1
|
Sigström R, Göteson A, Joas E, Pålsson E, Liberg B, Nordenskjöld A, Blennow K, Zetterberg H, Landén M. Blood biomarkers of neuronal injury and astrocytic reactivity in electroconvulsive therapy. Mol Psychiatry 2025; 30:1601-1609. [PMID: 39363047 PMCID: PMC11919754 DOI: 10.1038/s41380-024-02774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Despite electroconvulsive therapy (ECT) being recognized as an effective treatment for major depressive episodes (MDE), its application is subject to controversy due to concerns over cognitive side effects. The pathophysiology of these side effects is not well understood. Here, we examined the effects of ECT on blood-based biomarkers of neuronal injury and astrocytic reactivity. Participants with a major depressive episode (N = 99) underwent acute ECT. Blood was sampled just before (T0) and 30 min after (T1) the first ECT session, as well as just before the sixth session (T2; 48-72 h after the fifth session). Age- and sex-matched controls (N = 99) were recruited from the general population. Serum concentrations of neurofilament light chain (NfL), total tau protein, and glial fibrillary acidic protein (GFAP) were measured with ultrasensitive single-molecule array assays. Utilizing generalized least squares regression, we compared baseline (T0) biomarker concentrations against those of our control group, and calculated the shifts in serum biomarker concentrations from baseline to immediately post-first ECT session (T1), and prior to the sixth session (T2). Baseline analysis revealed that serum levels of NfL (p < 0.001) and tau (p = 0.036) were significantly elevated in ECT recipients compared with controls, whereas GFAP levels showed no significant difference. Relative to T0, serum NfL concentration neither changed at T1 (mean change 3.1%, 95%CI -0.5% to 6.7%, p = 0.088) nor at T2 (mean change -3.2%, 95%CI -7.6% to 1.5%, p = 0.18). Similarly, no change in total tau was observed (mean change 3.7%, 95%CI -11.6% to 21.7%, p = 0.65). GFAP increased from T0 to T1 (mean change 20.3%, 95%CI 14.6 to 26.3%, p < 0.001), but not from T0 to T2 (mean change -0.7%, 95%CI -5.8% to 4.8%, p = 0.82). In conclusion, our findings suggest that ECT induces a temporary increase in serum GFAP, possibly reflecting transient astrocytic activation. Importantly, we observed no indicators of neuronal damage or long-term elevation in any assessed biomarker.
Collapse
Affiliation(s)
- Robert Sigström
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Affective Disorders, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Andreas Göteson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erik Joas
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erik Pålsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Benny Liberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Axel Nordenskjöld
- University Health Care Research Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Chen Y, Nie Q, Song T, Zou X, Li Q, Zhang P. Integrated Proteomics and Lipidomics Analysis of Hippocampus to Reveal the Metabolic Landscape of Epilepsy. ACS OMEGA 2025; 10:9351-9367. [PMID: 40092809 PMCID: PMC11904687 DOI: 10.1021/acsomega.4c10085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025]
Abstract
Epilepsy encompasses a spectrum of chronic brain disorders characterized by transient central nervous system dysfunctions induced by recurrent, aberrant, synchronized neuronal discharges. Hippocampal sclerosis (HS) is identified as the predominant pathological alteration in epilepsy, particularly in temporal lobe epilepsy. This study investigates the metabolic profiles of epileptic hippocampal tissues using proteomics and lipidomics techniques. An epilepsy model was established in Sprague-Dawley (SD) rats via intraperitoneal injection of pentylenetetrazole (PTZ), with hippocampal tissue samples subsequently extracted for histopathological examination. Proteomics analysis was conducted using isobaric tags for relative and absolute quantitation (iTRAQ) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), while lipidomics analysis employed ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC Q-TOF/MS). Proteomic analysis identified 144 proteins with significant differential expression in acute epileptic hippocampal tissue and 83 proteins in chronic epileptic hippocampal tissue. Key proteins, including neurofilament heavy (Nefh), vimentin (Vim), gelsolin (Gsn), NAD-dependent protein deacetylase (Sirt2), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (Cnp), myocyte enhancer factor 2D (Mef2d), and Cathepsin D (Ctsd), were pivotal in epileptic hippocampal tissue injury and validated through parallel reaction monitoring (PRM). Concurrently, lipid metabolomics analysis identified 32 metabolites with significant differential expression in acute epileptic hippocampal tissue and 61 metabolites in chronic epileptic hippocampal tissue. Bioinformatics analysis indicated that glycerophospholipid (GP) metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, and glycerolipid (GL) metabolism were crucial in epileptic hippocampal tissue injury. Integrated proteomics and lipidomics analysis revealed key protein-lipid interactions in acute and chronic epilepsy and identified critical pathways such as sphingolipid signaling, autophagy, and calcium signaling. These findings provide deeper insights into the pathophysiological mechanisms of epileptic hippocampal tissue damage, potentially unveiling novel therapeutic avenues for clinicians.
Collapse
Affiliation(s)
- Yinyu Chen
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Qianyun Nie
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
- Department
of Pathology, School of Basic Medicine and Life Sciences, Hainan Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199 Hainan, China
| | - Tao Song
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Xing Zou
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Qifu Li
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Peng Zhang
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| |
Collapse
|
3
|
Hurła M, Pikor D, Banaszek-Hurła N, Drelichowska A, Dorszewska J, Kozubski W, Kacprzak E, Paul M. Unraveling the Role of Proteinopathies in Parasitic Infections. Biomedicines 2025; 13:610. [PMID: 40149586 PMCID: PMC11940292 DOI: 10.3390/biomedicines13030610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Proteinopathies, characterized by the misfolding, aggregation, and deposition of proteins, are hallmarks of various neurodegenerative and systemic diseases. Increasingly, research has highlighted the role of protein misfolding in parasitic infections, unveiling intricate interactions between host and parasite that exacerbate disease pathology and contribute to chronic outcomes. The life cycles of parasitic protozoa, including Plasmodium, Toxoplasmosis, and Leishmania species, are complicated and involve frequent changes between host and vector environments. Their proteomes are severely stressed during these transitions, which calls for highly specialized protein quality control systems. In order to survive harsh intracellular conditions during infection, these parasites have been demonstrated to display unique adaptations in the unfolded protein response, a crucial pathway controlling endoplasmic reticulum stress. In addition to improving parasite survival, these adaptations affect host cell signaling and metabolism, which may jeopardize cellular homeostasis. By causing oxidative stress, persistent inflammation, and disturbance of cellular proteostasis, host-parasite interactions also contribute to proteinopathy. For instance, Plasmodium falciparum disrupts normal protein homeostasis and encourages the accumulation of misfolded proteins by influencing host redox systems involved in protein folding. In addition to interfering with host chaperone systems, the parasitic secretion of effector proteins exacerbates protein misfolding and aggregate formation. Autophagy, apoptosis regulation, organelle integrity, and other vital cellular processes are all disrupted by these pathological protein aggregates. Long-term misfolding and aggregation can cause irreversible tissue damage, which can worsen the clinical course of illnesses like visceral leishmaniasis, cerebral malaria, and toxoplasmosis. Treating parasite-induced proteinopathies is a potentially fruitful area of therapy. According to recent research, autophagy modulators, proteasome enhancers, and small-molecule chaperones may be repurposed to lessen these effects. Pharmacological agents that target the UPR, for example, have demonstrated the ability to decrease parasite survival while also reestablishing host protein homeostasis. Targeting the proteins secreted by parasites that disrupt host proteostasis may also offer a novel way to stop tissue damage caused by proteinopathies. In conclusion, the intersection of protein misfolding and parasitic infections represents a rapidly advancing field of research. Dissecting the molecular pathways underpinning these processes offers unprecedented opportunities for developing innovative therapies. These insights could not only transform the management of parasitic diseases but also contribute to a broader understanding of proteinopathies in infectious and non-infectious diseases alike.
