1
|
Dhanapalaratnam R, Issar T, Poynten AM, Milner KL, Kwai NCG, Krishnan AV. Impact of glucagon-like peptide-1 receptor agonists on axonal function in diabetic peripheral neuropathy. J Neurophysiol 2025; 133:14-21. [PMID: 39584713 DOI: 10.1152/jn.00228.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) affects approximately half of the 500 million people with type 2 diabetes worldwide. Previous studies have suggested that glucagon-like peptide-1 (GLP-1) receptors in the peripheral nervous system may be a suitable target for DPN treatment. Fourteen participants were consecutively recruited after being prescribed either semaglutide or dulaglutide as part of standard clinical care for type 2 diabetes. Participants underwent clinical assessment, nerve conduction studies, and axonal excitability assessment at baseline and at 3 mo following commencement of GLP-1 receptor agonist (GLP-1RA) therapy. These data were combined with 10 participants who had previously received exenatide therapy, and mathematical modeling of excitability data was undertaken. Clinical neuropathy scores improved at 3 mo following commencement of GLP-1 (baseline TNS 3.7 ± 4.5, posttreatment TNS 2.3 ± 3.4, P = 0.005). Nerve conduction studies demonstrated an improvement in sural amplitude at 3 mo (baseline 11.9 ± 8.5 μV, posttreatment 14.2 ± 9.2 μV; P = 0.013). Axonal excitability studies revealed changes consistent with improvements in Na+/K+-ATPase pump function and Na+ permeability, and this was supported by mathematical modeling. GLP-1RA therapy improves clinical and neurophysiological outcomes in DPN. Treatment with GLP-1RA may reverse axonal dysfunction by improving Na+/K+-ATPase pump function.NEW & NOTEWORTHY Diabetic peripheral neuropathy is known to be relentlessly progressive and irreversible. Prospective studies in 24 participants with diabetic peripheral neuropathy (DPN) treated with glucagon-like peptide-1 receptor agonists (GLP-1RA) demonstrated improvements in clinical neuropathy scores, nerve conduction studies, and axonal excitability recordings. Analysis of axonal excitability recordings revealed the mechanism for GLP-1RA improvement in DPN were changed consistent with improvements in Na+/K+-ATPase pump function, and this was supported by mathematical modeling.
Collapse
Affiliation(s)
- Roshan Dhanapalaratnam
- School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Tushar Issar
- School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ann M Poynten
- Department of Endocrinology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Kerry-Lee Milner
- Department of Endocrinology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Natalie C G Kwai
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Arun V Krishnan
- School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Pierre-Jerome C. The peripheral nervous system: peripheral neuropathies in the diabetic foot. MYOPATHIES AND TENDINOPATHIES OF THE DIABETIC FOOT 2025:451-482. [DOI: 10.1016/b978-0-443-13328-2.00022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Zhang Y, Yang D, Fan D, Wang H, Chen Y, Chen Y. Unraveling the dynamics of firing patterns for neurons with impairment of sodium channels. CHAOS (WOODBURY, N.Y.) 2024; 34:103132. [PMID: 39413258 DOI: 10.1063/5.0223512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
Various factors such as mechanical trauma, chemical trauma, local ischemia, and inflammation can impair voltage-gated sodium channels (Nav) in neurons. These impairments lead to a distinctive leftward shift in the activation and inactivation curves of voltage-gated sodium channels. The resulting sodium channel impairments in neurons are known to affect firing patterns, which play a significant role in neuronal activities within the nervous system. However, the underlying dynamic mechanism for the emergence of these firing patterns remains unclear. In this study, we systematically investigated the effects of sodium channel dysfunction on individual neuronal dynamics and firing patterns. By employing codimension-1 bifurcation analysis, we revealed the underlying dynamical mechanism responsible for the generation of different firing patterns. Additionally, through codimension-2 bifurcation analysis, we theoretically determined the distribution of firing patterns on different parameter planes. Our results indicate that the firing patterns of impaired neurons are regulated by multiple parameters, with firing pattern transitions caused by the degree of sodium channel impairment being more diverse than those caused by the ratio of impaired sodium channel and current. Furthermore, we observed that the firing pattern of tonic firing is more likely to be the norm in impaired sodium channel neurons, providing valuable insights into the signaling of impaired neurons. Overall, our findings highlight the intricate relationships among sodium channel impairments, neuronal dynamics, and firing patterns, shedding light on the impact of disruptions in ion concentration gradients on neuronal function.
Collapse
Affiliation(s)
- Yuancheng Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Dahai Yang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Dingkun Fan
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Hengtong Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Chen
- Institute of Nonlinear Physics, School of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000, China
| | - Yong Chen
- School of Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
4
|
Røikjer J, Croosu SS, Sejergaard BF, Hansen TM, Frøkjær JB, Søndergaard CB, Petropoulos IN, Malik RA, Nielsen E, Mørch CD, Ejskjaer N. Diagnostic Accuracy of Perception Threshold Tracking in the Detection of Small Fiber Damage in Type 1 Diabetes. J Diabetes Sci Technol 2024; 18:1157-1164. [PMID: 36825610 PMCID: PMC11418516 DOI: 10.1177/19322968231157431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
AIM An objective assessment of small nerve fibers is key to the early detection of diabetic peripheral neuropathy (DPN). This study investigates the diagnostic accuracy of a novel perception threshold tracking technique in detecting small nerve fiber damage. METHODS Participants with type 1 diabetes (T1DM) without DPN (n = 20), with DPN (n = 20), with painful DPN (n = 20) and 20 healthy controls (HCs) underwent perception threshold tracking on the foot and corneal confocal microscopy. Diagnostic accuracy of perception threshold tracking compared to corneal confocal microscopy was analyzed using logistic regression. RESULTS The rheobase, corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), and corneal nerve fiber length (CNFL) (all P < .001) differed between groups. The diagnostic accuracy of perception threshold tracking (rheobase) was excellent for identifying small nerve fiber damage, especially for CNFL with a sensitivity of 94%, specificity 94%, positive predictive value 97%, and negative predictive value 89%. There was a significant correlation between rheobase with CNFD, CNBD, CNFL, and Michigan Neuropathy Screening Instrument (all P < .001). CONCLUSION Perception threshold tracking had a very high diagnostic agreement with corneal confocal microscopy for detecting small nerve fiber loss and may have clinical utility for assessing small nerve fiber damage and hence early DPN. CLINICAL TRIALS NCT04078516.
Collapse
Affiliation(s)
- Johan Røikjer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Suganthiya Santhiapillai Croosu
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Tine Maria Hansen
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | | | | | - Esben Nielsen
- Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark
| | - Carsten Dahl Mørch
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Center for Sensory-Motor Interaction, Aalborg, Denmark
| | - Niels Ejskjaer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Clinical Medicine and Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
5
|
Dhanapalaratnam R, Issar T, Poynten AM, Milner KL, Kwai NCG, Krishnan AV. Progression of axonal excitability abnormalities with increasing clinical severity of diabetic peripheral neuropathy. Clin Neurophysiol 2024; 160:12-18. [PMID: 38367309 DOI: 10.1016/j.clinph.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
OBJECTIVE Diabetic peripheral neuropathy (DPN) is a frequent complication for persons with type 2 diabetes. Previous studies have failed to demonstrate any significant impact of treatment for DPN. The present study assessed the role of axonal ion channel dysfunction in DPN and explored the hypothesis that there may be a progressive change in ion channel abnormalities that varied with disease stage. METHODS Neurophysiological studies were conducted using axonal excitability techniques, a clinical method of assessing ion channel dysfunction. Studies were conducted in 178 persons with type 2 diabetes, with participants allocated into four groups according to clinical severity of neuropathy, assessed using the Total Neuropathy Grade. RESULTS Analysis of excitability data demonstrated a progressive and stepwise reduction in two parameters that are related to the activity of Kv1.1 channels, namely superexcitability and depolarizing threshold electrotonus at 10-20 ms (p < 0.001), and mathematical modelling of axonal excitability findings supported progressive upregulation of Kv1.1 conductances with increasing greater disease severity. CONCLUSION The findings are consistent with a progressive upregulation of juxtaparanodal Kv1.1 conductances with increasing clinical severity of diabetic peripheral neuropathy. SIGNIFICANCE From a translational perspective, the study suggests that blockade of Kv1.1 channels using 4-aminopyridine derivatives such as fampridine may be a potential treatment for DPN.
Collapse
Affiliation(s)
- Roshan Dhanapalaratnam
- School of Clinical Medicine, UNSW Sydney, NSW 2031, Australia; Department of Neurology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Tushar Issar
- School of Clinical Medicine, UNSW Sydney, NSW 2031, Australia
| | - Ann M Poynten
- School of Clinical Medicine, UNSW Sydney, NSW 2031, Australia; Department of Endocrinology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Kerry-Lee Milner
- School of Clinical Medicine, UNSW Sydney, NSW 2031, Australia; Department of Endocrinology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Natalie C G Kwai
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Australia
| | - Arun V Krishnan
- School of Clinical Medicine, UNSW Sydney, NSW 2031, Australia; Department of Neurology, Prince of Wales Hospital, Sydney, NSW 2031, Australia.
| |
Collapse
|
6
|
Basatinya AM, Sajedianfard J, Nazifi S, Hosseinzadeh S. The analgesic effects of insulin and its disorders in streptozotocin-induced short-term diabetes. Physiol Rep 2024; 12:e16009. [PMID: 38639646 PMCID: PMC11027902 DOI: 10.14814/phy2.16009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
Evidence suggests that insulin resistance plays an important role in developing diabetes complications. The association between insulin resistance and pain perception is less well understood. This study aimed to investigate the effects of peripheral insulin deficiency on pain pathways in the brain. Diabetes was induced in 60 male rats with streptozotocin (STZ). Insulin was injected into the left ventricle of the brain by intracerebroventricular (ICV) injection, then pain was induced by subcutaneous injection of 2.5% formalin. Samples were collected at 4 weeks after STZ injection. Dopamine (DA), serotonin, reactive oxygen species (ROS), and mitochondrial glutathione (mGSH) were measured by ELISA, and gene factors were assessed by RT-qPCR. In diabetic rats, the levels of DA, serotonin, and mGSH decreased in the nuclei of the thalamus, raphe magnus, and periaqueductal gray, and the levels of ROS increased. In addition, the levels of expression of the neuron-specific enolase and receptor for advanced glycation end genes increased, but the expression of glial fibrillary acidic protein expression was reduced. These results support the findings that insulin has an analgesic effect in non-diabetic rats, as demonstrated by the formalin test. ICV injection of insulin reduces pain sensation, but this was not observed in diabetic rats, which may be due to cell damage ameliorated by insulin.
