children. DS is an incurable condition that requires a lifelong multidisciplinary approach involving both clinical and caregiver support. A better understanding of the multiple perspectives involved in the care of patients is necessary for supporting the diagnosis, management, and treatment of DS. Here we describe the personal experiences of a caregiver and a clinician facing the challenges of diagnosing and treating a patient throughout the three phases of DS. During the initial phase, the main goals include establishing an accurate diagnosis, coordination of care, and communication between clinicians and caregivers. After a diagnosis is established, frequent seizures and developmental delays are a major concern in the second phase, which is very taxing on children and their caregivers, so caregivers require support and resources to advocate for safe and effective care. Seizures may improve in the third phase, but developmental, communication, and behavioral symptoms persist as caregivers navigate the eventual transition from pediatric to adult care. Optimal care for patients is provided when clinicians are well educated on the syndrome and collaboration is established between members of the medical team and family.
Collapse
|
6
|
Hanafusa H, Yamaguchi H, Kondo H, Nagasaka M, Juan Ye M, Oikawa S, Tokumoto S, Tomioka K, Nishiyama M, Morisada N, Matsuo M, Nozu K, Nagase H. Dravet syndrome and hemorrhagic shock and encephalopathy syndrome associated with an intronic deletion of SCN1A. Brain Dev 2023; 45:317-323. [PMID: 36774261 DOI: 10.1016/j.braindev.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVE Hemorrhagic shock and encephalopathy syndrome (HSES) is a serious condition that requires intensive care and is associated with a high mortality rate. However, its pathogenesis remains unclear. In the present study, a genetic analysis was performed to determine the genetic background of patients with clinically suspected Dravet syndrome (DS) who developed HSES. METHODS Whole exome sequencing was performed, followed by minigene analysis of the intron variant detected by whole exome sequencing to confirm its effect on splicing. RESULTS Whole exome sequencing revealed a novel 21-bp deletion in intron 3 of SCN1A NM_001165963.4 (NC_000002.11:g.166073675_166073695del). This deletion was not found in the patient's parents and was proven to be de novo. Minigene analysis revealed an aberrant mRNA lacking 40 and 106 bp from the 5' end of exon 4 of SCN1A. Therefore, we diagnosed this case as DS due to the deletion in intron 3 of SCN1A. CONCLUSIONS We report a case of DS with HSES caused by a 21-bp deletion in the intron of SCN1A that was confirmed by minigene analysis. The present case met Levin's criteria for HSES and the splicing analysis of SCN1A is an important finding. This study has important implications for understanding HSES pathogenesis.
Collapse
Affiliation(s)
- Hiroaki Hanafusa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Hiroshi Yamaguchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan.
| | - Hidehito Kondo
- Department of Pediatrics, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Miwako Nagasaka
- Department of Clinical and Molecular Genetics, Takatsuki General Hospital, Takatsuki, Japan
| | - Ming Juan Ye
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Shizuka Oikawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Shoichi Tokumoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Kazumi Tomioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Masahiro Nishiyama
- Department of Neurology, Hyogo Prefectural Kobe Children's Hospital, Hyogo, Japan
| | - Naoya Morisada
- Department of Genetics, Hyogo Prefectural Kobe Children's Hospital, Hyogo, Japan
| | - Masafumi Matsuo
- Department of Physical Rehabilitation and Research Center for Locomotion Biology, Kobe Gakuin University, Hyogo, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Hiroaki Nagase
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan
| |
Collapse
|
7
|
Mizuguchi M, Shibata A, Kasai M, Hoshino A. Genetic and environmental risk factors of acute infection-triggered encephalopathy. Front Neurosci 2023; 17:1119708. [PMID: 36761411 PMCID: PMC9902370 DOI: 10.3389/fnins.2023.1119708] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Acute encephalopathy is a constellation of syndromes in which immune response, metabolism and neuronal excitation are affected in a variable fashion. Most of the syndromes are complex disorders, caused or aggravated by multiple, genetic and environmental risk factors. Environmental factors include pathogenic microorganisms of the antecedent infection such as influenza virus, human herpesvirus-6 and enterohemorrhagic Escherichia coli, and drugs such as non-steroidal anti-inflammatory drugs, valproate and theophylline. Genetic factors include mutations such as rare variants of the SCN1A and RANBP2 genes, and polymorphisms such as thermolabile CPT2 variants and HLA genotypes. By altering immune response, metabolism or neuronal excitation, these factors complicate the pathologic process. On the other hand, some of them could provide promising targets to prevent or treat acute encephalopathy.
Collapse
Affiliation(s)
- Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Pediatrics, National Rehabilitation Center for Children With Disabilities, Tokyo, Japan,*Correspondence: Masashi Mizuguchi,
| | - Akiko Shibata
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Laboratory for Brain Development and Disorders, RIKEN Center for Brain Science, Tokyo, Japan
| | - Mariko Kasai
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Pediatrics, Saitama Citizens Medical Center, Saitama, Japan
| | - Ai Hoshino
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu, Japan
| |
Collapse
|
8
|
Malik P, Shroff M. Infection and inflammation: radiological insights into patterns of pediatric immune-mediated CNS injury. Neuroradiology 2023; 65:425-439. [PMID: 36534135 PMCID: PMC9761646 DOI: 10.1007/s00234-022-03100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
The central nervous system (CNS) undergoes constant immune surveillance enabled via regionally specialized mechanisms. These include selectively permissive barriers and modifications to interlinked innate and adaptive immune systems that detect and remove an inciting trigger. The end-points of brain injury and edema from these triggers are varied but often follow recognizable patterns due to shared underlying immune drivers. Imaging provides insights to understanding these patterns that often arise from unique interplays of infection, inflammation and genetics. We review the current updates in our understanding of these intersections and through examples of cases from our practice, highlight that infection and inflammation follow diverse yet convergent mechanisms that can challenge the CNS in children.
Collapse
Affiliation(s)
- Prateek Malik
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Manohar Shroff
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Chi H, Chang L, Chao YC, Lin DS, Yang HW, Fang LC, Lin CH, Ho CS, Yang KD. Pathogenesis and Preventive Tactics of Immune-Mediated Non-Pulmonary COVID-19 in Children and Beyond. Int J Mol Sci 2022; 23:14157. [PMID: 36430629 PMCID: PMC9696849 DOI: 10.3390/ijms232214157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
The COVID-19 pandemic has evolved to immune escape and threatened small children and the elderly with a higher severity and fatality of non-pulmonary diseases. These life-threatening non-pulmonary COVID-19 diseases such as acute necrotizing encephalopathies (ANE) and multisystem inflammatory syndrome in children (MIS-C) are more prevalent in children. However, the mortality of multisystem inflammatory syndrome in adults (MIS-A) is much higher than that of MIS-C although the incidence of MIS-A is lower. Clarification of immunopathogenesis and genetic susceptibility of inflammatory non-pulmonary COVID-19 diseases would provide an appropriate guide for the crisis management and prevention of morbidity and fatality in the ongoing pandemic. This review article described three inflammatory non-pulmonary COVID-19 diseases including (1) meningoencephalitis (ME), (2) acute necrotizing encephalopathies (ANE), and (3) post-infectious multisystem inflammatory syndrome in children (MIS-C) and in adults (MIS-A). To prevent these life-threatening non-pulmonary COVID-19 diseases, hosts carrying susceptible genetic variants should receive prophylactic vaccines, avoid febrile respiratory tract infection, and institute immunomodulators and mitochondrial cocktails as early as possible.