Collapse
Affiliation(s)
- Mikołaj Hurła
- Department of Tropical and Parasitic Diseases, Central University Hospital, Przybyszewskiego 49, 61-701 Poznan, Poland
| | - Damian Pikor
- Department of Internal Medicine, University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Natalia Banaszek-Hurła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Alicja Drelichowska
- Student Scientific Society of Poznan, University of Medical Sciences, 60-806 Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Elżbieta Kacprzak
- Department of Tropical and Parasitic Diseases, Central University Hospital, Przybyszewskiego 49, 61-701 Poznan, Poland
| | - Małgorzata Paul
- Department of Internal Medicine, University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| |
Collapse
|
4
|
Imsamer A, Sitthinamsuwan B, Tansirisithikul C, Nunta-Aree S. Risk factors of posthemorrhagic seizure in spontaneous intracerebral hemorrhage. Neurosurg Rev 2025; 48:76. [PMID: 39847089 PMCID: PMC11757938 DOI: 10.1007/s10143-025-03229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Seizure is a relatively common neurological consequence after spontaneous intracerebral hemorrhage (SICH). This study aimed to investigate risk factors of early, late, and overall seizures in patients with SICH. Retrospective analysis was performed on all patients with SICH who completed two years of follow-up. The variables collected were obtained from demographic, clinical, radiographic and treatment data, in-hospital complications, and follow-up results. Univariate and multivariate analyzes were used to identify risk factors for post-hemorrhagic stroke seizure. Of 400 SICH patients recruited, 30 (7.5%) and 40 (10%) developed early and late seizures during the 2-year follow-up period, respectively. In the final result of the multivariate analysis, factors associated with the occurrence of the early seizure included lobar location of hematoma (p = 0.018), and GCS ≤ 12 on initial clinical presentation (p = 0.007). Factors associated with the occurrence of the late seizure included lobar location of hematoma (p = 0.001), volume of hematoma greater than 10 ml (p = 0.009), and midline shift on initial cranial CT (p = 0.036). Risk factors of the overall seizure after SICH included lobar location of hematoma (p < 0.001), volume of hematoma greater than 10 ml (p < 0.001), and craniotomy with evacuation of hematoma (p = 0.007). Furthermore, seizure was also associated with a poor functional outcome 2 years after the onset of SICH. Several factors associated with the appearance of post-ICH seizures were revealed. In patients with increased risk of post-SICH seizures, appropriate surveillance and management of seizures should be carried out.
Collapse
Affiliation(s)
- Apisut Imsamer
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Road, Bangkok Noi, Bangkok, 10700, Thailand
- Department of Surgery, Vachira Phuket Hospital, Phuket, Thailand
| | - Bunpot Sitthinamsuwan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Road, Bangkok Noi, Bangkok, 10700, Thailand.
| | - Chottiwat Tansirisithikul
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Sarun Nunta-Aree
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Road, Bangkok Noi, Bangkok, 10700, Thailand
| |
Collapse
|
5
|
Heiskanen M, Banuelos I, Manninen E, Andrade P, Hämäläinen E, Puhakka N, Pitkänen A. Plasma neurofilament heavy chain is a prognostic biomarker for the development of severe epilepsy after experimental traumatic brain injury. Epilepsia 2024; 65:3703-3716. [PMID: 39401067 DOI: 10.1111/epi.18149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE This study was undertaken to test whether the postinjury plasma concentration of phosphorylated neurofilament heavy chain (pNF-H), a marker of axonal injury, is a prognostic biomarker for the development of posttraumatic epilepsy. METHODS Tail vein plasma was sampled 48 h after traumatic brain injury (TBI) from 143 rats (10 naïve, 21 controls, 112 with lateral fluid percussion injury) to quantify pNF-H by enzyme-linked immunosorbent assay. During the 6th postinjury month, rats underwent 30 days of continuous video-electroencephalographic monitoring to detect unprovoked seizures and evaluate epilepsy severity. Somatomotor (composite neuroscore) and spatial memory (Morris water maze) testing and quantitative T2 magnetic resonance imaging were performed to assess comorbidities and lesion severity. RESULTS Of the 112 TBI rats, 25% (28/112) developed epilepsy (TBI+) and 75% (84/112) did not (TBI-). Plasma pNF-H concentrations were higher in TBI+ rats than in TBI- rats (p < .05). Receiver operating characteristic curve analysis indicated that plasma pNF-H concentration distinguished TBI+ rats from TBI- rats (area under the curve [AUC] = .647, p < .05). Differentiation was stronger when comparing TBI+ rats exhibiting severe epilepsy (≥3 seizures/month) with all other TBI rats (AUC = .732, p < .01). Plasma pNF-H concentration on day 2 (D2) distinguished TBI+ rats with seizure clusters from other TBI rats (AUC = .732, p < .05). Higher plasma pNF-H concentration on D2 after TBI correlated with lower neuroscores on D2 (p < .001), D6 (p < .001), and D14 (p < .01). Higher pNF-H concentration on D2 correlated with greater T2 signal abnormality volume on D2 (p < .001) and D7 (p < .01) and larger cortical lesion area on D182 (p < .01). Plasma pNF-H concentration on D2 did not correlate with Morris water maze performance on D37-D39. SIGNIFICANCE Plasma pNF-H is a promising clinically translatable prognostic biomarker for the development of posttraumatic epilepsy with frequent seizures or seizure clusters.
Collapse
Affiliation(s)
- Mette Heiskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ivette Banuelos
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eppu Manninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pedro Andrade
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elina Hämäläinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Chaudhary A, Mehra P, Keshri AK, Rawat SS, Mishra A, Prasad A. The Emerging Role of Toll-Like Receptor-Mediated Neuroinflammatory Signals in Psychiatric Disorders and Acquired Epilepsy. Mol Neurobiol 2024; 61:1527-1542. [PMID: 37725212 DOI: 10.1007/s12035-023-03639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
The new and evolving paradigms of psychiatric disorders pathogenesis are deeply inclined toward chronic inflammation that leads to disturbances in the neuronal networks of patients. A strong association has been established between the inflammation and neurobiology of depression which is mediated by different toll-like receptors (TLRs). TLRs and associated signalling pathways are identified as key immune regulators to stress and infections in neurobiology. They are a special class of transmembrane proteins, which are one of the broadly studied members of the Pattern Recognition Patterns family. This review focuses on summarizing the important findings on the role of TLRs associated with psychotic disorders and acquired epilepsy. This review also shows the promising potential of TLRs in immune response mediated through antidepressant therapies and TLRs polymorphism associated with various psychotic disorders. Moreover, this also sheds light on future directions to further target TLRs as a therapeutic approach for psychiatric disorders.
Collapse
Affiliation(s)
- Anubha Chaudhary
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Parul Mehra
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Anand K Keshri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Suraj S Rawat
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342011, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
- Indian Knowledge System and Mental Health Application Centre, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
- Human Computer Interface Centre, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
| |
Collapse
|
7
|
Akel S, Asztely F, Banote RK, Axelsson M, Zetterberg H, Zelano J. Neurofilament light, glial fibrillary acidic protein, and tau in a regional epilepsy cohort: High plasma levels are rare but related to seizures. Epilepsia 2023; 64:2690-2700. [PMID: 37469165 DOI: 10.1111/epi.17713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE Higher levels of biochemical blood markers of brain injury have been described immediately after tonic-clonic seizures and in drug-resistant epilepsy, but the levels of such markers in epilepsy in general have not been well characterized. We analyzed neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and tau in a regional hospital-based epilepsy cohort and investigated what proportion of patients have levels suggesting brain injury, and whether certain epilepsy features are associated with high levels. METHODS Biomarker levels were measured in 204 patients with an epilepsy diagnosis participating in a prospective regional biobank study, with age and sex distribution correlating closely to that of all patients seen for epilepsy in the health care region. Absolute biomarker levels were assessed between two patient groups: patients reporting seizures within the 2 months preceding inclusion and patients who did not have seizures for more than 1 year. We also assessed the proportion of patients with above-normal levels of NfL. RESULTS NfL and GFAP, but not tau, increased with age. Twenty-seven patients had abnormally high levels of NfL. Factors associated with such levels were recent seizures (p = .010) and epileptogenic lesion on radiology (p = .001). Levels of NfL (p = .006) and GFAP (p = .032) were significantly higher in young patients (<65 years) with seizures ≤2 months before inclusion compared to those who reported no seizures for >1 year. NfL and GFAP correlated weakly with the number of days since last seizure (NfL: rs = -.228, p = .007; GFAP: rs = -.167, p = .048) in young patients. NfL also correlated weakly with seizure frequency in the last 2 months (rs = .162, p = .047). SIGNIFICANCE Most patients with epilepsy do not have biochemical evidence of brain injury. The association with seizures merits further study; future studies should aim for longitudinal sampling and examine whether individual variations in NfL or GFAP levels could reflect seizure activity.
Collapse
Affiliation(s)
- Sarah Akel
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Asztely
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rakesh Kumar Banote
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Johan Zelano
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center of Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
8
|
Giovannini G, Meletti S. Fluid Biomarkers of Neuro-Glial Injury in Human Status Epilepticus: A Systematic Review. Int J Mol Sci 2023; 24:12519. [PMID: 37569895 PMCID: PMC10420319 DOI: 10.3390/ijms241512519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
As per the latest ILAE definition, status epilepticus (SE) may lead to long-term irreversible consequences, such as neuronal death, neuronal injury, and alterations in neuronal networks. Consequently, there is growing interest in identifying biomarkers that can demonstrate and quantify the extent of neuronal and glial injury. Despite numerous studies conducted on animal models of status epilepticus, which clearly indicate seizure-induced neuronal and glial injury, as well as signs of atrophy and gliosis, evidence in humans remains limited to case reports and small case series. The implications of identifying such biomarkers in clinical practice are significant, including improved prognostic stratification of patients and the early identification of those at high risk of developing irreversible complications. Moreover, the clinical validation of these biomarkers could be crucial in promoting neuroprotective strategies in addition to antiseizure medications. In this study, we present a systematic review of research on biomarkers of neuro-glial injury in patients with status epilepticus.