Collapse
Affiliation(s)
| | - Javad Sajedianfard
- Department of Basic Sciences, School of Veterinary MedicineShiraz UniversityShirazIran
| | - Saeed Nazifi
- Department of Clinical Science, School of Veterinary MedicineShiraz UniversityShirazIran
| | - Saied Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary MedicineShiraz UniversityShirazIran
| |
Collapse
|
7
|
Pia H, Nochi Z, Kristensen AG, Pelz B, Goetz M, Hoeink JN, Blockeel AJ, Mouraux A, Truini A, Finnerup NB, Phillips KG, Treede RD, Tankisi H. The test–retest reliability of large and small fiber nerve excitability testing with threshold tracking. Clin Neurophysiol Pract 2023; 8:71-78. [PMID: 37181417 PMCID: PMC10172996 DOI: 10.1016/j.cnp.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/26/2023] [Indexed: 04/09/2023] Open
Abstract
Objective Standard nerve excitability testing (NET) predominantly assesses Aα- and Aβ-fiber function, but a method examining small afferents would be of great interest in pain studies. Here, we examined the properties of a novel perception threshold tracking (PTT) method that preferentially activates Aδ-fibers using weak currents delivered by a novel multipin electrode and compared its reliability with NET. Methods Eighteen healthy subjects (mean age:34.06 ± 2.0) were examined three times with motor and sensory NET and PTT in morning and afternoon sessions on the same day (intra-day reliability) and after a week (inter-day reliability). NET was performed on the median nerve, while PTT stimuli were delivered through a multipin electrode located on the forearm. During PTT, subjects indicated stimulus perception via a button press and the intensity of the current was automatically increased or decreased accordingly by Qtrac software. This allowed changes in the perception threshold to be tracked during strength-duration time constant (SDTC) and threshold electrotonus protocols. Results The coefficient of variation (CoV) and interclass coefficient of variation (ICC) showed good-excellent reliability for most NET parameters. PTT showed poor reliability for both SDTC and threshold electrotonus parameters. There was a significant correlation between large (sensory NET) and small (PTT) fiber SDTC when all sessions were pooled (r = 0.29, p = 0.03). Conclusions Threshold tracking technique can be applied directly to small fibers via a psychophysical readout, but with the current technique, the reliability is poor. Significance Further studies are needed to examine whether Aβ-fiber SDTC may be a surrogate biomarker for peripheral nociceptive signalling.
Collapse
|
8
|
Maximizing treatment efficacy through patient stratification in neuropathic pain trials. Nat Rev Neurol 2023; 19:53-64. [PMID: 36400867 DOI: 10.1038/s41582-022-00741-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
Treatment of neuropathic pain remains inadequate despite the elucidation of multiple pathophysiological mechanisms and the development of promising therapeutic compounds. The lack of success in translating knowledge into clinical practice has discouraged pharmaceutical companies from investing in pain medicine; however, new patient stratification approaches could help bridge the translation gap and develop individualized therapeutic approaches. As we highlight in this article, subgrouping of patients according to sensory profiles and other baseline characteristics could aid the prediction of treatment success. Furthermore, novel outcome measures have been developed for patients with neuropathic pain. The extent to which sensory profiles and outcome measures can be employed in routine clinical practice and clinical trials and across distinct neuropathic pain aetiologies is yet to be determined. Improvements in animal models, drawing on our knowledge of human pain, and robust public-private partnerships will be needed to pave the way to innovative and effective pain medicine in the future.
Collapse
|
9
|
Themistocleous AC, Kristensen AG, Sola R, Gylfadottir SS, Bennedsgaard K, Itani M, Krøigård T, Ventzel L, Sindrup SH, Jensen TS, Bostock H, Serra J, Finnerup NB, Tankisi H, Bennett DLH. Axonal excitability does not differ between painful and painless diabetic or chemotherapy-induced distal symmetrical polyneuropathy in a multi-centre observational study. Ann Neurol 2022; 91:506-520. [PMID: 35150149 PMCID: PMC9313833 DOI: 10.1002/ana.26319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
Objective Axonal excitability reflects ion channel function, and it is proposed that this may be a biomarker in painful (vs painless) polyneuropathy. Our objective was to investigate the relationship between axonal excitability parameters and chronic neuropathic pain in deeply phenotyped cohorts with diabetic or chemotherapy‐induced distal symmetrical polyneuropathy. Methods Two hundred thirty‐nine participants with diabetic polyneuropathy were recruited from sites in the UK and Denmark, and 39 participants who developed chemotherapy‐induced polyneuropathy were recruited from Denmark. Participants were separated into those with probable or definite neuropathic pain and those without neuropathic pain. Axonal excitability of large myelinated fibers was measured with the threshold tracking technique. The stimulus site was the median nerve, and the recording sites were the index finger (sensory studies) and abductor pollicis brevis muscle (motor studies). Results Participants with painless and painful polyneuropathy were well matched across clinical variables. Sensory and motor axonal excitability measures, including recovery cycle, threshold electrotonus, strength–duration time constant, and current–threshold relationship, did not show differences between participants with painful and painless diabetic polyneuropathy, and there were only minor changes for chemotherapy‐induced polyneuropathy. Interpretation Axonal excitability did not significantly differ between painful and painless diabetic or chemotherapy‐induced polyneuropathy in a multicenter observational study. Threshold tracking assesses the excitability of myelinated axons; the majority of nociceptors are unmyelinated, and although there is some overlap of the "channelome" between these axonal populations, our results suggest that alternative measures such as microneurography are required to understand the relationship between sensory neuron excitability and neuropathic pain. ANN NEUROL 2022;91:506–520
Collapse
Affiliation(s)
| | - Alexander Gramm Kristensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Roma Sola
- Neuroscience Technologies, Barcelona, Spain.,MC Mutual, Barcelona, Spain
| | - Sandra Sif Gylfadottir
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Kristine Bennedsgaard
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Mustapha Itani
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Thomas Krøigård
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Lise Ventzel
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Hugh Bostock
- UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jordi Serra
- Neuroscience Technologies, Barcelona, Spain.,MC Mutual, Barcelona, Spain
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Hatice Tankisi
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Bhandari R, Sharma A, Kuhad A. Novel Nanotechnological Approaches for Targeting Dorsal Root Ganglion (DRG) in Mitigating Diabetic Neuropathic Pain (DNP). Front Endocrinol (Lausanne) 2022; 12:790747. [PMID: 35211091 PMCID: PMC8862660 DOI: 10.3389/fendo.2021.790747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022] Open
Abstract
Diabetic neuropathy is the most entrenched complication of diabetes. Usually, it affects the distal foot and toes, which then gradually approaches the lower part of the legs. Diabetic foot ulcer (DFU) could be one of the worst complications of diabetes mellitus. Long-term diabetes leads to hyperglycemia, which is the utmost contributor to neuropathic pain. Hyperglycemia causing an upregulation of voltage-gated sodium channels in the dorsal root ganglion (DRG) was often observed in models of neuropathic pain. DRG opening frequency increases intracellular sodium ion levels, which further causes increased calcium channel opening and stimulates other pathways leading to diabetic peripheral neuropathy (DPN). Currently, pain due to diabetic neuropathy is managed via antidepressants, opioids, gamma-aminobutyric acid (GABA) analogs, and topical agents such as capsaicin. Despite the availability of various treatment strategies, the percentage of patients achieving adequate pain relief remains low. Many factors contribute to this condition, such as lack of specificity and adverse effects such as light-headedness, languidness, and multiple daily doses. Therefore, nanotechnology outperforms in every aspect, providing several benefits compared to traditional therapy such as site-specific and targeted drug delivery. Nanotechnology is the branch of science that deals with the development of nanoscale materials and products, even smaller than 100 nm. Carriers can improve their efficacy with reduced side effects by incorporating drugs into the novel delivery systems. Thus, the utilization of nanotechnological approaches such as nanoparticles, polymeric nanoparticles, inorganic nanoparticles, lipid nanoparticles, gene therapy (siRNA and miRNA), and extracellular vesicles can extensively contribute to relieving neuropathic pain.
