1
|
Puligilla RD, Roos NJ, Bolten JS, Hopf NB, Zurich MG, Barulin N, Huwyler J. Zebrafish as a model to assess the neurotoxic potential of propylene glycol ethers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104678. [PMID: 40132735 DOI: 10.1016/j.etap.2025.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
Propylene glycol ethers are increasingly used as organic solvents of choice in domestic products and industrial manufacturing. However, little is known about their potential neurotoxic effects. In the present study, we therefore evaluated the acute toxic and behavioral effects of propylene glycol ethers using zebrafish larvae as a vertebrate model. Studied endpoints included viability, motor behavior, larval photo and locomotor response, and blood-brain barrier permeability (BBB). We observed hyperactivity at lower concentrations and hypoactivity at higher concentrations. Impaired behavioral patterns in exposed larvae suggested an interaction with the nervous system. Mechanistic studies revealed an impact on BBB permeability since a significant increase in extracellular fluorescent tracer permeability into brain parenchyma was observed following exposure. We conclude that the zebrafish model is a predictive screening model to rank organic solvents with respect to their toxic potential. Experiments with ethanol as a reference correlate with literature findings in humans.
Collapse
Affiliation(s)
- Ramya Deepthi Puligilla
- Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Applied Human Toxicology, Basel, Missionsstrasse 64, Basel 4055, Switzerland
| | - Noëmi Johanna Roos
- Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| | - Jan Stephan Bolten
- Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| | - Nancy B Hopf
- Swiss Centre for Applied Human Toxicology, Basel, Missionsstrasse 64, Basel 4055, Switzerland; Unisanté, Center for Primary Care and Public Health & University of Lausanne, 1066 Epalinges, Switzerland
| | - Marie-Gabrielle Zurich
- Swiss Centre for Applied Human Toxicology, Basel, Missionsstrasse 64, Basel 4055, Switzerland; Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, Lausanne CH-1005, Switzerland
| | - Nikolai Barulin
- Department of Ichthyology and Aquaculture, Belarusian State Agricultural Academy, Michurinа 5, Gorki 213407, Belarus; Great Lakes Center, SUNY Buffalo State University, SAMC, 1300 Elmwood Avenue, Buffalo142, New York 22-1095, USA
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Applied Human Toxicology, Basel, Missionsstrasse 64, Basel 4055, Switzerland.
| |
Collapse
|
2
|
Tsang B, Gerlai R. Nature versus laboratory: how to optimize housing conditions for zebrafish neuroscience research. Trends Neurosci 2024; 47:985-993. [PMID: 39307630 DOI: 10.1016/j.tins.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 12/12/2024]
Abstract
Although zebrafish (Danio rerio) neuroscience research is rapidly expanding, the fundamental question of how these fish should be maintained in research laboratories remains largely unstudied. This may explain the diverse practices and broad range of environmental parameters used in zebrafish facilities. Here, we provide examples of these parameters and practices, including housing density, tank size, and water chemistry. We discuss the principles of stochastic resonance versus homeostasis and provide hypothetical examples to explain why keeping zebrafish outside of their tolerated range of environmental parameters may increase phenotypical variance and reduce replicability. We call for systematic studies to establish the optimal maintenance conditions for zebrafish. Furthermore, we discuss why knowing more about the natural behavior and ecology of this species could be a guiding principle for these studies.
Collapse
Affiliation(s)
- Benjamin Tsang
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada; Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Gamba BFG, Pickler KDP, Lodetti G, Farias ACSD, Teixeira AG, Bernardo HT, Dondossola ER, Cararo JH, Luchiari AC, Rosemberg DB, Rico EP. Embryonic alcohol exposure alters cholinergic neurotransmission and memory in adult zebrafish. Behav Brain Res 2024; 474:115176. [PMID: 39098400 DOI: 10.1016/j.bbr.2024.115176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Alcohol is the most consumed addictive substance worldwide that elicits multiple health problems. Consumption of alcoholic beverages by pregnant women is of great concern because pre-natal exposure can trigger fetal alcohol spectrum disorder (FASD). This disorder can significantly change the embryo's normal development, mainly by affecting the central nervous system (CNS), leading to neurobehavioral consequences that persist until adulthood. Among the harmful effects of FASD, the most reported consequences are cognitive and behavioral impairments. Alcohol interferes with multiple pathways in the brain, affecting memory by impairing neurotransmitter systems, increasing the rate of oxidative stress, or even activating neuroinflammation. Here, we aimed to evaluate the deleterious effects of alcohol on the cholinergic signaling and memory in a FASD zebrafish model, using inhibitory avoidance and novel object recognition tests. Four months after the embryonic exposure to ethanol, the behavioral tests indicated that ethanol impairs memory. While both ethanol concentrations tested (0.5 % and 1 %) disrupted memory acquisition in the inhibitory avoidance test, 1 % ethanol impaired memory in the object recognition test. Regarding the cholinergic system, 0.5 % ethanol decreased ChAT and AChE activities, but the relative gene expression did not change. Overall, we demonstrated that FASD model in zebrafish impairs memory in adult individuals, corroborating the memory impairment associated with embryonic exposure to ethanol. In addition, the cholinergic system was also affected, possibly showing a relation with the cognitive impairment observed.
Collapse
Affiliation(s)
- Bárbara Fiorentin Giordani Gamba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil; Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil; Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Karolyne de Pieri Pickler
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Guilherme Lodetti
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ana Caroline Salvador de Farias
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Amanda Gomes Teixeira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - José Henrique Cararo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil; Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil
| | - Denis Broock Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
4
|
de Souza AM, Alves de Medeiros MC, Gomes-de-Lima JN, Luchiari AC. Multigenerational effects of alcohol: A behavioral study in three zebrafish populations. Neurotoxicology 2024; 103:115-122. [PMID: 38857677 DOI: 10.1016/j.neuro.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Fetal alcohol exposure can result in fetal alcohol spectrum disorder (FASD), which encompasses a range of cognitive and behavioral impairments. Although zebrafish have been used as a reliable model to study FASD, little is known about the ontogeny of this disorder and population differences in subsequent generations not directly exposed to alcohol. In this study, we evaluated the behavioral outcomes of zebrafish populations AB, Outbred (OB), and Tubingen (TU), offspring of parents exposed to alcohol during embryonic development. The offspring of adult fish with FASD (exposed to 1 % alcohol at the embryonic stage) was compared to the offspring of unexposed parental fish (0 % alcohol at the embryo phase). The behavioral profile of the offspring was assessed at 6 days post-fertilization (dpf) and 45 dpf. At 6dpf, the AB FASD offspring exhibited hyperactivity and increased time at the edge of the tank, while the TU and OB FASD offspring showed hypoactivity. At 45dpf, TU fish maintained the larval locomotor pattern, characterized by decreased average speed and total distance traveled and increased immobility. However, AB and OB fish did not show alterations in locomotor activity and anxiety-related responses at 45dpf. Our results demonstrate, for the first time, that FASD zebrafish offspring display behavioral differences, which were most evident during the early ontogenetic phase (6dpf) but may vary throughout animal ontogeny. TU fish exhibited the most consistent behavioral pattern across different developmental stages. These findings provide insights into the multigenerational and persistent behavioral consequences of embryonic alcohol exposure in zebrafish. Further research should focus on other features that can be inherited and the development of treatments for the offspring affected by it.
Collapse
Affiliation(s)
- Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil; Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Ana Carolina Luchiari
- Department of Physiology & Behavior, Federal University of Rio Grande do Norte, Rio Grande do Norte, Natal, Brazil; Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
5
|
Małkowska A, Ługowska K, Grucza K, Małkowska W, Kwiatkowska D. Ethyl glucuronide and ethyl sulfate in the zebrafish after ethanol exposure. Alcohol 2024; 115:33-39. [PMID: 37633541 DOI: 10.1016/j.alcohol.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Ethanol exposure during pregnancy is an important problem and is the cause of fetal alcohol syndrome (FAS) and fetal alcohol spectrum disorder (FASD). The etiology of FAS and FASD can be elucidated using animal models. Recently, a novel model, the zebrafish (Danio rerio), has garnered the interest of researchers. This study confirmed the negative influence of ethyl alcohol (0.5 %, 1.5 %, and 2.5 % v/v) on the development of zebrafish embryos. The observed malformations included pericardial and yolk sac edema, increased body curvature, tail edema, and a decreased embryo hatching rate. The differences in body length, body width, and heart rate were statistically significant. Due to the similarities in the quantity and function of ethanol biotransformation enzymes between zebrafish and mammals, this study investigated the nonoxidative metabolites of ethanol - ethyl glucuronide (EtG) and ethyl sulfate (EtS) - in zebrafish following ethanol exposure. This research confirmed that EtG and EtS concentrations can be measured in zebrafish embryos, and the levels of these metabolites appear to be associated with the ethyl alcohol concentration in the medium.
Collapse
Affiliation(s)
- Anna Małkowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland.
| | - Kinga Ługowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland
| | - Krzysztof Grucza
- Polish Anti-Doping Laboratory, Księcia Ziemowita 53/4 Street, 03-885 Warsaw, Poland
| | - Weronika Małkowska
- Department of Life Sciences, University of Roehampton, SW15 5PJ, London, United Kingdom
| | - Dorota Kwiatkowska
- Polish Anti-Doping Laboratory, Księcia Ziemowita 53/4 Street, 03-885 Warsaw, Poland
| |
Collapse
|
6
|
Collier AD, Abdulai AR, Leibowitz SF. Utility of the Zebrafish Model for Studying Neuronal and Behavioral Disturbances Induced by Embryonic Exposure to Alcohol, Nicotine, and Cannabis. Cells 2023; 12:2505. [PMID: 37887349 PMCID: PMC10605371 DOI: 10.3390/cells12202505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
It is estimated that 5% of pregnant women consume drugs of abuse during pregnancy. Clinical research suggests that intake of drugs during pregnancy, such as alcohol, nicotine and cannabis, disturbs the development of neuronal systems in the offspring, in association with behavioral disturbances early in life and an increased risk of developing drug use disorders. After briefly summarizing evidence in rodents, this review focuses on the zebrafish model and its inherent advantages for studying the effects of embryonic exposure to drugs of abuse on behavioral and neuronal development, with an emphasis on neuropeptides known to promote drug-related behaviors. In addition to stimulating the expression and density of peptide neurons, as in rodents, zebrafish studies demonstrate that embryonic drug exposure has marked effects on the migration, morphology, projections, anatomical location, and peptide co-expression of these neurons. We also describe studies using advanced methodologies that can be applied in vivo in zebrafish: first, to demonstrate a causal relationship between the drug-induced neuronal and behavioral disturbances and second, to discover underlying molecular mechanisms that mediate these effects. The zebrafish model has great potential for providing important information regarding the development of novel and efficacious therapies for ameliorating the effects of early drug exposure.
