1
|
Simon L, Edwards S, Molina PE. Pathophysiological Consequences of At-Risk Alcohol Use; Implications for Comorbidity Risk in Persons Living With Human Immunodeficiency Virus. Front Physiol 2022; 12:758230. [PMID: 35115952 PMCID: PMC8804300 DOI: 10.3389/fphys.2021.758230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
At-risk alcohol use is a significant risk factor associated with multisystemic pathophysiological effects leading to multiorgan injury and contributing to 5.3% of all deaths worldwide. The alcohol-mediated cellular and molecular alterations are particularly salient in vulnerable populations, such as people living with HIV (PLWH), diminishing their physiological reserve, and accelerating the aging process. This review presents salient alcohol-associated mechanisms involved in exacerbation of cardiometabolic and neuropathological comorbidities and their implications in the context of HIV disease. The review integrates consideration of environmental factors, such as consumption of a Western diet and its interactions with alcohol-induced metabolic and neurocognitive dyshomeostasis. Major alcohol-mediated mechanisms that contribute to cardiometabolic comorbidity include impaired substrate utilization and storage, endothelial dysfunction, dysregulation of the renin-angiotensin-aldosterone system, and hypertension. Neuroinflammation and loss of neurotrophic support in vulnerable brain regions significantly contribute to alcohol-associated development of neurological deficits and alcohol use disorder risk. Collectively, evidence suggests that at-risk alcohol use exacerbates cardiometabolic and neurocognitive pathologies and accelerates biological aging leading to the development of geriatric comorbidities manifested as frailty in PLWH.
Collapse
|
2
|
Xiong J, Cao X, Qiao S, Yu S, Li L, Yu Y, Fu C, Jiang F, Dong B, Su Q. (Pro)renin Receptor is Involved in Myocardial Damage in Alcoholic Cardiomyopathy. Alcohol Clin Exp Res 2019; 43:2344-2353. [PMID: 31498445 DOI: 10.1111/acer.14188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/26/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND (Pro)renin receptor (PRR), a novel member of the renin-angiotensin system, participates in various cardiovascular diseases. However, the role of PRR in alcoholic cardiomyopathy (ACM), which is caused by alcohol intake and manifests as myocardial damage and cardiac dysfunction, remains unclear. METHODS PRR gene silencing was achieved by transfecting recombinant adenovirus expressing anti-PRR short hairpin RNA (PRR-shRNA). In vitro, primary rat cardiac fibroblasts (CFs) were cultured with the stimulation of alcohol (200 mM), with or without PRR-shRNA and PD98059. Immunofluorescence, RT-PCR, and Western blot were used to measure the protein and messenger (mRNA) expression of PRR, fibrotic factors, and members of related signaling pathways. In vivo, Wistar rats were fed a diet containing 9% (v/v) alcohol or a normal diet for 3 months, with or without PRR-shRNA. Sirius Red staining, immunohistochemical staining, and toluidine blue staining were used to evaluate myocardial fibrosis, oxidative stress, and inflammation response. RESULTS Alcohol markedly increased PRR mRNA and protein expression in a time- and concentration-dependent manner in CFs. The increased expression of fibrotic factors induced by alcohol was prevented by PRR-shRNA and PD98059. Moreover, PRR-shRNA decreased the phosphorylation of extracellular regulated protein kinases (ERK) 1/2 in CFs. Furthermore, PRR-shRNA decreased cardiac fibrosis, reduced oxidative stress, and alleviated inflammation response in the myocardial tissue. CONCLUSIONS Our results show that PRR-ERK1/2 signaling was involved in the development of ACM and that PRR could be a new target for the treatment of ACM.
Collapse
Affiliation(s)
- Jie Xiong
- From the, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinran Cao
- From the, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shiyuan Qiao
- From the, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shiran Yu
- From the, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lei Li
- From the, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yalin Yu
- From the, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Changning Fu
- From the, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fan Jiang
- School of Basic Medicine, Shandong University, Jinan, China
| | - Bo Dong
- From the, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qing Su
- From the, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Abstract
Abstract
Introduction According to the data obtained in the EZOP Poland study (2015), the prevalence of alcohol dependence in lifetime in Poland amounts to about 2.2% of the population, entailing enormous social, family and personal harm, including health damage. It is estimated that about 72% of alcohol-dependent patients complain about one or more problems related to the sexual sphere, which may result from both the development of somatic complications in the course of alcohol dependence, and from psychiatric complications that themselves can lead to sexual dysfunction. There are reports and clinical observations indicating that the occurrence of sexual dysfunction (SD) can affect the shortening or interruption of the period of abstinence.
Aim The aim of this work is to show sexual dysfunctions in alcohol-dependent men and to discuss the factors that may affect the occurrence of the above-mentioned dysfunctions.