Collapse
Affiliation(s)
| | | | - Anurag Kuhad
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
11
|
Chiang MC, Hsueh HW, Yeh TY, Cheng YY, Kao YH, Chang KC, Feng FP, Chao CC, Hsieh ST. Maladaptive motor cortical excitability and connectivity in polyneuropathy with neuropathic pain. Eur J Neurol 2022; 29:1465-1476. [PMID: 35020255 DOI: 10.1111/ene.15247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Sensory symptoms, especially neuropathic pain, are common in polyneuropathy. Conventional diagnostic tools can evaluate structural or functional impairment of nerves but cannot reveal mechanisms of neuropathic pain. Changes in the brain after polyneuropathy may play roles in the genesis of neuropathic pain. METHODS This cross-sectional study investigated changes of cortical excitability within left primary motor cortex (M1) by measuring resting motor thresholds, short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), and afferent inhibition between polyneuropathy patients and controls, and investigated the correlates of these parameters with neuropathic pain and the M1 structural and functional connectivity assessed by diffusion tractography imaging and functional MRI. RESULTS Thirty-three painful and 15 non-painful neuropathic patients and 21 controls were enrolled. There were no differences in intraepidermal nerve fiber density, nerve conduction study, thermal thresholds, or autonomic functional tests between patients with and without neuropathic pain. Compared to controls, neuropathic patients exhibited similar resting motor thresholds or afferent inhibition, but attenuated SICI and augmented ICF, especially in painful patients. Changes of intracortical excitability in neuropathic patients were correlated with intensities of neuropathic pain, and different presentations of SICI and ICF were noted between patients with and without thermal paresthesia. Additionally, short latency afferent inhibition at interstimulus intervals of 20 ms was associated with structural connectivity of left M1 with brain areas associated with pain perception. CONCLUSIONS Maladaptive cortical excitability with altered structural connectivity in left M1 developed after peripheral nerve degeneration and was associated with neuropathic pain and sensory symptoms in polyneuropathy.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsueh-Wen Hsueh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ti-Yen Yeh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Yin Cheng
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Hui Kao
- Department of Neurology, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Kai-Chieh Chang
- Department of Neurology, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Fang-Ping Feng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences.,Graduate Institute of Clinical Medicine.,Center of Precision Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
12
|
Gupta A, Bowirrat A, Gomez LL, Baron D, Elman I, Giordano J, Jalali R, Badgaiyan RD, Modestino EJ, Gold MS, Braverman ER, Bajaj A, Blum K. Hypothesizing in the Face of the Opioid Crisis Coupling Genetic Addiction Risk Severity (GARS) Testing with Electrotherapeutic Nonopioid Modalities Such as H-Wave Could Attenuate Both Pain and Hedonic Addictive Behaviors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:552. [PMID: 35010811 PMCID: PMC8744782 DOI: 10.3390/ijerph19010552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 02/03/2023]
Abstract
In the United States, amid the opioid overdose epidemic, nonaddicting/nonpharmacological proven strategies are available to treat pain and manage chronic pain effectively without opioids. Evidence supporting the long-term use of opioids for pain is lacking, as is the will to alter the drug-embracing culture in American chronic pain management. Some pain clinicians seem to prefer classical analgesic agents that promote unwanted tolerance to analgesics and subsequent biological induction of the "addictive brain". Reward genes play a vital part in modulation of nociception and adaptations in the dopaminergic circuitry. They may affect various sensory and affective components of the chronic pain syndromes. The Genetic Addiction Risk Severity (GARS) test coupled with the H-Wave at entry in pain clinics could attenuate pain and help prevent addiction. The GARS test results identify high-risk for both drug and alcohol, and H-Wave can be initiated to treat pain instead of opioids. The utilization of H-Wave to aid in pain reduction and mitigation of hedonic addictive behaviors is recommended, notwithstanding required randomized control studies. This frontline approach would reduce the possibility of long-term neurobiological deficits and fatalities associated with potent opioid analgesics.
Collapse
Affiliation(s)
- Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Luis Llanos Gomez
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA; (L.L.G.); (R.J.); (E.R.B.)
| | - David Baron
- Graduate College, Western University Health Sciences, Pomona, CA 91766, USA;
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA;
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02139, USA
| | - John Giordano
- South Beach Detox & Treatment Center, North Miami Beach, FL 33169, USA;
| | - Rehan Jalali
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA; (L.L.G.); (R.J.); (E.R.B.)
- Department of Precision Behavioral Management, Geneus Health, San Antonio, TX 78249, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA;
| | | | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Eric R. Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA; (L.L.G.); (R.J.); (E.R.B.)
| | - Anish Bajaj
- Bajaj Chiropractic, New York, NY 10010, USA;
| | - Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA; (L.L.G.); (R.J.); (E.R.B.)
- Graduate College, Western University Health Sciences, Pomona, CA 91766, USA;
- Department of Precision Behavioral Management, Geneus Health, San Antonio, TX 78249, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Egyetem tér 1-3, 1053 Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur 721172, West Bengal, India
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Centre, Dayton, OH 45324, USA
| |
Collapse
|
13
|
Abstract
Diabetic painless and painful peripheral neuropathy remains the most frequent complication of diabetes mellitus, but the pathophysiology remains undescribed, there are no robust clinical endpoints and no efficient treatment exists. This hampers good clinical practice, fruitful clinical research and successful pharmacological trials, necessary for the development of early detection, prevention and treatment. This chapter supplies an update on background and treatment of diabetic peripheral neuropathy. Goals and perspectives for future clinical and scientific approaches are also described.
Collapse
Affiliation(s)
- Johan Røikjer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Faculty of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Ejskjaer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark.
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
14
|
Marshall A, Alam U, Themistocleous A, Calcutt N, Marshall A. Novel and Emerging Electrophysiological Biomarkers of Diabetic Neuropathy and Painful Diabetic Neuropathy. Clin Ther 2021; 43:1441-1456. [PMID: 33906790 DOI: 10.1016/j.clinthera.2021.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes. Small and large peripheral nerve fibers can be involved in DPN. Large nerve fiber damage causes paresthesia, sensory loss, and muscle weakness, and small nerve fiber damage is associated with pain, anesthesia, foot ulcer, and autonomic symptoms. Treatments for DPN and painful DPN (pDPN) pose considerable challenges due to the lack of effective therapies. To meet these challenges, there is a major need to develop biomarkers that can reliably diagnose and monitor progression of nerve damage and, for pDPN, facilitate personalized treatment based on underlying pain mechanisms. METHODS This study involved a comprehensive literature review, incorporating article searches in electronic databases (Google Scholar, PubMed, and OVID) and reference lists of relevant articles with the authors' substantial expertise in DPN. This review considered seminal and novel research and summarizes emerging biomarkers of DPN and pDPN that are based on neurophysiological methods. FINDINGS From the evidence gathered from 145 papers, this submission describes emerging clinical neurophysiological methods with potential to act as biomarkers for the diagnosis and monitoring of DPN as well as putative future roles as predictors of response to antineuropathic pain medication in pDPN. Nerve conduction studies only detect large fiber damage and do not capture pathology or dysfunction of small fibers. Because small nerve fiber damage is prominent in DPN, additional biomarkers of small nerve fiber function are needed. Activation of peripheral nociceptor fibers using laser, heat, or targeted electrical stimuli can generate pain-related evoked potentials, which are an objective neurophysiological measure of damage along the small fiber pathways. Assessment of nerve excitability, which provides a surrogate of axonal properties, may detect alterations in function before abnormalities are detected by nerve conduction studies. Microneurography and rate-dependent depression of the Hoffmann-reflex can be used to dissect underlying pain-generating mechanisms arising from the periphery and spinal cord, respectively. Their role in informing mechanistic-based treatment of pDPN as well as facilitating clinical trials design is discussed. IMPLICATIONS The neurophysiological methods discussed, although currently not practical for use in busy outpatient settings, detect small fiber and early large fiber damage in DPN as well as disclosing dominant pain mechanisms in pDPN. They are suited as diagnostic and predictive biomarkers as well as end points in mechanistic clinical trials of DPN and pDPN.
Collapse
Affiliation(s)
- Anne Marshall
- Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Uazman Alam
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Andreas Themistocleous
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nigel Calcutt
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Andrew Marshall
- Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Department of Clinical Neurophysiology, The Walton Centre, Liverpool, United Kingdom; Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
15
|
Földi MC, Pesti K, Zboray K, Toth AV, Hegedűs T, Málnási-Csizmadia A, Lukacs P, Mike A. The mechanism of non-blocking inhibition of sodium channels revealed by conformation-selective photolabeling. Br J Pharmacol 2021; 178:1200-1217. [PMID: 33450052 DOI: 10.1111/bph.15365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/10/2020] [Accepted: 01/03/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Sodium channel inhibitors can be used to treat hyperexcitability-related diseases, including epilepsies, pain syndromes, neuromuscular disorders and cardiac arrhythmias. The applicability of these drugs is limited by their nonspecific effect on physiological function. They act mainly by sodium channel block and in addition by modulation of channel kinetics. While channel block inhibits healthy and pathological tissue equally, modulation can preferentially inhibit pathological activity. An ideal drug designed to target the sodium channels of pathological tissue would act predominantly by modulation. Thus far, no such drug has been described. EXPERIMENTAL APPROACH Patch-clamp experiments with ultra-fast solution exchange and photolabeling-coupled electrophysiology were applied to describe the unique mechanism of riluzole on Nav1.4 sodium channels. In silico docking experiments were used to study the molecular details of binding. KEY RESULTS We present evidence that riluzole acts predominantly by non-blocking modulation. We propose that, being a relatively small molecule, riluzole is able to stay bound to the binding site, but nonetheless stay off the conduction pathway, by residing in one of the fenestrations. We demonstrate how this mechanism can be recognized. CONCLUSIONS AND IMPLICATIONS Our results identify riluzole as the prototype of this new class of sodium channel inhibitors. Drugs of this class are expected to selectively prevent hyperexcitability, while having minimal effect on cells firing at a normal rate from a normal resting potential.