Collapse
Affiliation(s)
- Giada Giovannini
- Neurology Department, Azienda Ospedaliera-Universitaria di Modena, 41126 Modena, Italy;
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio-Emilia, 41121 Modena, Italy
| | - Stefano Meletti
- Neurology Department, Azienda Ospedaliera-Universitaria di Modena, 41126 Modena, Italy;
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, 41121 Modena, Italy
| |
Collapse
|
9
|
Geis T, Gutzeit S, Fouzas S, Ambrosch A, Benkert P, Kuhle J, Wellmann S. Serum Neurofilament light chain (NfL) levels in children with and without neurologic diseases. Eur J Paediatr Neurol 2023; 45:9-13. [PMID: 37236127 DOI: 10.1016/j.ejpn.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/10/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND/OBJECTIVE Serum neurofilament light chain (sNfL) is a specific biomarker of neuronal damage. Elevated sNfL levels have been reported in numerous neurologic diseases in adults, whereas data on sNfL in the pediatric population are incomplete. The aim of this study was to investigate sNfL levels in children with various acute and chronic neurologic disorders and describe the age dependence of sNfL from infancy to adolescence. METHODS The total study cohort of this prospective cross-sectional study consisted of 222 children aged from 0 to 17 years. Patients' clinical data were reviewed and patients were assigned to the following groups: 101 (45.5%) controls, 34 (15.3%) febrile controls, 23 (10.4%) acute neurologic conditions (meningitis, facial nerve palsy, traumatic brain injury, or shunt dysfunction in hydrocephalus), 37 (16.7%) febrile seizures, 6 (2.7%) epileptic seizures, 18 (8.1%) chronic neurologic conditions (autism, cerebral palsy, inborn mitochondrial disorder, intracranial hypertension, spina bifida, or chromosomal abnormalities), and 3 (1.4%) severe systemic disease. sNfL levels were measured using a sensitive single-molecule array assay. RESULTS There were no significant differences in sNfL levels between controls, febrile controls, febrile seizures, epileptic seizures, acute neurologic conditions, and chronic neurologic conditions. In children with severe systemic disorders, by far the highest NfL levels were found with an sNfL of 429 pg/ml in a patient with neuroblastoma, 126 pg/ml in a patient with cranial nerve palsy and pharyngeal Burkitt's lymphoma, and 42 pg/ml in a child with renal transplant rejection. The relationship between sNfL and age could be described by a second order polynomial with an R2 of 0.153 with a decrease of sNfL by 3.2% per year from birth to age 12 years and thereafter an increase by 2.7% per year until age 18 years. CONCLUSIONS In this study cohort, sNfL levels were not elevated in children with febrile or epileptic seizures, or various other neurologic diseases. Strikingly high sNfL levels were detected in children with oncologic disease or transplant rejection. A biphasic sNfL age-dependency was documented, with highest levels in infancy and late adolescence and the lowest levels in middle school age.
Collapse
Affiliation(s)
- Tobias Geis
- University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany.
| | - Svena Gutzeit
- University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Sotiris Fouzas
- Department of Pediatrics, University Hospital of Patras, Patras, Greece
| | - Andreas Ambrosch
- Institute of Laboratory Medicine, Microbiology and Hygiene, Hospital of the Order of St. John, Regensburg, Germany
| | - Pascal Benkert
- Neurologic Clinic and Policlinic, MS Centre and Research Centre for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Centre and Research Centre for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sven Wellmann
- Research and Development Campus Regensburg (WECARE), at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany; Department of Neonatology, University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Bhattacharjee S, Ghosh D, Saha R, Sarkar R, Kumar S, Khokhar M, Pandey RK. Mechanism of Immune Evasion in Mosquito-Borne Diseases. Pathogens 2023; 12:635. [PMID: 37242305 PMCID: PMC10222277 DOI: 10.3390/pathogens12050635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
In recent decades, mosquito-borne illnesses have emerged as a major health burden in many tropical regions. These diseases, such as malaria, dengue fever, chikungunya, yellow fever, Zika virus infection, Rift Valley fever, Japanese encephalitis, and West Nile virus infection, are transmitted through the bite of infected mosquitoes. These pathogens have been shown to interfere with the host's immune system through adaptive and innate immune mechanisms, as well as the human circulatory system. Crucial immune checkpoints such as antigen presentation, T cell activation, differentiation, and proinflammatory response play a vital role in the host cell's response to pathogenic infection. Furthermore, these immune evasions have the potential to stimulate the human immune system, resulting in other associated non-communicable diseases. This review aims to advance our understanding of mosquito-borne diseases and the immune evasion mechanisms by associated pathogens. Moreover, it highlights the adverse outcomes of mosquito-borne disease.
Collapse
Affiliation(s)
| | - Debanjan Ghosh
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Rounak Saha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605014, India
| | - Rima Sarkar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Saurav Kumar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Manoj Khokhar
- Department of Biochemistry, AIIMS, Jodhpur 342005, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Sweden
| |
Collapse
|
11
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
12
|
Giovannini G, Bedin R, Ferraro D, Vaudano AE, Mandrioli J, Meletti S. Serum neurofilament light as biomarker of seizure-related neuronal injury in status epilepticus. Epilepsia 2021; 63:e23-e29. [PMID: 34806176 PMCID: PMC9299158 DOI: 10.1111/epi.17132] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022]
Abstract
Biomarkers of neuronal damage in status epilepticus (SE) would be of great relevance for clinical and research purposes. In a retrospective cross‐sectional study, serum neurofilament light chain (NfL) levels were measured in patients with SE (30 subjects), patients with drug‐resistant epilepsy (30 subjects), and healthy controls (30 subjects). Serum NfL levels were higher in patients with SE (median = 26.15 pg/ml) compared to both epilepsy patients (median = 7.35 pg/ml) and healthy controls (median = 6.81 pg/ml; p < .001). In patients with SE, serum NfL levels showed a high correlation with cerebrospinal fluid (CSF) NfL (τ = .68, p < .001) as well as with CSF total tau (t‐tau) levels (τ = .627, p < .001); they were higher in SE lasting >24 h (p = .013), in refractory/superrefractory SE (p = .004), and in patients who died within 30 days or who presented a worsening of clinical conditions (p = .001). Values of >28.8 pg/ml predicted 30‐day clinical worsening or death (odds ratio [OR] = 10.83, 95% confidence interval [CI] = 1.96–59.83, p = .006) and SE refractoriness (OR = 9.33, 95% CI = 1.51–57.65, p = .016). In conclusion, serum NfL levels are increased in SE and correlate with SE treatment response, duration, and outcomes, therefore representing a promising biomarker of seizure‐related neuronal damage.
