1
|
Stavely R, Ott LC, Rashidi N, Sakkal S, Nurgali K. The Oxidative Stress and Nervous Distress Connection in Gastrointestinal Disorders. Biomolecules 2023; 13:1586. [PMID: 38002268 PMCID: PMC10669114 DOI: 10.3390/biom13111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is increasingly recognized as a central player in a range of gastrointestinal (GI) disorders, as well as complications stemming from therapeutic interventions. This article presents an overview of the mechanisms of oxidative stress in GI conditions and highlights a link between oxidative insult and disruption to the enteric nervous system (ENS), which controls GI functions. The dysfunction of the ENS is characteristic of a spectrum of disorders, including neurointestinal diseases and conditions such as inflammatory bowel disease (IBD), diabetic gastroparesis, and chemotherapy-induced GI side effects. Neurons in the ENS, while essential for normal gut function, appear particularly vulnerable to oxidative damage. Mechanistically, oxidative stress in enteric neurons can result from intrinsic nitrosative injury, mitochondrial dysfunction, or inflammation-related pathways. Although antioxidant-based therapies have shown limited efficacy, recognizing the multifaceted role of oxidative stress in GI diseases offers a promising avenue for future interventions. This comprehensive review summarizes the literature to date implicating oxidative stress as a critical player in the pathophysiology of GI disorders, with a focus on its role in ENS injury and dysfunction, and highlights opportunities for the development of targeted therapeutics for these diseases.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leah C. Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Niloufar Rashidi
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
- Department of Medicine Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
| |
Collapse
|
2
|
Gonzalez Z, Herlihy D, Phan C, Diaz J, Dominguez K, McCallum R. Alcohol and gastric motility: pathophysiological and therapeutic implications. J Investig Med 2020; 68:965-971. [PMID: 32447287 DOI: 10.1136/jim-2020-001327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 01/16/2023]
Abstract
Alcohol has been associated with alterations in gastric motility. The literature identifies that various factors play a role in alcohol's effect on gastric emptying including differences in alcohol concentration, osmolarity, caloric content, amino acids as well as different processing techniques (fermentation vs distillation). Additionally, chronic alcohol consumption has been shown to alter the myenteric nitrergic system resulting in impaired gastrointestinal motor function, and it also has an inhibitory effect on the release of several neurotransmitters that play a key role in gastrointestinal motility, including acetylcholine. Whether social or limited intake of alcohol could have a therapeutic role has not been apparent. Serendipitously, we have identified a therapeutic role for alcohol with a meal in the entity of dumping syndrome (DS) where there is postprandial rapid emptying of voluminous and hyperosmolar gastric contents into the small bowel. In the clinical setting of DS attributed to impaired vagal nerve function, there was normalization of gastric emptying and resolution of accompanying symptoms when drinking a glass of wine before and during meals. We propose that alcohol's anticholinergic effect was augmented in the setting of vagal nerve denervation resulting in slowing of gastric emptying and in alleviation of symptoms of early DS. This review article provides an in-depth analysis of the published literature on alcohol and gastric motility focusing on the accumulated knowledge that may have clinical application and relevance.
Collapse
Affiliation(s)
- Zorisadday Gonzalez
- Gastroenterology, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Daniel Herlihy
- Gastroenterology, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Cong Phan
- Paul L Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Jesus Diaz
- Nuclear Medicine, University Medical Center of El Paso, El Paso, Texas, USA
| | - Kenneth Dominguez
- Nuclear Medicine, University Medical Center of El Paso, El Paso, Texas, USA
| | - Richard McCallum
- Gastroenterology, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| |
Collapse
|
3
|
Diet in Irritable Bowel Syndrome (IBS): Interaction with Gut Microbiota and Gut Hormones. Nutrients 2019; 11:nu11081824. [PMID: 31394793 PMCID: PMC6723613 DOI: 10.3390/nu11081824] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/05/2019] [Indexed: 12/15/2022] Open
Abstract
Diet plays an important role not only in the pathophysiology of irritable bowel syndrome (IBS), but also as a tool that improves symptoms and quality of life. The effects of diet seem to be a result of an interaction with the gut bacteria and the gut endocrine cells. The density of gut endocrine cells is low in IBS patients, and it is believed that this abnormality is the direct cause of the symptoms seen in IBS patients. The low density of gut endocrine cells is probably caused by a low number of stem cells and low differentiation progeny toward endocrine cells. A low fermentable oligo-, di-, monosaccharide, and polyol (FODMAP) diet and fecal microbiota transplantation (FMT) restore the gut endocrine cells to the level of healthy subjects. It has been suggested that our diet acts as a prebiotic that favors the growth of a certain types of bacteria. Diet also acts as a substrate for gut bacteria fermentation, which results in several by-products. These by-products might act on the stem cells in such a way that the gut stem cells decrease, and consequently, endocrine cell numbers decrease. Changing to a low-FODMAP diet or changing the gut bacteria through FMT improves IBS symptoms and restores the density of endocrine cells.