Collapse
Affiliation(s)
- Mátyás C Földi
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Krisztina Pesti
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.,School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Katalin Zboray
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Adam V Toth
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - András Málnási-Csizmadia
- Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Peter Lukacs
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Arpad Mike
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary.,Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
16
|
Parker J, Karantonis D, Single P. Hypothesis for the mechanism of action of ECAP-controlled closed-loop systems for spinal cord stimulation. Healthc Technol Lett 2020; 7:76-80. [PMID: 32754341 PMCID: PMC7353820 DOI: 10.1049/htl.2019.0110] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/06/2020] [Accepted: 05/15/2020] [Indexed: 01/14/2023] Open
Abstract
Advances in technology and improvement of efficacy for many neuromodulation applications have been achieved without understanding the relationship between the stimulation parameters and the neural activity which is generated in the nervous system. It is the neural activity that ultimately drives the therapeutic benefit and the advent of evoked compound action potential recording allows this activity to be directly measured and quantified. Closed-loop control adjusts the stimulation parameters to maintain a predetermined level of neural recruitment and has been shown to provide improved pain relief in individuals with spinal cord stimulators. However, no mechanism that relates more consistent neural recruitment to patient outcomes has been proposed. The authors propose a hypothesis that may explain the difference in efficacy between open- and closed-loop operational modes by considering the relationship between measured neural recruitment with hypothetical dose and side effect response curves. This provides a rational basis for directing clinical research and improving therapeutic systems.
Collapse
Affiliation(s)
- John Parker
- Saluda Medical Pty Ltd Artarmon, NSW, 2069, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Kensington, Australia
| | | | - Peter Single
- Saluda Medical Pty Ltd Artarmon, NSW, 2069, Australia
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The goal of this review is to explore clinical associations between peripheral neuropathy and diabetic bone disease and to discuss how nerve dysfunction may contribute to dysregulation of bone metabolism, reduced bone quality, and fracture risk. RECENT FINDINGS Diabetic neuropathy can decrease peripheral sensation (sensory neuropathy), impair motor coordination (motor neuropathy), and increase postural hypotension (autonomic neuropathy). Together, this can impair overall balance and increase the risk for falls and fractures. In addition, the peripheral nervous system has the potential to regulate bone metabolism directly through the action of local neurotransmitters on bone cells and indirectly through neuroregulation of the skeletal vascular supply. This review critically evaluates existing evidence for diabetic peripheral neuropathy as a risk factor or direct actor on bone disease. In addition, we address therapeutic and experimental considerations to guide patient care and future research evaluating the emerging relationship between diabetic neuropathy and bone health.
Collapse
Affiliation(s)
- Alec T Beeve
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, 660 South Euclid Avenue, Saint Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University, 6201 Forsyth Blvd, Saint Louis, MO, 63105, USA
| | - Jennifer M Brazill
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, 660 South Euclid Avenue, Saint Louis, MO, 63110, USA
| | - Erica L Scheller
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, 660 South Euclid Avenue, Saint Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University, 6201 Forsyth Blvd, Saint Louis, MO, 63105, USA.
- Department of Cell Biology and Physiology, Washington University, 660 South Euclid Avenue, Saint Louis, MO, 63110, USA.
| |
Collapse
|
18
|
Hugosdottir R, Mørch CD, Jørgensen CK, Nielsen CW, Olsen MV, Pedersen MJ, Tigerholm J. Altered excitability of small cutaneous nerve fibers during cooling assessed with the perception threshold tracking technique. BMC Neurosci 2019; 20:47. [PMID: 31481024 PMCID: PMC6724327 DOI: 10.1186/s12868-019-0527-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/22/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is a need for new approaches to increase the knowledge of the membrane excitability of small nerve fibers both in healthy subjects, as well as during pathological conditions. Our research group has previously developed the perception threshold tracking technique to indirectly assess the membrane properties of peripheral small nerve fibers. In the current study, a new approach for studying membrane excitability by cooling small fibers, simultaneously with applying a slowly increasing electrical stimulation current, is evaluated. The first objective was to examine whether altered excitability during cooling could be detected by the perception threshold tracking technique. The second objective was to computationally model the underlying ionic current that could be responsible for cold induced alteration of small fiber excitability. The third objective was to evaluate whether computational modelling of cooling and electrical simulation can be used to generate hypotheses of ionic current changes in small fiber neuropathy. RESULTS The excitability of the small fibers was assessed by the perception threshold tracking technique for the two temperature conditions, 20 °C and 32 °C. A detailed multi-compartment model was developed, including the ionic currents: NaTTXs, NaTTXr, NaP, KDr, KM, KLeak, KA, and Na/K-ATPase. The perception thresholds for the two long duration pulses (50 and 100 ms) were reduced when the skin temperature was lowered from 32 to 20 °C (p < 0.001). However, no significant effects were observed for the shorter durations (1 ms, p = 0.116; 5 ms p = 0.079, rmANOVA, Sidak). The computational model predicted that the reduction in the perception thresholds related to long duration pulses may originate from a reduction of the KLeak channel and the Na/K-ATPase. For short durations, the effect cancels out due to a reduction of the transient TTX resistant sodium current (Nav1.8). Additionally, the result from the computational model indicated that cooling simultaneously with electrical stimulation, may increase the knowledge regarding pathological alterations of ionic currents. CONCLUSION Cooling may alter the ionic current during electrical stimulation and thereby provide additional information regarding membrane excitability of small fibers in healthy subjects and potentially also during pathological conditions.
Collapse
Affiliation(s)
- Rosa Hugosdottir
- Center of Neuroplasticity and Pain, SMI®, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7D3, 9220, Aalborg, Denmark
| | - Carsten Dahl Mørch
- Center of Neuroplasticity and Pain, SMI®, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7D3, 9220, Aalborg, Denmark
| | - Cecilia Klitgaard Jørgensen
- Center of Neuroplasticity and Pain, SMI®, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7D3, 9220, Aalborg, Denmark
| | - Camilla Winther Nielsen
- Center of Neuroplasticity and Pain, SMI®, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7D3, 9220, Aalborg, Denmark
| | - Mathias Vassard Olsen
- Center of Neuroplasticity and Pain, SMI®, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7D3, 9220, Aalborg, Denmark
| | - Mads Jozwiak Pedersen
- Center of Neuroplasticity and Pain, SMI®, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7D3, 9220, Aalborg, Denmark
| | - Jenny Tigerholm
- Center of Neuroplasticity and Pain, SMI®, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7D3, 9220, Aalborg, Denmark.
| |
Collapse
|
19
|
Issar T, Arnold R, Kwai NCG, Walker S, Yan A, Borire AA, Poynten AM, Pussell BA, Endre ZH, Kiernan MC, Krishnan AV. Relative contributions of diabetes and chronic kidney disease to neuropathy development in diabetic nephropathy patients. Clin Neurophysiol 2019; 130:2088-2095. [PMID: 31541986 DOI: 10.1016/j.clinph.2019.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/04/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Chronic kidney disease (CKD) caused by diabetes is known as diabetic kidney disease (DKD). The present study aimed to examine the underlying mechanisms of axonal dysfunction and features of neuropathy in DKD compared to CKD and type 2 diabetes (T2DM) alone. METHODS Patients with DKD (n = 30), CKD (n = 28) or T2DM (n = 40) and healthy controls (n = 41) underwent nerve excitability assessments to examine axonal function. Neuropathy was assessed using the Total Neuropathy Score. A validated mathematical model of human axons was utilised to provide an indication of the underlying causes of nerve pathophysiology. RESULTS Total neuropathy score was significantly higher in patients with DKD compared to those with either CKD or T2DM (p < 0.05). In DKD, nerve excitability measures (S2 accommodation and superexcitability, p < 0.05) were more severely affected compared to both CKD and T2DM and worsened with increasing serum K+ (p < 0.01). Mathematical modelling indicated the basis for nerve dysfunction in DKD was an elevation of extracellular K+ and reductions in Na+ permeability and the hyperpolarisation-activated cation current, which was similar to CKD. CONCLUSIONS Patients with DKD manifested a more severe neuropathy phenotype and shared features of nerve dysfunction to that of CKD. SIGNIFICANCE The CKD, and not diabetes component, appears to underlie axonal pathophysiology in DKD.
Collapse
Affiliation(s)
- Tushar Issar
- Prince of Wales Clinical School, UNSW Sydney, NSW 2031, Australia
| | - Ria Arnold
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Natalie C G Kwai
- Prince of Wales Clinical School, UNSW Sydney, NSW 2031, Australia; Department of Exercise Physiology, UNSW Sydney, NSW 2052, Australia
| | - Susan Walker
- Prince of Wales Clinical School, UNSW Sydney, NSW 2031, Australia
| | - Aimy Yan
- Prince of Wales Clinical School, UNSW Sydney, NSW 2031, Australia
| | - Adeniyi A Borire
- Prince of Wales Clinical School, UNSW Sydney, NSW 2031, Australia
| | - Ann M Poynten
- Department of Endocrinology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Bruce A Pussell
- Department of Nephrology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Zoltan H Endre
- Department of Nephrology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Arun V Krishnan
- Prince of Wales Clinical School, UNSW Sydney, NSW 2031, Australia.
| |
Collapse
|
20
|
Kiernan MC, Bostock H, Park SB, Kaji R, Krarup C, Krishnan AV, Kuwabara S, Lin CSY, Misawa S, Moldovan M, Sung J, Vucic S, Wainger BJ, Waxman S, Burke D. Measurement of axonal excitability: Consensus guidelines. Clin Neurophysiol 2019; 131:308-323. [PMID: 31471200 DOI: 10.1016/j.clinph.2019.07.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
Measurement of axonal excitability provides an in vivo indication of the properties of the nerve membrane and of the ion channels expressed on these axons. Axonal excitability techniques have been utilised to investigate the pathophysiological mechanisms underlying neurological diseases. This document presents guidelines derived for such studies, based on a consensus of international experts, and highlights the potential difficulties when interpreting abnormalities in diseased axons. The present manuscript provides a state-of-the-art review of the findings of axonal excitability studies and their interpretation, in addition to suggesting guidelines for the optimal performance of excitability studies.