Collapse
Affiliation(s)
| | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
7
|
Syed OA, Tsang B, Gerlai R. The zebrafish for preclinical psilocybin research. Neurosci Biobehav Rev 2023; 153:105381. [PMID: 37689090 DOI: 10.1016/j.neubiorev.2023.105381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
In this review, we discuss the possible utility of zebrafish in research on psilocybin, a psychedelic drug whose recreational use as well as possible clinical application are gaining increasing interest. First, we review behavioral tests with zebrafish, focussing on anxiety and social behavior, which have particular relevance in the context of psilocybin research. Next, we briefly consider methods of genetic manipulations with which psilocybin's phenotypical effects and underlying mechanisms may be investigated in zebrafish. We briefly review the known mechanisms of psilocybin, and also discuss what we know about its safety and toxicity profile. Last, we discuss examples of how psilocybin may be employed for testing treatment efficacy in preclinical research for affective disorders in zebrafish. We conclude that zebrafish has a promising future in preclinical research on psychedelic drugs.
Collapse
Affiliation(s)
- Omer A Syed
- Department of Biology, University of Toronto Mississauga, Canada.
| | - Benjamin Tsang
- Department of Cell & Systems Biology, University of Toronto, Canada.
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
8
|
Kuroda T, Ritchey CM, Podlesnik CA. Selective effects of conspecific movement on social preference in zebrafish (Danio rerio) using real-time 3D tracking and 3D animation. Sci Rep 2023; 13:10502. [PMID: 37380673 DOI: 10.1038/s41598-023-37579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023] Open
Abstract
Zebrafish show social behavior such as shoaling and schooling, which is a result of complex and interdependent interactions among conspecifics. Zebrafish social behavior is interdependent in the sense that one fish's behavior affects both conspecific behavior and, as a result, their own behavior. Previous research examined effects of the interdependent interactions on the preference for social stimulus but lacked clear evidence that specific conspecific movements were reinforcing. The present research examined whether dependency between individual experimental fish's motion and a social-stimulus fish's motions contributes to preference for the social stimulus. In Experiment 1, a 3D animated stimulus fish either chased individual experimental fish or was motionless, serving as dependent and independent motions, respectively. In Experiment 2, the stimulus fish either chased experimental fish, moved away, or moved independently of the experimental fish. In both experiments, experimental fish spent more time near the stimulus fish showing dependent and interactive movements, indicating preference for dependent motion over independent motion, and chasing over other motions. Implications of these results are discussed including a potential role of operant conditioning in the preference for social stimuli.
Collapse
Affiliation(s)
- Toshikazu Kuroda
- Huckle Co., Ltd., 2-51 Shiroki, Chikusa, Nagoya, Aichi, 464-0846, Japan.
- Aichi Bunkyo University, 5969-3 Okusa, Komaki, Aichi, 485-8565, Japan.
- Department of Dynamic Brain Imaging, Advanced Telecommunications Research Institute International, 2-2-2 Hikaridai Seika-cho, Kyoto, 619-0288, Japan.
| | | | - Christopher A Podlesnik
- Department of Psychology, University of Florida, 945 Center Dr., P.O. Box 112250, Gainesville, FL, 32611, USA
| |
Collapse
|
9
|
Agues-Barbosa T, de Souza AM, de Lima JNG, Luchiari AC. Long-term behavioral alterations following embryonic alcohol exposure in three zebrafish populations. Neurotoxicology 2023; 96:174-183. [PMID: 37120037 DOI: 10.1016/j.neuro.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Fetal alcohol exposure may lead to a condition known as fetal alcohol spectrum disorder (FASD), which comprises a set of consequences, including cognitive and behavioral impairments. Although zebrafish has been applied as a reliable model for studying FASD, there is no approach to the disorder's ontogeny and population differences. Here, we evaluated the behavioral outcomes of AB, Outbred (OB), and Tübingen (TU) zebrafish populations embryonically exposed to alcohol throughout the development to the adult stage. We exposed 24hpf eggs to 0%, 0.5%, or 1.0% alcohol for 2h. Fish were let grow and locomotor and anxiety-like behaviors were tested in a novel tank at larval - 6dpf, juvenile - 45dpf, and adult- 90dpf stages. At 6dpf, both AB and OB treated with 1.0% alcohol showed hyperactivity, while 0.5% and 1.0% TU fish exhibited hypolocomotion. At 45dpf, AB and TU fish maintained the larval pattern of locomotion. At the adult stage - 90dpf, both AB and TU populations showed increased locomotor activity and anxiogenic responses, while the OB population did not show altered behavior. Our results show for the first time that zebrafish populations exhibit behavioral differences in response to embryonic alcohol exposure and that it varies along animals' ontogeny. AB fish showed the most consistent behavioral pattern through developmental stages, TU fish showed behavioral changes only in adulthood, and OB population showed high interindividual variability. These data reinforce that different populations of zebrafish are better adapted to translational studies, offering reliable results in contrast to domesticated OB populations obtained from farms, which exhibit more variable genomes.
Collapse
Affiliation(s)
- Thaís Agues-Barbosa
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | - Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Ana Carolina Luchiari
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil.
| |
Collapse
|
10
|
Gerlai R. Zebrafish (Danio rerio): A newcomer with great promise in behavioral neuroscience. Neurosci Biobehav Rev 2023; 144:104978. [PMID: 36442644 DOI: 10.1016/j.neubiorev.2022.104978] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Behavioral neuroscience is an interdisciplinary field aimed at understanding the neurobiology of behavior. Numerous investigators turn to animals to model and understand the mechanisms underlying vertebrate brain function including human brain disorders, species that share evolutionary history with us. The zebrafish is a relatively new study species for such purposes. However, as this review attempts to demonstrate, it will likely have a good future in behavioral neuroscience. It is a simple vertebrate that is small and cheap to keep and study in the laboratory. Yet, it is similar enough to our own species, thus, we are able to use it for both translational as well as basic research. In this invited review, I will discuss its advantages and some of its disadvantages, the reasons and counterarguments why it should or should not be employed in research. I will focus on its utility in behavioral neuroscience, and will also provide a brief historical account of the evolution between zebrafish research and the science represented by the International Behavioral Neuroscience Society.
Collapse
Affiliation(s)
- Robert Gerlai
- Department of Psychology, Rm CCT4004, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.
| |
Collapse
|
11
|
Acute Administration of Ethanol and of a D1-Receptor Antagonist Affects the Behavior and Neurochemistry of Adult Zebrafish. Biomedicines 2022; 10:biomedicines10112878. [DOI: 10.3390/biomedicines10112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Alcohol abuse represents major societal problems, an unmet medical need resulting from our incomplete understanding of the mechanisms underlying alcohol’s actions in the brain. To uncover these mechanisms, animal models have been proposed. Here, we explore the effects of acute alcohol administration in zebrafish, a promising animal model in alcohol research. One mechanism via which alcohol may influence behavior is the dopaminergic neurotransmitter system. As a proof-of-concept analysis, we study how D1 dopamine-receptor antagonism may alter the effects of acute alcohol on the behavior of adult zebrafish and on whole brain levels of neurochemicals. We conduct these analyses using a quasi-inbred strain, AB, and a genetically heterogeneous population SFWT. Our results uncover significant alcohol x D1-R antagonist interaction and main effects of these factors in shoaling, but only additive effects of these factors in measures of exploratory behavior. We also find interacting and main effects of alcohol and the D1-R antagonist on dopamine and DOPAC levels, but only alcohol effects on serotonin. We also uncover several strain dependent effects. These results demonstrate that acute alcohol may act through dopaminergic mechanisms for some but not all behavioral phenotypes, a novel discovery, and also suggest that strain differences may, in the future, help us identify molecular mechanisms underlying acute alcohol effects.
Collapse
|
12
|
Shishis S, Tsang B, Gerlai R. The effect of fish density and tank size on the behavior of adult zebrafish: A systematic analysis. Front Behav Neurosci 2022; 16:934809. [PMID: 36275854 PMCID: PMC9581232 DOI: 10.3389/fnbeh.2022.934809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/13/2022] [Indexed: 08/25/2023] Open
Abstract
The zebrafish has been employed in several fields of biology due to its translational relevance and its simplicity and ease of maintenance. As a result, zebrafish are kept in thousands of laboratories around the world. Current industry standards favor keeping the largest possible number of fish in the smallest possible volume of water to increase efficiency and reduce costs. However, physiological and psychological stress resulting from such crowding may impact a variety of phenotypes, from brain function and behavior to cardiovascular function and cancer. Nevertheless, surprisingly little is known about what constitutes an optimal housing environment for the zebrafish, e.g., no systematic analyses have been performed to test the role of housing density and tank volume despite recent sporadic reports implying negative effects of the standard practice of crowding. Here, we conduct the first proof of concept analysis examining the potential impact of housing density and tank volume on the behavior of zebrafish. We randomly assigned adult zebrafish to one of three tank sizes (1.5, 10, or 50 L) with one of three housing densities (1, 2, or 4 fish/L), a 3 × 3 between subject experimental design, and maintained the fish in their corresponding condition for 2 weeks. Subsequently, we tested the behavior of the fish singly in a novel open tank for 12 min and quantified several of their swim path parameters using a video-tracking system. We found significant additive and interacting effects of tank size and/or housing density on swim path parameters including immobility, swim speed, turn angle, and distance to bottom and to stimulus. Although we had only three fish densities and three tank sizes and we did not explore the effects of more extreme conditions and although the interpretation of the above behavioral effects is speculative at this point, the results already demonstrate that both tank size and housing density exerts significant effects on the zebrafish and thus should be considered in zebrafish husbandry.