Collapse
Affiliation(s)
- Giada Giovannini
- Neurology Unit, Ospedale Civile Baggiovara Hospital, University Hospital, Modena, Italy.,Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy.,PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Bedin
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Diana Ferraro
- Neurology Unit, Ospedale Civile Baggiovara Hospital, University Hospital, Modena, Italy.,Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Jessica Mandrioli
- Neurology Unit, Ospedale Civile Baggiovara Hospital, University Hospital, Modena, Italy.,Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Meletti
- Neurology Unit, Ospedale Civile Baggiovara Hospital, University Hospital, Modena, Italy.,Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
13
|
Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci 2021; 15:689938. [PMID: 34646114 PMCID: PMC8503617 DOI: 10.3389/fnins.2021.689938] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Biomarkers of neurodegeneration and neuronal injury have the potential to improve diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy. Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because they are major neuron-specific components that maintain structural integrity and are sensitive to neurodegeneration and neuronal injury across a wide range of neurologic diseases. Low levels of NfPs are constantly released from neurons into the extracellular space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological conditions throughout normal brain development, maturation, and aging. NfP levels in CSF and blood rise above normal in response to neuronal injury and neurodegeneration independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold more concentrated than in blood in healthy individuals. New ultra-sensitive methods now allow minimally invasive measurement of these low levels of NfPs in serum or plasma to track disease onset and progression in neurological disorders or nervous system injury and assess responses to therapeutic interventions. Any of the five Nf subunits - neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given neuropathological condition. In familial and sporadic Alzheimer's disease (AD), plasma NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years before sporadic AD. The major determinants of elevated levels of NfPs and degradation fragments in CSF and blood are the magnitude of damaged or degenerating axons of fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments at different stages of a given neurological disease or condition directly or indirectly affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs are rapidly emerging as transformative blood biomarkers in neurology providing novel insights into a wide range of neurological diseases and advancing clinical trials. Here we summarize the current understanding of intracellular NfP physiology, pathophysiology and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs and degradation fragments as biomarkers of neurodegeneration and neuronal injury.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
- Department of Cell Biology, New York University Grossman School of Medicine, (NYU), Neuroscience Institute, New York, NY, United States
| |
Collapse
|
14
|
Yun T, Koo Y, Chae Y, Lee D, Kim H, Kim S, Chang D, Na K, Yang M, Kang B. Neurofilament light chain as a biomarker of meningoencephalitis of unknown etiology in dogs. J Vet Intern Med 2021; 35:1865-1872. [PMID: 34114244 PMCID: PMC8295659 DOI: 10.1111/jvim.16184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neurofilament light chain (NfL) is a neuron-specific cytoskeletal protein expressed in axons. Damaged axons of the central nervous system release NfLs into the cerebrospinal fluid (CSF) and the blood. In humans with neurologic diseases, NfL is used as a biomarker. OBJECTIVES To identify the potential of NfL as a supportive tool for the diagnosis, prognosis, and monitoring of meningoencephalitis of unknown etiology (MUE) in dogs. ANIMALS Twenty-six client-owned healthy dogs, 10 normal Beagle dogs, and 38 client-owned MUE dogs. METHODS Cohort study. The concentrations of NfL in serum and CSF were measured using single-molecule array technology. RESULTS Median NfL concentration was significantly higher in MUE dogs (serum, 125 pg/mL; CSF, 14 700 pg/mL) than in healthy dogs (serum, 11.8 pg/mL, P < .0001; CSF, 1410 pg/mL, P = .0002). The areas under the receiver operating characteristic curves of serum and CSF NfL concentrations were 0.99 and 0.95, respectively. The cut-off values were 41.5 pg/mL (serum) and 4005 pg/mL (CSF) for differentiating between healthy and MUE dogs, with sensitivities of 89.19% and 90%, respectively, and specificities of 96.97% and 100%, respectively. The NfL concentration showed a significant decrease (pretreatment, 122 pg/mL; posttreatment, 36.6 pg/mL; P = .02) in the good treatment-response group and a significant increase (pretreatment, 292.5 pg/mL; posttreatment, 1880 pg/mL, P = .03) in the poor treatment-response group. CONCLUSIONS AND CLINICAL IMPORTANCE Neurofilament light chain is a potential biomarker for diagnosing MUE and evaluating response to treatment.
Collapse
Affiliation(s)
- Taesik Yun
- Laboratory of Veterinary Internal Medicine, College of Veterinary MedicineChungbuk National UniversityCheongjuChungbukRepublic of Korea
| | - Yoonhoi Koo
- Laboratory of Veterinary Internal Medicine, College of Veterinary MedicineChungbuk National UniversityCheongjuChungbukRepublic of Korea
| | - Yeon Chae
- Laboratory of Veterinary Internal Medicine, College of Veterinary MedicineChungbuk National UniversityCheongjuChungbukRepublic of Korea
| | - Dohee Lee
- Laboratory of Veterinary Internal Medicine, College of Veterinary MedicineChungbuk National UniversityCheongjuChungbukRepublic of Korea
| | - Hakhyun Kim
- Laboratory of Veterinary Internal Medicine, College of Veterinary MedicineChungbuk National UniversityCheongjuChungbukRepublic of Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology, College of Veterinary MedicineChungbuk National UniversityCheongjuChungbukRepublic of Korea
| | - Dongwoo Chang
- Section of Veterinary Medical Imaging, Veterinary Teaching Hospital, College of Veterinary MedicineChungbuk National UniversityCheongjuChungbukRepublic of Korea
| | - Ki‐Jeong Na
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary MedicineChungbuk National UniversityCheongjuChungbukRepublic of Korea
| | - Mhan‐Pyo Yang
- Laboratory of Veterinary Internal Medicine, College of Veterinary MedicineChungbuk National UniversityCheongjuChungbukRepublic of Korea
| | - Byeong‐Teck Kang
- Laboratory of Veterinary Internal Medicine, College of Veterinary MedicineChungbuk National UniversityCheongjuChungbukRepublic of Korea
| |
Collapse
|
15
|
Langenbruch L, Wiendl H, Groß C, Kovac S. Diagnostic utility of cerebrospinal fluid (CSF) findings in seizures and epilepsy with and without autoimmune-associated disease. Seizure 2021; 91:233-243. [PMID: 34233238 DOI: 10.1016/j.seizure.2021.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 01/17/2023] Open
Abstract
Patients with seizures and epilepsy routinely undergo multiple diagnostic tests, which may include cerebrospinal fluid (CSF) analysis. This review aims to outline different CSF parameters and their alterations in seizures or epilepsy. We then discuss the utility of CSF analysis in seizure patients in different clinical settings in depth. Some routine CSF parameters are frequently altered after seizures, but are not specific such as CSF protein and lactate. Pleocytosis and CSF specific oligoclonal bands are rare and should be considered as signs of infectious or immune mediated seizures and epilepsy. Markers of neuronal damage show conflicting results, and are as yet not established in clinical practice. Parameters of neuronal degeneration and more specific immune parameters are less well studied, and are areas of further research. CSF analysis in new-onset seizures or status epilepticus serves well in the differential diagnosis of seizure etiology. Here, considerations should include autoimmune-associated seizures. CSF findings in these disorders are a special focus of this review and are summarized in a comprehensive overview. Until now, CSF analysis has not yielded clinically helpful biomarkers for refractory epilepsy or for assessment of neuronal damage which is a subject of further studies.
Collapse
Affiliation(s)
- Lisa Langenbruch
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany; Department of Neurology, Klinikum Osnabrück, Am Finkenhügel 1, 49076 Osnabrück, Germany.
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany.
| | - Catharina Groß
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany.
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany.
| |
Collapse
|
16
|
Tethered Lipid Membranes as a Nanoscale Arrangement towards Non-Invasive Analysis of Acute Pancreatitis. Biomedicines 2021; 9:biomedicines9070755. [PMID: 34210023 PMCID: PMC8301313 DOI: 10.3390/biomedicines9070755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022] Open
Abstract
Extracellular heat shock proteins (HSPs) mediate immunological functions and are involved in pathologies such as infection, stress, and cancer. Here, we demonstrated the dependence of an amount of HSP70 and HSP90 in serum vs. severity of acute pancreatitis (AP) on a cohort of 49 patients. Tethered bilayer lipid membranes (tBLMs) have been developed to investigate HSPs’ interactions with tBLMs that can be probed by electrochemical impedance spectroscopy (EIS). The results revealed that HSP70 and HSP90 interact via different mechanisms. HSP70 shows the damage of the membrane, while HSP90 increases the insulation properties of tBLM. These findings provide evidence that EIS offers a novel approach for the study of the changes in membrane integrity induced by HSPs proteins. Herein, we present an alternative electrochemical technique, without any immunoprobes, that allows for the monitoring of HSPs on nanoscaled tBLM arrangement in biologics samples such us human urine. This study demonstrates the great potential of tBLM to be used as a membrane based biosensor for novel, simple, and non-invasive label-free analytical system for the prediction of AP severity.
Collapse
|
17
|
Lardeux P, Fourier A, Peter E, Dorey A, Muñiz-Castrillo S, Vogrig A, Picard G, Rogemond V, Verdurand M, Formaglio M, Joubert B, Froment Tilikete C, Honnorat J, Quadrio I, Desestret V. Core cerebrospinal fluid biomarker profile in anti-LGI1 encephalitis. J Neurol 2021; 269:377-388. [PMID: 34104991 DOI: 10.1007/s00415-021-10642-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To compare CSF biomarkers' levels in patients suffering from anti-Leucine-rich Glioma-Inactivated 1 (LGI1) encephalitis to neurodegenerative [Alzheimer's disease (AD), Creutzfeldt-Jakob's disease (CJD)] and primary psychiatric (PSY) disorders. METHODS Patients with LGI1 encephalitis were retrospectively selected from the French Reference Centre database between 2010 and 2019 and enrolled if CSF was available for biomarkers analysis including total tau (T-tau), phosphorylated tau (P-tau), amyloid-beta Aβ1-42, and neurofilaments light chains (Nf L). Samples sent for biomarker determination as part of routine practice, and formally diagnosed as AD, CJD, and PSY, were used as comparators. RESULTS Twenty-four patients with LGI1 encephalitis were compared to 39 AD, 20 CJD and 20 PSY. No significant difference was observed in T-tau, P-tau, and Aβ1-42 levels between LGI1 encephalitis and PSY patients. T-Tau and P-Tau levels were significantly lower in LGI1 encephalitis (231 and 43 ng/L) than in AD (621 and 90 ng/L, p < 0.001) and CJD patients (4327 and 55 ng/L, p < 0.001 and p < 0.01). Nf L concentrations of LGI1 encephalitis (2039 ng/L) were similar to AD (2,765 ng/L) and significantly higher compared to PSY (1223 ng/L, p < 0.005), but significantly lower than those of CJD (13,457 ng/L, p < 0.001). Higher levels of Nf L were observed in LGI1 encephalitis presenting with epilepsy (3855 ng/L) compared to LGI1 without epilepsy (1490 ng/L, p = 0.02). No correlation between CSF biomarkers' levels and clinical outcome could be drawn. CONCLUSION LGI encephalitis patients showed higher Nf L levels than PSY, comparable to AD, and even higher when presenting epilepsy suggesting axonal or synaptic damage linked to epileptic seizures.