Collapse
Affiliation(s)
- Matthew C Kiernan
- Brain and Mind Centre, University of Sydney and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney 2006, Australia.
| | - Hugh Bostock
- UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Susanna B Park
- Brain and Mind Centre, University of Sydney and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney 2006, Australia
| | - Ryuji Kaji
- National Utano Hospital, 8-Narutaki Ondoyamacho, Ukyoku, Kyoto 616-8255, Japan
| | - Christian Krarup
- Department of Neuroscience, University of Copenhagen and Department of Clinical Neurophysiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Arun V Krishnan
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Cindy Shin-Yi Lin
- Brain and Mind Centre, University of Sydney and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney 2006, Australia
| | - Sonoko Misawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Mihai Moldovan
- Department of Neuroscience, University of Copenhagen and Department of Clinical Neurophysiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jiaying Sung
- Taipei Medical University, Wanfang Hospital, Taipei, Taiwan
| | - Steve Vucic
- Department of Neurology, Westmead Hospital, Western Clinical School, University of Sydney, Australia
| | - Brian J Wainger
- Department of Neurology and Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stephen Waxman
- Department of Neurology, Yale Medical School, New Haven, CT 06510, USA; Neurorehabilitation Research Center, Veterans Affairs Hospital, West Haven, CT 06516, USA
| | - David Burke
- Brain and Mind Centre, University of Sydney and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney 2006, Australia
| |
Collapse
|
21
|
Rajchgot T, Thomas SC, Wang JC, Ahmadi M, Balood M, Crosson T, Dias JP, Couture R, Claing A, Talbot S. Neurons and Microglia; A Sickly-Sweet Duo in Diabetic Pain Neuropathy. Front Neurosci 2019; 13:25. [PMID: 30766472 PMCID: PMC6365454 DOI: 10.3389/fnins.2019.00025] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetes is a common condition characterized by persistent hyperglycemia. High blood sugar primarily affects cells that have a limited capacity to regulate their glucose intake. These cells include capillary endothelial cells in the retina, mesangial cells in the renal glomerulus, Schwann cells, and neurons of the peripheral and central nervous systems. As a result, hyperglycemia leads to largely intractable complications such as retinopathy, nephropathy, hypertension, and neuropathy. Diabetic pain neuropathy is a complex and multifactorial disease that has been associated with poor glycemic control, longer diabetes duration, hypertension, advanced age, smoking status, hypoinsulinemia, and dyslipidemia. While many of the driving factors involved in diabetic pain are still being investigated, they can be broadly classified as either neuron -intrinsic or -extrinsic. In neurons, hyperglycemia impairs the polyol pathway, leading to an overproduction of reactive oxygen species and reactive nitrogen species, an enhanced formation of advanced glycation end products, and a disruption in Na+/K+ ATPase pump function. In terms of the extrinsic pathway, hyperglycemia leads to the generation of both overactive microglia and microangiopathy. The former incites a feed-forward inflammatory loop that hypersensitizes nociceptor neurons, as observed at the onset of diabetic pain neuropathy. The latter reduces neurons' access to oxygen, glucose and nutrients, prompting reductions in nociceptor terminal expression and losses in sensation, as observed in the later stages of diabetic pain neuropathy. Overall, microglia can be seen as potent and long-lasting amplifiers of nociceptor neuron activity, and may therefore constitute a potential therapeutic target in the treatment of diabetic pain neuropathy.
Collapse
Affiliation(s)
- Trevor Rajchgot
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Sini Christine Thomas
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jo-Chiao Wang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Maryam Ahmadi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Mohammad Balood
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Théo Crosson
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jenny Pena Dias
- Johns Hopkins University School of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, United States
| | - Réjean Couture
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Audrey Claing
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Talbot
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
22
|
Pham VM, Matsumura S, Katano T, Funatsu N, Ito S. Diabetic neuropathy research: from mouse models to targets for treatment. Neural Regen Res 2019; 14:1870-1879. [PMID: 31290436 PMCID: PMC6676867 DOI: 10.4103/1673-5374.259603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetic neuropathy is one of the most serious complications of diabetes, and its increase shows no sign of stopping. Furthermore, current clinical treatments do not yet approach the best effectiveness. Thus, the development of better strategies for treating diabetic neuropathy is an urgent matter. In this review, we first discuss the advantages and disadvantages of some major mouse models of diabetic neuropathy and then address the targets for mechanism-based treatment that have been studied. We also introduce our studies on each part. Using stem cells as a source of neurotrophic factors to target extrinsic factors of diabetic neuropathy, we found that they present a promising treatment.
Collapse
Affiliation(s)
- Vuong M Pham
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan; Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore
| | - Shinji Matsumura
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan
| | - Tayo Katano
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan
| | - Nobuo Funatsu
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Hirakata; Department of Anesthesiology, Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
23
|
Lee G, Grovey B, Furnish T, Wallace M. Medical Cannabis for Neuropathic Pain. Curr Pain Headache Rep 2018; 22:8. [DOI: 10.1007/s11916-018-0658-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
|
25
|
Sung JY, Tani J, Chang TS, Lin CSY. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy. PLoS One 2017; 12:e0171223. [PMID: 28182728 PMCID: PMC5300160 DOI: 10.1371/journal.pone.0171223] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/17/2017] [Indexed: 12/02/2022] Open
Abstract
This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr). Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (P<0.05), shortened strength-duration time constant (P<0.01), increased superexcitability (P<0.01), decreased subexcitability (P<0.05), decreased accommodation to depolarizing current (P<0.01), and a trend of decreased accommodation to hyperpolarizing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1–8) and G2+3 (TNSr 9–24) groups. In contrast, motor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (P<0.01) in the G0 group. This study revealed that the development of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches.
Collapse
Affiliation(s)
- Jia-Ying Sung
- Department of Neurology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jowy Tani
- Department of Neurology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes
| | - Tsui-San Chang
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cindy Shin-Yi Lin
- Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes.,Translational Neuroscience, Department of Physiology, School of Medicine Science, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
26
|
Lv J, Wang M, Xia M. Na v1.7 and Na v1.8: Diabetes-induced Changes in Primary Sensory Neurons in Rats. J Neurogastroenterol Motil 2016; 22:707-708. [PMID: 27703115 PMCID: PMC5056582 DOI: 10.5056/jnm16110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jianlin Lv
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Mingjie Wang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China.,School of Orthopaedics, Guangxi University of Chinese Medicine, Nanning, China
| | - Meng Xia
- Institute of foundational research of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
27
|
Banzrai C, Nodera H, Kawarai T, Higashi S, Okada R, Mori A, Shimatani Y, Osaki Y, Kaji R. Impaired Axonal Na(+) Current by Hindlimb Unloading: Implication for Disuse Neuromuscular Atrophy. Front Physiol 2016; 7:36. [PMID: 26909041 PMCID: PMC4754663 DOI: 10.3389/fphys.2016.00036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/26/2016] [Indexed: 12/12/2022] Open
Abstract
This study aimed to characterize the excitability changes in peripheral motor axons caused by hindlimb unloading (HLU), which is a model of disuse neuromuscular atrophy. HLU was performed in normal 8-week-old male mice by fixing the proximal tail by a clip connected to the top of the animal's cage for 3 weeks. Axonal excitability studies were performed by stimulating the sciatic nerve at the ankle and recording the compound muscle action potential (CMAP) from the foot. The amplitudes of the motor responses of the unloading group were 51% of the control amplitudes [2.2 ± 1.3 mV (HLU) vs. 4.3 ± 1.2 mV (Control), P = 0.03]. Multiple axonal excitability analysis showed that the unloading group had a smaller strength-duration time constant (SDTC) and late subexcitability (recovery cycle) than the controls [0.075 ± 0.01 (HLU) vs. 0.12 ± 0.01 (Control), P < 0.01; 5.4 ± 1.0 (HLU) vs. 10.0 ± 1.3 % (Control), P = 0.01, respectively]. Three weeks after releasing from HLU, the SDTC became comparable to the control range. Using a modeling study, the observed differences in the waveforms could be explained by reduced persistent Na+ currents along with parameters related to current leakage. Quantification of RNA of a SCA1A gene coding a voltage-gated Na+ channel tended to be decreased in the sciatic nerve in HLU. The present study suggested that axonal ion currents are altered in vivo by HLU. It is still undetermined whether the dysfunctional axonal ion currents have any pathogenicity on neuromuscular atrophy or are the results of neural plasticity by atrophy.
