1
|
Viteri JA, Bueschke N, Santin JM, Arnold WD. Age-related increase in the excitability of mouse layer V pyramidal neurons in the primary motor cortex is accompanied by an increased persistent inward current. GeroScience 2025; 47:2199-2222. [PMID: 39472350 PMCID: PMC11979039 DOI: 10.1007/s11357-024-01405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/17/2024] [Indexed: 01/11/2025] Open
Abstract
Sarcopenia, or pathological age-related loss of muscle strength and mass, contributes to physical function impairment in older adults. While current understanding of sarcopenia is centered mostly on neuromuscular mechanisms, mounting evidence supports that deficits at the level of the primary motor cortex (PMC) play a significant role. Despite the importance of the PMC to initiate movement, understanding of how age affects the excitability of layer V pyramidal neurons (LVPNs) of the PMC is limited. To address this, we used the whole-cell patch clamp technique to measure the excitability of LVPNs of the PMC in young, late adulthood, and old mice. Old LVPNs had increased firing frequency and membrane input resistance, but no differences in action potential kinetics versus young and late adulthood mice. Since changes in the persistent inward current (PIC) are known to contribute to changes in motor neuron excitability, we measured LVPN PICs as a putative contributor to LVPN excitability. The PIC amplitude was increased in old LVPN via increases in Na+ and Ca2+ PICs, in addition to being active across a wider voltage range. Given that LVPN function is integral to initiation of voluntary muscle contraction, altered LVPN excitability likely contributes to age-related impairment of physical function.
Collapse
Affiliation(s)
- Jose A Viteri
- Department of Physical Medicine and Rehabilitation, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Nikolaus Bueschke
- Division of Biological Sciences, University of Missouri-Columbia, 105 Tucker Hall, 612 Hitt Street, Columbia, MO, 65211, USA
| | - Joseph M Santin
- Division of Biological Sciences, University of Missouri-Columbia, 105 Tucker Hall, 612 Hitt Street, Columbia, MO, 65211, USA.
| | - W David Arnold
- Department of Physical Medicine and Rehabilitation, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Parker JR, Ramirez JM. Differentiating the contributions of Na +/K + pump current and persistent Na + current in simulated voltage-clamp experiments. J Neurophysiol 2025; 133:904-923. [PMID: 39819130 DOI: 10.1152/jn.00060.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/26/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025] Open
Abstract
The persistent Na+ current (INaP) is thought to play important roles in many brain regions including the generation of inspiration in the ventral respiratory column (VRC) of mammals. The characterization of the slow inactivation of INaP requires long-lasting voltage steps (>1 s), which will increase intracellular Na+ and activate the Na+/K+-ATPase pump current (IPump). Thus, IPump may contribute to the previously measured slow inactivation of INaP and the generation of the inspiratory bursting rhythm. To test this hypothesis, we computationally modeled a respiratory pacemaker neuron that included a noninactivating INaP and IPump in addition to other basic spike-generating currents. This model produces an inspiration-like bursting rhythm, in which the dynamics of [Na+]i account for burst initiation and termination. We simulated a voltage-clamp experiment measuring the INaP inactivation kinetics using our model of noninactivating INaP and IPump. Consistent with prior measurements in the VRC, we found a sigmoidal inactivation curve and a current that only partially inactivated reaching a minimum inactivation of 0.37. The biexponential time course of inactivation had decay rate constants of 0.45 s and 2.33 s with contributions of 49% and 51%, respectively. The time constant of inactivation was 2.16 s. This decay was caused by the slow growth of IPump and the slow hyperpolarization of the Na+ reversal potential in response to the growing [Na+]i. We conclude that important biophysical properties previously attributed to the INaP may be caused by IPump. This has important implications for understanding respiratory rhythmogenesis and other neuronal functions.NEW & NOTEWORTHY The slow inactivation of the persistent Na+ current has been implicated in numerous neuronal functions. Our computational approach indicates that voltage-clamp experiments may show a slow inactivation that is actually caused by the Na+/K+ pump current and a changing Na+ reversal potential rather than a slow Na+ inactivation process. These results call into question to what extent the slow inactivation of the persistent Na+ current is solely important for neuronal functions.
Collapse
Affiliation(s)
- Jessica R Parker
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, Washington, United States
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, United States
| |
Collapse
|
3
|
Jang IS, Nakamura M. Pregnenolone sulfate potentiates tetrodotoxin-resistant Na + channels to increase the excitability of dural afferent neurons in rats. J Headache Pain 2025; 26:42. [PMID: 40000932 PMCID: PMC11863801 DOI: 10.1186/s10194-025-01968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Although peripheral administration of pregnenolone sulfate (PS) has been reported to produce pronociceptive effects, the mechanisms by which PS modulates the excitability of nociceptive neurons are poorly understood. Here, we report on the excitatory role of PS in peripheral nociceptive neurons, focusing on its effects on tetrodotoxin-resistant (TTX-R) Na+ channels. METHODS TTX-R Na+ current (INa) mediated by NaV1.8 was recorded from acutely isolated small-sized dural afferent neurons of rats, identified with the retrograde fluorescent dye DiI, using a whole-cell patch-clamp technique. RESULTS Transcripts for enzymes and transporters involved in PS biosynthesis were detected in the ophthalmic branch of the trigeminal ganglia. In voltage-clamp mode, PS preferentially potentiated the TTX-R persistent INa, a small non-inactivating current during sustained depolarization. PS shifted the voltage-inactivation relationship toward a depolarizing range. PS also delayed the onset of inactivation and accelerated the recovery from inactivation of TTX-R Na+ channels. Additionally, PS decreased the extent of use-dependent inhibition of TTX-R Na+ channels. In current-clamp mode, PS hyperpolarized dural afferent neurons by increasing the leak K+ conductance. Nevertheless, PS decreased the rheobase current-the minimum current required to generate action potentials-and increased the number of action potentials elicited by depolarizing current stimuli. CONCLUSION We have shown that the excitatory neurosteroid PS preferentially potentiates TTX-R persistent INa and reduces the inactivation of TTX-R Na+ channels, resulting in increased excitability of dural afferent neurons. The potential role of endogenous PS in migraine pathology warrants further investigation.