Collapse
Affiliation(s)
- Pierre Lardeux
- Service de Neurocognition Et Neuro-Ophtalmologie, Hôpital Neurologique Pierre Wertheimer, Bron Cedex, France.,Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Anthony Fourier
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire de Neurochimie, Service de Biochimie, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France.,BIORAN Team, Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, Lyon, France
| | - Elise Peter
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Centre de Référence National pour les Syndromes Neurologiques Paranéoplasique, Hôpital Neurologique, Hospices Civils de Lyon, Lyon, France
| | - Aline Dorey
- Laboratoire de Neurochimie, Service de Biochimie, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Sergio Muñiz-Castrillo
- Centre de Référence National pour les Syndromes Neurologiques Paranéoplasique, Hôpital Neurologique, Hospices Civils de Lyon, Lyon, France.,SynatAc Team, Institut NeuroMyoGene, INSERM U1217/CNRS UMR5310, Lyon, France
| | - Alberto Vogrig
- Centre de Référence National pour les Syndromes Neurologiques Paranéoplasique, Hôpital Neurologique, Hospices Civils de Lyon, Lyon, France.,SynatAc Team, Institut NeuroMyoGene, INSERM U1217/CNRS UMR5310, Lyon, France
| | - Géraldine Picard
- Centre de Référence National pour les Syndromes Neurologiques Paranéoplasique, Hôpital Neurologique, Hospices Civils de Lyon, Lyon, France
| | - Véronique Rogemond
- Centre de Référence National pour les Syndromes Neurologiques Paranéoplasique, Hôpital Neurologique, Hospices Civils de Lyon, Lyon, France.,SynatAc Team, Institut NeuroMyoGene, INSERM U1217/CNRS UMR5310, Lyon, France
| | - Mathieu Verdurand
- Laboratoire de Neurochimie, Service de Biochimie, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Maité Formaglio
- Service de Neurocognition Et Neuro-Ophtalmologie, Hôpital Neurologique Pierre Wertheimer, Bron Cedex, France.,Hospices Civils de Lyon, Lyon, France
| | - Bastien Joubert
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Centre de Référence National pour les Syndromes Neurologiques Paranéoplasique, Hôpital Neurologique, Hospices Civils de Lyon, Lyon, France.,SynatAc Team, Institut NeuroMyoGene, INSERM U1217/CNRS UMR5310, Lyon, France
| | - Caroline Froment Tilikete
- Service de Neurocognition Et Neuro-Ophtalmologie, Hôpital Neurologique Pierre Wertheimer, Bron Cedex, France.,Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,IMPACT Team, Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, Lyon, France
| | - Jérôme Honnorat
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Centre de Référence National pour les Syndromes Neurologiques Paranéoplasique, Hôpital Neurologique, Hospices Civils de Lyon, Lyon, France.,SynatAc Team, Institut NeuroMyoGene, INSERM U1217/CNRS UMR5310, Lyon, France
| | - Isabelle Quadrio
- Laboratoire de Neurochimie, Service de Biochimie, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France.,BIORAN Team, Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, Lyon, France
| | - Virginie Desestret
- Service de Neurocognition Et Neuro-Ophtalmologie, Hôpital Neurologique Pierre Wertheimer, Bron Cedex, France. .,Hospices Civils de Lyon, Lyon, France. .,Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France. .,Centre de Référence National pour les Syndromes Neurologiques Paranéoplasique, Hôpital Neurologique, Hospices Civils de Lyon, Lyon, France. .,SynatAc Team, Institut NeuroMyoGene, INSERM U1217/CNRS UMR5310, Lyon, France.
| |
Collapse
|
18
|
Advances in the Development of Biomarkers for Poststroke Epilepsy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5567046. [PMID: 33959658 PMCID: PMC8075663 DOI: 10.1155/2021/5567046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022]
Abstract
Stroke is the main cause of acquired epilepsy in elderly people. Poststroke epilepsy (PSE) not only affects functional recovery after stroke but also brings considerable social consequences. While some factors such as cortical involvement, hemorrhagic transformation, and stroke severity are associated with increased seizure risk, so far that remains controversial. In recent years, there are an increasing number of studies on potential biomarkers of PSE as tools for diagnosing and predicting epileptic seizures. Biomarkers such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), glutamate, and S100 calcium-binding protein B (S100B) in blood are associated with the occurrence of PSE. This review is aimed at summarizing the progress on potential biomarkers of PSE.
Collapse
|
19
|
Hanin A, Lambrecq V, Denis JA, Imbert-Bismut F, Rucheton B, Lamari F, Bonnefont-Rousselot D, Demeret S, Navarro V. Cerebrospinal fluid and blood biomarkers of status epilepticus. Epilepsia 2019; 61:6-18. [PMID: 31828792 DOI: 10.1111/epi.16405] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022]
Abstract
Status epilepticus is a condition resulting either from the failure of the mechanisms responsible for seizure termination or from the initiation of mechanisms that lead to abnormally prolonged seizures and require urgent administration of antiepileptic drugs. Refractory status epilepticus requires anesthetics drugs and may lead to brain injury with molecular and cellular alterations (eg, inflammation, and neuronal and astroglial injury) that could induce neurologic sequels and further development of epilepsy. Outcome scores based on demographic, clinical, and electroencephalography (EEG) condition are available, allowing prediction of the risk of mortality, but the severity of brain injury in survivors is poorly evaluated. New biomarkers are needed to predict with higher accuracy the outcome of patients admitted with status in an intensive care unit. Here, we summarize the findings of studies from patients and animal models of status epilepticus. Specific protein markers can be detected in the cerebrospinal fluid and the blood. One of the first described markers of neuronal death is the neuron-specific enolase. Gliosis resulting from inflammatory responses after status can be detected through the increase of S100-beta, or some cytokines, like the High Mobility Group Box 1. Other proteins, like progranulin may reflect the neuroprotective mechanisms resulting from the brain adaptation to excitotoxicity. These new biomarkers aim to prospectively identify the severity and development of disability, and subsequent epilepsy of patients with status. We discuss the advantages and disadvantages of each biomarker, by evaluating their brain specificity, stability in the fluids, and sensitivity to external interferences, such as hemolysis. Finally, we emphasize the need for further development and validation of such biomarkers in order to better assess patients with severe status epilepticus.