Collapse
Affiliation(s)
| | - Hiroyuki Nodera
- Department of Neurology, Tokushima University Tokushima, Japan
| | | | - Saki Higashi
- Department of Neurology, Tokushima University Tokushima, Japan
| | - Ryo Okada
- Department of Neurology, Tokushima University Tokushima, Japan
| | - Atsuko Mori
- Department of Neurology, Tokushima University Tokushima, Japan
| | | | - Yusuke Osaki
- Department of Neurology, Tokushima University Tokushima, Japan
| | - Ryuji Kaji
- Department of Neurology, Tokushima University Tokushima, Japan
| |
Collapse
|
28
|
Milic MS, Brkovic B, Krsljak E, Stojic D. Comparison of pulpal anesthesia and cardiovascular parameters with lidocaine with epinephrine and lidocaine with clonidine after maxillary infiltration in type 2 diabetic volunteers. Clin Oral Investig 2015; 20:1283-93. [PMID: 26427866 DOI: 10.1007/s00784-015-1610-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/21/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The pulpal anesthetic and cardiovascular parameters obtained by 2 % lidocaine with epinephrine (LE; 1:80,000) or clonidine (LC; 15 mcg/ml) were studied in diabetes mellitus (DM) type 2 and healthy volunteers (72), after maxillary infiltration anesthesia. MATERIALS AND METHODS Onset and duration of pulpal anesthesia were measured by electric pulp tester; vasoconstrictive effect of used local anesthetic mixtures by laser Doppler flowmetry (LDF) through pulpal blood flow (PBF); systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate (HR) were registered by electrocardiogram monitoring. RESULTS Onset of pulpal anesthesia was shorter for LC than for LE in healthy, while it was not different in diabetic participants; duration of pulpal anesthesia was significantly longer in type 2 diabetic participants, regardless of used anesthetic mixture. Significant reduction of PBF with LE was observed during 45 min in healthy and 60 min in diabetic participants, while with LC such reduction was observed during 45 min in both groups. LE caused a significant increase of SBP in the 5th and 15th minutes in diabetic versus healthy participants, while LC decreased SBP from the 10th to 60th minutes in healthy versus diabetic participants. CONCLUSIONS DM type 2 influences duration of maxillary infiltration anesthesia obtained with LE and LC, and systolic blood pressure during LE anesthesia. CLINICAL RELEVANCE The obtained results provide elements for future protocols concerning intraoral local anesthesia in DM type 2 patients.
Collapse
Affiliation(s)
- Marija S Milic
- Clinic of Oral Surgery, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Bozidar Brkovic
- Clinic of Oral Surgery, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Elena Krsljak
- Department of Physiology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragica Stojic
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
29
|
Sung JY, Tani J, Hung KS, Lui TN, Lin CSY. Sensory axonal dysfunction in cervical radiculopathy. J Neurol Neurosurg Psychiatry 2015; 86:640-5. [PMID: 25143629 DOI: 10.1136/jnnp-2014-308088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/01/2014] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate changes in sensory axonal excitability in the distal nerve in patients with cervical radiculopathy. METHODS The patients were classified by the findings of cervical MRI into two subgroups: 22 patients with C6/7 root compression and 25 patients with cervical cord and root compression above/at C6/7. Patients were investigated using conventional nerve conduction studies (NCS) and nerve excitability testing. Sensory nerve excitability testing was undertaken with stimulation at the wrist and recording from digit II (dermatome C6/7). The results were compared with healthy controls. Both preoperative and postoperative tests were performed if the patient underwent surgery. RESULTS Sensory axonal excitability was significantly different in both cohorts compared with healthy controls, including prolonged strength-duration time constant, reduced S2 accommodation, increased threshold electrotonus hyperpolarisation (TEh (90-100 ms)), and increased superexcitability. The changes in these excitability indices are compatible with axonal membrane hyperpolarisation. In five patients who underwent surgery, the postoperative sensory excitability was tested after 1 week, and showed significant changes in TE (TEh (90-100 ms) and TEh slope, p<0.05) between presurgery and postsurgery. CONCLUSIONS The present study demonstrated distal nerve axonal hyperpolarisation in patients with cervical radiculopathy. These findings suggest that the hyperpolarised pattern might be due to Na(+)-K(+) ATPase overactivation induced by proximal ischaemia, or could reflect the remyelinating process. Distal sensory axons were hyperpolarised even though there were no changes in NCS, suggesting that nerve excitability testing may be more sensitive to clinical symptoms than NCS in patients with cervical radiculopathy.
Collapse
Affiliation(s)
- Jia-Ying Sung
- Department of Neurology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jowy Tani
- Department of Neurology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Sheng Hung
- Division of Neurosurgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan Department of Neurosurgery, Clinical Research Center, Graduate Institute of Injury Prevention and Control, Taipei Medical University, Wan Fang Hospital, Taipei, Taiwan
| | - Tai-Ngar Lui
- Division of Neurosurgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cindy Shin-Yi Lin
- Department of Neurology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan Translational Neuroscience, Department of Physiology, School of Medicine Science, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
30
|
Schreiber AK, Nones CFM, Reis RC, Chichorro JG, Cunha JM. Diabetic neuropathic pain: Physiopathology and treatment. World J Diabetes 2015; 6:432-444. [PMID: 25897354 PMCID: PMC4398900 DOI: 10.4239/wjd.v6.i3.432] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/26/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Diabetic neuropathy is a common complication of both type 1 and type 2 diabetes, which affects over 90% of the diabetic patients. Although pain is one of the main symptoms of diabetic neuropathy, its pathophysiological mechanisms are not yet fully known. It is widely accepted that the toxic effects of hyperglycemia play an important role in the development of this complication, but several other hypotheses have been postulated. The management of diabetic neuropathic pain consists basically in excluding other causes of painful peripheral neuropathy, improving glycemic control as a prophylactic therapy and using medications to alleviate pain. First line drugs for pain relief include anticonvulsants, such as pregabalin and gabapentin and antidepressants, especially those that act to inhibit the reuptake of serotonin and noradrenaline. In addition, there is experimental and clinical evidence that opioids can be helpful in pain control, mainly if associated with first line drugs. Other agents, including for topical application, such as capsaicin cream and lidocaine patches, have also been proposed to be useful as adjuvants in the control of diabetic neuropathic pain, but the clinical evidence is insufficient to support their use. In conclusion, a better understanding of the mechanisms underlying diabetic neuropathic pain will contribute to the search of new therapies, but also to the improvement of the guidelines to optimize pain control with the drugs currently available.
Collapse
|
31
|
Modulating actions of NMDA receptors on pronociceptive effects of locally injected remifentanil in diabetic rats. Pharmacol Rep 2014; 66:1065-72. [DOI: 10.1016/j.pharep.2014.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/30/2014] [Accepted: 07/21/2014] [Indexed: 01/14/2023]
|
32
|
Lauria G, Ziegler D, Malik R, Merkies ISJ, Waxman SG, Faber CG. The role of sodium channels in painful diabetic and idiopathic neuropathy. Curr Diab Rep 2014; 14:538. [PMID: 25142720 DOI: 10.1007/s11892-014-0538-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Painful neuropathies are frequently encountered in clinical practice as an early or late complication of several systemic disorders. Among them, diabetes is one of the most important due to its epidemiology and the relevance for regulatory agencies in the assessment of efficacy of new analgesics. However, the presentation and course of painful neuropathies, as well as the response to available drugs, are highly variable and unpredictable, posing significant challenges in the management of patients. Experimental and clinical studies have suggested that polymorphisms and mutations in pain-related genes are involved in the facilitation or inhibition of nociception, and might modulate neuropathic pain and the response to analgesics in patients. Voltage-gated sodium channel genes are among the most relevant, due to the key role of these membrane proteins in the physiology of nociception and their involvement in the pathogenesis of idiopathic painful small fiber neuropathies. These compelling features make sodium channel candidate targets for a novel approach to painful diabetic and idiopathic neuropathies, which will hopefully allow a new classification of patients and more effective targeted treatments.
Collapse
Affiliation(s)
- Giuseppe Lauria
- Neuroalgology and Headache Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria, 11, 20133, Milan, Italy,
| | | | | | | | | | | |
Collapse
|
33
|
Wang D, Couture R, Hong Y. Activated microglia in the spinal cord underlies diabetic neuropathic pain. Eur J Pharmacol 2014; 728:59-66. [PMID: 24508519 DOI: 10.1016/j.ejphar.2014.01.057] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus is an increasingly common chronic medical condition. Approximately 30% of diabetic patients develop neuropathic pain, manifested as spontaneous pain, hyperalgesia and allodynia. Hyperglycemia induces metabolic changes in peripheral tissues and enhances oxidative stress in nerve fibers. The damages and subsequent reactive inflammation affect structural properties of Schwann cells and axons leading to the release of neuropoietic mediators, such as pro-inflammatory cytokines and pro-nociceptive mediators. Therefore, diabetic neuropathic pain (DNP) shares some histological features and underlying mechanisms with traumatic neuropathy. DNP displays, however, other distinct features; for instance, sensory input to the spinal cord decreases rather than increasing in diabetic patients. Consequently, development of central sensitization in DNP involves mechanisms that are distinct from traumatic neuropathic pain. In DNP, the contribution of spinal cord microglia activation to central sensitization and pain processes is emerging as a new concept. Besides inflammation in the periphery, hyperglycemia and the resulting production of reactive oxygen species affect the local microenvironment in the spinal cord. All these alterations could trigger resting and sessile microglia to the activated phenotype. In turn, microglia synthesize and release pro-inflammatory cytokines and neuroactive molecules capable of inducing hyperactivity of spinal nociceptive neurons. Hence, it is imperative to elucidate glial mechanisms underlying DNP for the development of effective therapeutic agents. The present review highlights the recent developments regarding the contribution of spinal microglia as compelling target for the treatment of DNP.