Collapse
Affiliation(s)
- Stephanie Shishis
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Critical Care Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
13
|
Velkey AJ, Koon CH, Danstrom IA, Wiens KM. Female zebrafish (Danio rerio) demonstrate stronger preference for established shoals over newly-formed shoals in the three-tank open-swim preference test. PLoS One 2022; 17:e0265703. [PMID: 36129935 PMCID: PMC9491588 DOI: 10.1371/journal.pone.0265703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Zebrafish (Danio rerio) share a considerable amount of biological similarity with mammals, including identical or homologous gene expression pathways, neurotransmitters, hormones, and cellular receptors. Zebrafish also display complex social behaviors like shoaling and schooling, making them an attractive model for investigating normal social behavior as well as exploring impaired social function conditions such as autism spectrum disorders. Newly-formed and established shoals exhibit distinct behavior patterns and inter-member interactions that can convey the group's social stability. We used a three-chamber open-swim preference test to determine whether individual zebrafish show a preference for an established shoal over a newly-formed shoal. Results indicated that both sexes maintained greater proximity to arena zones nearest to the established shoal stimulus. In addition, we report the novel application of Shannon entropy to discover sex differences in systematicity of responses not revealed by unit-based measurements; male subjects spent more time investigating between the two shoals than female subjects. This novel technique using established versus newly-formed shoals can be used in future studies testing transgenics and pharmacological treatments that mimic autism spectrum disorder and other disorders that affect social interaction.
Collapse
Affiliation(s)
- Andrew J. Velkey
- Neuroscience Program, Christopher Newport University, Newport News, VA, United States of America
| | - Caroline H. Koon
- Neuroscience Program, Christopher Newport University, Newport News, VA, United States of America
| | - Isabel A. Danstrom
- Neuroscience Program, Christopher Newport University, Newport News, VA, United States of America
| | - Katie M. Wiens
- Science Department, Bay Path University, Longmeadow, MA, United States of America
| |
Collapse
|
14
|
Kitson JE, Ord J, Watt PJ. Maternal Chronic Ethanol Exposure Decreases Stress Responses in Zebrafish Offspring. Biomolecules 2022; 12:biom12081143. [PMID: 36009037 PMCID: PMC9405564 DOI: 10.3390/biom12081143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
In humans, prenatal alcohol exposure can cause serious health issues in children, known collectively as Foetal Alcohol Spectrum Disorders (FASD). Despite the high prevalence of FASD and a lack of effective treatments, the underlying mechanisms causing the teratogenic action of ethanol are still obscure. The limitations of human studies necessitate the use of animal models for identifying the underlying processes, but few studies have investigated the effects of alcohol in the female germline. Here, we used the zebrafish Danio rerio to investigate the effects of chronic (repeated for seven days) exposure to alcohol. Specifically, we tested whether the offspring of females chronically exposed to ethanol during oogenesis exhibited hormonal abnormalities when subjected to a stressor (alarm cue) as larvae, and if they exhibited anxiety-like behaviours as adults. Exposure to alarm cue increased whole-body cortisol in control larvae but not in those of ethanol-treated females. Furthermore, adult offspring of ethanol-treated females showed some reduced anxiety-like behaviours. These findings suggest that the offspring of ethanol-treated females had reduced stress responses. This study is the first to investigate how maternal chronic ethanol exposure prior to fertilisation influences hormonal and behavioural effects in a non-rodent model.
Collapse
Affiliation(s)
- Juliet E. Kitson
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - James Ord
- Centre for Fish and Wildlife Health, University of Bern, 3012 Bern, Switzerland
| | - Penelope J. Watt
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Correspondence:
| |
Collapse
|
15
|
Age-dependent effects of embryonic ethanol exposure on anxiety-like behaviours in young zebrafish: A genotype comparison study. Pharmacol Biochem Behav 2022; 214:173342. [DOI: 10.1016/j.pbb.2022.173342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
|
16
|
Suresh S, Abozaid A, Tsang B, Gerlai R. Exposure of parents to alcohol alters behavior of offspring in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110143. [PMID: 33096155 DOI: 10.1016/j.pnpbp.2020.110143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/12/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Alcoholism and alcohol abuse represent a significant medical and societal problem, and have been thoroughly investigated in humans as well as using animal models. A less well understood aspect of alcohol related disorders is the possible effect of this drug on offspring whose parents were exposed prior to conception. The zebrafish has been successfully employed in alcohol research, however, the effect of exposing the parents to alcohol before fertilization of the eggs on offspring has not been demonstrated in this species. In this proof of concept study, we attempt to address this hiatus. We exposed both adult male and female zebrafish to 0.0% (control) or 0.5% (vol/vol) alcohol chronically for 7 days, subsequently bred the fish within their respective treatment group, collected the fertilized eggs, allowed them to develop, and tested the behavior of free-swimming offspring at their age of 7-9 days post-fertilization. We conducted the analysis in two genetically distinct quasi-inbred strains of zebrafish, AB and TL. Although gross morphology and general activity of the fish appeared unaffected, we found significant behavioral alterations in offspring of alcohol exposed parents compared to offspring of control parents in both strains. These alterations included robustly increased duration and reduced frequency of immobility, increased turn angle, and increased intra-individual variance of turn angle in offspring of alcohol exposed parents in both strains. The mechanisms underlying these behavioral effects or whether the effects are due to exposure of the father, the mother, or both to alcohol are unknown. Nevertheless, our results now set the stage for future studies with zebrafish that will address these questions.
Collapse
Affiliation(s)
| | - Amira Abozaid
- Department of Cell & System Biology, University of Toronto, Canada
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Canada; Department of Cell & System Biology, University of Toronto, Canada.
| |
Collapse
|
17
|
Clayman CL, Connaughton VP. Neurochemical and Behavioral Consequences of Ethanol and/or Caffeine Exposure: Effects in Zebrafish and Rodents. Curr Neuropharmacol 2021; 20:560-578. [PMID: 34766897 DOI: 10.2174/1570159x19666211111142027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Zebrafish are increasingly being utilized to model the behavioral and neurochemical effects of pharmaceuticals and, more recently, pharmaceutical interactions. Zebrafish models of stress establish that both caffeine and ethanol influence anxiety, though few studies have implemented co-administration to assess the interaction of anxiety and reward-seeking. Caffeine exposure in zebrafish is teratogenic, causing developmental abnormalities in the cardiovascular, neuromuscular, and nervous systems of embryos and larvae. Ethanol is also a teratogen and, as an anxiolytic substance, may be able to offset the anxiogenic effects of caffeine. Co-exposure to caffeine and alcohol impacts neuroanatomy and behavior in adolescent animal models, suggesting stimulant substances may moderate the impact of alcohol on neural circuit development. Here, we review the literature describing neuropharmacological and behavioral consequences of caffeine and/or alcohol exposure in the zebrafish model, focusing on neurochemistry, locomotor effects, and behavioral assessments of stress/anxiety as reported in adolescent/juvenile and adult animals. The purpose of this review is twofold: (1) describe the work in zebrafish documenting the effects of ethanol and/or caffeine exposure and (2) compare these zebrafish studies with comparable experiments in rodents. We focus on specific neurochemical pathways (dopamine, serotonin, adenosine, GABA, adenosine), anxiety-type behaviors (assessed with novel tank, thigmotaxis, shoaling), and locomotor changes resulting from both individual and co-exposure. We compare findings in zebrafish with those in rodent models, revealing similarities across species and identifying conservation of mechanisms that potentially reinforce co-addiction.
Collapse
Affiliation(s)
- Carly L Clayman
- Department of Biology and Center for Neuroscience and Behavior American University, Washington, DC 20016, United States
| | - Victoria P Connaughton
- Department of Biology and Center for Neuroscience and Behavior American University, Washington, DC 20016, United States
| |
Collapse
|
18
|
Fernandes Y, Lovely CB. Zebrafish models of fetal alcohol spectrum disorders. Genesis 2021; 59:e23460. [PMID: 34739740 DOI: 10.1002/dvg.23460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Fetal alcohol spectrum disorder (FASD) describes a wide range of structural deficits and cognitive impairments. FASD impacts up to 5% of children born in the United States each year, making ethanol one of the most common teratogens. Due to limitations and ethical concerns, studies in humans are limited in their ability to study FASD. Animal models have proven critical in identifying and characterizing the mechanisms underlying FASD. In this review, we will focus on the attributes of zebrafish that make it a strong model in which to study ethanol-induced developmental defects. Zebrafish have several attributes that make it an ideal model in which to study FASD. Zebrafish produced large numbers of externally fertilized, translucent embryos. With a high degree of genetic amenability, zebrafish are at the forefront of identifying and characterizing the gene-ethanol interactions that underlie FASD. Work from multiple labs has shown that embryonic ethanol exposures result in defects in craniofacial, cardiac, ocular, and neural development. In addition to structural defects, ethanol-induced cognitive and behavioral impairments have been studied in zebrafish. Building upon these studies, work has identified ethanol-sensitive loci that underlie the developmental defects. However, analyses show there is still much to be learned of these gene-ethanol interactions. The zebrafish is ideally suited to expand our understanding of gene-ethanol interactions and their impact on FASD. Because of the conservation of gene function between zebrafish and humans, these studies will directly translate to studies of candidate genes in human populations and allow for better diagnosis and treatment of FASD.
Collapse
Affiliation(s)
- Yohaan Fernandes
- Department of Biology, University of South Dakota, Vermillion, South Dakota, USA
| | - C Ben Lovely
- Department of Biochemistry and Molecular Genetics, Alcohol Research Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
19
|
Cararo JH, Rico EP. Long-lasting implications of embryonic exposure to alcohol: Insights from zebrafish research. Dev Neurobiol 2021; 82:29-40. [PMID: 34687497 DOI: 10.1002/dneu.22855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022]
Abstract
The harmful consumption of ethanol is associated with significant health problems and social burdens. This drug activates a complex network of reward mechanisms and habit formation learning that is supposed to contribute to the consumption of increasingly high and frequent amounts, ultimately leading to addiction. In the context of fetal alcohol spectrum disorders, fetal alcohol syndrome (FAS) is a consequence of the harmful use of alcohol during pregnancy, which affects the embryonic development of the fetus. FAS can be easily reproduced in zebrafish by exposing the embryos to different concentrations of ethanol in water. In this regard, the aim of the present review is to discuss the late pathological implications in zebrafish exposed to ethanol at the embryonic stage, providing information in the context of human fetal alcoholic spectrum disorders. Experimental FAS in zebrafish is associated with impairments in the metabolic, morphological, neurochemical, behavioral, and cognitive domains. Many of the pathways that are affected by ethanol in zebrafish have at least one ortholog in humans, collaborating with the wider adoption of zebrafish in studies on alcohol disorders. In fact, zebrafish present validities required for the study of these conditions, which contributes to the use of this species in research, in addition to studies with rodents.