Collapse
Affiliation(s)
- Aurélie Hanin
- Brain and Spine Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Virginie Lambrecq
- Brain and Spine Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.,Epilepsy Unit (VL, VN) and Neuro-Intensive care Unit (SD), Neurology Department, AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris, France.,Sorbonne Université, Paris, France
| | - Jérôme Alexandre Denis
- Sorbonne Université, Paris, France.,Department of Endocrine and Oncological Biochemistry (J.AD), Metabolic Biochemistry (BR, DBR, FI, FL), AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris, France
| | - Françoise Imbert-Bismut
- Department of Endocrine and Oncological Biochemistry (J.AD), Metabolic Biochemistry (BR, DBR, FI, FL), AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris, France
| | - Benoît Rucheton
- Department of Endocrine and Oncological Biochemistry (J.AD), Metabolic Biochemistry (BR, DBR, FI, FL), AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris, France
| | - Foudil Lamari
- Department of Endocrine and Oncological Biochemistry (J.AD), Metabolic Biochemistry (BR, DBR, FI, FL), AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris, France
| | - Dominique Bonnefont-Rousselot
- Department of Endocrine and Oncological Biochemistry (J.AD), Metabolic Biochemistry (BR, DBR, FI, FL), AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris, France.,UTCBS, U 1022 Inserm, UMR 8258 CNRS, Paris University, Paris, France
| | - Sophie Demeret
- Epilepsy Unit (VL, VN) and Neuro-Intensive care Unit (SD), Neurology Department, AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris, France
| | - Vincent Navarro
- Brain and Spine Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.,Epilepsy Unit (VL, VN) and Neuro-Intensive care Unit (SD), Neurology Department, AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris, France.,Sorbonne Université, Paris, France
| |
Collapse
|
20
|
Atmaca MM, Telci A, Dirican A, Gurses C. Could sP-Selectin and sICAM-1 be potential biomarkers in status epilepticus? ACTA ACUST UNITED AC 2019. [DOI: 10.17546/msd.505192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Inhibition of Hsp70 Suppresses Neuronal Hyperexcitability and Attenuates Epilepsy by Enhancing A-Type Potassium Current. Cell Rep 2019; 26:168-181.e4. [DOI: 10.1016/j.celrep.2018.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 10/06/2018] [Accepted: 12/06/2018] [Indexed: 01/03/2023] Open
|
22
|
Degeneration of cholinergic basal forebrain nuclei after focally evoked status epilepticus. Neurobiol Dis 2019; 121:76-94. [DOI: 10.1016/j.nbd.2018.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022] Open
|
23
|
Duan WC, Wang L, Li K, Wang WW, Zhan YB, Zhang FJ, Yu B, Bai YH, Wang YM, Ji YC, Zhou JQ, Liu XZ, Zhang ZY. IDH mutations but not TERTp mutations are associated with seizures in lower-grade gliomas. Medicine (Baltimore) 2018; 97:e13675. [PMID: 30558073 PMCID: PMC6320119 DOI: 10.1097/md.0000000000013675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioma is the most common malignant tumor in the central nervous system (CNS). Lower-grade gliomas (LGG) refer to Grade II and III gliomas. In LGG patients, seizure often appears as an initial symptom and play an important role in clinical performance and quality of life of the patients. To date, the relationship between the onset of seizures and the molecular pathology in gliomas is still poorly investigated. In this study, we investigate the potential relationship between isocitrate dehydrogenase (IDH)/telomerase reverse transcriptase promoter (TERTp) mutations and preoperative seizures in patients with LGG. 289 adult LGG patients were enrolled in this study. Data of clinical characteristics and molecular pathology were acquired. Sanger sequencing was used to detect IDH/TERTp mutations. Chi-square test was performed to determine if the IDH/TERTp mutations were associated with seizures and seizure types. In 289 LGG patients, preoperative seizures accounted for 25.3% (73/289), IDH mutations accounted for 34.3%(99/289), and TERTp mutations accounted for 44.3% (128/289). The correlation analysis demonstrated that IDH mutation is a significant factor influencing the occurrence of tumor-related epilepsy (P <.001, chi-square test). On the other hand, the statistical analysis revealed no significant correlation between TERTp mutations and seizure in LGG patients (P = .102, chi-square test). The tumor-related epilepsy rates vary among different subgroups according to IDH/TERTp mutations. However, there is no definite correlation between the IDH (P = 1.000, chi-square test)/TERTp (P = .613, chi-square test) mutations and the types of epileptic seizure. IDH mutations are more common in preoperative LGG patients with epileptic symptoms, suggesting that this mutation is positively correlated with seizures. However, there was no significant correlation between TERTp mutations and seizures. Different molecular pathologic types based on IDH/TERTp have different incidences of tumor-associated epilepsy in LGGs.
Collapse
Affiliation(s)
| | - Li Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ke Li
- Department of Neurosurgery
| | - Wei-wei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | | | | | - Bin Yu
- Department of Neurosurgery
| | | | | | | | | | | | | |
Collapse
|
24
|
Simani L, Elmi M, Asadollahi M. Serum GFAP level: A novel adjunctive diagnostic test in differentiate epileptic seizures from psychogenic attacks. Seizure 2018; 61:41-44. [PMID: 30077862 DOI: 10.1016/j.seizure.2018.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 12/25/2022] Open
Abstract
PURPOSE There has been increasing interest in the use of different biomarkers to help distinguish psychogenic from epileptic seizures, in patients presenting acutely with seizure-like events. In the present study, we measured serum glial fibrillary astrocytic protein (GFAP) levels in patients presenting with such events who were subsequently diagnosed as epileptic seizures (ESs) or psychogenic non-epileptic seizures (PNESs) and compared GFAP levels obtained with those found in healthy subjects. METHODS Sixty-three patients with seizures (43 with ES and 20 with PNES), and 19 healthy subjects participated in the study. Venous blood samples were obtained within the first 6 h after seizures and serum GFAP levels were measured by protein quantification (ELIZA kit) with an electrochemical luminescence immunoassay. RESULTS Serum GFAP levels were significantly higher in patients with ES compared to PNES or healthy controls. A cut-off point of 2.71 ng/ml was found optimally to differentiate ES from PNES (sensitivity 72%, specificity 59%). CONCLUSION Our study suggests that post-seizure serum GFAP levels could be used in future studies better to understand the underlying mechanism of seizures and may offer as an adjunctive diagnostic test in differentiating ES from PNES.
Collapse
Affiliation(s)
- Leila Simani
- Skull Base Research Center, Loghman Hakim Hospital, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Elmi
- Department of epilepsy, Loghman Hakim Hospital, Shaheed Beheshti University of Medical Sciences, South Kargar Ave., Kamali St., Tehran, Iran
| | - Marjan Asadollahi
- Department of epilepsy, Loghman Hakim Hospital, Shaheed Beheshti University of Medical Sciences, South Kargar Ave., Kamali St., Tehran, Iran.
| |
Collapse
|
25
|
Cabantous S, Doumbo O, Poudiougou B, Louis L, Barry A, Oumar AA, Traore A, Marquet S, Dessein A. Gene Expression Analysis Reveals Genes Common to Cerebral Malaria and Neurodegenerative Disorders. J Infect Dis 2017; 216:771-775. [DOI: 10.1093/infdis/jix359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/24/2017] [Indexed: 11/12/2022] Open
|
26
|
Yao Y, Yang Y, He X, Wang X. miR-16-1 expression, heat shock protein 70 and inflammatory reactions in astrocytes of mice with epilepsy induced by encephalitis B virus infection. Exp Ther Med 2017; 14:495-498. [PMID: 28672958 PMCID: PMC5488623 DOI: 10.3892/etm.2017.4513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/16/2017] [Indexed: 02/03/2023] Open
Abstract
The upregulation of miR-16-1 expression and heat shock protein 70 (HSP70) and inflammatory reaction mechanism in astrocytes of mice with epilepsy induced by encephalitis B virus infection were studied. Six-to-eight-week-old healthy male C57BL/6 mice received intraperitoneal injection of pilocarpine (320-340 mg/kg, 40 mg/ml) to induce status epilepsy. After 7 days, mice were inoculated with 100 µl Dulbecco's modified Eagle's medium (DMEM) in the neck, including 6.25×23 PFU Japanese encephalitis virus P3 wild strain. The experiment was divided into 4 groups, including, the healthy control group, the epilepsy model group, the model group + negative inoculation group and the virus infection group with 10 mice in each group. The healthy control group received intraperitoneal injection of the same amount of normal saline; the model group + negative inoculation group was injected with the same amount of DMEM without P3. One and three days after infection, 5 mice from each group were sacrificed, hippocampus tissues were obtained and astrocytes were isolated. After purification, glial fibrillary acidic protein was identified by immunohistochemical staining. Infected glial cells were detected by P3 antigen of immunofluorescence staining. RT-PCR method was used to detect the expression of miR-16-1 mRNA in astrocytes. Western blot analysis was used to detect the expression of HSP70. ELISA method was used to detect the levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α and nuclear factor-κB (NF-κB) inflammatory factors in tail vein blood. Level of expression of miR-16-1 mRNA, HSP70 as well as IL-6, TNF-α and NF-κB inflammatory factor levels of virus infected mice of 1 and 3 days were significantly higher (P<0.05) than those of model group and negative inoculation group and lowest in control group. In conclusion, the level of expression of miR-16-1 and HSP70 can be increased by the infection of Japanese encephalitis virus on the astrocytes of mice with epilepsy, to promote the expression of IL-6, TNF-α and NF-κB of inflammatory factors.