Collapse
Affiliation(s)
- Dongmei Wang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, New campus, Fuzhou, Fujian 350108, People׳s Republic of China
| | - Réjean Couture
- Department of Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Downtown, Montréal, Québec, Canada H3C 3J7
| | - Yanguo Hong
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, New campus, Fuzhou, Fujian 350108, People׳s Republic of China.
| |
Collapse
|
34
|
Arnold R, Kwai NC, Krishnan AV. Mechanisms of axonal dysfunction in diabetic and uraemic neuropathies. Clin Neurophysiol 2013; 124:2079-90. [DOI: 10.1016/j.clinph.2013.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 12/13/2022]
|
35
|
Guven M, Kahraman I, Koc F, Bozdemir H, Sarica Y, Gunay I. The conduction block produced by oxcarbazepine in the isolated rat sciatic nerve: a comparison with lamotrigine. Neurol Res 2013; 33:68-74. [DOI: 10.1179/016164110x12714125204191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
36
|
Parker JL, Karantonis DM, Single PS, Obradovic M, Laird J, Gorman RB, Ladd LA, Cousins MJ. Electrically Evoked Compound Action Potentials Recorded From the Sheep Spinal Cord. Neuromodulation 2013; 16:295-303; discussion 303. [DOI: 10.1111/ner.12053] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/13/2013] [Accepted: 02/11/2013] [Indexed: 11/26/2022]
Affiliation(s)
| | - Dean M. Karantonis
- National Information and Communications Technology Australia; Sydney; NSW; Australia
| | - Peter S. Single
- National Information and Communications Technology Australia; Sydney; NSW; Australia
| | - Milan Obradovic
- National Information and Communications Technology Australia; Sydney; NSW; Australia
| | - James Laird
- National Information and Communications Technology Australia; Sydney; NSW; Australia
| | - Robert B. Gorman
- National Information and Communications Technology Australia; Sydney; NSW; Australia
| | - Leigh A Ladd
- School of Animal and Veterinary Sciences; Charles Sturt University; Wagga Wagga; NSW; Australia
| | - Michael J. Cousins
- Pain Management Research Institute and Kolling Institute; University of Sydney at the Royal North Shore Hospital; Sydney; NSW; Australia
| |
Collapse
|
37
|
Zenker J, Ziegler D, Chrast R. Novel pathogenic pathways in diabetic neuropathy. Trends Neurosci 2013; 36:439-49. [PMID: 23725712 DOI: 10.1016/j.tins.2013.04.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 04/20/2013] [Accepted: 04/24/2013] [Indexed: 02/08/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication affecting more than one third of diabetes mellitus (DM) patients. Although all cellular components participating in peripheral nerve function are exposed to and affected by the metabolic consequences of DM, nodal regions, areas of intense interactions between Schwann cells and axons, may be particularly sensitive to DM-induced alterations. Nodes are enriched in insulin receptors, glucose transporters, Na(+) and K(+) channels, and mitochondria, all implicated in the development and progression of DPN. Latest results particularly reinforce the idea that changes in ion-channel function and energy metabolism, both of which depend on axon-glia crosstalk, are among the important contributors to DPN. These insights provide a basis for new therapeutic approaches aimed at delaying or reversing DPN.
Collapse
Affiliation(s)
- Jennifer Zenker
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
| | | | | |
Collapse
|
38
|
Kwai NCG, Arnold R, Wickremaarachchi C, Lin CSY, Poynten AM, Kiernan MC, Krishnan AV. Effects of axonal ion channel dysfunction on quality of life in type 2 diabetes. Diabetes Care 2013; 36:1272-7. [PMID: 23404298 PMCID: PMC3631837 DOI: 10.2337/dc12-1310] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Pharmacological agents for diabetic peripheral neuropathy (DN) target a number of mechanisms, including sodium channel function and γ-aminobutyric acid-minergic processes. At present, prescription is undertaken on a trial-and-error basis, leading to prolonged medication trials and greater healthcare costs. Nerve-excitability techniques are a novel method of assessing axonal ion channel function in the clinical setting. The aim of this study was to determine the effects of axonal ion channel dysfunction on neuropathy-specific quality-of-life (QoL) measures in DN. RESEARCH DESIGN AND METHODS Fifty-four patients with type 2 diabetes mellitus underwent comprehensive neurologic assessment, nerve-conduction studies, and nerve-excitability assessment. Neuropathy severity was assessed using the Total Neuropathy Score. Neuropathy-specific QoL was assessed using a DN-specific QoL questionnaire (Neuropathy-Specific Quality of Life Questionnaire [NeuroQoL]). Glycosylated hemoglobin and BMI were recorded in all patients. RESULTS NeuroQoL scores indicated significant QoL impairment (mean 9.08 ± 5.93). Strength-duration time constant (SDTC), an excitability parameter reflecting sodium channel function, was strongly correlated with QoL scores (r = 0.545; P < 0.005). SDTC was prolonged in 48.6% of patients who experienced neuropathic symptoms. A significant correlation was also noted between SDTC and neuropathy severity (r = 0.29; P < 0.05). This relationship was strengthened when looking specifically at patients with clinically graded neuropathy (r = 0.366; P < 0.05). CONCLUSIONS The current study has demonstrated an association between markers of sodium channel function and QoL in DN. The study demonstrates that excitability techniques may identify patients in whom altered sodium channel function may be the dominant abnormality. The findings suggest that excitability techniques may have a role in clinical decision making regarding neuropathic treatment prescription.
Collapse
Affiliation(s)
- Natalie C G Kwai
- School of Medical Sciences, University of New South Wales, Kensington, Australia
| | | | | | | | | | | | | |
Collapse
|
39
|
Yu N, Morris CE, Joós B, Longtin A. Spontaneous excitation patterns computed for axons with injury-like impairments of sodium channels and Na/K pumps. PLoS Comput Biol 2012; 8:e1002664. [PMID: 23028273 PMCID: PMC3441427 DOI: 10.1371/journal.pcbi.1002664] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/13/2012] [Indexed: 11/28/2022] Open
Abstract
In injured neurons, “leaky” voltage-gated sodium channels (Nav) underlie dysfunctional excitability that ranges from spontaneous subthreshold oscillations (STO), to ectopic (sometimes paroxysmal) excitation, to depolarizing block. In recombinant systems, mechanical injury to Nav1.6-rich membranes causes cytoplasmic Na+-loading and “Nav-CLS”, i.e., coupled left-(hyperpolarizing)-shift of Nav activation and availability. Metabolic injury of hippocampal neurons (epileptic discharge) results in comparable impairment: left-shifted activation and availability and hence left-shifted INa-window. A recent computation study revealed that CLS-based INa-window left-shift dissipates ion gradients and impairs excitability. Here, via dynamical analyses, we focus on sustained excitability patterns in mildly damaged nodes, in particular with more realistic Gaussian-distributed Nav-CLS to mimic “smeared” injury intensity. Since our interest is axons that might survive injury, pumps (sine qua non for live axons) are included. In some simulations, pump efficacy and system volumes are varied. Impacts of current noise inputs are also characterized. The diverse modes of spontaneous rhythmic activity evident in these scenarios are studied using bifurcation analysis. For “mild CLS injury”, a prominent feature is slow pump/leak-mediated EIon oscillations. These slow oscillations yield dynamic firing thresholds that underlie complex voltage STO and bursting behaviors. Thus, Nav-CLS, a biophysically justified mode of injury, in parallel with functioning pumps, robustly engenders an emergent slow process that triggers a plethora of pathological excitability patterns. This minimalist “device” could have physiological analogs. At first nodes of Ranvier and at nociceptors, e.g., localized lipid-tuning that modulated Nav midpoints could produce Nav-CLS, as could co-expression of appropriately differing Nav isoforms. Nerve cells damaged by trauma, stroke, epilepsy, inflammatory conditions etc, have chronically leaky sodium channels that eventually kill. The usual job of sodium channels is to make brief voltage signals –action potentials– for long distance propagation. After sodium channels open to generate action potentials, sodium pumps work harder to re-establish the intracellular/extracellular sodium imbalance that is, literally, the neuron's battery for firing action potentials. Wherever tissue damage renders membranes overly fluid, we hypothesize, sodium channels become chronically leaky. Our experimental findings justify this. In fluidized membranes, sodium channel voltage sensors respond too easily, letting channels spend too much time open. Channels leak, pumps respond. By mathematical modeling, we show that in damaged channel-rich membranes the continual pump/leak counterplay would trigger the kinds of bizarre intermittent action potential bursts typical of injured neurons. Arising ectopically from injury regions, such neuropathic firing is unrelated to events in the external world. Drugs that can silence these deleterious electrical barrages without blocking healthy action potentials are needed. If fluidized membranes house the problematic leaky sodium channels, then drug side effects could be diminished by using drugs that accumulate most avidly into fluidized membranes, and that bind their targets with highest affinity there.
Collapse
Affiliation(s)
- Na Yu
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Béla Joós
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| | - André Longtin
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
40
|
Altered distribution of juxtaparanodal kv1.2 subunits mediates peripheral nerve hyperexcitability in type 2 diabetes mellitus. J Neurosci 2012; 32:7493-8. [PMID: 22649228 DOI: 10.1523/jneurosci.0719-12.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peripheral nerve hyperexcitability (PNH) is one of the distal peripheral neuropathy phenotypes often present in patients affected by type 2 diabetes mellitus (T2DM). Through in vivo and ex vivo electrophysiological recordings in db/db mice, a model of T2DM, we observed that, in addition to reduced nerve conduction velocity, db/db mice also develop PNH. By using pharmacological inhibitors, we demonstrated that the PNH is mediated by the decreased activity of K(v)1-channels. In agreement with these data, we observed that the diabetic condition led to a reduced presence of the K(v)1.2-subunits in juxtaparanodal regions of peripheral nerves in db/db mice and in nerve biopsies from T2DM patients. Together, these observations indicate that the T2DM condition leads to potassium channel-mediated PNH, thus identifying them as a potential drug target to treat some of the DPN related symptoms.