Collapse
Affiliation(s)
- José Henrique Cararo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
20
|
Boyda J, Hawkey AB, Holloway ZR, Trevisan R, Di Giulio RT, Levin ED. The organophosphate insecticide diazinon and aging: Neurobehavioral and mitochondrial effects in zebrafish exposed as embryos or during aging. Neurotoxicol Teratol 2021; 87:107011. [PMID: 34224825 PMCID: PMC8440393 DOI: 10.1016/j.ntt.2021.107011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022]
Abstract
Organophosphate (OP) compounds comprise one of the most widely used classes of insecticides worldwide. OPs have been shown to have negative human health impacts, particularly developmental neurotoxicity. However, neurotoxic impacts in later adulthood and during the aging process are relatively uncharacterized. The present study examined diazinon (DZN), an OP, to determine the neurobehavioral consequences, in addition to mitochondrial dysfunction on a macroscale (whole organism basal respiration) and on a microscale (whole organ mitochondrial respiration), using zebrafish (ZF) as a model. One group of 14-month-old adult ZF were exposed acutely as adults (0.4, 1.25, and 4.0 μM) for five days and tested as adults, and another group was exposed developmentally 5-120 h post-fertilization (70, 210, and 700 nM) and tested at larval, adolescent, adult, and aging life stages. ZF exposed acutely as adults did not display many significant neurobehavioral impacts or mitochondrial dysfunction. Conversely, the embryonically exposed ZF showed altered behavioral functions at each stage of life which emerged and attenuated as fish transitioned from each developmental stage to the next. Mitochondrial oxygen consumptions measurement results for developmentally DZN exposed ZF showed significant increases in the low and middle dose groups in organs such as the brain and testes. Overall, there is an indication that early developmental exposure to DZN had continuing adverse neurobehavioral and cellular consequences throughout their lives well into adulthood and aging periods.
Collapse
Affiliation(s)
- Jonna Boyda
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Zade R Holloway
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Rafael Trevisan
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Edward D Levin
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
21
|
Chatterjee D, Mahabir S, Chatterjee D, Gerlai R. Lasting effects of mild embryonic ethanol exposure on voltage-gated ion channels in adult zebrafish brain. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110327. [PMID: 33864849 DOI: 10.1016/j.pnpbp.2021.110327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/28/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
The zebrafish is increasingly well utilized in alcohol research, particularly in modeling human fetal alcohol spectrum disorders (FASD). FASD results from alcohol reaching the developing fetus intra utero, a completely preventable yet prevalent and devastating life-long disorder. The hope with animal models, including the zebrafish, is to discover the mechanisms underlying this disease, which may aid treatment and diagnosis. In the past, we developed an embryonic alcohol exposure regimen that is aimed at mimicking the milder, and most prevalent, forms of FASD in zebrafish. We have found numerous lasting alterations in behavior, neurochemistry, neuronal markers and glial cell phenotypes in this zebrafish FASD model. Using the same model (2 h long bath immersion of 24 h post-fertilization old zebrafish eggs into 1% vol/vol ethanol), here we conduct a proof of concept analysis of voltage-gated cation channels, investigating potential embryonic alcohol induced changes in L-, T- and N- type Ca++ and the SCN1A Na+ channels using Western blot followed by immunohistochemical analysis of the same channels in the pallium and cerebellum of the zebrafish brain. We report significant reduction of expression in all four channel proteins using both methods. We conclude that reduced voltage-gated cation channel expression induced by short and low dose exposure to alcohol during embryonic development of zebrafish may contribute to the previously demonstrated lasting behavioral and neurobiological changes.
Collapse
Affiliation(s)
| | - Samantha Mahabir
- Department of Psychology, University of Toronto, Mississauga, Ontario, Canada
| | | | - Robert Gerlai
- Department of Psychology, University of Toronto, Mississauga, Ontario, Canada.
| |
Collapse
|
22
|
Pinheiro-da-Silva J, Agues-Barbosa T, Luchiari AC. Embryonic Exposure to Ethanol Increases Anxiety-Like Behavior in Fry Zebrafish. Alcohol Alcohol 2021; 55:581-590. [PMID: 32886092 DOI: 10.1093/alcalc/agaa087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS Fetal alcohol spectrum disorder (FASD) is an umbrella term to describe the effects of ethanol (Eth) exposure during embryonic development, including several conditions from malformation to cognitive deficits. Zebrafish (Danio rerio) are a translational model popularly applied in brain disorders and drug screening studies due to its genetic and physiology homology to humans added to its transparent eggs and fast development. In this study, we investigated how early ethanol exposure affects zebrafish behavior during the initial growth phase. METHODS Fish eggs were exposed to 0.0 (control), 0.25 and 0.5% ethanol at 24 h post-fertilization. Later, fry zebrafish (10 days old) were tested in a novel tank task and an inhibitory avoidance protocol to inquire about morphology and behavioral alterations. RESULTS Analysis of variance showed that ethanol doses of 0.25 and 0.5% do not cause morphological malformations and did not impair associative learning but increased anxiety-like behavior responses and lower exploratory behavior when compared to the control. CONCLUSION Our results demonstrate that one can detect behavioral abnormalities in the zebrafish induced by embryonic ethanol as early as 10 days post-fertilization and that alcohol increases anxious behavior during young development in zebrafish.
Collapse
Affiliation(s)
| | - Thais Agues-Barbosa
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| |
Collapse
|
23
|
Eachus H, Choi MK, Ryu S. The Effects of Early Life Stress on the Brain and Behaviour: Insights From Zebrafish Models. Front Cell Dev Biol 2021; 9:657591. [PMID: 34368117 PMCID: PMC8335398 DOI: 10.3389/fcell.2021.657591] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/20/2021] [Indexed: 01/27/2023] Open
Abstract
The early life period represents a window of increased vulnerability to stress, during which exposure can lead to long-lasting effects on brain structure and function. This stress-induced developmental programming may contribute to the behavioural changes observed in mental illness. In recent decades, rodent studies have significantly advanced our understanding of how early life stress (ELS) affects brain development and behaviour. These studies reveal that ELS has long-term consequences on the brain such as impairment of adult hippocampal neurogenesis, altering learning and memory. Despite such advances, several key questions remain inadequately answered, including a comprehensive overview of brain regions and molecular pathways that are altered by ELS and how ELS-induced molecular changes ultimately lead to behavioural changes in adulthood. The zebrafish represents a novel ELS model, with the potential to contribute to answering some of these questions. The zebrafish offers some important advantages such as the ability to non-invasively modulate stress hormone levels in a whole animal and to visualise whole brain activity in freely behaving animals. This review discusses the current status of the zebrafish ELS field and its potential as a new ELS model.
Collapse
Affiliation(s)
- Helen Eachus
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Min-Kyeung Choi
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Soojin Ryu
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom.,Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
24
|
Pinheiro‐da‐Silva J, Luchiari AC. Embryonic ethanol exposure on zebrafish early development. Brain Behav 2021; 11:e02062. [PMID: 33939334 PMCID: PMC8213935 DOI: 10.1002/brb3.2062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Embryonic exposure to ethanol leads to a condition of physical, behavioral, and cognitive deficiencies named fetal alcohol spectrum disorders (FASD). The most severe variations are in fetal alcohol syndrome (FAS), which is easier to diagnose and not studied in animal models. On the other side, the pFAS (partial fetal alcohol syndrome) includes cases of alcohol-related congenital disabilities and neurodevelopmental disorder with an inconclusive diagnosis. In recent years, the zebrafish has become a valuable model to study FASD and its variations. METHODS This study characterizes the zebrafish embryonic and larval development after low and moderate ethanol concentration exposure. Fish eggs were exposed to 0.0%, 0.25%, 0.5%, and 1.0% ethanol at 24 hr postfertilization, and embryonic development was observed every 8 hr up to 120 hpf. It evaluated movements, phenotypic abnormalities, hatching, cardiac function and heartbeat frequency, larvae length at 120 hpf, and the apoptotic cells' fluorescence stained with acridine orange. RESULTS Embryonic exposure to 0.5% and 1% ethanol presented reduced body size, decreased heartbeat rate, higher numbers of apoptotic cells, and hatching time differences. CONCLUSIONS Our results suggest any ethanol exposure during embryogenesis can be harmful and reinforces zebrafish as a suitable model for fetal alcohol spectrum disorders (FASD).
Collapse
Affiliation(s)
| | - Ana Carolina Luchiari
- Physiology and Behavior DepartmentFederal University of Rio Grande do NorteNatalBrazil
| |
Collapse
|
25
|
Schaidhauer FG, Caetano HA, da Silva GP, da Silva RS. Contributions of Zebrafish Studies on the Behavioural Consequences of Early Alcohol Exposure: A Systematic Review. Curr Neuropharmacol 2021; 20:579-593. [PMID: 33913405 DOI: 10.2174/1570159x19666210428114317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND The consequences of mild to severe exposure to alcohol during brain development is still a matter of debate and scientific investigation. The long-term behavioural effects of ethanol exposure have been related to impaired social skills and cognition. Zebrafish have become a suitable animal model to investigate the effects of early ethanol exposure because it is very feasible to promote drug delivery during early development. OBJECTIVE The goal of the current report is to review existing behavioural studies addressing the impact of early alcohol exposure using zebrafish to determine whether these models resemble the behavioural effects of early alcohol exposure in humans. METHODS A comprehensive search of biomedical databases was performed using the operation order: "ZEBRAFISH AND BEHAV* AND (ETHANOL OR ALCOHOL)". The eligibility of studies was determined using the PICOS strategy, contemplating the population as zebrafish, intervention as exposure to ethanol, comparison with a non-exposed control animal, and outcomes as behavioural parameters. RESULTS The systematic search returned 29 scientific articles as eligible. The zebrafish is presented as a versatile animal model that is useful to study FASD short and long-term behaviour impairments, such as anxiety, impaired sociability, aggressiveness, learning problems, memory impairment, seizure susceptibility, sleep disorders, motivational problems, and addiction. CONCLUSION This systematic review serves to further promote the use of zebrafish as a model system to study the pathophysiological and behavioural consequences of early alcohol exposure.