Collapse
|
4
|
Bódi N, Szalai Z, Bagyánszki M. Nitrergic Enteric Neurons in Health and Disease-Focus on Animal Models. Int J Mol Sci 2019; 20:ijms20082003. [PMID: 31022832 PMCID: PMC6515552 DOI: 10.3390/ijms20082003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Nitrergic enteric neurons are key players of the descending inhibitory reflex of intestinal peristalsis, therefore loss or damage of these neurons can contribute to developing gastrointestinal motility disturbances suffered by patients worldwide. There is accumulating evidence that the vulnerability of nitrergic enteric neurons to neuropathy is strictly region-specific and that the two main enteric plexuses display different nitrergic neuronal damage. Alterations both in the proportion of the nitrergic subpopulation and in the total number of enteric neurons suggest that modification of the neurochemical character or neuronal death occurs in the investigated gut segments. This review aims to summarize the gastrointestinal region and/or plexus-dependent pathological changes in the number of nitric oxide synthase (NOS)-containing neurons, the NO release and the cellular and subcellular expression of different NOS isoforms. Additionally, some of the underlying mechanisms associated with the nitrergic pathway in the background of different diseases, e.g., type 1 diabetes, chronic alcoholism, intestinal inflammation or ischaemia, will be discussed.
Collapse
Affiliation(s)
- Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| | - Zita Szalai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| |
Collapse
|
5
|
Poles MZ, Bódi N, Bagyánszki M, Fekete É, Mészáros AT, Varga G, Szűcs S, Nászai A, Kiss L, Kozlov AV, Boros M, Kaszaki J. Reduction of nitrosative stress by methane: Neuroprotection through xanthine oxidoreductase inhibition in a rat model of mesenteric ischemia-reperfusion. Free Radic Biol Med 2018; 120:160-169. [PMID: 29550332 DOI: 10.1016/j.freeradbiomed.2018.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023]
Abstract
Our aim was to characterize the main components of the nitrosative response with quantitative changes of the nitrergic myenteric neurons in adjacent intestinal segments after transient superior mesenteric artery occlusion. We also tested the hypothesis that exogenous methane may modulate the evolution of nitroxidation by influencing xanthine oxidoreductase (XOR) activity. The microcirculatory consequences of a 50 min ischemia or ischemia-reperfusion were investigated in anesthetized rats (n = 124) inhaling normoxic air with or without 2.2% methane. XOR activities, nitrogen monoxide (NO), nitrite/nitrate (NOx), and nitrotyrosine levels were measured, together with relative nitrergic neuron ratios from duodenum, ileum and colon samples. The effects of methane on XOR were also examined in vitro. The intramural flow stopped only in the ileum during ischemia. The highest baseline XOR activity was found in the duodenum, which increased further during ischemia. NO and nitrotyrosine levels rose, and the nNOS-immunopositive neuron ratio and NOx level both dropped. Reperfusion uniformly elevated XOR activity and nitrotyrosine formation, with the highest level attained in the duodenum, where the nitrergic neuron ratio remained depressed. These alterations were eliminated in methane-treated animals, XOR activity and nitrotyrosine formation decreased in all sites, and the duodenal nitrergic neuron ratio was re-established. The inhibitory effect of methane on XOR-linked nitrate reductase activity was also demonstrated in vitro. With segment-specific microcirculatory alterations, the risk for nitrosative stress is highest in transiently hypoxic tissues with high endogenous XOR activities. The XOR-inhibitory effect of methane can reduce nitroxidation and protects the nitrergic neuron population in such conditions.
Collapse
Affiliation(s)
- Marietta Zita Poles
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szokefalvi-Nagy Bela u. 6., H-6720 Szeged, Hungary.
| | - Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary.