Collapse
Affiliation(s)
- Hsin Chi
- MacKay Children’s Hospital, Taipei 103, Taiwan
- Department of Medicine, MacKay Medical College, Sanzhi, New Taipei City 252, Taiwan
| | - Lung Chang
- Department of Medicine, MacKay Medical College, Sanzhi, New Taipei City 252, Taiwan
- Departments of Pediatrics and Medical Research, MacKay Memorial Hospital, TamSui, New Taipei City 251, Taiwan
| | - Yen-Chun Chao
- MacKay Children’s Hospital, Taipei 103, Taiwan
- Department of Medicine, MacKay Medical College, Sanzhi, New Taipei City 252, Taiwan
| | - Dar-Shong Lin
- Department of Medicine, MacKay Medical College, Sanzhi, New Taipei City 252, Taiwan
- Departments of Pediatrics and Medical Research, MacKay Memorial Hospital, TamSui, New Taipei City 251, Taiwan
| | - Horng-Woei Yang
- Departments of Pediatrics and Medical Research, MacKay Memorial Hospital, TamSui, New Taipei City 251, Taiwan
| | - Li-Chih Fang
- MacKay Children’s Hospital, Taipei 103, Taiwan
- Department of Medicine, MacKay Medical College, Sanzhi, New Taipei City 252, Taiwan
| | - Chia-Hsueh Lin
- Departments of Pediatrics and Medical Research, MacKay Memorial Hospital, TamSui, New Taipei City 251, Taiwan
| | - Che-Sheng Ho
- MacKay Children’s Hospital, Taipei 103, Taiwan
- Department of Medicine, MacKay Medical College, Sanzhi, New Taipei City 252, Taiwan
| | - Kuender D. Yang
- MacKay Children’s Hospital, Taipei 103, Taiwan
- Departments of Pediatrics and Medical Research, MacKay Memorial Hospital, TamSui, New Taipei City 251, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Microbiology & Immunology, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
10
|
The effectiveness of intravenous benzodiazepine for status epilepticus in Dravet syndrome. Brain Dev 2022; 44:319-328. [PMID: 35120772 DOI: 10.1016/j.braindev.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/28/2021] [Accepted: 01/16/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE We aimed to evaluate choice and efficacy of intravenous antiepileptic drugs (AEDs) for status epilepticus (SE) in Dravet syndrome and to find predictable clinical features demonstrating the effectiveness of benzodiazepine (BZD) for SE. METHODS We retrospectively investigated the medical records in patients with Dravet syndrome and evaluated the effectiveness rate of intravenous AEDs and the rate of adverse effects. To find the clinical features of BZD-effective SE, we divided the SE episodes into the following two groups: BZD effective group and BZD non-effective group. The choice of treatment was dependent on physicians' discretion according to the protocol for SE in our institution. RESULTS Sixty-eight SE episodes in 10 patients were assessed. The median age at SE was 31 months. Of 68 episodes, 42 episodes (61.8%) were in the BZD effective group and 26 (38.2%) in the BZD non-effective group. There were no significant differences in clinical features. In the BZD non-effective group, the effective rates of continuous midazolam, phenobarbital, phenytoin/fosphenytoin were 9/9 episodes (100%), 14/17 (82.4%), and 2/5 (40.0%), respectively. Adverse effects were identified in 19/68 episodes (27.9%), including 11/42 episodes in the BZD effective group and 8/26 in the BZD non-effective group, which was no statistical difference between the two groups. Respiratory suppression was found in all 19 episodes and the incidence of endotracheal intubation in the BZD non-effective group (15.4%) was higher than that in the BZD effective group (2.4%) (p = 0.046). CONCLUSION BZD may be used as first choice, and phenobarbital prior to continuous midazolam as second choice for SE with Dravet syndrome. There might be no predictable clinical features showing that BZD will be effective.
Collapse
|
11
|
Shukla P, Mandalla A, Elrick MJ, Venkatesan A. Clinical Manifestations and Pathogenesis of Acute Necrotizing Encephalopathy: The Interface Between Systemic Infection and Neurologic Injury. Front Neurol 2022; 12:628811. [PMID: 35058867 PMCID: PMC8764155 DOI: 10.3389/fneur.2021.628811] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Acute necrotizing encephalopathy (ANE) is a devastating neurologic condition that can arise following a variety of systemic infections, including influenza and SARS-CoV-2. Affected individuals typically present with rapid changes in consciousness, focal neurological deficits, and seizures. Neuroimaging reveals symmetric, bilateral deep gray matter lesions, often involving the thalami, with evidence of necrosis and/or hemorrhage. The clinical and radiologic picture must be distinguished from direct infection of the central nervous system by some viruses, and from metabolic and mitochondrial disorders. Outcomes following ANE are poor overall and worse in those with brainstem involvement. Specific management is often directed toward modulating immune responses given the potential role of systemic inflammation and cytokine storm in potentiating neurologic injury in ANE, though benefits of such approaches remain unclear. The finding that many patients have mutations in the nucleoporin gene RANBP2, which encodes a multifunctional protein that plays a key role in nucleocytoplasmic transport, may allow for the development of disease models that provide insights into pathogenic mechanisms and novel therapeutic approaches.
Collapse
Affiliation(s)
- Priya Shukla
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Abby Mandalla
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Matthew J Elrick
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Ding J, Li X, Tian H, Wang L, Guo B, Wang Y, Li W, Wang F, Sun T. SCN1A Mutation-Beyond Dravet Syndrome: A Systematic Review and Narrative Synthesis. Front Neurol 2021; 12:743726. [PMID: 35002916 PMCID: PMC8739186 DOI: 10.3389/fneur.2021.743726] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background: SCN1A is one of the most common epilepsy genes. About 80% of SCN1A gene mutations cause Dravet syndrome (DS), which is a severe and catastrophic epileptic encephalopathy. More than 1,800 mutations have been identified in SCN1A. Although it is known that SCN1A is the main cause of DS and genetic epilepsy with febrile seizures plus (GEFS+), there is a dearth of information on the other related diseases caused by mutations of SCN1A. Objective: The aim of this study is to systematically review the literature associated with SCN1A and other non-DS-related disorders. Methods: We searched PubMed and SCOPUS for all the published cases related to gene mutations of SCN1A until October 20, 2021. The results reported by each study were summarized narratively. Results: The PubMed and SCOPUS search yielded 2,889 items. A total of 453 studies published between 2005 and 2020 met the final inclusion criteria. Overall, 303 studies on DS, 93 on GEFS+, three on Doose syndrome, nine on the epilepsy of infancy with migrating focal seizures (EIMFS), six on the West syndrome, two on the Lennox-Gastaut syndrome (LGS), one on the Rett syndrome, seven on the nonsyndromic epileptic encephalopathy (NEE), 19 on hemiplegia migraine, six on autism spectrum disorder (ASD), two on nonepileptic SCN1A-related sudden deaths, and two on the arthrogryposis multiplex congenital were included. Conclusion: Aside from DS, SCN1A also causes other epileptic encephalopathies, such as GEFS+, Doose syndrome, EIMFS, West syndrome, LGS, Rett syndrome, and NEE. In addition to epilepsy, hemiplegic migraine, ASD, sudden death, and arthrogryposis multiplex congenital can also be caused by mutations of SCN1A.