Collapse
Affiliation(s)
- Flávia Gheller Schaidhauer
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Higor Arruda Caetano
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Pietro da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rosane Souza da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
26
|
Pinheiro-da-Silva J, Araujo-Silva H, Luchiari AC. Does early ethanol exposure increase seeking-like behavior in zebrafish? Int J Dev Neurosci 2021; 81:416-427. [PMID: 33837569 DOI: 10.1002/jdn.10112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 01/22/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is the most common cause of birth defects. The severe variations are in fetal alcohol syndrome (FAS) but the most frequent cases are alcohol-related neurodevelopmental disorder (ARND), which is of a difficult diagnosis. ARND characteristics include impaired social behavior, anxiety and depression prevalence, cognitive deficits, and an increased chance for drug addiction. Here, we aimed to test whether early alcohol exposure leads to later alcohol preference. We hypothesize that early alcohol exposure increases the reinforcing effects on later experiences, raising the chance of addiction in adult life. Lately, the zebrafish has been a valuable model on alcohol research, allowing embryonic exposure and the study of the ontogenetic effects. For this, embryos were exposed to three different alcohol treatments: 0.0%, 0.25% and 0.5%, for 2 hr, at 24-hr post-fertilization. Then we evaluated the effects of embryonic alcohol exposure on conditioned place preference in two developmental stage: fry (10 days post-fertilization (dpf)) and young (90 dpf) zebrafish. Results show that control fish presented alcohol associative learning, which means, changes in place preference due to alcohol exposure, at both ontogenetic phases. However, zebrafish exposed to 0.25 and 0.5% alcohol during embryogenesis did not show conditioning response at any evaluated stage. These results suggest perception and cognitive deficits due to embryonic alcohol exposure that can alter alcohol responsiveness throughout a lifetime. Although low alcohol doses do not provoke malformation, it has been shown to induce several neurological and behavioral changes that are termed as Alcohol-Related Neurodevelopmental Disorders. These results may contribute to future investigations on how embryonic exposure affects the neurocircuitry related to perception and associative learning processing.
Collapse
Affiliation(s)
| | - Heloysa Araujo-Silva
- Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
27
|
Vorhees CV, Williams MT, Hawkey AB, Levin ED. Translating Neurobehavioral Toxicity Across Species From Zebrafish to Rats to Humans: Implications for Risk Assessment. FRONTIERS IN TOXICOLOGY 2021; 3:629229. [PMID: 35295117 PMCID: PMC8915800 DOI: 10.3389/ftox.2021.629229] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
There is a spectrum of approaches to neurotoxicological science from high-throughput in vitro cell-based assays, through a variety of experimental animal models to human epidemiological and clinical studies. Each level of analysis has its own advantages and limitations. Experimental animal models give essential information for neurobehavioral toxicology, providing cause-and-effect information regarding risks of neurobehavioral dysfunction caused by toxicant exposure. Human epidemiological and clinical studies give the closest information to characterizing human risk, but without randomized treatment of subjects to different toxicant doses can only give information about association between toxicant exposure and neurobehavioral impairment. In vitro methods give much needed high throughput for many chemicals and mixtures but cannot provide information about toxicant impacts on behavioral function. Crucial to the utility of experimental animal model studies is cross-species translation. This is vital for both risk assessment and mechanistic determination. Interspecies extrapolation is important to characterize from experimental animal models to humans and between different experimental animal models. This article reviews the literature concerning extrapolation of neurobehavioral toxicology from established rat models to humans and from zebrafish a newer experimental model to rats. The functions covered include locomotor activity, emotion, and cognition and the neurotoxicants covered include pesticides, metals, drugs of abuse, flame retardants and polycyclic aromatic hydrocarbons. With more complete understanding of the strengths and limitations of interspecies translation, we can better use animal models to protect humans from neurobehavioral toxicity.
Collapse
Affiliation(s)
- Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Andrew B. Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Edward D. Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
28
|
Bühler A, Carl M. Zebrafish Tools for Deciphering Habenular Network-Linked Mental Disorders. Biomolecules 2021; 11:biom11020324. [PMID: 33672636 PMCID: PMC7924194 DOI: 10.3390/biom11020324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Everything that we think, feel or do depends on the function of neural networks in the brain. These are highly complex structures made of cells (neurons) and their interconnections (axons), which develop dependent on precisely coordinated interactions of genes. Any gene mutation can result in unwanted alterations in neural network formation and concomitant brain disorders. The habenula neural network is one of these important circuits, which has been linked to autism, schizophrenia, depression and bipolar disorder. Studies using the zebrafish have uncovered genes involved in the development of this network. Intriguingly, some of these genes have also been identified as risk genes of human brain disorders highlighting the power of this animal model to link risk genes and the affected network to human disease. But can we use the advantages of this model to identify new targets and compounds with ameliorating effects on brain dysfunction? In this review, we summarise the current knowledge on techniques to manipulate the habenula neural network to study the consequences on behavior. Moreover, we give an overview of existing behavioral test to mimic aspects of mental disorders and critically discuss the applicability of the zebrafish model in this field of research. Abstract The prevalence of patients suffering from mental disorders is substantially increasing in recent years and represents a major burden to society. The underlying causes and neuronal circuits affected are complex and difficult to unravel. Frequent disorders such as depression, schizophrenia, autism, and bipolar disorder share links to the habenular neural circuit. This conserved neurotransmitter system relays cognitive information between different brain areas steering behaviors ranging from fear and anxiety to reward, sleep, and social behaviors. Advances in the field using the zebrafish model organism have uncovered major genetic mechanisms underlying the formation of the habenular neural circuit. Some of the identified genes involved in regulating Wnt/beta-catenin signaling have previously been suggested as risk genes of human mental disorders. Hence, these studies on habenular genetics contribute to a better understanding of brain diseases. We are here summarizing how the gained knowledge on the mechanisms underlying habenular neural circuit development can be used to introduce defined manipulations into the system to study the functional behavioral consequences. We further give an overview of existing behavior assays to address phenotypes related to mental disorders and critically discuss the power but also the limits of the zebrafish model for identifying suitable targets to develop therapies.
Collapse
Affiliation(s)
- Anja Bühler
- Correspondence: (A.B.); (M.C.); Tel.: +39-0461-282745 (A.B.); +39-0461-283931 (M.C.)
| | - Matthias Carl
- Correspondence: (A.B.); (M.C.); Tel.: +39-0461-282745 (A.B.); +39-0461-283931 (M.C.)
| |
Collapse
|
29
|
Nonnis S, Angiulli E, Maffioli E, Frabetti F, Negri A, Cioni C, Alleva E, Romeo V, Tedeschi G, Toni M. Acute environmental temperature variation affects brain protein expression, anxiety and explorative behaviour in adult zebrafish. Sci Rep 2021; 11:2521. [PMID: 33510219 PMCID: PMC7843641 DOI: 10.1038/s41598-021-81804-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
This study investigated the effect of 4-d acute thermal treatments at 18 °C, 26 °C (control) and 34 °C on the nervous system of adult zebrafish (Danio rerio) using a multidisciplinary approach based on behavioural tests and brain proteomic analysis. The behavioural variations induced by thermal treatment were investigated using five different tests, the novel tank diving, light and dark preference, social preference, mirror biting, and Y-Maze tests, which are standard paradigms specifically tailored for zebrafish to assess their anxiety-like behaviour, boldness, social preference, aggressiveness, and explorative behaviour, respectively. Proteomic data revealed that several proteins involved in energy metabolism, messenger RNA translation, protein synthesis, folding and degradation, cytoskeleton organisation and synaptic vesiculation are regulated differently at extreme temperatures. The results showed that anxiety-like behaviours increase in zebrafish at 18 °C compared to those at 26 °C or 34 °C, whereas anxiety-related protein signalling pathways are downregulated. Moreover, treatments at both 18 °C and 34 °C affect the exploratory behaviour that appears not to be modulated by past experiences, suggesting the impairment of fish cognitive abilities. This study is the continuation of our previous work on the effect of 21-d chronic treatment at the same constant temperature level and will enable the comparison of acute and chronic treatment effects on the nervous system function in adult zebrafish.
Collapse
Affiliation(s)
- S Nonnis
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.,CRC "Innovation for Well-Beeing and Environment" (I-WE), Università degli Studi di Milano, Milano, Italy
| | - E Angiulli
- Department of Biology and Biotechnology ''Charles Darwin", Sapienza University, Via Alfonso Borelli 50, 00161, Rome, Italy
| | - E Maffioli
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy. .,CIMAINA, Università degli Studi di Milano, Milano, Italy.
| | - F Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - A Negri
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.,CIMAINA, Università degli Studi di Milano, Milano, Italy
| | - C Cioni
- Department of Biology and Biotechnology ''Charles Darwin", Sapienza University, Via Alfonso Borelli 50, 00161, Rome, Italy
| | - E Alleva
- Center for Behavioural Sciences and Mental Health, IstitutoSuperiore di Sanità, Rome, Italy
| | - V Romeo
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - G Tedeschi
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.,CRC "Innovation for Well-Beeing and Environment" (I-WE), Università degli Studi di Milano, Milano, Italy.,CIMAINA, Università degli Studi di Milano, Milano, Italy
| | - M Toni
- Department of Biology and Biotechnology ''Charles Darwin", Sapienza University, Via Alfonso Borelli 50, 00161, Rome, Italy.
| |
Collapse
|
30
|
Collier AD, Khalizova N, Chang GQ, Min S, Campbell S, Gulati G, Leibowitz SF. Involvement of Cxcl12a/Cxcr4b Chemokine System in Mediating the Stimulatory Effect of Embryonic Ethanol Exposure on Neuronal Density in Zebrafish Hypothalamus. Alcohol Clin Exp Res 2020; 44:2519-2535. [PMID: 33067812 DOI: 10.1111/acer.14482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Embryonic exposure to ethanol (EtOH) produces marked disturbances in neuronal development and alcohol-related behaviors, with low-moderate EtOH doses stimulating neurogenesis without producing apoptosis and high doses having major cytotoxic effects while causing gross morphological abnormalities. With the pro-inflammatory chemokine system, Cxcl12, and its main receptor Cxcr4, known to promote processes of neurogenesis, we examined here this neuroimmune system in the embryonic hypothalamus to test directly if it mediates the stimulatory effects low-moderate EtOH doses have on neuronal development. METHODS We used the zebrafish (Danio rerio) model, which develops externally and allows one to investigate the developing brain in vivo with precise control of dose and timing of EtOH delivery in the absence of maternal influence. Zebrafish were exposed to low-moderate EtOH doses (0.1, 0.25, 0.5% v/v), specifically during a period of peak hypothalamic development from 22 to 24 hours postfertilization, and in some tests were pretreated from 2 to 22 hpf with the Cxcr4 receptor antagonist, AMD3100. Measurements in the hypothalamus at 26 hpf were taken of cxcl12a and cxcr4b transcription, signaling, and neuronal density using qRT-PCR, RNAscope, and live imaging of transgenic zebrafish. RESULTS Embryonic EtOH exposure, particularly at the 0.5% dose, significantly increased levels of cxcl12a and cxcr4b mRNA in whole embryos, number of cxcl12a and cxcr4b transcripts in developing hypothalamus, and internalization of Cxcr4b receptors in hypothalamic cells. Embryonic EtOH also caused an increase in the number of hypothalamic neurons and coexpression of cxcl12a and cxcr4b transcripts within these neurons. Each of these stimulatory effects of EtOH in the embryo was blocked by pretreatment with the Cxcr4 antagonist AMD3100. CONCLUSIONS These results provide clear evidence that EtOH's stimulatory effects at low-moderate doses on the number of hypothalamic neurons early in development are mediated, in part, by increased transcription and intracellular activation of this chemokine system, likely due to autocrine signaling of Cxcl12a at its Cxcr4b receptor within the neurons.