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary.
| | - Éva Fekete
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary.
| | - András Tamás Mészáros
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szokefalvi-Nagy Bela u. 6., H-6720 Szeged, Hungary.
| | - Gabriella Varga
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szokefalvi-Nagy Bela u. 6., H-6720 Szeged, Hungary.
| | - Szilárd Szűcs
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szokefalvi-Nagy Bela u. 6., H-6720 Szeged, Hungary.
| | - Anna Nászai
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szokefalvi-Nagy Bela u. 6., H-6720 Szeged, Hungary.
| | - Liliána Kiss
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szokefalvi-Nagy Bela u. 6., H-6720 Szeged, Hungary.
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstraße 13, Vienna 1200, Austria.
| | - Mihály Boros
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szokefalvi-Nagy Bela u. 6., H-6720 Szeged, Hungary.
| | - József Kaszaki
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szokefalvi-Nagy Bela u. 6., H-6720 Szeged, Hungary.
| |
Collapse
|
6
|
Bódi N, Szalai Z, Chandrakumar L, Bagyánszki M. Region-dependent effects of diabetes and insulin-replacement on neuronal nitric oxide synthase- and heme oxygenase-immunoreactive submucous neurons. World J Gastroenterol 2017; 23:7359-7368. [PMID: 29151690 PMCID: PMC5685842 DOI: 10.3748/wjg.v23.i41.7359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/26/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the intestinal segment-specific effects of diabetes and insulin replacement on the density of different subpopulations of submucous neurons.
METHODS Ten weeks after the onset of type 1 diabetes samples were taken from the duodenum, ileum and colon of streptozotocin-induce diabetic, insulin-treated diabetic and sex- and age-matched control rats. Whole-mount preparations of submucous plexus were prepared from the different gut segments for quantitative fluorescent immunohistochemistry. The following double-immunostainings were performed: neuronal nitric oxide synthase (nNOS) and HuC/D, heme oxygenase (HO) 1 and peripherin, as well as HO2 and peripherin. The density of nNOS-, HO1- and HO2-immunoreactive (IR) neurons was determined as a percentage of the total number of submucous neurons.
RESULTS The total number of submucous neurons and the proportion of nNOS-, HO1- and HO2-IR subpopulations were not affected in the duodenal ganglia of control, diabetic and insulin-treated rats. While the total neuronal number did not change in either the ileum or the colon, the density of nitrergic neurons exhibited a 2- and 3-fold increase in the diabetic ileum and colon, respectively, which was further enhanced after insulin replacement. The presence of HO1- and HO2-IR submucous neurons was robust in the colon of controls (38.4%-50.8%), whereas it was significantly lower in the small intestinal segments (0.0%-4.2%, P < 0.0001). Under pathophysiological conditions the only alteration detected was an increase in the ileum and a decrease in the colon of the proportion of HO-IR neurons in insulin-treated diabetic animals.
CONCLUSION Diabetes and immediate insulin replacement induce the most pronounced region-specific alterations of nNOS-, HO1- and HO2-IR submucous neuronal density in the distal parts of the gut.
Collapse
Affiliation(s)
- Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Zita Szalai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Lalitha Chandrakumar
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
7
|
Heuckeroth RO, Schäfer KH. Gene-environment interactions and the enteric nervous system: Neural plasticity and Hirschsprung disease prevention. Dev Biol 2016; 417:188-97. [PMID: 26997034 PMCID: PMC5026873 DOI: 10.1016/j.ydbio.2016.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 12/12/2022]
Abstract
Intestinal function is primarily controlled by an intrinsic nervous system of the bowel called the enteric nervous system (ENS). The cells of the ENS are neural crest derivatives that migrate into and through the bowel during early stages of organogenesis before differentiating into a wide variety of neurons and glia. Although genetic factors critically underlie ENS development, it is now clear that many non-genetic factors may influence the number of enteric neurons, types of enteric neurons, and ratio of neurons to glia. These non-genetic influences include dietary nutrients and medicines that may impact ENS structure and function before or after birth. This review summarizes current data about gene-environment interactions that affect ENS development and suggests that these factors may contribute to human intestinal motility disorders like Hirschsprung disease or irritable bowel syndrome.