Material and methods The available literature was reviewed using Medline, Google Scholar and ScienceDirect browsers by entering the keywords: alcohol dependence, sexual dysfunction, comorbidity, alcohol-caused diseases and time descriptors: 1979-2016.
Results
• Alcohol dependence is associated with the occurrence of various types of sexual dysfunctions (SD).
• The diagnosis of SD should take into account all possible causes that may lead to the development of SD in this group of patients, including the comorbidity of somatic diseases or the negative impact of drugs on sexual function.
• Occurrence of SD is connected with a higher risk of abstinence interruption.
• There is a need to carry out more research in order to better understand the relationship between alcohol dependence and the prevalence of sexual dysfunctions.
Collapse
|
4
|
Abstract
The consumption of ethanol can have both beneficial and detrimental effects on the function of the heart and cardiovascular system, depending on the amount consumed. Low-to-moderate amounts of ethanol intake are associated with improvements in cardiac function and vascular health. On the other hand, ethanol chronically consumed in large amounts acts as a toxin to the heart and vasculature. The cardiac injury produced by chronic alcohol abuse can progress to heart failure and eventual death. Furthermore, alcohol abuse may exacerbate preexisting heart conditions, such as hypertension and cardiomyopathy. This article focuses on the molecular mechanisms and pathophysiology of both the beneficial and detrimental cardiac effects of alcohol.
Collapse
Affiliation(s)
- Jason D Gardner
- Department of Physiology, Alcohol and Drugs of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | |
Collapse
|
5
|
Tan Y, Li X, Prabhu SD, Brittian KR, Chen Q, Yin X, McClain CJ, Zhou Z, Cai L. Angiotensin II plays a critical role in alcohol-induced cardiac nitrative damage, cell death, remodeling, and cardiomyopathy in a protein kinase C/nicotinamide adenine dinucleotide phosphate oxidase-dependent manner. J Am Coll Cardiol 2012; 59:1477-1486. [PMID: 22497828 PMCID: PMC3331727 DOI: 10.1016/j.jacc.2011.12.034] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/12/2011] [Accepted: 12/15/2011] [Indexed: 10/28/2022]
Abstract
OBJECTIVES The purpose of this study was to examine the cellular and molecular mechanisms underlying alcoholic cardiomyopathy. BACKGROUND The mechanism for alcoholic cardiomyopathy remains largely unknown. METHODS The chronic cardiac effects of alcohol were examined in mice feeding with alcohol or isocaloric control diet for 2 months. Signaling pathways of alcohol-induced cardiac cell death were examined in H9c2 cells. RESULTS Compared with controls, hearts from alcohol-fed mice exhibited increased apoptosis, along with significant nitrative damage, demonstrated by 3-nitrotyrosine abundance. Alcohol exposure to H9c2 cells induced apoptosis, accompanied by 3-nitrotyrosine accumulation and nicotinamide adenine dinucleotide phosphate oxidase (NOX) activation. Pre-incubation of H9c2 cells with urate (peroxynitrite scavenger), N(G)-nitro-L-arginine methyl ester (a nitric oxide synthase inhibitor), manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (a superoxide dismutase mimetic), and apocynin (NOX inhibitor) abrogated alcohol-induced apoptosis. Furthermore, alcohol exposure significantly increased the expression of angiotensin II and its type 1 receptor (AT1). A protein kinase C (PKC)-α/β1 inhibitor or PKC-β1 small interfering RNA and an AT1 blocker prevented alcohol-induced activation of NOX, and the AT1 blocker losartan significantly inhibited the expression of PKC-β1, indicating that alcohol-induced activation of NOX is mediated by PKC-β1 via AT1. To define the role of AT1-mediated PKC/NOX-derived superoxide generation in alcohol-induced cardiotoxicity, mice with knockout of the AT1 gene and wild-type mice were simultaneously treated with alcohol for 2 months. The knockout AT1 gene completely prevented cardiac nitrative damage, cell death, remodeling, and dysfunction. More importantly, pharmacological treatment of alcoholic mice with superoxide dismutase mimetic also significantly prevented cardiac nitrative damage, cell death, and remodeling. CONCLUSIONS Alcohol-induced nitrative stress and apoptosis, which are mediated by angiotensin II interaction with AT1 and subsequent activation of a PKC-β1-dependent NOX pathway, are a causal factor in the development of alcoholic cardiomyopathy.