Collapse
Affiliation(s)
- Jiangwei Ding
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xinxiao Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyan Tian
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Baorui Guo
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yangyang Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Wenchao Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Feng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
13
|
Epileptic Mechanisms Shared by Alzheimer's Disease: Viewed via the Unique Lens of Genetic Epilepsy. Int J Mol Sci 2021; 22:ijms22137133. [PMID: 34281185 PMCID: PMC8268161 DOI: 10.3390/ijms22137133] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Our recent work on genetic epilepsy (GE) has identified common mechanisms between GE and neurodegenerative diseases including Alzheimer's disease (AD). Although both disorders are seemingly unrelated and occur at opposite ends of the age spectrum, it is likely there are shared mechanisms and studies on GE could provide unique insights into AD pathogenesis. Neurodegenerative diseases are typically late-onset disorders, but the underlying pathology may have already occurred long before the clinical symptoms emerge. Pathophysiology in the early phase of these diseases is understudied but critical for developing mechanism-based treatment. In AD, increased seizure susceptibility and silent epileptiform activity due to disrupted excitatory/inhibitory (E/I) balance has been identified much earlier than cognition deficit. Increased epileptiform activity is likely a main pathology in the early phase that directly contributes to impaired cognition. It is an enormous challenge to model the early phase of pathology with conventional AD mouse models due to the chronic disease course, let alone the complex interplay between subclinical nonconvulsive epileptiform activity, AD pathology, and cognition deficit. We have extensively studied GE, especially with gene mutations that affect the GABA pathway such as mutations in GABAA receptors and GABA transporter 1. We believe that some mouse models developed for studying GE and insights gained from GE could provide unique opportunity to understand AD. These include the pathology in early phase of AD, endoplasmic reticulum (ER) stress, and E/I imbalance as well as the contribution to cognitive deficit. In this review, we will focus on the overlapping mechanisms between GE and AD, the insights from mutations affecting GABAA receptors, and GABA transporter 1. We will detail mechanisms of E/I imbalance and the toxic epileptiform generation in AD, and the complex interplay between ER stress, impaired membrane protein trafficking, and synaptic physiology in both GE and AD.
Collapse
|
14
|
Menezes LFS, Sabiá Júnior EF, Tibery DV, Carneiro LDA, Schwartz EF. Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Front Pharmacol 2020; 11:1276. [PMID: 33013363 PMCID: PMC7461817 DOI: 10.3389/fphar.2020.01276] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is a disease characterized by abnormal brain activity and a predisposition to generate epileptic seizures, leading to neurobiological, cognitive, psychological, social, and economic impacts for the patient. There are several known causes for epilepsy; one of them is the malfunction of ion channels, resulting from mutations. Voltage-gated sodium channels (NaV) play an essential role in the generation and propagation of action potential, and malfunction caused by mutations can induce irregular neuronal activity. That said, several genetic variations in NaV channels have been described and associated with epilepsy. These mutations can affect channel kinetics, modifying channel activation, inactivation, recovery from inactivation, and/or the current window. Among the NaV subtypes related to epilepsy, NaV1.1 is doubtless the most relevant, with more than 1500 mutations described. Truncation and missense mutations are the most observed alterations. In addition, several studies have already related mutated NaV channels with the electrophysiological functioning of the channel, aiming to correlate with the epilepsy phenotype. The present review provides an overview of studies on epilepsy-associated mutated human NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7.
Collapse
Affiliation(s)
- Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Elias Ferreira Sabiá Júnior
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Lilian Dos Anjos Carneiro
- Faculdade de Medicina, Centro Universitário Euro Americano, Brasília, Brazil.,Faculdade de Medicina, Centro Universitário do Planalto Central, Brasília, Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
15
|
Case-control association study of rare nonsynonymous variants of SCN1A and KCNQ2 in acute encephalopathy with biphasic seizures and late reduced diffusion. J Neurol Sci 2020; 414:116808. [PMID: 32276107 DOI: 10.1016/j.jns.2020.116808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 11/23/2022]
Abstract
PURPOSE Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) is characterized by prolonged febrile seizures at onset and subsequent damage to the cerebral cortex of infants and children. The pathogenesis is suspected to be excitotoxicity leading to neuronal death. SCN1A and KCNQ2 are causative genes of genetic epilepsy including Dravet syndrome and Ohtahara syndrome. Here we conducted a case-control rare-variant association study of the two genes in AESD. METHODS The coding regions of SCN1A and KCNQ2 were sequenced by the Sanger method for 175 and 111 patients, respectively, with AESD. As control subjects, we used genetic data from 3554 subjects provided by the Integrative Japanese Genome Variation Database (iJGVD). Then we performed a case-control association study of rare missense and splice region variants (minor allele frequency < 0.005) of each gene with AESD using Weighted Sum Statistics (WSS) and Sequence Kernel Association Test (SKAT). RESULTS SCN1A rare variants had a significant association with AESD after correction for multiple tests (WSS, permutated p value 4.00 × 10-3: SKAT, p value 2.51 × 10-4). The association was more significant when we focused on deleterious variants (WSS, permutated p = 9.00 × 10-4; SKAT, p = 4.99 × 10-5). Although KCNQ2 rare nonsynonymous variants tended to be more frequent in patients than in controls, there was no significant difference. CONCLUSION Our study provided statistical evidence of an association between SCN1A and AESD for the first time, and established SCN1A as one of the susceptibility genes for AESD.
Collapse
|
16
|
Knijnenburg ACS, Nicolai J, Bok LA, Bay A, Stegmann APA, Sinnema M, Vreeburg M. Acute encephalopathy after head trauma in a patient with a RHOBTB2 mutation. Neurol Genet 2020; 6:e418. [PMID: 32337345 PMCID: PMC7164965 DOI: 10.1212/nxg.0000000000000418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/26/2020] [Indexed: 11/17/2022]
Abstract
Objective De novo missense mutations in the RHOBTB2 gene have been described as causative for developmental and epileptic encephalopathy. Methods The clinical phenotype of this disorder includes early-onset epilepsy, severe intellectual disability, postnatal microcephaly, and movement disorder. Three RHOBTB2 patients have been described with acute encephalopathy and febrile epileptic status. All showed severe EEG abnormalities during this episode and abnormal MRI with hemisphere swelling or reduced diffusion in various brain regions. Results We describe the episode of acute encephalopathy after head trauma in a 5-year-old RHOBTB2 patient. At admission, Glasgow coma scale score was E4M4V1. EEG was severely abnormal showing a noncontinuous pattern with slow activity without epileptic activity indicating severe encephalopathy. A second EEG on day 8 was still severely slowed and showed focal delta activity frontotemporal in both hemispheres. Gradually, he recovered, and on day 11, he had regained his normal reactivity, behavior, and mood. Two months after discharge, EEG showed further decrease in slow activity and increase in normal electroencephalographic activity. After discharge, parents noted that he showed more hyperkinetic movements compared to before this period of encephalopathy. Follow-up MRI showed an increment of hippocampal atrophy. In addition, we summarize the clinical characteristics of a second RHOBTB2 patient with increase of focal periventricular atrophy and development of hemiparesis after epileptic status. Conclusions Acute encephalopathy in RHOBTB2 patients can also be triggered by head trauma.