Collapse
Affiliation(s)
- Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute, USA; The Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Karl-Herbert Schäfer
- ENS Group, University of Applied Sciences Kaiserslautern/Zweibrücken, Germany; University of Heidelberg, Paediatric Surgery Mannheim, Germany
| |
Collapse
|
8
|
Bagyánszki M, Bódi N. Gut region-dependent alterations of nitrergic myenteric neurons after chronic alcohol consumption. World J Gastrointest Pathophysiol 2015; 6:51-57. [PMID: 26301118 PMCID: PMC4540706 DOI: 10.4291/wjgp.v6.i3.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/27/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic alcohol abuse damages nearly every organ in the body. The harmful effects of ethanol on the brain, the liver and the pancreas are well documented. Although chronic alcohol consumption causes serious impairments also in the gastrointestinal tract like altered motility, mucosal damage, impaired absorption of nutrients and inflammation, the effects of chronically consumed ethanol on the enteric nervous system are less detailed. While the nitrergic myenteric neurons play an essential role in the regulation of gastrointestinal peristalsis, it was hypothesised, that these neurons are the first targets of consumed ethanol or its metabolites generated in the different gastrointestinal segments. To reinforce this hypothesis the effects of ethanol on the gastrointestinal tract was investigated in different rodent models with quantitative immunohistochemistry, in vivo and in vitro motility measurements, western blot analysis, evaluation of nitric oxide synthase enzyme activity and bio-imaging of nitric oxide synthesis. These results suggest that chronic alcohol consumption did not result significant neural loss, but primarily impaired the nitrergic pathways in gut region-dependent way leading to disturbed gastrointestinal motility. The gut segment-specific differences in the effects of chronic alcohol consumption highlight the significance the ethanol-induced neuronal microenvironment involving oxidative stress and intestinal microbiota.
Collapse
|
9
|
Talapka P, Nagy LI, Pál A, Poles MZ, Berkó A, Bagyánszki M, Puskás LG, Fekete &E, Bódi N. Alleviated mucosal and neuronal damage in a rat model of Crohn’s disease. World J Gastroenterol 2014; 20:16690-16697. [PMID: 25469038 PMCID: PMC4248213 DOI: 10.3748/wjg.v20.i44.16690] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/27/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a rat model suitable to investigate the repetitive relapsing inflammations (RRI) characteristic to Crohn’s disease.
METHODS: Colitis was induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). RRI were mimicked by repeating administrations of TNBS. Tissue samples were taken from control, once, twice and three times treated rats from the inflamed and adjacent non-inflamed colonic segments at different timepoints during the acute intestinal inflammation. The means of the ulcerated area were measured to evaluate the macroscopic mucosal damage. The density of myenteric neurons was determined on whole mounts by HuC/HuD immunohistochemistry. Heme oxygenase-1 (HO-1) expression was evaluated by molecular biological techniques.
RESULTS: TNBS-treated rats displayed severe colitis, but the mortality was negligible, and an increase of body weight was characteristic throughout the experimental period. The widespread loss of myenteric neurons, and marked but transient HO-1 up-regulation were demonstrated after the first TNBS administration. After repeated doses the length of the recovery time and extent of the ulcerous colonic segments were markedly decreased, and the neuronal loss was on a smaller scale and was limited to the inflamed area. HO-1 mRNA level was notably greater than after a single dose and overexpression was sustained throughout the timepoints examined. Nevertheless, the HO-1 protein up-regulation after the second TNBS treatment proved to be transient. Following the third treatment HO-1 protein expression could not be detected.
CONCLUSION: Experimentally provoked RRI may exert a protective preconditioning effect against the mucosal and neuronal damage. The persistent up-regulation of HO-1 mRNA expression may correlate with this.
Collapse
|
10
|
Marchi KC, Muniz JJ, Tirapelli CR. Hypertension and chronic ethanol consumption: What do we know after a century of study? World J Cardiol 2014; 6:283-294. [PMID: 24944758 PMCID: PMC4062120 DOI: 10.4330/wjc.v6.i5.283] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/11/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
The influences of life habits on the cardiovascular system may have important implications for public health, as cardiovascular diseases are among the leading causes of shorter life expectancy worldwide. A link between excessive ethyl alcohol (ethanol) consumption and arterial hypertension was first suggested early last century. Since then, this proposition has received considerable attention. Support for the concept of ethanol as a cause of hypertension derives from several epidemiologic studies demonstrating that in the general population, increased blood pressure is significantly correlated with ethanol consumption. Although the link between ethanol consumption and hypertension is well established, the mechanism through which ethanol increases blood pressure remains elusive. Possible mechanisms underlying ethanol-induced hypertension were proposed based on clinical and experimental observations. These mechanisms include an increase in sympathetic nervous system activity, stimulation of the renin-angiotensin-aldosterone system, an increase of intracellular Ca2+ in vascular smooth muscle, increased oxidative stress and endothelial dysfunction. The present report reviews the relationship between ethanol intake and hypertension and highlights some mechanisms underlying this response. These issues are of interest for the public health, as ethanol consumption contributes to blood pressure elevation in the population.