Collapse
Affiliation(s)
- Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea.
- Brain Science & Engineering Institute, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea.
| | - Michiko Nakamura
- Brain Science & Engineering Institute, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea.
| |
Collapse
|
4
|
Frazee A, Zybura A, Cummins TR. Differential Regulation of Nav1.1 and SCN1A Disease Mutant Sodium Current Properties by Fibroblast Growth Factor Homologous Factors. Cells 2025; 14:291. [PMID: 39996763 PMCID: PMC11853998 DOI: 10.3390/cells14040291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Fibroblast growth factor homologous factors (FHFs) regulate the activity of several different voltage-gated sodium channels (Navs). However, more work is needed to determine how specific FHF isoforms and variants affect the properties of different Nav isoforms. In addition, it is not known if FHFs can differentially modulate the properties of Nav variants associated with disease. Here, we investigated the effects of FHF2A and FHF2B on Nav1.1 properties as well as on a familial hemiplegic migraine 3 (FHM3) causing mutation in this channel, F1774S. We found that FHF2A, but not 2B, induced prominent long-term inactivation (LTI) in the wild-type (WT) Nav1.1. Interestingly, FHF2A induced LTI in the F1774S FHM3 mutant channel to a greater extent than in the WT. Furthermore, persistent currents caused by the F1774S mutation were attenuated by the co-expression of FHF2A, leading to a possible rescue of the mutant channel phenotype. By contrast, the P1894L mutation, which is associated with epilepsy and mild intellectual disability, greatly attenuated the LTI induced by FHF2A. Overall, our data show for the first time that FHF2A might be a significant modulator of Nav1.1 that can differentially modulate the impact of Nav1.1 disease-associated mutations.
Collapse
Affiliation(s)
- Ashley Frazee
- Biology Department, School of Science, Indiana University Indianapolis, Indianapolis, IN 46202, USA; (A.F.)
| | - Agnes Zybura
- Biology Department, School of Science, Indiana University Indianapolis, Indianapolis, IN 46202, USA; (A.F.)
- Stark Neurosciences Research Institute, Indianapolis, IN 46202, USA
| | - Theodore R. Cummins
- Biology Department, School of Science, Indiana University Indianapolis, Indianapolis, IN 46202, USA; (A.F.)
- Stark Neurosciences Research Institute, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
She JW, Young CM, Chou SJ, Wu YR, Lin YT, Huang TY, Shen MY, Chen CY, Yang YP, Chien Y, Ayalew H, Liao WH, Tung YC, Shyue JJ, Chiou SH, Yu HH. Gradient conducting polymer surfaces with netrin-1-conjugation promote axon guidance and neuron transmission of human iPSC-derived retinal ganglion cells. Biomaterials 2025; 313:122770. [PMID: 39226653 DOI: 10.1016/j.biomaterials.2024.122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Major advances have been made in utilizing human-induced pluripotent stem cells (hiPSCs) for regenerative medicine. Nevertheless, the delivery and integration of hiPSCs into target tissues remain significant challenges, particularly in the context of retinal ganglion cell (RGC) restoration. In this study, we introduce a promising avenue for providing directional guidance to regenerated cells in the retina. First, we developed a technique for construction of gradient interfaces based on functionalized conductive polymers, which could be applied with various functionalized ehthylenedioxythiophene (EDOT) monomers. Using a tree-shaped channel encapsulated with a thin PDMS and a specially designed electrochemical chamber, gradient flow generation could be converted into a functionalized-PEDOT gradient film by cyclic voltammetry. The characteristics of the successfully fabricated gradient flow and surface were analyzed using fluorescent labels, time of flight secondary ion mass spectrometry (TOF-SIMS), and X-ray photoelectron spectroscopy (XPS). Remarkably, hiPSC-RGCs seeded on PEDOT exhibited improvements in neurite outgrowth, axon guidance and neuronal electrophysiology measurements. These results suggest that our novel gradient PEDOT may be used with hiPSC-based technologies as a potential biomedical engineering scaffold for functional restoration of RGCs in retinal degenerative diseases and optic neuropathies.
Collapse
Affiliation(s)
- Jia-Wei She
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan; Taiwan International Graduate Program (TIGP), Nano Science & Technology Program, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan; Department of Engineering and System Science, National Tsing Hua University, No. 101, Section 2, Guangfu Road, East District, 300, Hsinchu City, Taiwan
| | - Chia-Mei Young
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan
| | - Shih-Jie Chou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - You-Ren Wu
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan
| | - Yu-Ting Lin
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Tzu-Yang Huang
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Mo-Yuan Shen
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Chih-Ying Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Hailemichael Ayalew
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Wei-Hao Liao
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jing-Jong Shyue
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Hwa Chiou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Genomic Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
6
|
Mateias AL, Armasescu F, Amuzescu B, Corlan AD, Radu BM. Inhibitory Effects of Cenobamate on Multiple Human Cardiac Ion Channels and Possible Arrhythmogenic Consequences. Biomolecules 2024; 14:1582. [PMID: 39766288 PMCID: PMC11674187 DOI: 10.3390/biom14121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
Cenobamate is a novel third-generation antiepileptic drug used for the treatment of focal onset seizures and particularly for multi-drug-resistant epilepsy; it acts on multiple targets: GABAA receptors (EC50 42-194 µM) and persistent neuronal Na+ currents (IC50 59 µM). Side effects include QTc interval shortening with >20 ms, but not <300 ms. Our in vitro cardiac safety pharmacology study was performed via whole-cell patch-clamp on HEK293T cells with persistent/inducible expression of human cardiac ion channel isoforms hNav1.5 (INa), hCav1.2 (α1c + β2 + α2δ1) (ICaL), hKv7.1 + minK (IKs), and hKv11.1 (hERG) (IKr). We found IC50 of 87.6 µM (peak INa), 46.5 µM (late INa), and 509.75 µM (ICaL). In experiments on Ncyte® ventricular cardiomyocytes, APD90 was reduced with 28.6 ± 13.5% (mean ± SD) by cenobamate 200 µM. Cenobamate's marked inhibition of INa raises the theoretical possibility of cardiac arrhythmia induction at therapeutic concentrations in the context of preexisting myocardial pathology, in the presence of action potential conduction and repolarization heterogeneity. This hypothetical mechanism is consistent with the known effects of class Ib antiarrhythmics. In simulations with a linear strand of 50 cardiomyocytes with variable inter-myocyte conductance based on a modified O'Hara-Rudy model, we found a negligible cenobamate-induced conduction delay in normal tissue, but a marked delay and also a block when gap junction conduction was already depressed.