Collapse
Affiliation(s)
- Yue Yao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yujia Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xuehua He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xia Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
27
|
Tsai MC, Huang TL. Decreased S100B serum levels after treatment in bipolar patients in a manic phase. Compr Psychiatry 2017; 74:27-34. [PMID: 28088747 DOI: 10.1016/j.comppsych.2016.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/09/2016] [Accepted: 12/29/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Previous studies have suggested that patients with bipolar disorder might have brain damage. The aim of this study was to investigate the serum levels of brain injury biomarkers and S100A10 in bipolar patients in a manic phase, and evaluate the changes in S100B, neuron specific enolase (NSE), heat shock protein 70 (HSP70) and S100A10 after treatment. METHOD We consecutively enrolled 17 bipolar inpatients in a manic phase and 30 healthy subjects. Serum brain injury biomarkers and S100A10 were measured with assay kits. All patients were evaluated by examining the correlation between brain injury biomarkers and Young Mania Rating Scale (YMRS) scores. RESULT We found significantly decreased S100B levels only in bipolar manic patients after treatment (p=0.002), but S100B levels were not significantly different from those in healthy controls (p>0.05). CONCLUSION Our results indicate there were decreased S100B serum levels in bipolar patients in a manic phase after treatment and that increased serum S100B levels might be a possible indicator of transient disruption of the blood-brain barrier in bipolar patients in a manic phase.
Collapse
Affiliation(s)
- Meng-Chang Tsai
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
28
|
Qu B, Jia Y, Liu Y, Wang H, Ren G, Wang H. The detection and role of heat shock protein 70 in various nondisease conditions and disease conditions: a literature review. Cell Stress Chaperones 2015; 20:885-92. [PMID: 26139132 PMCID: PMC4595429 DOI: 10.1007/s12192-015-0618-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/08/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022] Open
Abstract
As an intracellular polypeptide, heat shock protein 70 (HSP70) can be exposed on the plasma membrane and/or released into the circulation. However, the role of HSP70 in various nondisease and disease conditions remains unknown. Quantitative methods for the detection of HSP70 have been used in clinical studies, revealing that an increase in circulating HSP70 is associated with various types of exercise, elderly patients presenting with inflammation, mobile phones, inflammation, sepsis, chronic obstructive pulmonary disease, asthma, carotid intima-media thickness, glutamine-treated ill patients, mortality, diabetes mellitus, active chronic glomerulonephritis, and cancers. Circulating HSP70 decreases with age in humans and in obstructive sleep apnea, arteriosclerosis, atrial fibrillation (AF) following coronary artery bypass surgery, nonalcoholic fatty liver disease, moderate-to-severe alcoholic fatty liver disease, hepatic steatosis, and Helicobacter pylori infection. In conclusion, quantitative methods can be used to detect HSP70, particularly in determining circulating HSP70 levels, using more convenient and rapid screening methods. Studies have shown that changes in HSP70 are associated with various nondisease and disease conditions; thus, HSP70 might be a novel potential biomarker reflecting various nondisease conditions and also the severity of disease conditions. However, the reliability and accuracy, as well as the underlying mechanism, of this relationship remain poorly understood, and large-sample clinical research must be performed to verify the role.
Collapse
Affiliation(s)
- Baoge Qu
- Internal Medicine, Taishan Hospital, No. 3 Tianwaicun Street, Taian City, Shandong, 271000, People's Republic of China.
| | - Yiguo Jia
- Internal Medicine, Taishan Hospital, No. 3 Tianwaicun Street, Taian City, Shandong, 271000, People's Republic of China
| | - Yuanxun Liu
- Internal Medicine, Taishan Hospital, No. 3 Tianwaicun Street, Taian City, Shandong, 271000, People's Republic of China
| | - Hui Wang
- Internal Medicine, Taishan Hospital, No. 3 Tianwaicun Street, Taian City, Shandong, 271000, People's Republic of China
| | - Guangying Ren
- Internal Medicine, Taishan Hospital, No. 3 Tianwaicun Street, Taian City, Shandong, 271000, People's Republic of China
| | - Hong Wang
- Internal Medicine, Taishan Hospital, No. 3 Tianwaicun Street, Taian City, Shandong, 271000, People's Republic of China
| |
Collapse
|
29
|
Zhong Z, Wang Z, Wang Y, You G, Jiang T. IDH1/2 mutation is associated with seizure as an initial symptom in low-grade glioma: A report of 311 Chinese adult glioma patients. Epilepsy Res 2014; 109:100-5. [PMID: 25524848 DOI: 10.1016/j.eplepsyres.2014.09.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 08/26/2014] [Accepted: 09/13/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Seizure commonly presents as an initial symptom and plays an important role in the clinical presentation and quality of life of patients with low-grade glioma (LGG). To date, the mechanism and genetic alterations underlying tumor-related seizures in LGG remain to be fully elucidated. Both isocitrate dehydrogenase 1/2 (IDH1/2) mutation and seizure frequently occur in patients with LGG. We set out to investigate the potential relationship between IDH1/2 mutation and presentation of seizure preoperatively, and observe whether or not IDH1/2 mutation influences seizure control postoperatively. METHODS A total of 311 adult patients with LGG were enrolled in our study with both clinical data and IDH1/2 mutation data available. IDH1/2 mutation was detected directly by pyro-sequencing. The chi-squared test was performed to determine whether the IDH1/2 mutation has any relevance to seizure onset and to evaluate the potential impact that IDH1/2 mutation may exert on seizure control postoperatively. RESULTS Seizure presented as an initial symptom in 71.4% (222/311) of patients with LGG, among which 189 patients were detected to bear IDH1/2 mutation in their tumors (P=0.035, chi-squared test). However, IDH1/2 mutation does not seem to contribute to the seizure control postoperatively (P=0.350 and 0.577 for the 6- and 12-month follow-up, respectively, chi-squared test). CONCLUSIONS IDH1/2 mutation occurs more frequently in LGG patients with seizure as an initial symptom, suggesting a potential relationship between this genetic phenotype and clinical seizure presentation. IDH1/2 mutation shows no prognostic value for postoperative seizure control.
Collapse
Affiliation(s)
- Zhang Zhong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Neurosurgical Institute, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China.
| | - Yinyan Wang
- Beijing Neurosurgical Institute, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China.
| | - Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Neurosurgical Institute, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China.
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Neurosurgical Institute, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China; National Clinical Research Center of Neurological Diseases, Beijing, China.
| |
Collapse
|
30
|
Shi L, Yang AC, Meng DW, Li SW, Liu HG, Li JJ, Wang X, Zhang X, Zhang JG. Pathological alterations and stress responses near DBS electrodes after MRI scans at 7.0T, 3.0T and 1.5T: an in vivo comparative study. PLoS One 2014; 9:e101624. [PMID: 24988329 PMCID: PMC4079335 DOI: 10.1371/journal.pone.0101624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 06/09/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The purpose of this study was to investigate the pathological alterations and the stress responses around deep brain stimulation (DBS) electrodes after magnetic resonance imaging (MRI) scans at 7.0T, 3.0T and 1.5T. MATERIALS AND METHODS DBS devices were stereotactically implanted into the brains of New Zealand rabbits, targeting the left nucleus ventralis posterior thalami, while on the right side, a puncture passage pointing to the same target was made. MRI scans at 7.0T, 3.0T and 1.5T were performed using transmit/receive head coils. The pathological alterations of the surrounding tissue were evaluated by hematoxylin and eosin staining (H&E staining) and transmission electron microscopy (TEM). The levels of the 70 kDa heat shock protein (HSP-70), Neuronal Nuclei (NeuN) and Caspase-3 were determined by western-blotting and quantitative polymerase chain reaction (QPCR) to assess the stress responses near the DBS electrodes. RESULTS H&E staining and TEM showed that the injury around the DBS electrodes was featured by a central puncture passage with gradually weakened injurious alterations. Comparisons of the injury across the groups manifested similar pathological alterations near the DBS electrodes in each group. Moreover, western-blotting and QPCR assay showed that the level of HSP-70 was not elevated by MRI scans (p>0.05), and the levels of NeuN and Caspase-3 were equal in each group, regardless of the field strengths applied (p>0.05). CONCLUSIONS Based on these findings, it is reasonable to conclude that in this study the MRI scans at multiple levels failed to induce additional tissue injury around the DBS electrodes. These preliminary data furthered our understanding of MRI-related DBS heating and encouraged revisions of the current MRI guidelines for patients with DBS devices.