Collapse
|
41
|
Long-term nerve excitability changes by persistent Na+ current blocker ranolazine. Neurosci Lett 2012; 524:101-6. [PMID: 22824305 DOI: 10.1016/j.neulet.2012.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/04/2012] [Accepted: 07/08/2012] [Indexed: 01/23/2023]
Abstract
The persistent Na(+) current (Na(p)) in peripheral axons plays an important functional role in controlling the axonal excitability. Abnormal Na(p) is believed to contribute to neurodegeneration and neuropathic pain, and thus it is an attractive therapeutic target. To assess the chronic behavior of selective Na(p) blockade, axonal excitability testing was performed in vivo in normal male mice exposed to ranolazine by recording the tail sensory nerve action potentials (SNAPs). Seven days after administering ranolazine i.p. (50mg/kg) daily for 1 week, nerve excitability testing showed decreased strength-duration time constant in the ranolazine group in comparison to the control (P<0.03). This change is explained by the long-term effects of ranolazine on Na(p). Importantly, ranolazine showed no effect on other ion channels that influence axonal excitability. Further study is needed to assess the chronic Na(p) blockade as a useful therapy in peripheral nerve diseases associated with abnormal nerve excitability.
Collapse
|
42
|
Eberhardt MJ, Filipovic MR, Leffler A, de la Roche J, Kistner K, Fischer MJ, Fleming T, Zimmermann K, Ivanovic-Burmazovic I, Nawroth PP, Bierhaus A, Reeh PW, Sauer SK. Methylglyoxal activates nociceptors through transient receptor potential channel A1 (TRPA1): a possible mechanism of metabolic neuropathies. J Biol Chem 2012; 287:28291-306. [PMID: 22740698 DOI: 10.1074/jbc.m111.328674] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuropathic pain can develop as an agonizing sequela of diabetes mellitus and chronic uremia. A chemical link between both conditions of altered metabolism is the highly reactive compound methylglyoxal (MG), which accumulates in all cells, in particular neurons, and leaks into plasma as an index of the severity of the disorder. The electrophilic structure of this cytotoxic ketoaldehyde suggests TRPA1, a receptor channel deeply involved in inflammatory and neuropathic pain, as a molecular target. We demonstrate that extracellularly applied MG accesses specific intracellular binding sites of TRPA1, activating inward currents and calcium influx in transfected cells and sensory neurons, slowing conduction velocity in unmyelinated peripheral nerve fibers, and stimulating release of proinflammatory neuropeptides from and action potential firing in cutaneous nociceptors. Using a model peptide of the N terminus of human TRPA1, we demonstrate the formation of disulfide bonds based on MG-induced modification of cysteines as a novel mechanism. In conclusion, MG is proposed to be a candidate metabolite that causes neuropathic pain in metabolic disorders and thus is a promising target for medicinal chemistry.
Collapse
Affiliation(s)
- Mirjam J Eberhardt
- Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Changes of the peripheral nerve excitability in vivo induced by the persistent Na+ current blocker ranolazine. Neurosci Lett 2012; 518:36-40. [DOI: 10.1016/j.neulet.2012.04.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/10/2012] [Accepted: 04/19/2012] [Indexed: 02/01/2023]
|
44
|
Boucher PA, Joós B, Morris CE. Coupled left-shift of Nav channels: modeling the Na⁺-loading and dysfunctional excitability of damaged axons. J Comput Neurosci 2012; 33:301-19. [PMID: 22476614 DOI: 10.1007/s10827-012-0387-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/25/2012] [Accepted: 02/12/2012] [Indexed: 11/29/2022]
Abstract
Injury to neural tissue renders voltage-gated Na⁺ (Nav) channels leaky. Even mild axonal trauma initiates Na⁺-loading, leading to secondary Ca²⁺-loading and white matter degeneration. The nodal isoform is Nav1.6 and for Nav1.6-expressing HEK-cells, traumatic whole cell stretch causes an immediate tetrodotoxin-sensitive Na⁺-leak. In stretch-damaged oocyte patches, Nav1.6 current undergoes damage-intensity dependent hyperpolarizing- (left-) shifts, but whether left-shift underlies injured-axon Nav-leak is uncertain. Nav1.6 inactivation (availability) is kinetically limited by (coupled to) Nav activation, yielding coupled left-shift (CLS) of the two processes: CLS should move the steady-state Nav1.6 "window conductance" closer to typical firing thresholds. Here we simulated excitability and ion homeostasis in free-running nodes of Ranvier to assess if hallmark injured-axon behaviors--Na⁺-loading, ectopic excitation, propagation block--would occur with Nav-CLS. Intact/traumatized axolemma ratios were varied, and for some simulations Na/K pumps were included, with varied in/outside volumes. We simulated saltatory propagation with one mid-axon node variously traumatized. While dissipating the [Na⁺] gradient and hyperactivating the Na/K pump, Nav-CLS generated neuropathic pain-like ectopic bursts. Depending on CLS magnitude, fraction of Nav channels affected, and pump intensity, tonic or burst firing or nodal inexcitability occurred, with [Na⁺] and [K⁺] fluctuating. Severe CLS-induced inexcitability did not preclude Na⁺-loading; in fact, the steady-state Na⁺-leaks elicited large pump currents. At a mid-axon node, mild CLS perturbed normal anterograde propagation, and severe CLS blocked saltatory propagation. These results suggest that in damaged excitable cells, Nav-CLS could initiate cellular deterioration with attendant hyper- or hypo-excitability. Healthy-cell versions of Nav-CLS, however, could contribute to physiological rhythmic firing.
Collapse
|
45
|
Morris CE, Boucher PA, Joós B. Left-shifted nav channels in injured bilayer: primary targets for neuroprotective nav antagonists? Front Pharmacol 2012; 3:19. [PMID: 22375118 PMCID: PMC3284691 DOI: 10.3389/fphar.2012.00019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 02/06/2012] [Indexed: 12/26/2022] Open
Abstract
Mechanical, ischemic, and inflammatory injuries to voltage-gated sodium channel (Nav)-rich membranes of axon initial segments and nodes of Ranvier render Nav channels dangerously leaky. By what means? The behavior of recombinant Nav1.6 (Wang et al., 2009) leads us to postulate that, in neuropathologic conditions, structural degradation of axolemmal bilayer fosters chronically left-shifted Nav channel operation, resulting in E(Na) rundown. This "sick excitable cell Nav-leak" would encompass left-shifted fast- and slow-mode based persistent I(Na) (i.e., I(window) and slow-inactivating I(Na)). Bilayer-damage-induced electrophysiological dysfunctions of native-Nav channels, and effects on inhibitors on those channels, should, we suggest, be studied in myelinated axons, exploiting I(Na)(V,t) hysteresis data from sawtooth ramp clamp. We hypothesize that (like dihydropyridines for Ca channels), protective lipophilic Nav antagonists would partition more avidly into disorderly bilayers than into the well-packed bilayers characteristic of undamaged, healthy plasma membrane. Whereas inhibitors using aqueous routes would access all Navs equally, differential partitioning into "sick bilayer" would co-localize lipophilic antagonists with "sick-Nav channels," allowing for more specific targeting of impaired cells. Molecular fine-tuning of Nav antagonists to favor more avid partitioning into damaged than into intact bilayers could reduce side effects. In potentially salvageable neurons of traumatic and/or ischemic penumbras, in inflammatory neuropathies, in muscular dystrophy, in myocytes of cardiac infarct borders, Nav-leak driven excitotoxicity overwhelms cellular repair mechanisms. Precision-tuning of a lipophilic Nav antagonist for greatest efficacy in mildly damaged membranes could render it suitable for the prolonged continuous administration needed to allow for the remodeling of the excitable membranes, and thus functional recovery.
Collapse
|
46
|
Chattopadhyay M, Mata M, Fink DJ. Vector-mediated release of GABA attenuates pain-related behaviors and reduces Na(V)1.7 in DRG neurons. Eur J Pain 2011; 15:913-920. [PMID: 21486703 PMCID: PMC3321314 DOI: 10.1016/j.ejpain.2011.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/03/2011] [Accepted: 03/17/2011] [Indexed: 01/15/2023]
Abstract
Pain is a common and debilitating accompaniment of neuropathy that occurs as a complication of diabetes. In the current study, we examined the effect of continuous release of gamma amino butyric acid (GABA), achieved by gene transfer of glutamic acid decarboxylase (GAD67) to dorsal root ganglia (DRG) in vivo using a non-replicating herpes simplex virus (HSV)-based vector (vG) in a rat model of painful diabetic neuropathy (PDN). Subcutaneous inoculation of vG reduced mechanical hyperalgesia, thermal hyperalgesia and cold allodynia in rats with PDN. Continuous release of GABA from vector transduced cells in vivo prevented the increase in the voltage-gated sodium channel isoform 1.7 (Na(V)1.7) protein that is characteristic of PDN. In vitro, infection of primary DRG neurons with vG prevented the increase in Na(V)1.7 resulting from exposure to hyperglycemia. The effect of vector-mediated GABA on Na(V)1.7 levels in vitro was blocked by phaclofen but not by bicuculline, a GABA(B) receptor effect that was blocked by pertussis toxin-(PTX) interference with Gα((i/o)) function. Taken in conjunction with our previous observation that continuous activation of delta opioid receptors by vector-mediated release of enkephalin also prevents the increase in Na(V)1.7 in DRG exposed to hyperglycemia in vitro or in vivo, the observations in this report suggest a novel common mechanism through which activation of G protein coupled receptors (GPCR) in DRG neurons regulate the phenotype of the primary afferent.
Collapse
Affiliation(s)
- Munmun Chattopadhyay
- Department of Neurology, University of Michigan and VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | | | | |
Collapse
|
47
|
|