Collapse
|
11
|
Leite LN, Lacchini R, Carnio EC, Queiroz RH, Tanus-Santos JE, de Oliveira AM, Tirapelli CR. Ethanol Consumption Increases Endothelin-1 Expression and Reactivity in the Rat Cavernosal Smooth Muscle. Alcohol Alcohol 2013; 48:657-66. [DOI: 10.1093/alcalc/agt057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
12
|
Yazir Y, Tugay M, Utkan Z, Utkan T. Effects of chronic ethanol consumption on rat upper gastrointestinal system: functional and histologic findings. Alcohol 2012; 46:649-55. [PMID: 22818204 DOI: 10.1016/j.alcohol.2012.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/24/2012] [Accepted: 06/22/2012] [Indexed: 12/15/2022]
Abstract
The purpose of the present study was to determine the effect of chronic alcohol consumption on reactivity of esophageal tunica muscularis mucosae (TMM) and lower esophageal sphincter (LES) smooth muscle. Six male rats in alcohol-fed group received ethanol (7.2% v/v) in a modified liquid diet for 4 weeks. Two control groups were used; six rats in the standard diet-fed group received rat chow and water for 4 weeks. Six rats in sucrose-fed group were given sucrose and received a liquid diet. The smooth muscle reactivity of TMM and LES strips from ethanol-fed and control animals was evaluated in organ chambers. Also histologic study was undertaken to show effects of chronic alcohol consumption. Maximum contractile responses of TMM to KCl and carbachol were decreased in the ethanol-fed group compared to the control groups. Relaxant responses to serotonin were decreased in the ethanol-fed group compared to the control groups. In TMM, isoproterenol- and papaverine-induced relaxant responses were similar in the ethanol-fed and control groups. In LES smooth muscle, relaxant responses to papaverine or isoproterenol were similar in the control groups and the ethanol-fed group. There was no change in agonist potency among the groups. The relaxation response elicited by nicotine and sodium nitroprusside (SNP) or contractile response elicited by carbachol and 80 mM KCl was decreased with maximum responses and pD(2) values, in the ethanol-fed group compared to that of the control groups in LES. Decreased nNOS immunoreactivity in myenteric plexus was found in alcohol-exposed group compared to control groups. Our findings suggest that chronic alcohol consumption impairs relaxant and contractile responses of both TMM and LES smooth muscle and it may contribute to gastroesophageal reflux commonly seen after alcohol binges.
Collapse
|
13
|
Budec M, Markovic D, Vignjevic S, Mitrovic O, Dikic D, Koko V, Cokic VP. Neuronal nitric oxide synthase mediates the effect of ethanol on IgA. Alcohol Alcohol 2012; 48:53-8. [PMID: 23059423 DOI: 10.1093/alcalc/ags110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS We showed previously that the acute effect of ethanol on intestinal immunoglobulin A (IgA) expression might be mediated by endogenous nitric oxide (NO). To extend these findings, this study was designed to investigate a possible role of neuronal NO synthase (nNOS) in the observed phenomenon, using 7-nitroindazole (7-NI), a selective inhibitor of its activity. METHODS Adult male Wistar rats were treated with: (a) ethanol (4 g/kg, intraperitoneally, i.p.), (b) 7-NI (25 mg/kg, i.p.) followed by ethanol (4 g/kg, i.p.) 30 min later and (c) 7-NI (25 mg/kg, i.p.) followed by saline 30 min later. Untreated rats were used as controls. The concentrations of serum and intestinal IgA were measured by enzyme-linked immunosorbent assay, while the expression of nNOS was determined using western blot and immunohistochemistry. RESULTS Acute ethanol treatment significantly increased the concentration of IgA in the ileal extracts, whereas it decreased its serum level. Inhibition of nNOS activity by 7-NI abolished this action of alcohol on IgA. Additionally, western blot analysis revealed that the acute alcohol administration induced an increase in the expression of intestinal nNOS. Furthermore, nNOS-immunoreactive cells, observed within the lamina propria of small intestine, were numerous in ethanol-treated rats. CONCLUSION Taken together, these results extended our previous findings suggesting that nNOS mediates the acute effect of ethanol on IgA and supported an immunomodulatory role of this enzyme isoform.