Collapse
Affiliation(s)
- Adam D Collier
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Nailya Khalizova
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Guo-Qing Chang
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Soe Min
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Samantha Campbell
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Gazal Gulati
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Sarah F Leibowitz
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| |
Collapse
|
31
|
Ranjan S, Sharma PK. Study of learning and memory in type 2 diabetic model of zebrafish (Danio rerio). ENDOCRINE AND METABOLIC SCIENCE 2020. [DOI: 10.1016/j.endmts.2020.100058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
32
|
Lutte AH, Majolo JH, Da Silva RS. Inhibition of ecto-5'-nucleotidase and adenosine deaminase is able to reverse long-term behavioural effects of early ethanol exposure in zebrafish (Danio rerio). Sci Rep 2020; 10:17809. [PMID: 33082435 PMCID: PMC7576130 DOI: 10.1038/s41598-020-74832-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
The behavioural impacts of prenatal exposure to ethanol include a lower IQ, learning problems, anxiety and conduct disorders. Several components of the neurochemical network could contribute to the long-lasting effects of ethanol embryonic exposure. Adenosine is an important neuromodulator, that has been indicated to be affected by acute and chronic exposure to ethanol. Here, embryos of zebrafish exposed to 1% ethanol during the developmental stages of gastrula/segmentation or pharyngula exhibited anxiolytic effect, increased aggressiveness, and decreased social interaction. The exposure during pharyngula stage was able to affect all behavioural parameters analysed at 3 months-post fertilization (mpf), while the treatment during gastrula stage affected the anxiety and social interaction parameters. The aggressiveness was the only behavioural effect of early ethanol exposure that lasted to 12 mpf. The use of a specific inhibitor of adenosine production, the inhibitor of ecto-5′-nucleotidase (AMPCP/150 mg/kg), and the specific inhibitor of adenosine degradation, the inhibitor of adenosine deaminase, EHNA (100 mg/kg) did not affect the effects over anxiety. However, AMPCP at 3 mpf, but not EHNA, reversed aggressive parameters. AMPCP also recovered the social interaction parameter at 3 mpf in animals treated in both stages, while EHNA recovered this parameter just in those animals treated with ethanol during the gastrula stage. These results suggest that long-lasting behavioural effects of ethanol can be modulated by intervention on ecto-5′-nucleotidase and adenosine deaminase activities.
Collapse
Affiliation(s)
- Aline Haab Lutte
- Laboratório de Neuroquímica E Psicofarmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Julia Huppes Majolo
- Laboratório de Neuroquímica E Psicofarmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Rosane Souza Da Silva
- Laboratório de Neuroquímica E Psicofarmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
33
|
Yuan F, Yun Y, Fan H, Li Y, Lu L, Liu J, Feng W, Chen SY. MicroRNA-135a Protects Against Ethanol-Induced Apoptosis in Neural Crest Cells and Craniofacial Defects in Zebrafish by Modulating the Siah1/p38/p53 Pathway. Front Cell Dev Biol 2020; 8:583959. [PMID: 33134300 PMCID: PMC7561719 DOI: 10.3389/fcell.2020.583959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are involved in various biological processes, including apoptosis, by regulating gene expression. This study was designed to test the hypothesis that ethanol-induced downregulation of miR-135a contributes to ethanol-induced apoptosis in neural crest cells (NCCs) by upregulating Siah1 and activating the p38 mitogen-activated protein kinase (MAPK)/p53 pathway. We found that treatment with ethanol resulted in a significant decrease in miR-135a expression in both NCCs and zebrafish embryos. Ethanol-induced downregulation of miR-135a resulted in the upregulation of Siah1 and the activation of the p38 MAPK/p53 pathway and increased apoptosis in NCCs and zebrafish embryos. Ethanol exposure also resulted in growth retardation and developmental defects that are characteristic of fetal alcohol spectrum disorders (FASD) in zebrafish. Overexpression of miRNA-135a significantly reduced ethanol-induced upregulation of Siah1 and the activation of the p38 MAPK/p53 pathway and decreased ethanol-induced apoptosis in NCCs and zebrafish embryos. In addition, ethanol-induced growth retardation and craniofacial defects in zebrafish larvae were dramatically diminished by the microinjection of miRNA-135a mimics. These results demonstrated that ethanol-induced downregulation of miR-135a contributes to ethanol-induced apoptosis in NCCs by upregulating Siah1 and activating the p38 MAPK/p53 pathway and that the overexpression of miRNA-135a can protect against ethanol-induced apoptosis in NCCs and craniofacial defects in a zebrafish model of FASD.
Collapse
Affiliation(s)
- Fuqiang Yuan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Yang Yun
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States.,College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, China
| | - Huadong Fan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Yihong Li
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Lanhai Lu
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Jie Liu
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Wenke Feng
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States.,Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| |
Collapse
|
34
|
Facciol A, Gerlai R. Zebrafish Shoaling, Its Behavioral and Neurobiological Mechanisms, and Its Alteration by Embryonic Alcohol Exposure: A Review. Front Behav Neurosci 2020; 14:572175. [PMID: 33100980 PMCID: PMC7546311 DOI: 10.3389/fnbeh.2020.572175] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022] Open
Abstract
Social cognition and social behaviors are complex phenomena that involve numerous brain areas and underlying neurobiological mechanisms. Embryonic alcohol exposure may lead to the development of Fetal Alcohol Spectrum Disorder (FASD), a disorder that manifests with varying symptoms including abnormal social behavior and other cognitive deficits. Animal models have been utilized to mimic aspects of the disease and to study potential underlying mechanisms. The zebrafish is a relative newcomer in this field but has been suggested as an optimal compromise between system complexity and practical simplicity for modeling FASD. Importantly, due to external fertilization and development of the embryo outside the mother and subsequent lack of parental care, this species allows precise control of the timing and dose of alcohol delivery during embryonic development. Furthermore, the zebrafish is a highly social species and thus may be particularly appropriate for the analysis of embryonic alcohol-induced alterations in this context. Here, we provide a succinct review focusing on shoaling, a prominent form of social behavior, in zebrafish. We summarize what is known about its behavioral mechanisms and underlying neurobiological processes, and how it is altered by exposure to ethanol during embryonic development. Lastly, we briefly consider possible future directions of research that would help us better understand the relationship between the behavioral expression and molecular basis of embryonic ethanol-induced social deficits in fish and humans.
Collapse
Affiliation(s)
- Amanda Facciol
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Robert Gerlai
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
35
|
de Abreu MS, C V V Giacomini A, Genario R, Fontana BD, Parker MO, Marcon L, Scolari N, Bueno B, Demin KA, Galstyan D, Kolesnikova TO, Amstislavskaya TG, Zabegalov KN, Strekalova T, Kalueff AV. Zebrafish models of impulsivity and impulse control disorders. Eur J Neurosci 2020; 52:4233-4248. [PMID: 32619029 DOI: 10.1111/ejn.14893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022]
Abstract
Impulse control disorders (ICDs) are characterized by generalized difficulty controlling emotions and behaviors. ICDs are a broad group of the central nervous system (CNS) disorders including conduct disorder, intermittent explosive, oppositional-defiant disorder, antisocial personality disorder, kleptomania, pyromania and other illnesses. Although they all share a common feature (aberrant impulsivity), their pathobiology is complex and poorly understood. There are also currently no ICD-specific therapies to treat these illnesses. Animal models are a valuable tool for studying ICD pathobiology and potential therapies. The zebrafish (Danio rerio) has become a useful model organism to study CNS disorders due to high genetic and physiological homology to mammals, and sensitivity to various pharmacological and genetic manipulations. Here, we summarize experimental models of impulsivity and ICD in zebrafish and highlight their growing translational significance. We also emphasize the need for further development of zebrafish ICD models to improve our understanding of their pathogenesis and to search for novel therapeutic treatments.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,Postgraduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Leticia Marcon
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Naiara Scolari
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Barbara Bueno
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatyana O Kolesnikova
- Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | | | | | - Tatyana Strekalova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Institute of General Pathology and Pathophysiology, University of Würzburg, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China.,Laboratory of Petrochemistry, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
36
|
Preclinical methodological approaches investigating of the effects of alcohol on perinatal and adolescent neurodevelopment. Neurosci Biobehav Rev 2020; 116:436-451. [PMID: 32681938 DOI: 10.1016/j.neubiorev.2020.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
Despite much evidence of its economic and social costs, alcohol use continues to increase. Much remains to be known as to the effects of alcohol on neurodevelopment across the lifespan and in both sexes. We provide a comprehensive overview of the methodological approaches to ethanol administration when using animal models (primarily rodent models) and their translational relevance, as well as some of the advantages and disadvantages of each approach. Special consideration is given to early developmental periods (prenatal through adolescence), as well as to the types of research questions that are best addressed by specific methodologies. The zebrafish is used increasingly in alcohol research, and how to use this model effectively as a preclinical model is reviewed as well.
Collapse
|
37
|
Paul I, Tsang B, Gerlai R. Short Exposure to Moderate Concentration of Alcohol During Embryonic Development Does Not Alter Gross Morphology in Zebrafish. Zebrafish 2020; 17:253-260. [PMID: 32493176 DOI: 10.1089/zeb.2020.1872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several studies have demonstrated translational potential of the zebrafish in modeling fetal alcohol spectrum disorders (FASDs), including the less severe forms of this disease. Short exposure to even low doses of alcohol during embryonic development has been shown to disrupt behavior, alter neurochemistry, and expression of neuronal markers and glial cell phenotypes in zebrafish. However, no study to date has systematically analyzed the potential morphological effects of the short- and low-dose embryonic alcohol exposure regimen used before with zebrafish to model milder forms of human FASD. In this study, we use this previously used embryonic alcohol exposure regimen. We immerse intact zebrafish eggs of AB strain and of a genetically variable wild-type population for 2 h into 1% or 0% (vol/vol) ethanol bath at one of five developmental stages (8, 16, 24, 32, or 40 h postfertilization). At 8 days postfertilization, we quantify body length and width and eye diameter of the larvae. We report nonsignificant effects of embryonic alcohol exposure used at all developmental stages in both populations of zebrafish. Our results confirm that visual perception or motor function is unlikely to have contributed to previously reported behavioral abnormalities resulting from embryonic alcohol exposure in zebrafish.