Collapse
Affiliation(s)
- Andreea Larisa Mateias
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (A.L.M.); (F.A.); (B.M.R.)
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Florian Armasescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (A.L.M.); (F.A.); (B.M.R.)
| | - Bogdan Amuzescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (A.L.M.); (F.A.); (B.M.R.)
| | - Alexandru Dan Corlan
- Cardiology Research Unit, University and Emergency Hospital of Bucharest, Splaiul Independenței 169, 050098 Bucharest, Romania;
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (A.L.M.); (F.A.); (B.M.R.)
| |
Collapse
|
7
|
Müller P, Draguhn A, Egorov AV. Persistent sodium currents in neurons: potential mechanisms and pharmacological blockers. Pflugers Arch 2024; 476:1445-1473. [PMID: 38967655 PMCID: PMC11381486 DOI: 10.1007/s00424-024-02980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Persistent sodium current (INaP) is an important activity-dependent regulator of neuronal excitability. It is involved in a variety of physiological and pathological processes, including pacemaking, prolongation of sensory potentials, neuronal injury, chronic pain and diseases such as epilepsy and amyotrophic lateral sclerosis. Despite its importance, neither the molecular basis nor the regulation of INaP are sufficiently understood. Of particular significance is a solid knowledge and widely accepted consensus about pharmacological tools for analysing the function of INaP and for developing new therapeutic strategies. However, the literature on INaP is heterogeneous, with varying definitions and methodologies used across studies. To address these issues, we provide a systematic review of the current state of knowledge on INaP, with focus on mechanisms and effects of this current in the central nervous system. We provide an overview of the specificity and efficacy of the most widely used INaP blockers: amiodarone, cannabidiol, carbamazepine, cenobamate, eslicarbazepine, ethosuximide, gabapentin, GS967, lacosamide, lamotrigine, lidocaine, NBI-921352, oxcarbazepine, phenytoine, PRAX-562, propofol, ranolazine, riluzole, rufinamide, topiramate, valproaic acid and zonisamide. We conclude that there is strong variance in the pharmacological effects of these drugs, and in the available information. At present, GS967 and riluzole can be regarded bona fide INaP blockers, while phenytoin and lacosamide are blockers that only act on the slowly inactivating component of sodium currents.
Collapse
Affiliation(s)
- Peter Müller
- Department Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen , Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Alexei V Egorov
- Institute for Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| |
Collapse
|
8
|
Witherspoon E, Williams G, Zuczek N, Forcelli PA. Cenobamate suppresses seizures without inducing cell death in neonatal rats. Epilepsy Behav 2024; 158:109898. [PMID: 39002273 PMCID: PMC11551878 DOI: 10.1016/j.yebeh.2024.109898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/15/2024]
Abstract
GABA modulators such as phenobarbital (PB) and sodium channel blockers such as phenytoin (PHT) have long been the mainstay of pharmacotherapy for the epilepsies. In the context of neonatal seizures, both PB and PHT display incomplete clinical efficacy. Moreover, in animal models, neonatal exposure to these medications result in neurodegeneration raising concerns about safety. Cenobamate, a more recently approved medication, displays unique pharmacology as it is both a positive allosteric modulator of GABA-A receptors, and a voltage-gated sodium channel blocker. While cenobamate is approved for adult use, its efficacy and safety profile against neonatal seizures is poorly understood. To address this gap, we assessed the efficacy and safety of cenobamate in immature rodents. Postnatal day (P)7 rat pups were pretreated with cenobamate and challenged with the chemoconvulsant pentylenetetrazole (PTZ) to screen for anti-seizure effects. In a separate experiment, P7 rats were treated with cenobamate, and brains were processed to assess induction of cell death. Cenobamate displays dose-dependent anti-seizure efficacy in neonatal rats. Unlike PHB and PHT, it does not induce neurotoxicity in P7 rats. Thus, cenobamate may be effective at treating neonatal seizures while avoiding unwanted neurotoxic side effects such as cell death.