Collapse
Affiliation(s)
- Mirela Budec
- University of Belgrade, Institute for Medical Research, Dr Subotića 4, Belgrade 102, Serbia.
| | | | | | | | | | | | | |
Collapse
|
14
|
Bagyánszki M, Bódi N. Diabetes-related alterations in the enteric nervous system and its microenvironment. World J Diabetes 2012; 3:80-93. [PMID: 22645637 PMCID: PMC3360223 DOI: 10.4239/wjd.v3.i5.80] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 04/06/2012] [Accepted: 05/11/2012] [Indexed: 02/05/2023] Open
Abstract
Gastric intestinal symptoms common among diabetic patients are often caused by intestinal motility abnormalities related to enteric neuropathy. It has recently been demonstrated that the nitrergic subpopulation of myenteric neurons are especially susceptible to the development of diabetic neuropathy. Additionally, different susceptibility of nitrergic neurons located in different intestinal segments to diabetic damage and their different levels of responsiveness to insulin treatment have been revealed. These findings indicate the importance of the neuronal microenvironment in the pathogenesis of diabetic nitrergic neuropathy. The main focus of this review therefore was to summarize recent advances related to the diabetes-related selective nitrergic neuropathy and associated motility disturbances. Special attention was given to the findings on capillary endothelium and enteric glial cells. Growing evidence indicates that capillary endothelium adjacent to the myenteric ganglia and enteric glial cells surrounding them are determinative in establishing the ganglionic microenvironment. Additionally, recent advances in the development of new strategies to improve glycemic control in type 1 and type 2 diabetes mellitus are also considered in this review. Finally, looking to the future, the recent and promising results of metagenomics for the characterization of the gut microbiome in health and disease such as diabetes are highlighted.
Collapse
Affiliation(s)
- Mária Bagyánszki
- Mária Bagyánszki, Nikolett Bódi, Department of Physiology, Anatomy and Neuroscience, Faculty of Science, University of Szeged, H-6726 Szeged, Hungary
| | | |
Collapse
|
15
|
Bagyánszki M, Torfs P, Krecsmarik M, Fekete E, Adriaensen D, Van Nassauw L, Timmermans JP, Kroese ABA. Chronic alcohol consumption induces an overproduction of NO by nNOS- and iNOS-expressing myenteric neurons in the murine small intestine. Neurogastroenterol Motil 2011; 23:e237-48. [PMID: 21470341 DOI: 10.1111/j.1365-2982.2011.01707.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND There are indications that alterations in the nitric oxide (NO) system of relaxation mediate gastrointestinal motor disturbances induced by chronic alcohol consumption (CAC). As CAC is known to inhibit the motility of the mouse small intestine, we investigated in this model if CAC affects basal NO synthesis by myenteric neurons and which NOS isoforms are involved. METHODS The instantaneous NO synthesis of individual neurons was optically measured in whole-mount preparations loaded with the NO synthesis indicator DAF-FM, and the expression of nNOS, iNOS and eNOS was determined by immunohistochemistry. KEY RESULTS The DAF-FM recordings showed that CAC induced an increase in neuronal NO synthesis (absolute fluorescence: control 34±12; CAC 140±56; mean±SD; P<0.0004). Neurons of control mice expressed the nNOS (29±3% of total) and iNOS (28±1%) isoforms. eNOS expression was observed in <0.5% of the neurons. Chronic alcohol consumption caused an increase in the proportion of iNOS-expressing neurons (to 33±5%; P<0.01) and a decrease in nNOS-expressing neurons (to 22±3%; P<0.0001), without altering the proportion of NO-producing neurons (control 55±13%; CAC 56± 11%; P=0.82). CONCLUSIONS & INFERENCES Chronic alcohol consumption induces a marked increase in NO synthesis by jejunal myenteric neurons, accompanied by an up-regulation of iNOS-expressing neurons and a downregulation of nNOS neurons. We conclude that the overproduction of NO may be a direct cause of gastrointestinal motility disturbances.