Collapse
Affiliation(s)
- Ishti Paul
- Department of Psychology and University of Toronto Mississauga, Mississauga, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Benjamin Tsang
- Department of Psychology and University of Toronto Mississauga, Mississauga, Canada.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Research Operations, Hospital for Sick Children, Peter Gilgan Center for Research & Learning, Toronto, Canada
| | - Robert Gerlai
- Department of Psychology and University of Toronto Mississauga, Mississauga, Canada.,Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
38
|
Facciol A, Bailleul C, Nguyen S, Chatterjee D, Gerlai R. Developmental stage-dependent deficits induced by embryonic ethanol exposure in zebrafish: A neurochemical analysis. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109859. [PMID: 31917146 DOI: 10.1016/j.pnpbp.2020.109859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/15/2022]
Abstract
FASD results from the developing fetus being exposed to alcohol, and is characterized by morphological, behavioural and cognitive deficits. However, the expression, severity and age of onset of these symptoms has been found to show variation. This variation may partly be due to the developmental stage at which alcohol reached the developing fetus. Previously, alcohol was shown to lead to significant concentration dependent behavioural as well as neurochemical changes detected in adult zebrafish when this substance was administered at 24 h post-fertilization (hpf) for 2 h. This alcohol exposure method arguably mimicked the milder, and more prevalent, forms of human FASD. However, whether the observed changes depended upon the developmental stage, i.e., the timing, of alcohol exposure has not been systematically analyzed. Here, we employ the same alcohol dosing regimen, where zebrafish eggs are immersed into 0% or 1% (vol/vol) alcohol for 2 h, but we perform the immersion at 5, 10, 16, 24, 36, or 48 hpf. We previously developed a sensitive HPLC method to quantify neurochemicals, and found levels of dopamine, serotonin and their metabolites DOPAC and 5-HIAA to be affected by embryonic alcohol treatment. Here, using the same method, we compare whole-brain levels of these neurochemicals in the embryonic alcohol exposed and control zebrafish at their age of 30 days post-fertilization (dpf). Consistent with previous reports, we found significant reduction of levels of dopamine, serotonin and their metabolites in the fish exposed to alcohol at 24 hpf. However, we also found significant dependency on the developmental stage at which alcohol was administered with particularly robust impairments when the exposure was at the early or middle of the developmental periods probed. Our results now demonstrate that one can detect functional abnormalities in the zebrafish brain induced by embryonic alcohol as early as 30 dpf and that the neurochemical deficits are dependent upon the developmental stage at which alcohol is administered.
Collapse
Affiliation(s)
- Amanda Facciol
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - Celine Bailleul
- Department of Biology, University of Toronto Mississauga, Canada
| | - Samuel Nguyen
- Department of Biology, University of Toronto Mississauga, Canada
| | | | - Robert Gerlai
- Department of Cell and Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
39
|
Angiulli E, Pagliara V, Cioni C, Frabetti F, Pizzetti F, Alleva E, Toni M. Increase in environmental temperature affects exploratory behaviour, anxiety and social preference in Danio rerio. Sci Rep 2020; 10:5385. [PMID: 32214187 PMCID: PMC7096496 DOI: 10.1038/s41598-020-62331-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/12/2020] [Indexed: 01/18/2023] Open
Abstract
The aim of this work is to investigate the effect of a temperature increase on the behaviour of adult zebrafish (Danio rerio) maintained for 21 days at 34 °C (treatment) and 26 °C (control). The temperatures chosen are within the vital range of zebrafish and correspond to temperatures that this species encounters in the natural environment. Previous results showed that the same treatment affects the brain proteome and the behaviour of adult zebrafish by producing alterations in the proteins involved in neurotransmitter release and synaptic function and impairing fish exploratory behaviour. In this study, we have investigated the performance of treated and control zebrafish during environmental exploration by using four behavioural tests (novel tank diving, light and dark preference, social preference and mirror biting) that are paradigms for assessing the state of anxiety, boldness, social preference and aggressive behaviour, respectively. The results showed that heat treatment reduces anxiety and increases the boldness of zebrafish, which spent more time in potentially dangerous areas of the tank such as the top and the uncovered bright area and at a distance from the social group, thus decreasing protection for the zebrafish. These data suggest that the increase in ambient temperature may compromise zebrafish survival rate in the natural environment.
Collapse
Affiliation(s)
- E Angiulli
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - V Pagliara
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - C Cioni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - F Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - F Pizzetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - E Alleva
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Toni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy.
| |
Collapse
|
40
|
Abozaid A, Trzuskot L, Najmi Z, Paul I, Tsang B, Gerlai R. Developmental stage and genotype dependent behavioral effects of embryonic alcohol exposure in zebrafish larvae. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109774. [PMID: 31655157 DOI: 10.1016/j.pnpbp.2019.109774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/29/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) represent a worldwide problem. The severity and types of symptoms of FASD vary, which may be due to the genotype of the fetus and the developmental stage at which the fetus is exposed to alcohol. The most prevalent forms of FASD present less severe symptoms, including behavioral and cognitive abnormalities, and arise from exposure to low amounts of alcohol consumed infrequently. Treating or diagnosing FASD patients has been difficult because we do not understand the mechanisms underlying FASD. Animal models, including the zebrafish, have been suggested to answer this question. Here, we present a proof of concept analysis studying the behavioral effects of embryonic alcohol exposure in one-week old juvenile zebrafish. We exposed zebrafish embryos at one of five developmental stages (8, 16, 24, 32, or 40 hour post-fertilization) to 0% (control) or 1% (vol/vol) ethanol for 2 h, and tested the behavior of these fish at their age of 7-9 days post-fertilization. We employed two genetically distinct zebrafish populations, a quasi-inbred AB derivative strain, and a genetically variable WT population. We report significant developmental time and genotype dependent effects of alcohol on certain measures of motor function and/or anxiety-like responses. For example, we found embryonic alcohol exposed AB fish to swim faster, vary their speed more, stop moving more often and turn less compared to control fish, alcohol induced changes that were absent or less robust in WT fish. We conclude that our results open new avenues to the identification of genetic mechanisms that mediate or influence alcohol induced developmental alteration of brain function and behavior, which, on the long run, may allow us to identify diagnostic biomarkers and treatment options for human FASD.
Collapse
Affiliation(s)
- Amira Abozaid
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Lidia Trzuskot
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Zelaikha Najmi
- Department of Biology, University of Toronto Mississauga, Canada
| | - Ishti Paul
- Department of Biology, University of Toronto Mississauga, Canada
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Canada; Department of Cell & System Biology, University of Toronto, Canada.
| |
Collapse
|
41
|
Hong X, Zha J. Fish behavior: A promising model for aquatic toxicology research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:311-321. [PMID: 31181518 DOI: 10.1016/j.scitotenv.2019.06.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Fish behaviors have great potential as models for the study of pharmacology, genetics, and neuroscience. Zebrafish (Danio rerio), Japanese medaka (Oryzias latipes) and Chinese rare minnow (Gobiocypris rarus) are popular freshwater animal models. However, their behavioral use in aquatic toxicology research is generally hampered by oversimplified behavioral tasks and the fact that they are not well-developed animal models for toxicology. Here, this study presented a comparative analysis of multiple behavioral traits (i.e., anxiety-like behavior, novel object recognition, social preferences, habituation to light-dark stimulus and noise stimulus, and spatial learning and memory). We found that only medaka (d-rR) presented a weak or no response to repeated light-dark stimulus and noise stimulus. In addition, no significant behavioral changes were observed for the three species of juvenile fish models after 7 days of exposure to 0.01% v/v carrier solvents (i.e., ethanol, acetone, and DMSO). In contrast to zebrafish and Chinese rare minnow, medaka showed no significant changes in spatial memory after subacute exposure to 1 mg/L imidacloprid or 2.5 μg/L chlorpyrifos (cpf); instead, a hyperactivity response in the open field test and reduced social time were induced by cpf and imidacloprid, respectively. Our results suggest that: (1) behavioral effects are negligible when using <0.01% v/v carrier solvents for behavioral assessment; (2) given the differences in sensitivities of behavioral responses, a single behavior used alone as an endpoint may be insufficient for estimating the toxic impacts of pesticides or other environmental contaminants. In conclusion, these results could have major implications for aquatic toxicology research and water quality monitoring and ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
42
|
Scepanovic G, Stewart BA. Analysis of Drosophila nervous system development following an early, brief exposure to ethanol. Dev Neurobiol 2019; 79:780-793. [PMID: 31472090 DOI: 10.1002/dneu.22718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/22/2019] [Accepted: 08/27/2019] [Indexed: 01/09/2023]
Abstract
The effects of ethanol on neural function and development have been studied extensively, motivated in part by the addictive properties of alcohol and the neurodevelopmental deficits that arise in children with fetal alcohol spectrum disorder (FASD). Absent from this research area is a genetically tractable system to study the effects of early ethanol exposure on later neurodevelopmental and behavioral phenotypes. Here, we used embryos of the fruit fly, Drosophila melanogaster, as a model system to investigate the neuronal defects that arise after an early exposure to ethanol. We found several disruptions of neural development and morphology following a brief ethanol exposure during embryogenesis and subsequent changes in larval behavior. Altogether, this study establishes a new system to examine the effects of alcohol exposure in embryos and the potential to conduct large-scale genetics screens to uncover novel factors that sensitize or protect neurons to the effects of alcohol.
Collapse
Affiliation(s)
- Gordana Scepanovic
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Bryan A Stewart
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
43
|
Fernandes Y, Rampersad M, Jones EM, Eberhart JK. Social deficits following embryonic ethanol exposure arise in post-larval zebrafish. Addict Biol 2019; 24:898-907. [PMID: 30178621 PMCID: PMC6629526 DOI: 10.1111/adb.12649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022]
Abstract
Prenatal alcohol exposure is the leading cause of birth defects, collectively termed fetal alcohol spectrum disorders (FASD). In the United States and Canada, 1 in 100 children will be born with FASD. Some of the most commonly debilitating defects of FASD are in social behavior. Zebrafish are highly social animals, and embryonic ethanol exposure from 24 to 26 hours post-fertilization disrupts this social (shoaling) response in adult zebrafish. Recent findings have suggested that social behaviors are present in zebrafish larvae as young as 3 weeks, but how they relate to adult shoaling is unclear. We tested the same ethanol-exposed zebrafish for social impairments at 3 weeks then again at 16 weeks. At both ages, live conspecifics were used to elicit a social response. We did not find alcohol-induced differences in behavior in 3-week-old fish when they were able to see conspecifics. We do find evidence that control zebrafish are able to use nonvisual stimuli to detect conspecifics, and this behavior is disrupted in the alcohol-exposed fish. As adults, these fish displayed a significant decrease in social behavior when conspecifics are visible. This surprising finding demonstrates that the adult and larval social behaviors are, at least partly, separable. Future work will investigate the nature of these nonvisual cues and how the neurocircuitry differs between the larval and adult social behaviors.