Collapse
Affiliation(s)
- Eric Witherspoon
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | - Gabrielle Williams
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | - Nicholas Zuczek
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA; Department of Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
9
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
10
|
Qu G, Merchant JP, Clatot J, DeFlitch LM, Frederick DJ, Tang S, Salvatore M, Zhang X, Li J, Anderson SA, Goldberg EM. Targeted blockade of aberrant sodium current in a stem cell-derived neuron model of SCN3A encephalopathy. Brain 2024; 147:1247-1263. [PMID: 37935051 PMCID: PMC10994535 DOI: 10.1093/brain/awad376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/30/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Missense variants in SCN3A encoding the voltage-gated sodium (Na+) channel α subunit Nav1.3 are associated with SCN3A-related neurodevelopmental disorder (SCN3A-NDD), a spectrum of disease that includes epilepsy and malformation of cortical development. How genetic variation in SCN3A leads to pathology remains unclear, as prior electrophysiological work on disease-associated variants has been performed exclusively in heterologous cell systems. To further investigate the mechanisms of SCN3A-NDD pathogenesis, we used CRISPR/Cas9 gene editing to modify a control human induced pluripotent stem cell (iPSC) line to express the recurrent de novo missense variant SCN3A c.2624T>C (p.Ile875Thr). With the established Ngn2 rapid induction protocol, we generated glutamatergic forebrain-like neurons (iNeurons), which we showed to express SCN3A mRNA and Nav1.3-mediated Na+ currents. We performed detailed whole-cell patch clamp recordings to determine the effect of the SCN3A-p.Ile875Thr variant on endogenous Na+ currents in, and intrinsic excitability of, human neurons. Compared to control iNeurons, variant-expressing iNeurons exhibit markedly increased slowly-inactivating/persistent Na+ current, abnormal firing patterns with paroxysmal bursting and plateau-like potentials with action potential failure, and a hyperpolarized voltage threshold for action potential generation. We then validated these findings using a separate iPSC line generated from a patient harbouring the SCN3A-p.Ile875Thr variant compared to a corresponding CRISPR-corrected isogenic control line. Finally, we found that application of the Nav1.3-selective blocker ICA-121431 normalizes action potential threshold and aberrant firing patterns in SCN3A-p.Ile1875Thr iNeurons; in contrast, consistent with action as a Na+ channel blocker, ICA-121431 decreases excitability of control iNeurons. Our findings demonstrate that iNeurons can model the effects of genetic variation in SCN3A yet reveal a complex relationship between gain-of-function at the level of the ion channel versus impact on neuronal excitability. Given the transient expression of SCN3A in the developing human nervous system, selective blockade or suppression of Nav1.3-containing Na+ channels could represent a therapeutic approach towards SCN3A-NDD.
Collapse
Affiliation(s)
- Guojie Qu
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Julie P Merchant
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jérôme Clatot
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Leah M DeFlitch
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Danny J Frederick
- Department of Child and Adolescent Psychiatry, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sheng Tang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Madeleine Salvatore
- Department of Child and Adolescent Psychiatry, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Xiaohong Zhang
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jianping Li
- Department of Child and Adolescent Psychiatry, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Stewart A Anderson
- The Epilepsy NeuroGenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
11
|
Tzavellas NP, Tsamis KI, Katsenos AP, Davri AS, Simos YV, Nikas IP, Bellos S, Lekkas P, Kanellos FS, Konitsiotis S, Labrakakis C, Vezyraki P, Peschos D. Firing Alterations of Neurons in Alzheimer's Disease: Are They Merely a Consequence of Pathogenesis or a Pivotal Component of Disease Progression? Cells 2024; 13:434. [PMID: 38474398 PMCID: PMC10930991 DOI: 10.3390/cells13050434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, yet its underlying causes remain elusive. The conventional perspective on disease pathogenesis attributes alterations in neuronal excitability to molecular changes resulting in synaptic dysfunction. Early hyperexcitability is succeeded by a progressive cessation of electrical activity in neurons, with amyloid beta (Aβ) oligomers and tau protein hyperphosphorylation identified as the initial events leading to hyperactivity. In addition to these key proteins, voltage-gated sodium and potassium channels play a decisive role in the altered electrical properties of neurons in AD. Impaired synaptic function and reduced neuronal plasticity contribute to a vicious cycle, resulting in a reduction in the number of synapses and synaptic proteins, impacting their transportation inside the neuron. An understanding of these neurophysiological alterations, combined with abnormalities in the morphology of brain cells, emerges as a crucial avenue for new treatment investigations. This review aims to delve into the detailed exploration of electrical neuronal alterations observed in different AD models affecting single neurons and neuronal networks.
Collapse
Affiliation(s)
- Nikolaos P. Tzavellas
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Konstantinos I. Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, 455 00 Ioannina, Greece
| | - Andreas P. Katsenos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Athena S. Davri
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Yannis V. Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Ilias P. Nikas
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Stefanos Bellos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Panagiotis Lekkas
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Foivos S. Kanellos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Spyridon Konitsiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, 455 00 Ioannina, Greece
| | - Charalampos Labrakakis
- Department of Biological Applications and Technology, University of Ioannina, 451 10 Ioannina, Greece
| | - Patra Vezyraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| |
Collapse
|
12
|
Beltran AS. Novel Approaches to Studying SLC13A5 Disease. Metabolites 2024; 14:84. [PMID: 38392976 PMCID: PMC10890222 DOI: 10.3390/metabo14020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
The role of the sodium citrate transporter (NaCT) SLC13A5 is multifaceted and context-dependent. While aberrant dysfunction leads to neonatal epilepsy, its therapeutic inhibition protects against metabolic disease. Notably, insights regarding the cellular and molecular mechanisms underlying these phenomena are limited due to the intricacy and complexity of the latent human physiology, which is poorly captured by existing animal models. This review explores innovative technologies aimed at bridging such a knowledge gap. First, I provide an overview of SLC13A5 variants in the context of human disease and the specific cell types where the expression of the transporter has been observed. Next, I discuss current technologies for generating patient-specific induced pluripotent stem cells (iPSCs) and their inherent advantages and limitations, followed by a summary of the methods for differentiating iPSCs into neurons, hepatocytes, and organoids. Finally, I explore the relevance of these cellular models as platforms for delving into the intricate molecular and cellular mechanisms underlying SLC13A5-related disorders.