Collapse
Affiliation(s)
- Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou, China
- Pediatric Diabetes Research at KCHRI of the Department of Pediatrics, University of Louisville, Louisville, USA
| | - Xiaokun Li
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou, China
| | - Sumanth D. Prabhu
- Department of Medicine/Cardiovascular Disease, University of Alabama of Birmingham and Birmingham VA Medical Center, Birmingham, AL, USA
| | | | - Qiang Chen
- Pediatric Diabetes Research at KCHRI of the Department of Pediatrics, University of Louisville, Louisville, USA
| | - Xia Yin
- Pediatric Diabetes Research at KCHRI of the Department of Pediatrics, University of Louisville, Louisville, USA
| | - Craig J. McClain
- Departments of Medicine and Pharmacology and Toxicology, University of Louisville, and Robley Rex VAMC. Louisville, USA
| | - Zhanxiang Zhou
- Department of Medicine, University of Louisville, Louisville, KY, USA
- University of North Carolina, NC, USA
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou, China
- Pediatric Diabetes Research at KCHRI of the Department of Pediatrics, University of Louisville, Louisville, USA
- Departments of Medicine and Pharmacology and Toxicology, University of Louisville, and Robley Rex VAMC. Louisville, USA
| |
Collapse
|
6
|
Jing L, Jin CM, Li SS, Zhang FM, Yuan L, Li WM, Sang Y, Li S, Zhou LJ. Chronic alcohol intake-induced oxidative stress and apoptosis: role of CYP2E1 and calpain-1 in alcoholic cardiomyopathy. Mol Cell Biochem 2011; 359:283-92. [PMID: 21833537 DOI: 10.1007/s11010-011-1022-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/27/2011] [Indexed: 12/21/2022]
Abstract
Cytochrome P-450 2E1 CYP2E1 induction has been linked to oxidative stress in a number of experimental models. The aim of this study was to investigate the relationship between CYP2E1 activity and markers of oxidative stress and cardiac cell apoptosis during the development of alcoholic cardiomyopathy (ACM). Changes in left ventricular morphology were evaluated in 4 groups of chronically instrumented dogs (control; alcohol-receiving; and alcohol-receiving plus treatment with either valsartan or carnitine) after 6 months of treatment. CYP2E1 and calpain-1 protein expression were determined by Western blotting, and apoptosis evaluated by TUNEL and immunohistochemistry. Malonyl dialdehyde levels were assessed as a marker of oxidative stress, while superoxide dismutase and glutathione peroxidase levels were evaluated as markers of antioxidant defense mechanisms. Expression of CYP2E1 was increased in the alcohol-receiving group compared with controls (P<0.05) and was associated with oxidative stress. Similarly, expression of Bad and calpain-1 protein was increased after chronic alcohol exposure, while Bcl-xL protein expression remained at a low level. Bad and calpain-1 protein expressions were significantly inhibited by treatment with valsartan or carnitine, while expression of Bcl-xL protein was increased (P<0.05). Collectively, our results indicate a possibly significant role for CYP2E1 in the oxidative stress associated with chronic alcoholism. The resulting increase in oxidative stress is accompanied by cellular apoptosis and may ultimately contribute to tissue remodeling and ACM. Importantly, these alcohol-induced effects may be abrogated by means such as angiotensin 1 receptor blockade or carnitine supplementation.
Collapse
Affiliation(s)
- Ling Jing
- Department of Cardiology, First Clinical College of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cardiac insulin resistance and microRNA modulators. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:654904. [PMID: 21977024 PMCID: PMC3184440 DOI: 10.1155/2012/654904] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 07/22/2011] [Indexed: 12/18/2022]
Abstract
Cardiac insulin resistance is a metabolic and functional disorder that is often associated with obesity and/or the cardiorenal metabolic syndrome (CRS), and this disorder may be accentuated by chronic alcohol consumption. In conditions of over-nutrition, increased insulin (INS) and angiotensin II (Ang II) activate mammalian target for rapamycin (mTOR)/p70 S6 kinase (S6K1) signaling, whereas chronic alcohol consumption inhibits mTOR/S6K1 activation in cardiac tissue. Although excessive activation of mTOR/S6K1 induces cardiac INS resistance via serine phosphorylation of INS receptor substrates (IRS-1/2), it also renders cardioprotection via increased Ang II receptor 2 (AT2R) upregulation and adaptive hypertrophy. In the INS-resistant and hyperinsulinemic Zucker obese (ZO) rat, a rodent model for CRS, activation of mTOR/S6K1signaling in cardiac tissue is regulated by protective feed-back mechanisms involving mTOR↔AT2R signaling loop and profile changes of microRNA that target S6K1. Such regulation may play a role in attenuating progressive heart failure. Conversely, alcohol-mediated inhibition of mTOR/S6K1, down-regulation of INS receptor and growth-inhibitory mir-200 family, and upregulation of mir-212 that promotes fetal gene program may exacerbate CRS-related cardiomyopathy.
Collapse
|