Collapse
Affiliation(s)
- Lin Shi
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - An-Chao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Da-Wei Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shao-Wu Li
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Huan-Guang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun-Ju Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, People's Hospital of Hainan Province, Haikou, Hainan Province, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jian-Guo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Sellner J, Davies NW, Howard RS, Petzold A. Neurofilament heavy chain as a marker of neuroaxonal pathology and prognosis in acute encephalitis. Eur J Neurol 2014; 21:845-50. [PMID: 24684186 DOI: 10.1111/ene.12390] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/28/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND PURPOSE The neurological outcome of acute encephalitis can be devastating and early prognosis remains difficult. Biomarkers that quantify the extent of early brain injury are needed to improve the prognostic accuracy and aid patient management. Our objective was to assess whether cerebrospinal fluid (CSF) protein biomarkers of neuroaxonal and glial cell injury are elevated in distinct forms of acute encephalitis and predictive of poor outcome. METHODS This was a prospective study of patients presenting with acute encephalitis to three teaching hospitals in London, UK. Levels of neurofilament heavy chain (NfH, SMI35) and S100B were quantified in CSF using enzyme-linked immunosorbent assay. The outcome was assessed by the Glasgow Outcome Scale (GOS). RESULTS Fifty-six patients with acute encephalitis were recruited and classified into the following diagnostic categories: infectious (n = 20), inflammatory (n = 14) and unknown etiology (n = 22). Pathological levels of NfH and S100B were observed in 24/56 (43%) and 54/56 (96%), respectively. Patients with infectious encephalitis had significantly higher NfH levels compared with the other two groups (P < 0.05). A poor outcome (GOS < 5) was associated with significantly higher CSF NfH levels within samples taken 2 weeks after symptom onset. CONCLUSIONS This study suggests that longitudinal CSF NfH levels are of superior prognostic value compared with CSF S100B levels. Prolonged release of NfH, a marker of neuroaxonal damage, was associated with poor outcome. Potentially there is a window of opportunity for future neuroprotective treatment strategies in encephalitis.
Collapse
Affiliation(s)
- J Sellner
- Department of Neurology, Christian-Doppler-Klinik, Paracelsus Medical University, Salzburg, Austria; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | | | | |
Collapse
|
32
|
Chang CC, Chen SD, Lin TK, Chang WN, Liou CW, Chang AYW, Chan SHH, Chuang YC. Heat shock protein 70 protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus via inhibition of nuclear factor-κB activation-induced nitric oxide synthase II expression. Neurobiol Dis 2013; 62:241-9. [PMID: 24141017 DOI: 10.1016/j.nbd.2013.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/17/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022] Open
Abstract
Status epilepticus induces subcellular changes that may eventually lead to neuronal cell death in the hippocampus. Based on an animal model of status epilepticus, our laboratory showed previously that sustained hippocampal seizure activity activates nuclear factor-κB (NF-κB) and upregulates nitric oxide synthase (NOS) II gene expression, leading to apoptotic neuronal cell death in the hippocampus. The present study examined the potential modulatory role of heat shock protein 70 (HSP70) on NF-κB signaling in the hippocampus following experimental status epilepticus. In Sprague-Dawley rats, kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 subfield to induce prolonged bilateral seizure activity. Expression of HSP70 was elevated as early as 1h after the elicitation of sustained seizure activity, followed by a progressive elevation that peaked at 24h. Pretreatment with an antisense oligonucleotide against hsp70 decreased the HSP70 expression, and significantly augmented IκB kinase (IKK) activity and phosphorylation of IκBα, alongside enhanced nuclear translocation and DNA binding activity of NF-κB in the hippocampal CA3 neurons and glial cells. These cellular events were followed by enhanced upregulation of NOS II and peroxynitrite expression 3h after sustained seizure activity that led to an increase of caspase-3 and DNA fragmentation in the hippocampal CA3 neurons 7days after experimental status epilepticus. We concluded that HSP70 protects against apoptotic cell death induced by NF-κB activation and NOS II-peroxynitrite signaling cascade in the hippocampal CA3 and glial cells following experimental status epilepticus via suppression of IKK activity and deactivation of IκBα.
Collapse
Affiliation(s)
- Chiung-Chih Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Neng Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Alice Y W Chang
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Biological Science, National Sun Yet-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
33
|
Kim YJ, Kim JY, Ko AR, Kang TC. Reduction in heat shock protein 90 correlates to neuronal vulnerability in the rat piriform cortex following status epilepticus. Neuroscience 2013; 255:265-77. [PMID: 24096135 DOI: 10.1016/j.neuroscience.2013.09.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 12/20/2022]
Abstract
In the present study, we addressed the question of whether the distinct patterns of heat shock protein (HSP) 70 and HSP90 expressions in the brain region represents the regional specific responses to status epilepsticus (SE) in an effort to better understand the role of HSPs in epileptogenic insult. HSP70 immunoreactivity was increased in CA3 pyramidal cells as well as dentate granule cells at 12h-1week after SE. HSP70 immunoreactivity was transiently increased in neurons within the piriform cortex (PC) following SE. Linear regression analysis showed no correlation between the intensity of NeuN and that of HSP70. In contrast to HSP70, HSP90 immunoreactivity was decreased in CA1-3 pyramidal cells at 4days-4weeks after SE. In addition, HSP90 immunoreactivity was decreased in PC neurons at 12h-4weeks after SE. linear regression analysis showed a direct proportional relationship between the intensity of NeuN and that of HSP90. Therefore, these findings suggest that HSP90 degradation may be closely related to neuronal vulnerability to SE insult.
Collapse
Affiliation(s)
- Y-J Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon 200-702, South Korea; Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | |
Collapse
|
34
|
Cerebrospinal fluid brain injury biomarkers in children: a multicenter study. Pediatr Neurol 2013; 49:31-39.e2. [PMID: 23827424 DOI: 10.1016/j.pediatrneurol.2013.02.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/19/2013] [Accepted: 02/24/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) biomarkers reflecting neuronal and astroglial injury, such as total tau (T-tau), glial fibrillary acidic protein (GFAP), and neurofilament light (NFL), have been extensively investigated in neurologic diseases in adults, but no large study has investigated these biomarkers in children. METHODS This study presents a detailed evaluation of CFS T-tau, GFAP, NFL, and CSF:albumin ratio in a large cohort of pediatric patients. This is a retrospective multicenter study on pediatric patients aged <16 years (n = 607), where neuronal injury biomarkers T-tau, GFAP, NFL, and CSF albumin ratio were analyzed during 2000-2010 at the Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Sweden. The patients were grouped into eight categories: epilepsy, infectious and inflammatory central nervous system disorders, progressive encephalopathy, static encephalopathy, tumors, movement disorders, miscellaneous disorders, and a control group. RESULTS T-tau, GFAP, and NFL were increased in progressive encephalopathy (P < 0.001), epilepsy (P < 0.001), and infectious and inflammatory central nervous system disorders (P < 0.001) compared with controls. T-tau was the biomarker with the highest diagnostic accuracy with the area under the curve of 0.83 (95% confidence interval (CI), 0.77-0.90; P < 0.0001) for progressive encephalopathy followed by epilepsy 0.80 (95% CI, 0.75-0.87; P < 0.0001). The combination of all four biomarkers further improved the area under the curve for the progressive encephalopathy 0.87 (95% CI, 0.77-0.89; P < 0.0001), followed by epilepsy 0.81 (95% CI, 0.74-0.80; P = 0.030). The combination of the biomarkers also separated progressive from static encephalopathy 0.88 (95% CI, 0.83-0.93; P < 0.0001). CONCLUSIONS CSF T-tau, GFAP, and NFL are differently altered across different neurologic diseases in children. Importantly, the biomarker pattern distinguishes between progressive and static neurologic disorders.
Collapse
|
35
|
Lépinoux-Chambaud C, Eyer J. Review on intermediate filaments of the nervous system and their pathological alterations. Histochem Cell Biol 2013; 140:13-22. [PMID: 23749407 DOI: 10.1007/s00418-013-1101-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2013] [Indexed: 11/28/2022]
Abstract
Intermediate filaments (IFs) of the nervous system, including neurofilaments, α-internexin, glial fibrillary acidic protein, synemin, nestin, peripherin and vimentin, are finely expressed following elaborated cell, tissue and developmental specific patterns. A common characteristic of several neurodegenerative diseases is the abnormal accumulation of neuronal IFs in cell bodies or along the axon, often associated with impairment of the axonal transport and degeneration of neurons. In this review, we also present several perturbations of IF metabolism and organization associated with neurodegenerative disorders. Such modifications could represent strong markers of neuronal damages. Moreover, recent data suggest that IFs represent potential biomarkers to determine the disease progression or the differential stages of a neuronal disorder. Finally, recent investigations on IF expression and function in cancer provide evidence that they may be useful as markers, or targets of brain tumours, especially high-grade glioma. A better knowledge of the molecular mechanisms of IF alterations, combined to neuroimaging, is essential to improve diagnosis and therapeutic strategies of such neurodegenerative diseases and glioma.
Collapse
Affiliation(s)
- Claire Lépinoux-Chambaud
- Laboratoire Neurobiologie and Transgenese, LUNAM, UPRES EA-3143, Centre Hospitalier Universitaire, Bâtiment IBS-IRIS, Université d'Angers, 49033, Angers, France
| | | |
Collapse
|
36
|
Cerebrospinal fluid ubiquitin C-terminal hydrolase as a novel marker of neuronal damage after epileptic seizure. Epilepsy Res 2013; 103:205-10. [DOI: 10.1016/j.eplepsyres.2012.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 08/03/2012] [Accepted: 08/04/2012] [Indexed: 01/06/2023]
|