Collapse
Affiliation(s)
- Adriana S Beltran
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Khan R, Chaturvedi P, Sahu P, Ludhiadch A, Singh P, Singh G, Munshi A. Role of Potassium Ion Channels in Epilepsy: Focus on Current Therapeutic Strategies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:67-87. [PMID: 36578258 DOI: 10.2174/1871527322666221227112621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epilepsy is one of the prevalent neurological disorders characterized by disrupted synchronization between inhibitory and excitatory neurons. Disturbed membrane potential due to abnormal regulation of neurotransmitters and ion transport across the neural cell membrane significantly contributes to the pathophysiology of epilepsy. Potassium ion channels (KCN) regulate the resting membrane potential and are involved in neuronal excitability. Genetic alterations in the potassium ion channels (KCN) have been reported to result in the enhancement of the release of neurotransmitters, the excitability of neurons, and abnormal rapid firing rate, which lead to epileptic phenotypes, making these ion channels a potential therapeutic target for epilepsy. The aim of this study is to explore the variations reported in different classes of potassium ion channels (KCN) in epilepsy patients, their functional evaluation, and therapeutic strategies to treat epilepsy targeting KCN. METHODOLOGY A review of all the relevant literature was carried out to compile this article. RESULTS A large number of variations have been reported in different genes encoding various classes of KCN. These genetic alterations in KCN have been shown to be responsible for disrupted firing properties of neurons. Antiepileptic drugs (AEDs) are the main therapeutic strategy to treat epilepsy. Some patients do not respond favorably to the AEDs treatment, resulting in pharmacoresistant epilepsy. CONCLUSION Further to address the challenges faced in treating epilepsy, recent approaches like optogenetics, chemogenetics, and genome editing, such as clustered regularly interspaced short palindromic repeats (CRISPR), are emerging as target-specific therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Khan
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Prachi Sahu
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Paramdeep Singh
- Department of Radiology, All India Institute of Medical Sciences, Bathinda, Punjab, 151001 India
| | - Gagandeep Singh
- Department of Neurology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
14
|
Cho JH, Jang IS. Ibuprofen modulates tetrodotoxin-resistant persistent Na + currents at acidic pH in rat trigeminal ganglion neurons. Eur J Pharmacol 2023; 961:176218. [PMID: 37992887 DOI: 10.1016/j.ejphar.2023.176218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to relieve various symptoms such as headache, arthralgia, and dental pain. While the primary mechanism of NSAID-based pain relief is the inhibition of cyclooxygenase-2, several NSAIDs also modulate other molecular targets related to nociceptive transmission such as voltage-gated Na+ channels. In the present study, we examined the effects of NSAIDs on persistent Na+ current (INaP) mediated by tetrodotoxin-resistant (TTX-R) Na+ channels in small-to medium-sized trigeminal ganglion neurons using a whole-cell patch-clamp technique. At clinically relevant concentrations, all propionic acid derivatives tested (ibuprofen, naproxen, fenoprofen, and flurbiprofen) preferentially inhibited the TTX-R INaP. The inhibition was more potent at acidic extracellular pH (pH 6.5) than at normal pH (pH 7.4). Other NSAIDs, such as ketorolac, piroxicam, and aspirin, had a negligible effect on the TTX-R INaP. Ibuprofen both accelerated the onset of inactivation and retarded the recovery from inactivation of TTX-R Na+ channels at acidic extracellular pH. However, all NSAIDs tested in this study had minor effects on voltage-gated K+ currents, as well as hyperpolarization-activated and cyclic nucleotide-gated cation currents, at both acidic and normal extracellular pH. Under current-clamp conditions, ibuprofen decreased the number of action potentials elicited by depolarizing current stimuli at acidic (pH 6.5) extracellular pH. Considering that extracellular pH falls as low as 5.5 in inflamed tissues, TTX-R INaP inhibition could be a mechanism by which ibuprofen and propionic acid derivative NSAIDs modulate inflammatory pain.
Collapse
Affiliation(s)
- Jin-Hwa Cho
- Department of Pharmacology, School of Dentistry, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, 41940, Republic of Korea.
| |
Collapse
|
15
|
Chizhov AV, Amakhin DV, Sagtekin AE, Desroches M. Single-compartment model of a pyramidal neuron, fitted to recordings with current and conductance injection. BIOLOGICAL CYBERNETICS 2023; 117:433-451. [PMID: 37755465 DOI: 10.1007/s00422-023-00976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
For single neuron models, reproducing characteristics of neuronal activity such as the firing rate, amplitude of spikes, and threshold potentials as functions of both synaptic current and conductance is a challenging task. In the present work, we measure these characteristics of regular spiking cortical neurons using the dynamic patch-clamp technique, compare the data with predictions from the standard Hodgkin-Huxley and Izhikevich models, and propose a relatively simple five-dimensional dynamical system model, based on threshold criteria. The model contains a single sodium channel with slow inactivation, fast activation and moderate deactivation, as well as, two fast repolarizing and slow shunting potassium channels. The model quantitatively reproduces characteristics of steady-state activity that are typical for a cortical pyramidal neuron, namely firing rate not exceeding 30 Hz; critical values of the stimulating current and conductance which induce the depolarization block not exceeding 80 mV and 3, respectively (both values are scaled by the resting input conductance); extremum of hyperpolarization close to the midpoint between spikes. The analysis of the model reveals that the spiking regime appears through a saddle-node-on-invariant-circle bifurcation, and the depolarization block is reached through a saddle-node bifurcation of cycles. The model can be used for realistic network simulations, and it can also be implemented within the so-called mean-field, refractory density framework.
Collapse
Affiliation(s)
- Anton V Chizhov
- MathNeuro Team, Inria Centre at Universite Cote d'Azur, Sophia Antipolis, France.