Collapse
Affiliation(s)
- M Bagyánszki
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gacar N, Gocmez S, Utkan T, Gacar G, Komsuoglu I, Tugay M, Utkan NZ. Effects of resveratrol on ileal smooth muscle reactivity in polymicrobial sepsis model. J Surg Res 2011; 174:339-43. [PMID: 21276983 DOI: 10.1016/j.jss.2010.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/23/2010] [Accepted: 12/10/2010] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To determine the effects of resveratrol on the ileal smooth muscle reactivity in polymicrobial sepsis. MATERIAL AND METHODS Polimicrobial sepsis was induced by the cecal ligation and perforation (CLP) procedure. Sprague Dawley rats were divided into three groups. Rats in resveratrol group received resveratrol after CLP (100 mg/kg, i.p.). Rats received saline immediately after CLP in the sepsis group. Control group rats underwent sham operation. The rats were sacrificed and the ileum was excised 24 h after the operation. Contractile and relaxant responses in isolated smooth muscle strips (SMS) were determined using an in vitro muscle technique. TNFα and IL-6 levels were measured in blood samples. RESULTS Contractile responses to carbachol and KCl and relaxant responses to transmural electrical field stimulation (EFS) were significantly decreased in the sepsis group compared with control and resveratrol groups. No significant changes were observed for smooth muscle reactivity in the resveratrol and control groups. Sodium nitroprusside (SNP) or papaverine-induced relaxations were similar in the all groups. Resveratrol treatment supressed increased TNFα and IL-6 levels in blood seen in sepsis group. CONCLUSION Ileal smooth muscle reactivity was improved after resveratrol treatment in rats with sepsis. The results of the present study indicate that the beneficial effects of resveratrol might be, at least in part, attributed to its effects on non-adrenergic non-cholinergic pathway and/or anti-inflammatory and antioxidant activity.
Collapse
Affiliation(s)
- Nejat Gacar
- Department of Pharmacology, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | | | | | | | | | | | | |
Collapse
|
17
|
Bagyánszki M, Krecsmarik M, De Winter BY, De Man JG, Fekete E, Pelckmans PA, Adriaensen D, Kroese ABA, Van Nassauw L, Timmermans JP. Chronic alcohol consumption affects gastrointestinal motility and reduces the proportion of neuronal NOS-immunoreactive myenteric neurons in the murine jejunum. Anat Rec (Hoboken) 2010; 293:1536-1542. [PMID: 20648573 DOI: 10.1002/ar.21192] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alcohol consumption interferes with gastrointestinal transit causing symptoms in alcoholic patients. Nitric oxide (NO), synthesized by neuronal nitric oxide synthase (nNOS) plays an important role in the control of gastrointestinal motility. Our aim was to investigate whether chronic alcohol intake in a murine model induces gastrointestinal motility disturbances and affects the nitrergic myenteric neurons in the stomach and jejunum. Gastric emptying, small intestinal transit and geometric centre were measured in vivo after intragastric gavage of Evans blue. Nitrergic relaxations to electrical field stimulation (EFS) and exogenous NO were recorded in jejunal muscle strips in vitro. The proportion of nNOS-immunopositive myenteric neurons was assessed using PGP9.5 and nNOS immunostaining. After chronic alcohol consumption, gastric emptying and small intestinal transit were delayed compared with control mice, and the nitrergic nerve-mediated relaxations to EFS in the jejunum were decreased, whereas relaxations to exogenous NO did not differ. The proportion of nNOS-immunoreactive neurons did not change in the stomach, whereas in the jejunum the percentage decreased from 33% to 27% (P < 0.001) after chronic alcohol intake. The total number of myenteric neurons remained unchanged. These results suggest that chronic alcohol consumption disturbs gastric and small intestinal motility in vivo and in vitro and is associated with a decrease in the proportion of nNOS-immunoreactive myenteric neurons in the murine jejunum.
Collapse
Affiliation(s)
- Mária Bagyánszki
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bódi N, Battonyai I, Talapka P, Fekete E, Bagyánszki M. Spatial pattern analysis of nitrergic neurons in the myenteric plexus of the duodenum of different mammalian species. ACTA BIOLOGICA HUNGARICA 2009; 60:347-58. [PMID: 20015827 DOI: 10.1556/abiol.60.2009.4.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nitrergic myenteric neurons are especially susceptible to the development of neuropathy in functional gastrointestinal disorders. Investigations of the similarities and dissimilarities in the organization of nitrergic neurons in the various mammalian species are therefore important in an effort to determine the extent to which the results obtained in different animal models can be generalized. In the present work, the density and the spatial organization of the nitrergic neurons in the myenteric plexus of the duodenum were investigated in 7 mammalian species. After nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry, the Plexus Pattern Analysis software (PPAs) was applied to count the nuclei of nitrergic neurons, calculate the proportions of the areas covered by the plexus and perform randomization analysis. All 7 species exhibited a large population of nitrergic myenteric neurons, with densities in the range 12-56 cells/mm 2 . The distribution patterns of these neurons differed markedly in the different species, however, the rat was the only species in which the nitrergic neurons appeared to be randomly distributed. The PPAs in conjunction with NADPH-d histochemistry proved to be a simple and fast tool with which to reveal similarities and dissimilarities in the spatial arrangement of the nitrergic neurons in the different species.