Collapse
Affiliation(s)
- Annemarie C S Knijnenburg
- Department of Neurology (A.C.S.K., J.N.), Maastricht University Medical Center, Maastricht; Department of Pediatrics (L.A.B.), Màxima Medical Center, Veldhoven; and Department of Clinical Genetics (A.B., A.P.A.S., M.S., M.V.), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Joost Nicolai
- Department of Neurology (A.C.S.K., J.N.), Maastricht University Medical Center, Maastricht; Department of Pediatrics (L.A.B.), Màxima Medical Center, Veldhoven; and Department of Clinical Genetics (A.B., A.P.A.S., M.S., M.V.), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Levinus A Bok
- Department of Neurology (A.C.S.K., J.N.), Maastricht University Medical Center, Maastricht; Department of Pediatrics (L.A.B.), Màxima Medical Center, Veldhoven; and Department of Clinical Genetics (A.B., A.P.A.S., M.S., M.V.), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Akin Bay
- Department of Neurology (A.C.S.K., J.N.), Maastricht University Medical Center, Maastricht; Department of Pediatrics (L.A.B.), Màxima Medical Center, Veldhoven; and Department of Clinical Genetics (A.B., A.P.A.S., M.S., M.V.), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Alexander P A Stegmann
- Department of Neurology (A.C.S.K., J.N.), Maastricht University Medical Center, Maastricht; Department of Pediatrics (L.A.B.), Màxima Medical Center, Veldhoven; and Department of Clinical Genetics (A.B., A.P.A.S., M.S., M.V.), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Margje Sinnema
- Department of Neurology (A.C.S.K., J.N.), Maastricht University Medical Center, Maastricht; Department of Pediatrics (L.A.B.), Màxima Medical Center, Veldhoven; and Department of Clinical Genetics (A.B., A.P.A.S., M.S., M.V.), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Maaike Vreeburg
- Department of Neurology (A.C.S.K., J.N.), Maastricht University Medical Center, Maastricht; Department of Pediatrics (L.A.B.), Màxima Medical Center, Veldhoven; and Department of Clinical Genetics (A.B., A.P.A.S., M.S., M.V.), Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
17
|
Shibata A, Kasai M, Hoshino A, Miyagawa T, Matsumoto H, Yamanaka G, Kikuchi K, Kuki I, Kumakura A, Hara S, Shiihara T, Yamazaki S, Ohta M, Yamagata T, Takanashi JI, Kubota M, Oka A, Mizuguchi M. Thermolabile polymorphism of carnitine palmitoyltransferase 2: A genetic risk factor of overall acute encephalopathy. Brain Dev 2019; 41:862-869. [PMID: 31351739 DOI: 10.1016/j.braindev.2019.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/10/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Acute encephalopathy is an acute brain dysfunction after preceding infection, consisting of multiple syndromes. Some syndromes, such as acute encephalopathy with biphasic seizures and late reduced diffusion (AESD), are severe with poor outcome, whereas others, such as clinically mild encephalitis/encephalopathy with reversible splenial lesion (MERS), are mild with favorable outcome. Previous study reported the association of the thermolabile polymorphism in Carnitine Palmitoyltransferase 2 (CPT2) gene and severe syndromes of acute encephalopathy. To further explore the pathogenetic role of CPT2 in acute encephalopathy, we conducted a case-control association study of a typical thermolabile CPT2 polymorphism, rs2229291, in 416 patients of acute encephalopathy, including both severe and mild syndromes. METHODS The case cohort consisted of 416 patients, including AESD, MERS, and other syndromes. The control subjects were 100 healthy Japanese. rs2229291 was genotyped by Sanger sequencing. Genetic distribution was compared between the patients and controls using Cochran-Armitage trend test. RESULTS Minor allele frequency of rs2229291 was significantly higher in AESD (p = 0.044), MERS (p = 0.015) and entire acute encephalopathy (p = 0.044) compared to the controls. The polymorphism showed no significant association with influenza virus, or with outcome. CONCLUSIONS This study provided evidence that CPT2 is a susceptibility gene for overall acute encephalopathy, including both severe and mild syndromes, and suggested that impairment of mitochondrial metabolism is common to various syndromes of acute encephalopathy.
Collapse
Affiliation(s)
- Akiko Shibata
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Mariko Kasai
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ai Hoshino
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taku Miyagawa
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Matsumoto
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Gaku Yamanaka
- Department of Pediatrics, Tokyo Medical University, Tokyo, Japan
| | - Kenjiro Kikuchi
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Ichiro Kuki
- Department of Pediatrics, Osaka City General Hospital, Osaka, Japan
| | | | - Shinya Hara
- Department of Pediatrics, TOYOTA Memorial Hospital, Aichi, Japan
| | - Takashi Shiihara
- Department of Neurology, Gunma Children's Medical Center, Gunma, Japan
| | - Sawako Yamazaki
- Department of Pediatrics, Niigata Minami Hospital, Niigata, Japan
| | - Masayasu Ohta
- Department of Pediatrics, Aiseikai Memorial Ibaraki Welfare Medical Center, Ibaraki, Japan
| | | | - Jun-Ichi Takanashi
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Masaya Kubota
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Kurata H, Saito K, Kawashima F, Ikenari T, Oguri M, Saito Y, Maegaki Y, Mori T. Developing a mouse model of acute encephalopathy using low-dose lipopolysaccharide injection and hyperthermia treatment. Exp Biol Med (Maywood) 2019; 244:743-751. [PMID: 31046452 DOI: 10.1177/1535370219846497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
IMPACT STATEMENT Acute encephalopathy (AE), mainly reported in East Asia, is classified into four categories based on clinical and neuropathological findings. Among them, AE caused by cytokine storm is known as the severest clinical entity that causes cerebral edema with poor prognosis. Because suitable and convenient model animal of AE had not been developed, the treatment of patients with AE is not established. In the present study, we established a simple and convenient protocol to mimic AE due to cytokine storm. Our model animal should be useful to elucidate the pathogenesis of AE.
Collapse
Affiliation(s)
- Hirofumi Kurata
- 1 Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan.,2 Division of Child Neurology, Department of Brain and Neurosciences, Tottori University, Yonago 683-8504, Japan.,3 Department of Pediatrics, National Hospital Organization, Kumamoto Saishunso National Hospital, Koshi, 861-1196, Japan
| | - Kengo Saito
- 1 Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Fumiaki Kawashima
- 1 Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Takuya Ikenari
- 1 Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Masayoshi Oguri
- 4 Department of Pathobiological Science and Technology, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Yoshiaki Saito
- 2 Division of Child Neurology, Department of Brain and Neurosciences, Tottori University, Yonago 683-8504, Japan
| | - Yoshihiro Maegaki
- 2 Division of Child Neurology, Department of Brain and Neurosciences, Tottori University, Yonago 683-8504, Japan
| | - Tetsuji Mori
- 1 Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
19
|
Mezzomo NJ, Fontana BD, Kalueff AV, Barcellos LJ, Rosemberg DB. Understanding taurine CNS activity using alternative zebrafish models. Neurosci Biobehav Rev 2018; 90:471-485. [DOI: 10.1016/j.neubiorev.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Tian X, Ye J, Zeng Q, Zhang J, Yang X, Liu A, Yang Z, Liu X, Wu X, Zhang Y. The clinical outcome and neuroimaging of acute encephalopathy after status epilepticus in Dravet syndrome. Dev Med Child Neurol 2018; 60:566-573. [PMID: 29573403 DOI: 10.1111/dmcn.13727] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 12/01/2022]
Abstract
AIM To analyze the clinical outcome and neuroimaging over a long duration follow-up in the currently largest series of acute encephalopathy after status epilepticus in patients with Dravet syndrome. METHOD Clinical and neuroimaging data of patients with Dravet syndrome with a history of acute encephalopathy (coma >24h) after status epilepticus from February 2005 to December 2016 at Peking University First Hospital were reviewed retrospectively. RESULTS Thirty-five patients (15 males, 20 females) with a history of acute encephalopathy were enrolled from a total of 624 patients with Dravet syndrome (5.6%). The median onset age of acute encephalopathy was 3 years 1 month. The duration of status epilepticus varied between 40 minutes to 12 hours. Thirty-four patients had a high fever when status epilepticus occurred, and only one had a normal temperature. Coma lasted from 2 to 20 days. Twelve patients died and 23 survived with massive neurological regression. The median follow-up time was 2 years 1 month. Neuroimaging of 20 out of 23 survivors during the recovery phase showed diverse degrees of cortical atrophy with or without subcortical lesions. INTERPRETATION Acute encephalopathy after status epilepticus is more prone to occur in patients with Dravet syndrome who had a high fever. The mortality rate is high in severe cases. Survivors are left with severe neurological sequelae but often with either no seizure or low seizure frequency. WHAT THIS PAPER ADDS Acute encephalopathy is more prone to occur in patients with Dravet syndrome with a high fever. The mortality rate is high for acute encephalopathy after status epilepticus in patients with Dravet syndrome. Survivors have neurological sequelae.