- Computational Physics Laboratory, Ioffe Institute, Saint Petersburg, Russia.
| | - Dmitry V Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - A Erdem Sagtekin
- Istanbul Technical University, Istanbul, Turkey
- University of Tuebingen, Tuebingen, Germany
| | - Mathieu Desroches
- MathNeuro Team, Inria Centre at Universite Cote d'Azur, Sophia Antipolis, France
| |
Collapse
|
16
|
Neveu CL, Smolen P, Baxter DA, Byrne JH. Voltage- and Calcium-Gated Membrane Currents Tune the Plateau Potential Properties of Multiple Neuron Types. J Neurosci 2023; 43:7601-7615. [PMID: 37699717 PMCID: PMC10634553 DOI: 10.1523/jneurosci.0789-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Many neurons exhibit regular firing that is limited to the duration and intensity of depolarizing stimuli. However, some neurons exhibit all-or-nothing plateau potentials that, once elicited, can lead to prolonged activity that is independent of stimulus intensity or duration. To better understand this diversity of information processing, we compared the voltage-gated and Ca2+-gated currents of three identified neurons from hermaphroditic Aplysia californica Two of these neurons, B51 and B64, generated plateau potentials and a third neuron, B8, exhibited regular firing and was incapable of generating a plateau potential. With the exception of the Ca2+-gated potassium current (I KCa), all three neuron types expressed a similar array of outward and inward currents, but with distinct voltage-dependent properties for each neuron type. Inhibiting voltage-gated Ca2+ channels with Ni+ prolonged the plateau potential, indicating I KCa is important for plateau potential termination. In contrast, inhibiting persistent Na+ (I NaP) blocked plateau potentials, empirically and in simulations. Surprisingly, the properties and level of expression of I NaP were similar in all three neurons, indicating that the presence of I NaP does not distinguish between regular-firing neurons and neurons capable of generating plateau potentials. Rather, the key distinguishing factor is the relationship between I NaP and outward currents such as the delayed outward current (I D), and I KCa We then demonstrated a technique for predicting complex physiological properties such as plateau duration, plateau amplitude, and action potential duration as a function of parameter values, by fitting a curve in parameter space and projecting the curve beyond the tested values.SIGNIFICANCE STATEMENT Plateau potentials are intrinsic properties of neurons that are important for information processing in a wide variety of nervous systems. We examined three identified neurons in Aplysia californica with different propensities to generate a plateau potential. No single conductance was found to distinguish plateau generating neurons. Instead, plateau generation depended on the ratio between persistent Na+ current (I NaP), which favored plateaus, and outward currents such as I KCa, which facilitated plateau termination. Computational models revealed a relationship between the individual currents that predicted the features of simulated plateau potentials. These results provide a more solid understanding of the conductances that mediate plateau generation.
Collapse
Affiliation(s)
- Curtis L Neveu
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas 77030
| | - Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas 77030
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas 77030
- Engineering Medicine (ENMED), Texas A&M University School of Engineering Medicine, Houston, Texas 77030
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas 77030
| |
Collapse
|
17
|
Phillips RS, Baertsch NA. Interdependence of cellular and network properties in respiratory rhythmogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564834. [PMID: 37961254 PMCID: PMC10634953 DOI: 10.1101/2023.10.30.564834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
How breathing is generated by the preBötzinger Complex (preBötC) remains divided between two ideological frameworks, and the persistent sodium current (INaP) lies at the heart of this debate. Although INaP is widely expressed, the pacemaker hypothesis considers it essential because it endows a small subset of neurons with intrinsic bursting or "pacemaker" activity. In contrast, burstlet theory considers INaP dispensable because rhythm emerges from "pre-inspiratory" spiking activity driven by feed-forward network interactions. Using computational modeling, we discover that changes in spike shape can dissociate INaP from intrinsic bursting. Consistent with many experimental benchmarks, conditional effects on spike shape during simulated changes in oxygenation, development, extracellular potassium, and temperature alter the prevalence of intrinsic bursting and pre-inspiratory spiking without altering the role of INaP. Our results support a unifying hypothesis where INaP and excitatory network interactions, but not intrinsic bursting or pre-inspiratory spiking, are critical interdependent features of preBötC rhythmogenesis.
Collapse
Affiliation(s)
- Ryan S Phillips
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle WA, USA
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle WA, USA
- Pulmonary, Critical Care and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle WA, USA
| |
Collapse
|
18
|
Makridis KL, Kaindl AM. Real-world experience with cenobamate: A systematic review and meta-analysis. Seizure 2023; 112:1-10. [PMID: 37713961 DOI: 10.1016/j.seizure.2023.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023] Open
Abstract
PURPOSE Despite many new ASM, the rate of patients with drug-resistant epilepsy (DRE) has not changed. Cenobamate (CNB) is a novel ASM for the treatment of focal-onset seizures in adults with high seizure freedom rates in randomized controlled trials (RCT). Although CNB appears to be effective, it is not commonly prescribed to patients with DRE, resulting in a lack of "real-world data". METHODS To evaluate the real-world effect of CNB and to assess the generalizability of RCT data, a systematic review and meta-analysis was conducted. Pooled proportions were calculated using a random intercept logistic regression model. RESULTS The analysis included seven studies with a total of 229 patients with DRE, 77.3 % of whom were adults and 91.5 % had focal-onset seizures. Seizure reduction >50 % was achieved in 68 % of patients [54.54; 79.07], with seizure freedom in 16.2 % [8.38; 28.97]. There was no difference between pediatric and adult patients. CNB was discontinued in 10 % [6.74; 14.6] of patients, mostly due to lack of efficacy (39 %) or adverse effects (AE, 43 %). AE, observed in 57.3 % [39.7; 73.2] of patients, included fatigue and vertigo. A comparison of the rates calculated in this meta-analysis to the active arm of equivalent RCTs revealed no significant difference. CONCLUSION CNB achieves a good treatment response in patients with DRE in real-world settings, like the effect reported in RCTs. The high heterogeneity between studies calls for studies focusing on specific DRE subpopulations.