Collapse
|
44
|
Geng Y, Peterson RT. The zebrafish subcortical social brain as a model for studying social behavior disorders. Dis Model Mech 2019; 12:dmm039446. [PMID: 31413047 PMCID: PMC6737945 DOI: 10.1242/dmm.039446] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Social behaviors are essential for the survival and reproduction of social species. Many, if not most, neuropsychiatric disorders in humans are either associated with underlying social deficits or are accompanied by social dysfunctions. Traditionally, rodent models have been used to model these behavioral impairments. However, rodent assays are often difficult to scale up and adapt to high-throughput formats, which severely limits their use for systems-level science. In recent years, an increasing number of studies have used zebrafish (Danio rerio) as a model system to study social behavior. These studies have demonstrated clear potential in overcoming some of the limitations of rodent models. In this Review, we explore the evolutionary conservation of a subcortical social brain between teleosts and mammals as the biological basis for using zebrafish to model human social behavior disorders, while summarizing relevant experimental tools and assays. We then discuss the recent advances gleaned from zebrafish social behavior assays, the applications of these assays to studying related disorders, and the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Yijie Geng
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
45
|
Velkey AJ, Boles J, Betts TK, Kay H, Henenlotter R, Wiens KM. High fidelity: Assessing zebrafish (Danio rerio) responses to social stimuli across several levels of realism. Behav Processes 2019; 164:100-108. [PMID: 31022508 DOI: 10.1016/j.beproc.2019.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/14/2019] [Accepted: 04/19/2019] [Indexed: 10/27/2022]
Abstract
Behavioral assays of zebrafish shoaling have recently been employed to investigate social behavior in zebrafish models of psychiatric disease. Many studies have developed simulated models of conspecifics to serve as alternatives to live shoals in order to examine specific cues that contribute to shoaling behavior. However, no studies have investigated the extent to which zebrafish prefer one stimulus over another when given the choice between two conspecific alternatives (live or simulated). In the present study, we employed a new, four-quadrant choice preference task that allowed zebrafish to swim freely between a live shoal and a motorized mobile shoal, a live shoal and playback of a video-recorded shoal, or a motorized mobile shoal and playback of a video-recorded shoal. Behavior tracking software was used to track subjects' movements in upper and lower quadrants on either side of the test arena. Subjects spent more time near the live shoal, especially in the lower quadrant, and exhibited different swim patterns in response to each simulated conspecific alternative, suggesting that zebrafish prefer a live shoal over models of lower fidelity.
Collapse
Affiliation(s)
- Andrew J Velkey
- Neuroscience Program, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA, USA
| | - Jake Boles
- Neuroscience Program, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA, USA
| | - Taylor K Betts
- Neuroscience Program, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA, USA
| | - Heather Kay
- Neuroscience Program, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA, USA
| | - Rebecca Henenlotter
- Neuroscience Program, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA, USA
| | - Katie M Wiens
- Neuroscience Program, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA, USA.
| |
Collapse
|
46
|
Reproducibility and replicability in zebrafish behavioral neuroscience research. Pharmacol Biochem Behav 2019; 178:30-38. [DOI: 10.1016/j.pbb.2018.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/06/2018] [Accepted: 02/22/2018] [Indexed: 12/26/2022]
|
47
|
Boa-Amponsem O, Zhang C, Mukhopadhyay S, Ardrey I, Cole GJ. Ethanol and cannabinoids interact to alter behavior in a zebrafish fetal alcohol spectrum disorder model. Birth Defects Res 2019; 111:775-788. [PMID: 30648819 DOI: 10.1002/bdr2.1458] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Recent work suggests that endocannabinoids (eCBs) may signal through the sonic hedgehog signaling pathway. We therefore hypothesized that combined ethanol and eCB exposure during defined stages of zebrafish embryogenesis will produce deficits comparable to human fetal alcohol spectrum disorder (FASD). METHODS Zebrafish embryos were exposed to ethanol or cannabinoid agonists alone or in combination at defined developmental stages and assessed for changes in brain morphology or expression of marker genes such as pax6a. Juvenile fish were then assessed for risk-taking/anxiety-like behavior using the novel tank dive test. RESULTS Either chronic or acute exposure to high doses of the CB1R agonist ACEA resulted in FASD phenotypes. However, acute subthreshold doses of CB1R agonist alone, or combined with 0.5% ethanol, did not induce morphological phenotypes, but did induce dysmorphogenesis when combined with acute 1% ethanol. Phenotypes were rescued using the CB1R antagonist SR141716A. In addition, JZL195, a dual inhibitor of FAAH and MAGL, two degradative enzymes for eCBs, induced FASD phenotypes in the presence of subthreshold ethanol, confirming the activation of common signaling pathways by ethanol and eCBs. We next analyzed the effects of ethanol and CB1R agonist on juvenile zebrafish behavior and show that ACEA or ethanol alone did not alter behavior, but combined ACEA and ethanol increased risk-taking behavior. CONCLUSIONS These studies demonstrate that pathological and behavioral phenotypes associated with FASD are induced by exposure to CB1R agonists and suggest that combined exposure to lower levels of alcohol and marijuana may be capable of inducing FASD-like morphological and behavioral impairments.
Collapse
Affiliation(s)
- Oswald Boa-Amponsem
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina.,Integrated Biosciences Program, North Carolina Central University, Durham, North Carolina
| | - Chengjin Zhang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina
| | - Somnath Mukhopadhyay
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina.,Department of Chemistry and Biochemistry, North Carolina Central University, Durham, North Carolina
| | - Iman Ardrey
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina.,Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina
| | - Gregory J Cole
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina.,Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina
| |
Collapse
|
48
|
Alcohol exposure during embryonic development: An opportunity to conduct systematic developmental time course analyses in zebrafish. Neurosci Biobehav Rev 2019; 98:185-193. [PMID: 30641117 DOI: 10.1016/j.neubiorev.2019.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/16/2022]
Abstract
Ethanol affects numerous neurobiological processes depending upon the developmental stage at which it reaches the vertebrate embryo. Exposure time dependency may explain the variable severity and manifestation of life-long symptoms observed in fetal alcohol spectrum disorder (FASD) patients. Characterization of behavioural deficits will help us understand developmental stage-dependency and its underlying biological mechanisms. Here we highlight pioneering studies that model FASD using zebrafish, including those that demonstrated developmental stage-dependency of alcohol effects on some behaviours. We also succinctly review the more expansive mammalian literature, briefly discuss potential developmental stage dependent biological mechanisms alcohol alters, and review some of the disadvantages of mammalian systems versus the zebrafish. We stress that the temporal control of alcohol administration in the externally developing zebrafish gives unprecedented precision and is a major advantage of this species over other model organisms employed so far. We also emphasize that the zebrafish is well suited for high throughput screening and will allow systematic exploration of embryonic-stage dependent alcohol effects via mutagenesis and drug screens.
Collapse
|
49
|
Ariyasiri K, Choi TI, Kim OH, Hong TI, Gerlai R, Kim CH. Pharmacological (ethanol) and mutation (sam2 KO) induced impairment of novelty preference in zebrafish quantified using a new three-chamber social choice task. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:53-65. [PMID: 29958859 DOI: 10.1016/j.pnpbp.2018.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/06/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
Social behavior is a fundamental aspect of our own species, a feature without which our society would not function. There are numerous human brain disorders associated with abnormal social behavior, among them are the autism spectrum disorders whose causal factors include a genetic component. Environmental factors, including drugs of abuse such as alcohol, also contribute to numerous abnormalities related to social behavior. Several such disorders have been modeled using laboratory animals. Perhaps one of the newest among them is the zebrafish. However, the paucity of standardized behavioral assays specifically developed for the zebrafish have hindered progress. Here, we present a newly developed zebrafish behavioral paradigm, the three-chamber social choice task. This task, which was adapted from a murine model, assesses sociality and social novelty preference in zebrafish in three phases: habituation, phase-I to evaluate sociality, and phase-II to quantify social novelty preference. Test fish are placed in the middle chamber, while conspecifics are introduced to the flanking chambers during phase-I and II. Both male and female zebrafish displayed sociality (preference for conspecifics) during phase-I and social novelty preference (preference for unfamiliar conspecifics) during phase-II. We found the paradigm to be able to detect both environmentally (alcohol) as well as genetically (targeted knock out of sam2) induced alterations of behavioral phenotypes. Although ethanol-treated fish displayed similar levels of sociality to those of control (not alcohol exposed) male and female zebrafish, they were found to exhibit significantly impaired social novelty preference, a finding compatible with altered motivational or perhaps mnemonic processes. Moreover, we found that knock out of sam2, previously shown to lead to emotional dysregulation, also disrupted social novelty preference, while leaving sociality relatively intact. We conclude that our novel behavioral paradigm is appropriate for the modeling and quantification of social behavior deficits in zebrafish.
Collapse
Affiliation(s)
- Krishan Ariyasiri
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Oc-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Ted Inpyo Hong
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
50
|
Abstract
The measurement of multiple behavior endpoints in zebrafish can provide informative clues within neurobehavioral field. However, multiple behavior evaluations usually require complicated and costly instrumental settings. Here, we reported a versatile setting that applied ten acrylic tanks arranging into five vertical layers and two horizontal columns to perform multiple behavior assays simultaneously, such as the novel tank diving test, mirror-biting test, social interaction, shoaling, and predator escape assay. In total, ten behavioral performance were collected in a single video, and the XY coordination of fish locomotion can be tracked by using open source software of idTracker and ImageJ. We validated our setting by examining zebrafish behavioral changes after exposure to low dose ethanol (EtOH) for 96 h. Fish were observed staying longer time at bottom of the tank, less mirror biting interest, higher freezing time, less fear in predator test, and tight shoaling behaviors which indicated the anxiogenic effect was induced by low dosage exposure of EtOH in zebrafish. In conclusion, the setting in this study provided a simple, versatile and cost-effective way to assess multiple behavioral endpoints in zebrafish with high reliability and reproducibility for the first time.
Collapse
|