Collapse
Affiliation(s)
- Xiaojuan Tian
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jintang Ye
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Qi Zeng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jing Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Aijie Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoyan Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiru Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
21
|
Fontana BD, Mezzomo NJ, Kalueff AV, Rosemberg DB. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Exp Neurol 2018; 299:157-171. [DOI: 10.1016/j.expneurol.2017.10.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 12/30/2022]
|
22
|
Abstract
Treatment and outcome of children with acute encephalopathy depend on the cause, prompt treatment of the underlying cause, and use of adequate supportive measures. Many novel causes of acute encephalopathy are emerging where lumbar puncture, computed tomography of the head, and routine biochemical testing can be normal such as acute disseminated encephalomyelitis and febrile infection-related refractory epilepsy syndrome. Magnetic resonance imaging (MRI) plays an important role in the workup of children with acute leukoencephalopathy. Despite this in few cases, a correct diagnosis is not possible and novel conditions have been described in the last decade. One such condition is acute encephalopathy with biphasic seizures and restricted diffusion also called as acute leukoencephalopathy with restricted diffusion. Here, the routine MRI sequences such as T1, T2, and fluid-attenuated inversion recovery sequences can be normal. Here, we have reviewed the etiology, types, clinicoradiological features, and treatment of this condition.
Collapse
Affiliation(s)
- Mahesh Kamate
- Department of Pediatrics, JN Medical College, KLE University, Belgaum, Karnataka, India
| |
Collapse
|
23
|
Understanding taurine CNS activity using alternative zebrafish models. Neurosci Biobehav Rev 2017; 83:525-539. [PMID: 28916270 DOI: 10.1016/j.neubiorev.2017.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/08/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022]
Abstract
Taurine is a highly abundant "amino acid" in the brain. Despite the potential neuroactive role of taurine in vertebrates has long been recognized, the underlying molecular mechanisms related to its pleiotropic effects in the brain remain poorly understood. Due to the genetic tractability, rich behavioral repertoire, neurochemical conservation, and small size, the zebrafish (Danio rerio) has emerged as a powerful candidate for neuropsychopharmacology investigation and in vivo drug screening. Here, we summarize the main physiological roles of taurine in mammals, including neuromodulation, osmoregulation, membrane stabilization, and antioxidant action. In this context, we also highlight how zebrafish models of brain disorders may present interesting approaches to assess molecular mechanisms underlying positive effects of taurine in the brain. Finally, we outline recent advances in zebrafish drug screening that significantly improve neuropsychiatric translational researches and small molecule screens.
Collapse
|
24
|
Hirayama Y, Saito Y, Maegaki Y. "Symptomatic" infection-associated acute encephalopathy in children with underlying neurological disorders. Brain Dev 2017; 39:243-247. [PMID: 27780632 DOI: 10.1016/j.braindev.2016.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/06/2016] [Accepted: 09/28/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Development of infection-associated acute encephalopathy (AE) is precipitated by several factors, including viral agents, age, and genetic polymorphisms. In addition, children with prior underlying neurological disorders can also present with AE. METHOD We reviewed 55 children with AE who were referred to hospitals participating in the Status Epilepticus Study Group from 1988 to 2013. AE was classified into eight subtypes: acute encephalopathy with biphasic seizures and late reduced diffusion (AESD); hemiconvulsion-hemiplegia syndrome (HH); acute necrotizing encephalopathy; hemorrhagic shock and encephalopathy syndrome (HSES); clinically mild encephalitis/encephalopathy with a reversible splenial lesion; acute encephalitis with refractory, repetitive partial seizures; Reye-like syndrome; and unclassified. RESULT Of the 55 AE cases, 14 (25.4%) had underlying neurological disorders, including perinatal insults (n=6) and genetic syndrome and/or brain malformations (n=8). These preceding morbidities were relatively common in AESD (6/18, 33.3%), HH (3/9, 33.3%), and HSES (3/6, 50.0%). History of epilepsy or febrile seizures were frequent in HH cases (4/9, 44.4%), whereas they were rare in other AE subtypes. CONCLUSION Among the AE subgroups, HH, HSES, and AESD frequently emerged in preceding etiologies with augmented neuronal excitability. These subgroups may have distinct pathomechanism from the "cytokine storm" mediated AEs during childhood.
Collapse
Affiliation(s)
- Yoshimichi Hirayama
- Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan; Department of Pediatrics, Naha City Hospital, Naha, Japan
| | - Yoshiaki Saito
- Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoshihiro Maegaki
- Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan.
| | | |
Collapse
|
25
|
Nishimura N, Higuchi Y, Kimura N, Nozaki F, Kumada T, Hoshino A, Saitoh M, Mizuguchi M. Familial acute necrotizing encephalopathy without RANBP2 mutation: Poor outcome. Pediatr Int 2016; 58:1215-1218. [PMID: 27882739 DOI: 10.1111/ped.13119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/29/2016] [Accepted: 06/07/2016] [Indexed: 11/28/2022]
Abstract
Most childhood cases of acute necrotizing encephalopathy (ANE) involve neither family history nor recurrence. ANE occasionally occurs, however, as a familial disorder or recurs in Caucasian patients. A mutation of RAN-binding protein 2 (RANBP2) has been discovered in more than one half of familial or recurrent ANE patients. In contrast, there has been no report of this mutation in East Asia. Here, we report the first sibling cases of typical ANE in Japan, with poor outcome. DNA analysis of genes associated with ANE or other encephalopathies, including RANBP2 and carnitine palmitoyl transferase II (CPT2), indicated neither mutations nor disease-related polymorphisms. On literature review, recurrent or familial ANE without the RANBP2 mutation has a more severe outcome and greater predilection for male sex than that with the RANBP2 mutation. This suggests that there are unknown gene mutations linked to ANE.