Collapse
Affiliation(s)
- Konstantin L Makridis
- Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, Center for Chronically Sick Children, Berlin, Germany; Charité - Universitätsmedizin Berlin, German Epilepsy Center for Children and Adolescents, Berlin, Germany; Charité - Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany
| | - Angela M Kaindl
- Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, Center for Chronically Sick Children, Berlin, Germany; Charité - Universitätsmedizin Berlin, German Epilepsy Center for Children and Adolescents, Berlin, Germany; Charité - Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.
| |
Collapse
|
19
|
Borges FS, Protachevicz PR, Souza DLM, Bittencourt CF, Gabrick EC, Bentivoglio LE, Szezech JD, Batista AM, Caldas IL, Dura-Bernal S, Pena RFO. The Roles of Potassium and Calcium Currents in the Bistable Firing Transition. Brain Sci 2023; 13:1347. [PMID: 37759949 PMCID: PMC10527161 DOI: 10.3390/brainsci13091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Healthy brains display a wide range of firing patterns, from synchronized oscillations during slow-wave sleep to desynchronized firing during movement. These physiological activities coexist with periods of pathological hyperactivity in the epileptic brain, where neurons can fire in synchronized bursts. Most cortical neurons are pyramidal regular spiking (RS) cells with frequency adaptation and do not exhibit bursts in current-clamp experiments (in vitro). In this work, we investigate the transition mechanism of spike-to-burst patterns due to slow potassium and calcium currents, considering a conductance-based model of a cortical RS cell. The joint influence of potassium and calcium ion channels on high synchronous patterns is investigated for different synaptic couplings (gsyn) and external current inputs (I). Our results suggest that slow potassium currents play an important role in the emergence of high-synchronous activities, as well as in the spike-to-burst firing pattern transitions. This transition is related to the bistable dynamics of the neuronal network, where physiological asynchronous states coexist with pathological burst synchronization. The hysteresis curve of the coefficient of variation of the inter-spike interval demonstrates that a burst can be initiated by firing states with neuronal synchronization. Furthermore, we notice that high-threshold (IL) and low-threshold (IT) ion channels play a role in increasing and decreasing the parameter conditions (gsyn and I) in which bistable dynamics occur, respectively. For high values of IL conductance, a synchronous burst appears when neurons are weakly coupled and receive more external input. On the other hand, when the conductance IT increases, higher coupling and lower I are necessary to produce burst synchronization. In light of our results, we suggest that channel subtype-specific pharmacological interactions can be useful to induce transitions from pathological high bursting states to healthy states.
Collapse
Affiliation(s)
- Fernando S. Borges
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil
| | | | - Diogo L. M. Souza
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - Conrado F. Bittencourt
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - Enrique C. Gabrick
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - Lucas E. Bentivoglio
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - José D. Szezech
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa 84030-900, Brazil
| | - Antonio M. Batista
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa 84030-900, Brazil
| | - Iberê L. Caldas
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Rodrigo F. O. Pena
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
20
|
Rissardo JP, Fornari Caprara AL. Cenobamate (YKP3089) and Drug-Resistant Epilepsy: A Review of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1389. [PMID: 37629678 PMCID: PMC10456719 DOI: 10.3390/medicina59081389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Cenobamate (CNB), ([(R)-1-(2-chlorophenyl)-2-(2H-tetrazol-2-yl)ethyl], is a novel tetrazole alkyl carbamate derivative. In November 2019, the Food and Drug Administration approved Xcopri®, marketed by SK Life Science Inc., (Paramus, NJ, USA) for adult focal seizures. The European Medicines Agency approved Ontozry® by Arvelle Therapeutics Netherlands B.V.(Amsterdam, The Neatherlands) in March 2021. Cenobamate is a medication that could potentially change the perspectives regarding the management and prognosis of refractory epilepsy. In this way, this study aims to review the literature on CNB's pharmacological properties, pharmacokinetics, efficacy, and safety. CNB is a highly effective drug in managing focal onset seizures, with more than twenty percent of individuals with drug-resistant epilepsy achieving seizure freedom. This finding is remarkable in the antiseizure medication literature. The mechanism of action of CNB is still poorly understood, but it is associated with transient and persistent sodium currents and GABAergic neurotransmission. In animal studies, CNB showed sustained efficacy and potency in the 6 Hz test regardless of the stimulus intensity. CNB was revealed to be the most cost-effective drug among different third-generation antiseizure medications. Also, CNB could have neuroprotective effects. However, there are still concerns regarding its potential for abuse and suicidality risk, which future studies should clearly assess, after which protocols should be changed. The major drawback of CNB therapy is the slow and complex titration and maintenance phases preventing the wide use of this new agent in clinical practice.
Collapse
Affiliation(s)
- Jamir Pitton Rissardo
- Medicine Department, Federal University of Santa Maria, Santa Maria 97105-900, Brazil;
| | | |
Collapse
|
21
|
Hussein Y, Tripathi U, Choudhary A, Nayak R, Peles D, Rosh I, Rabinski T, Djamus J, Vatine GD, Spiegel R, Garin-Shkolnik T, Stern S. Early maturation and hyperexcitability is a shared phenotype of cortical neurons derived from different ASD-associated mutations. Transl Psychiatry 2023; 13:246. [PMID: 37414777 PMCID: PMC10326262 DOI: 10.1038/s41398-023-02535-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is characterized mainly by social and sensory-motor abnormal and repetitive behavior patterns. Over hundreds of genes and thousands of genetic variants were reported to be highly penetrant and causative of ASD. Many of these mutations cause comorbidities such as epilepsy and intellectual disabilities (ID). In this study, we measured cortical neurons derived from induced pluripotent stem cells (iPSCs) of patients with four mutations in the genes GRIN2B, SHANK3, UBTF, as well as chromosomal duplication in the 7q11.23 region and compared them to neurons derived from a first-degree relative without the mutation. Using a whole-cell patch-clamp, we observed that the mutant cortical neurons demonstrated hyperexcitability and early maturation compared to control lines. These changes were characterized by increased sodium currents, increased amplitude and rate of excitatory postsynaptic currents (EPSCs), and more evoked action potentials in response to current stimulation in early-stage cell development (3-5 weeks post differentiation). These changes that appeared in all the different mutant lines, together with previously reported data, indicate that an early maturation and hyperexcitability may be a convergent phenotype of ASD cortical neurons.