Collapse
Affiliation(s)
- Nikolett Bódi
- University of Szeged Department of Physiology, Anatomy and Neuroscience Szeged Hungary
| | | | | | | | | |
Collapse
|
19
|
Izbéki F, Wittman T, Rosztóczy A, Linke N, Bódi N, Fekete E, Bagyánszki M. Immediate insulin treatment prevents gut motility alterations and loss of nitrergic neurons in the ileum and colon of rats with streptozotocin-induced diabetes. Diabetes Res Clin Pract 2008; 80:192-198. [PMID: 18242757 DOI: 10.1016/j.diabres.2007.12.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Accepted: 12/08/2007] [Indexed: 12/15/2022]
Abstract
The streptozotocin-induced diabetic rat model was used to investigate the relation between the deranged gut motility and the segment-specific quantitative changes in the nitrergic myenteric neurons. Additionally, we studied the effectiveness of early insulin replacement to prevent the diabetes-induced changes. Rats were divided into three groups: controls, diabetics and insulin-treated diabetics. Ten weeks after the onset of diabetes, animals were chosen from each group for intestinal transit measurements. The remainder were killed and gut segments were processed for NADPH-diaphorase histochemistry and HuC/HuD immunohistochemistry. The diabetic rats displayed faster transit than that for the controls. In the insulin-treated group, the transit time was the same as that in the controls. In the duodenum of the diabetic rats, the number of nitrergic neurons was decreased, while the total neuronal number was not altered. In the jejunum, ileum and colon, both the total and the nitrergic neuronal cell number decreased significantly. Insulin treatment did not prevent the nitrergic cell loss significantly in the duodenum and jejunum, but it did prevent it significantly in the ileum and colon. These findings comprise the first evidence that the nitrergic neurons located in different intestinal segments exhibit different susceptibilities to a diabetic state and to insulin treatment.
Collapse
Affiliation(s)
- Ferenc Izbéki
- First Department of Internal Medicine, University of Szeged, Korányi fasor 8-10, Szeged H-6720, Hungary
| | | | | | | | | | | | | |
Collapse
|
20
|
Tirapelli CR, Fukada SY, Yogi A, Chignalia AZ, Tostes RC, Bonaventura D, Lanchote VL, Cunha FQ, de Oliveira AM. Gender-specific vascular effects elicited by chronic ethanol consumption in rats: a role for inducible nitric oxide synthase. Br J Pharmacol 2007; 153:468-79. [PMID: 18037914 DOI: 10.1038/sj.bjp.0707589] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Epidemiological data suggest that the risk of ethanol-associated cardiovascular disease is greater in men than in women. This study investigates the mechanisms underlying gender-specific vascular effects elicited by chronic ethanol consumption in rats. EXPERIMENTAL APPROACH Vascular reactivity experiments using standard muscle bath procedures were performed on isolated thoracic aortae from rats. mRNA and protein for inducible NO synthase (iNOS) and for endothelial NOS (eNOS) was assessed by RT-PCR or western blotting, respectively. KEY RESULTS In male rats, chronic ethanol consumption enhanced phenylephrine-induced contraction in both endothelium-intact and denuded aortic rings. However, in female rats, chronic ethanol consumption enhanced phenylephrine-induced contraction only in endothelium denuded aortic rings. After pre-incubation of endothelium-intact rings with L-NAME, both male and female ethanol-treated rats showed larger phenylephrine-induced contractions in aortic rings, compared to the control group. Acetylcholine-induced relaxation was not affected by ethanol consumption. The effects of ethanol on responses to phenylephrine were similar in ovariectomized (OVX) and intact (non-OVX) female rats. In the presence of aminoguanidine, but not 7-nitroindazole, the contractions to phenylephrine in rings from ethanol-treated female rats were greater than that found in control tissues in the presence of the inhibitors. mRNA levels for eNOS and iNOS were not altered by ethanol consumption. Ethanol intake reduced eNOS protein levels and increased iNOS protein levels in aorta from female rats. CONCLUSIONS AND IMPLICATIONS Gender differences in the vascular effects elicited by chronic ethanol consumption were not related to ovarian hormones but seemed to involve the upregulation of iNOS.
Collapse
Affiliation(s)
- C R Tirapelli
- Department of Psychiatry Nursing and Human Sciences, College of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|