Collapse
Affiliation(s)
- Naoko Nishimura
- Division of Endocrinology and Metabolism, Aichi Children's Health and Medical Center, Aichi, Japan.,Department of Pediatrics, Otsu Red Cross Hospital, Shiga, Japan
| | | | - Nobusuke Kimura
- Department of Pediatrics, Otsu Red Cross Hospital, Shiga, Japan
| | - Fumihito Nozaki
- Department of Pediatrics, Shiga Medical Center for Children, Shiga, Japan
| | - Tomohiro Kumada
- Department of Pediatrics, Shiga Medical Center for Children, Shiga, Japan
| | - Ai Hoshino
- Department of Developmental Medical Sciences, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Makiko Saitoh
- Department of Developmental Medical Sciences, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Saitoh M, Kobayashi K, Ohmori I, Tanaka Y, Tanaka K, Inoue T, Horino A, Ohmura K, Kumakura A, Takei Y, Hirabayashi S, Kajimoto M, Uchida T, Yamazaki S, Shiihara T, Kumagai T, Kasai M, Terashima H, Kubota M, Mizuguchi M. Cytokine-related and sodium channel polymorphism as candidate predisposing factors for childhood encephalopathy FIRES/AERRPS. J Neurol Sci 2016; 368:272-6. [PMID: 27538648 DOI: 10.1016/j.jns.2016.07.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 11/15/2022]
Abstract
Febrile infection-related epilepsy syndrome (FIRES), or acute encephalitis with refractory, repetitive partial seizures (AERRPS), is an epileptic encephalopathy beginning with fever-mediated seizures. The etiology remains unclear. To elucidate the genetic background of FIRES/AERRPS (hereafter FIRES), we recruited 19 Japanese patients, genotyped polymorphisms of the IL1B, IL6, IL10, TNFA, IL1RN, SCN1A and SCN2A genes, and compared their frequency between the patients and controls. For IL1RN, the frequency of a variable number of tandem repeat (VNTR) allele, RN2, was significantly higher in the patients than in controls (p=0.0067), and A allele at rs4251981 in 5' upstream of IL1RN with borderline significance (p=0.015). Haplotype containing RN2 was associated with an increased risk of FIRES (OR 3.88, 95%CI 1.40-10.8, p=0.0057). For SCN1A, no polymorphisms showed a significant association, whereas a missense mutation, R1575C, was found in two patients. For SCN2A, the minor allele frequency of G allele at rs1864885 was higher in patients with borderline significance (p=0.011). We demonstrated the association of IL1RN haplotype containing RN2 with FIRES, and showed a possible association of IL1RN rs4251981 G>A and SCN2A rs1864885 A>G, in Japanese patients. These preliminary findings suggest the involvement of multiple genetic factors in FIRES, which needs to be confirmed by future studies in a larger number of FIRES cases.
Collapse
Affiliation(s)
- M Saitoh
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Japan.
| | - K Kobayashi
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - I Ohmori
- Department of Special Needs Education, Graduate School of Education, Okayama University, Japan
| | - Y Tanaka
- Department of Pediatrics, Ohta Nishinouchi General Hospital, Japan
| | - K Tanaka
- Department of Pediatrics, Ohta Nishinouchi General Hospital, Japan
| | - T Inoue
- Department of Pediatrics, Child Medical Center, Osaka City General Hospital, Japan
| | - A Horino
- Department of Pediatrics, Child Medical Center, Osaka City General Hospital, Japan
| | - K Ohmura
- Department of Pediatrics, Kishiwada City Hospital, Japan
| | - A Kumakura
- Department of Pediatrics, Kitano Hospital, Japan
| | - Y Takei
- Division of Neurology, Nagano Childrens' Hospital, Japan
| | - S Hirabayashi
- Division of Neurology, Nagano Childrens' Hospital, Japan
| | - M Kajimoto
- Department of Pediatrics, Yamaguchi University, Japan
| | - T Uchida
- Department of Pediatrics, Sendai City, Hospital, Japan
| | - S Yamazaki
- Department of Pediatrics, Niigata City Hospital, Japan
| | - T Shiihara
- Department of Neurology, Gunma Children's Medical Center, Japan
| | - T Kumagai
- Division of Neurology, National Center for Child Health and Development, Japan
| | - M Kasai
- Division of Neurology, National Center for Child Health and Development, Japan
| | - H Terashima
- Division of Neurology, National Center for Child Health and Development, Japan
| | - M Kubota
- Division of Neurology, National Center for Child Health and Development, Japan
| | - M Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
27
|
Advancing epilepsy treatment through personalized genetic zebrafish models. PROGRESS IN BRAIN RESEARCH 2016; 226:195-207. [PMID: 27323944 DOI: 10.1016/bs.pbr.2016.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With an increase in the number of disease causing genetic mutations identified from epilepsy cohorts, zebrafish are proving to be an attractive vertebrate model for functional analysis of these allele variants. Not only do zebrafish have conserved gene functions, but larvae harboring mutations in identified human epileptic genes show spontaneous seizure activity and mimic the convulsive behavioral movements observed in humans. With zebrafish being compatible with medium to high-throughput screening, they are also proving to be a unique and powerful system for early preclinical drug screening, including novel target identification, pharmacology, and toxicology. Additionally, with recent advances in genomic engineering technologies, it is now possible to study the precise pathophysiology of patient-specific gene mutations in zebrafish. The following sections highlight how the unique attributes of zebrafish, in combination with genetic modifications, are continuing to transform our understanding of epilepsy and help identify personalized therapeutics for specific patient cohorts.
Collapse
|
28
|
Yokochi T, Takeuchi T, Mukai J, Akita Y, Nagai K, Obu K, Kakuma T, Matsuishi T. Prediction of acute encephalopathy with biphasic seizures and late reduced diffusion in patients with febrile status epilepticus. Brain Dev 2016; 38:217-24. [PMID: 26242200 DOI: 10.1016/j.braindev.2015.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) is the most common subtype of acute encephalopathy among children in Japan. The pathogenesis of AESD is mostly delayed cerebral edema caused by excitotoxic injury. It is difficult to discriminate AESD and complex febrile seizure in the early phase. Many cases have neurologic sequelae because early intervention is difficult. METHODS To establish an early diagnostic method, we assessed 213 hospitalized cases of febrile status epilepticus (FSE) between January 2004 and August 2014. We categorized FSE cases into an AESD group and a non-AESD group and compared their clinical courses, laboratory data and cranial computed tomography (CT) findings. RESULTS Of 213 hospitalized FSE cases, 19 (9%) were AESD. Univariate analysis showed that the AESD group took a significantly longer time to wake after FSE, had a higher degree of respiratory acidemia, and higher levels of serum AST, ALT, LD, hyperglycemia and hyperammonemia than the non-AESD group. We developed a scoring model that predicts AESD based on multivariate analysis. Using cut-off points of 4 and more with this scoring model, we could identify the AESD cases with 93% sensitivity and 91% specificity. These scores also had a positive correlation with prognosis. DISCUSSION Our scoring model enables early diagnosis of AESD. Patients with high scores should be observed carefully and early intervention should be considered.
Collapse
Affiliation(s)
- Takaoki Yokochi
- Department of Pediatrics, St. Mary's Hospital, Fukuoka, Japan
| | | | - Jumpei Mukai
- Department of Pediatrics, St. Mary's Hospital, Fukuoka, Japan
| | - Yukihiro Akita
- Department of Pediatrics, St. Mary's Hospital, Fukuoka, Japan
| | - Kojiro Nagai
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Keizo Obu
- Department of Pediatrics, St. Mary's Hospital, Fukuoka, Japan
| | - Tatsuyuki Kakuma
- Center for Bio-Statistics, Kurume University School of Medicine, Fukuoka, Japan
| | - Toyojiro Matsuishi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan.
| |
Collapse
|
29
|
Omata T, Fujii K, Takanashi JI, Murayama K, Takayanagi M, Muta K, Kodama K, Iida Y, Watanabe Y, Shimojo N. Drugs indicated for mitochondrial dysfunction as treatments for acute encephalopathy with onset of febrile convulsive status epileptics. J Neurol Sci 2016; 360:57-60. [DOI: 10.1016/j.jns.2015.11.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/09/2015] [Accepted: 11/23/2015] [Indexed: 12/22/2022]
|
30
|
Missense mutations in sodium channel SCN1A and SCN2A predispose children to encephalopathy with severe febrile seizures. Epilepsy Res 2015; 117:1-6. [PMID: 26311622 DOI: 10.1016/j.eplepsyres.2015.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/21/2015] [Accepted: 08/02/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) is a childhood encephalopathy following severe febrile seizures. The pathogenesis of AESD is considered to be fever-induced seizure susceptibility and excitotoxicity, which may be caused by sodium channel dysfunction in some cases. Here we studied whether mutations in genes encoding sodium channels, SCN1A and SCN2A, predispose children to AESD. METHODS We recruited 92 AESD patients in a nationwide survey of acute encephalopathy in Japan from 2008 to 2011. We collected their genomic DNA samples, and sequenced the entire coding region of SCN1A and SCN2A. RESULTS Five out of 92 patients (5.4%) had missense mutations either in SCN1A or SCN2A. After a preceding infection with fever, all the patients showed status epilepticus at the onset. Hemiconvulsion-hemiplegia was recognized in three patients during the acute/subacute phase. One patient had taken theophylline for the treatment of bronchial asthma just before the onset of AESD. Familial history was not remarkable except one patient with a SCN1A mutation (G1647S) whose mother had a similar episode of AESD in her childhood. A different substitution (G1674R) at the same amino acid position, as well as two other SCN1A mutations found in this study, had previously been reported in Dravet syndrome. Another SCN1A mutation (R1575C) had been detected in other types of acute encephahlitis/encephalopathy. One patient had SCN2A mutation, F328V, which had previously been reported in Dravet syndrome. Another SCN2A mutation, I172V, was novel. None of the patients were diagnosed with Dravet syndrome or genetic (generalized) epilepsy with febrile seizure plus in the following-up period. CONCLUSIONS Mutations in SCN1A and SCN2A are a predisposing factor of AESD. Altered channel activity caused by these mutations may provoke seizures and excitotoxic brain damage.
Collapse
|
31
|
Dinday MT, Baraban SC. Large-Scale Phenotype-Based Antiepileptic Drug Screening in a Zebrafish Model of Dravet Syndrome. eNeuro 2015; 2:ENEURO.0068-15.2015. [PMID: 26465006 PMCID: PMC4596025 DOI: 10.1523/eneuro.0068-15.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 11/23/2022] Open
Abstract
Mutations in a voltage-gated sodium channel (SCN1A) result in Dravet Syndrome (DS), a catastrophic childhood epilepsy. Zebrafish with a mutation in scn1Lab recapitulate salient phenotypes associated with DS, including seizures, early fatality, and resistance to antiepileptic drugs. To discover new drug candidates for the treatment of DS, we screened a chemical library of ∼1000 compounds and identified 4 compounds that rescued the behavioral seizure component, including 1 compound (dimethadione) that suppressed associated electrographic seizure activity. Fenfluramine, but not huperzine A, also showed antiepileptic activity in our zebrafish assays. The effectiveness of compounds that block neuronal calcium current (dimethadione) or enhance serotonin signaling (fenfluramine) in our zebrafish model suggests that these may be important therapeutic targets in patients with DS. Over 150 compounds resulting in fatality were also identified. We conclude that the combination of behavioral and electrophysiological assays provide a convenient, sensitive, and rapid basis for phenotype-based drug screening in zebrafish mimicking a genetic form of epilepsy.
Collapse
Affiliation(s)
- Matthew T. Dinday
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California San Francisco, San Francisco, California 94143
| | - Scott C. Baraban
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California San Francisco, San Francisco, California 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California 94143
| |
Collapse
|
32
|
Fukasawa T, Kubota T, Negoro T, Saitoh M, Mizuguchi M, Ihara Y, Ishii A, Hirose S. A case of recurrent encephalopathy with SCN2A missense mutation. Brain Dev 2015; 37:631-4. [PMID: 25457084 DOI: 10.1016/j.braindev.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 11/16/2022]
Abstract
Voltage-gated sodium channels regulate neuronal excitability, as well as survival and the patterning of neuronal connectivity during development. Mutations in SCN2A, which encodes the Na(+) channel Nav1.2, cause epilepsy syndromes and predispose children to acute encephalopathy. Here, we report the case of a young male with recurrent acute encephalopathy who carried a novel missense mutation in the SCN2A gene. He was born by normal delivery and developed repetitive apneic episodes at 2days of age. Diffusion-weighted imaging revealed high-intensity areas in diffuse subcortical white matter, bilateral thalami, and basal nuclei. His symptoms improved gradually without any specific treatment, but he exhibited a motor milestone delay after the episode. At the age of 10months, he developed acute cerebellopathy associated with a respiratory syncytial viral infection. He received high-dose intravenous gammaglobulin and methylprednisolone pulse therapy and seemed to have no obvious sequelae after the episode. He then developed severe diffuse encephalopathy associated with gastroenteritis at the age of 14months. He received high-dose intravenous gammaglobulin and methylprednisolone pulse therapy but was left with severe neurological sequelae. PCR-based analysis revealed a novel de novo missense mutation, c.4979T>G (p.Leu1660Trp), in the SCN2A gene. This case suggests that SCN2A mutations might predispose children to repetitive encephalopathy with variable clinical and imaging findings.
Collapse
Affiliation(s)
| | - Tetsuo Kubota
- Department of Pediatrics, Anjo Kosei Hospital, Aichi, Japan
| | - Tamiko Negoro
- Department of Pediatrics, Anjo Kosei Hospital, Aichi, Japan
| | - Makiko Saitoh
- Department of Developmental Medical Sciences, Graduate School of Medicine, University of Tokyo, Japan
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, University of Tokyo, Japan
| | - Yukiko Ihara
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Atsushi Ishii
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shinichi Hirose
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
33
|
Saitoh M, Shinohara M, Ishii A, Ihara Y, Hirose S, Shiomi M, Kawawaki H, Kubota M, Yamagata T, Miyamoto A, Yamanaka G, Amemiya K, Kikuchi K, Kamei A, Akasaka M, Anzai Y, Mizuguchi M. Clinical and genetic features of acute encephalopathy in children taking theophylline. Brain Dev 2015; 37:463-70. [PMID: 25156649 DOI: 10.1016/j.braindev.2014.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/30/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Theophylline has recently been suspected as a risk factor of acute encephalopathy with biphasic seizures and late reduced diffusion (AESD), although there has been no systematic study on the relationship between acute encephalopathy in children taking theophylline (AET) and AESD. METHODS We recruited 16 Japanese patients (11 male and 5 female, median age of 2 years and 7 months) with AET from 2008 to 2013. We evaluated their clinical features, such as the duration of first seizure, biphasic clinical course and cranial CT/MRI imaging and compared them with those of AESD. We analyzed the polymorphisms or mutations of genes which are associated with AESD. RESULTS Clinically, 12 patients had neurological and/or radiological features of AESD. Only one patient died, whereas all 15 surviving patients were left with motor and/or intellectual deficits. Genetically, 14 patients had at least one of the following polymorphisms or mutations associated with AESD: thermolabile variation of the carnitine palmitoyltransferase 2 (CPT2) gene, polymorphism causing high expression of the adenosine receptor A2A (ADORA2A) gene, and heterozygous missense mutation of the voltage gated sodium channel 1A (SCN1A) and 2A (SCN2A) gene. CONCLUSIONS Our results demonstrate that AET overlaps with AESD, and that AET is a multifactorial disorder sharing a genetic background with AESD.
Collapse
Affiliation(s)
- Makiko Saitoh
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Japan.
| | - Mayu Shinohara
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Japan
| | | | - Yukiko Ihara
- Department of Pediatrics, Fukuoka University, Japan
| | | | - Masashi Shiomi
- Department of Pediatrics, Child Medical Center, Osaka City General Hospital, Japan
| | - Hisashi Kawawaki
- Department of Pediatric Neurology, Child Medical Center, Osaka City General Hospital, Japan
| | - Masaya Kubota
- Department of Neurology, National Center for Child Health and Development, Japan
| | | | - Akie Miyamoto
- Department of Pediatrics, Asahikawa Habilitation Center for Disabled Children, Japan
| | - Gaku Yamanaka
- Department of Pediatrics, Tokyo Medical University, Japan
| | - Kaoru Amemiya
- Department of Neurology, Tokyo Metropolitan Hachioji Children's Hospital, Japan
| | - Kenjiro Kikuchi
- Division of Neurology, Saitama Children's Medical Center, Japan
| | - Atsushi Kamei
- Department of Pediatrics, Iwate Medical University, Japan
| | - Manami Akasaka
- Department of Pediatrics, Iwate Medical University, Japan
| | - Yuki Anzai
- Department of Pediatrics, Saiseikai Yokohamashi Tobu Hospital, Japan
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
34
|
Elevated serum levels of neutrophil elastase in patients with influenza virus-associated encephalopathy. J Neurol Sci 2015; 349:190-5. [DOI: 10.1016/j.jns.2015.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 12/12/2022]
|
35
|
Tachibana Y, Aida N, Niwa T, Nozawa K, Kusagiri K, Mori K, Endo K, Obata T, Inoue T. Analysis of multiple B-value diffusion-weighted imaging in pediatric acute encephalopathy. PLoS One 2013; 8:e63869. [PMID: 23755112 PMCID: PMC3670889 DOI: 10.1371/journal.pone.0063869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/07/2013] [Indexed: 11/18/2022] Open
Abstract
Acute encephalopathy is a disease group more commonly seen in children. It is often severe and has neurological sequelae. Imaging is important for early diagnosis and prompt treatment to ameliorate an unfavorable outcome, but insufficient sensitivity/specificity is a problem. To overcome this, a new value (fraction of high b-pair (FH)) that could be processed from clinically acceptable MR diffusion-weighted imaging (DWI) with three different b-values was designed on the basis of a two-compartment model of water diffusion signal attenuation. The purpose of this study is to compare FH with the apparent diffusion coefficient (ADC) regarding the detectability of pediatric acute encephalopathy. We retrospectively compared the clinical DWI of 15 children (1–10 years old, mean 2.34, 8 boys, 7 girls) of acute encephalopathy with another 16 children (1–11 years old, mean 4.89, 9 boys, 7 girls) as control. A comparison was first made visually by mapping FH on the brain images, and then a second comparison was made on the basis of 10 regions of interest (ROIs) set on cortical and subcortical areas of each child. FH map visually revealed diffusely elevated FH in cortical and subcortical areas of the patients with acute encephalopathy; the changes seemed more diffuse in FH compared to DWI. The comparison based on ROI revealed elevated mean FH in the cortical and subcortical areas of the acute encephalopathy patients compared to control with significant difference (P<0.05). Similar findings were observed even in regions where the findings of DWI were slight. The reduction of mean ADC was significant in regions with severe findings in DWI, but it was not constant in the areas with slighter DWI findings. The detectability of slight changes of cortical and subcortical lesions in acute encephalopathy may be superior in FH compared to ADC.
Collapse
Affiliation(s)
- Yasuhiko Tachibana
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Saito T, Saito Y, Sugai K, Nakagawa E, Komaki H, Okazaki T, Ishido Y, Kaneko Y, Kaido T, Takahashi A, Ohtsuki T, Sakuma H, Sasaki M. Late-onset epilepsy in children with acute febrile encephalopathy with prolonged convulsions: A clinical and encephalographic study. Brain Dev 2013; 35:531-9. [PMID: 22982002 DOI: 10.1016/j.braindev.2012.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 11/19/2022]
Abstract
The aim of this study is to analyze the characteristics of epilepsies as the sequelae of acute febrile encephalopathy with prolonged convulsions during childhood. Sixteen patients (M:F=9:7) aged 2-13years (mean 6.1years) with history of febrile acute encephalopathy were retrospectively reviewed. These patients experienced febrile encephalopathy at the age of 11months to 4years, with 11 individuals presenting with findings of a biphasic clinical course (n=5), frontal predominant (n=8) lesions, and/or reduced diffusivity in the cerebral white matter on magnetic resonance imaging (MRI; n=3). The remaining 5 patients had unilateral lesions that manifested the phenotype of hemiconvulsion-hemiplegia-epilepsy syndrome (HHES). Epilepsy emerged with a latent period of 2months to 2years after the acute phase of febrile encephalopathy. Head nodding or spasm with subsequent motion arrest and brief tonic seizures were the main seizure phenotypes. Ictal records of epileptic seizures were available in 9 patients. Epileptiform discharges with a focal or uneven distribution appeared at the seizure onset and lasted less than 1s in all patients; these were followed by either generalized attenuation or fast activity in 8 patients with head nodding, spasm, or brief tonic seizures, and by localized fast activity in 1 patient with versive tonic seizures. Notably, the seizure onset area was often located outside the severe lesions on MRI, i.e., in the parietal areas in patients with frontal predominant lesions, and in the spared hemisphere of HHES. Although phenobarbital, zonisamide, carbamazepine, clobazam, clonazepam, and clorazepate were partially effective in some patients, daily seizures persisted in 11 patients. Callosotomy was performed in 2 patients, and beneficial effects were observed in both. These characteristics suggested a broad distribution of augmented excitability in these patients, resulting in the rapid propagation of epileptic activity in the initial phase of ictal phenomena. Thus, this study investigates the most severe subgroup of epilepsy following febrile acute encephalopathy and provides the basis for further exploration of the pathogenesis and treatment of characteristic seizures in this population.
Collapse
Affiliation(s)
- Takashi Saito
- Department of Child Neurology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kobayashi K, Ohzono H, Shinohara M, Saitoh M, Ohmori I, Ohtsuka Y, Mizuguchi M. Acute encephalopathy with a novel point mutation in the SCN2A gene. Epilepsy Res 2012; 102:109-12. [DOI: 10.1016/j.eplepsyres.2012.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/19/2012] [Accepted: 04/21/2012] [Indexed: 12/23/2022]
|