Collapse
Affiliation(s)
- Yara Hussein
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Utkarsh Tripathi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ritu Nayak
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Idan Rosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Tatiana Rabinski
- The Department of Physiology and Cell Biology, Faculty of Health Sciences and the Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jose Djamus
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Gad David Vatine
- The Department of Physiology and Cell Biology, Faculty of Health Sciences and the Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ronen Spiegel
- Center for Rare Diseases, Emek Medical Center, Afula, Israel
| | | | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
22
|
Agbo J, Ibrahim ZG, Magaji SY, Mutalub YB, Mshelia PP, Mhya DH. Therapeutic efficacy of voltage-gated sodium channel inhibitors in epilepsy. ACTA EPILEPTOLOGICA 2023; 5:16. [PMID: 40217485 PMCID: PMC11960332 DOI: 10.1186/s42494-023-00127-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/21/2023] [Indexed: 04/14/2025] Open
Abstract
Epilepsy is a neurological disease characterized by excessive and abnormal hyper-synchrony of electrical discharges of the brain and a predisposition to generate epileptic seizures resulting in a broad spectrum of neurobiological insults, imposing psychological, cognitive, social and also economic burdens to the sufferer. Voltage-gated sodium channels (VGSCs) are essential for the generation and propagation of action potentials throughout the central nervous system. Dysfunction of these channels has been implicated in the pathogenesis of epilepsy. VGSC inhibitors have been demonstrated to act as anticonvulsants to suppress the abnormal neuronal firing underlying epileptic seizures, and are used for the management and treatment of both genetic-idiopathic and acquired epilepsies. We discuss the forms of idiopathic and acquired epilepsies caused by VGSC mutations and the therapeutic efficacy of VGSC blockers in idiopathic, acquired and pharmacoresistant forms of epilepsy in this review. We conclude that there is a need for better alternative therapies that can be used alone or in combination with VGSC inhibitors in the management of epilepsies. The current anti-seizure medications (ASMs) especially for pharmacoresistant epilepsies and some other types of epilepsy have not yielded expected therapeutic efficacy partly because they do not show subtype-selectivity in blocking sodium channels while also bringing side effects. Therefore, there is a need to develop novel drug cocktails with enhanced selectivity for specific VGSC isoforms, to achieve better treatment of pharmacoresistant epilepsies and other types of epileptic seizures.
Collapse
Affiliation(s)
- John Agbo
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria.
| | - Zainab G Ibrahim
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Shehu Y Magaji
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Yahkub Babatunde Mutalub
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Philemon Paul Mshelia
- Department of Physiology, Faculty of Basic Medical Science, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Daniel H Mhya
- Department of Medical Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| |
Collapse
|
23
|
Kim G, Kim H, Jang IS. Trichloroethanol, an active metabolite of chloral hydrate, modulates tetrodotoxin-resistant Na + channels in rat nociceptive neurons. BMC Anesthesiol 2023; 23:145. [PMID: 37120567 PMCID: PMC10148498 DOI: 10.1186/s12871-023-02105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Chloral hydrate is a sedative-hypnotic drug widely used for relieving fear and anxiety in pediatric patients. However, mechanisms underlying the chloral hydrate-mediated analgesic action remain unexplored. Therefore, we investigated the effect of 2',2',2'-trichloroethanol (TCE), the active metabolite of chloral hydrate, on tetrodotoxin-resistant (TTX-R) Na+ channels expressed in nociceptive sensory neurons. METHODS The TTX-R Na+ current (INa) was recorded from acutely isolated rat trigeminal ganglion neurons using the whole-cell patch-clamp technique. RESULTS Trichloroethanol decreased the peak amplitude of transient TTX-R INa in a concentration-dependent manner and potently inhibited persistent components of transient TTX-R INa and slow voltage-ramp-induced INa at clinically relevant concentrations. Trichloroethanol exerted multiple effects on various properties of TTX-R Na+ channels; it (1) induced a hyperpolarizing shift on the steady-state fast inactivation relationship, (2) increased use-dependent inhibition, (3) accelerated the onset of inactivation, and (4) retarded the recovery of inactivated TTX-R Na+ channels. Under current-clamp conditions, TCE increased the threshold for the generation of action potentials, as well as decreased the number of action potentials elicited by depolarizing current stimuli. CONCLUSIONS Our findings suggest that chloral hydrate, through its active metabolite TCE, inhibits TTX-R INa and modulates various properties of these channels, resulting in the decreased excitability of nociceptive neurons. These pharmacological characteristics provide novel insights into the analgesic efficacy exerted by chloral hydrate.
Collapse
Affiliation(s)
- Gimin Kim
- Department of Pediatric Dentistry, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Hyunjung Kim
- Department of Pediatric Dentistry, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea.
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, 41940, Republic of Korea.
| |
Collapse
|
24
|
Berecki G, Bryson A, Polster T, Petrou S. Biophysical characterization and modelling of SCN1A gain-of-function predicts interneuron hyperexcitability and a predisposition to network instability through homeostatic plasticity. Neurobiol Dis 2023; 179:106059. [PMID: 36868483 DOI: 10.1016/j.nbd.2023.106059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/11/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
SCN1A gain-of-function variants are associated with early onset developmental and epileptic encephalopathies (DEEs) that possess distinct clinical features compared to Dravet syndrome caused by SCN1A loss-of-function. However, it is unclear how SCN1A gain-of-function may predispose to cortical hyper-excitability and seizures. Here, we first report the clinical features of a patient carrying a de novo SCN1A variant (T162I) associated with neonatal-onset DEE, and then characterize the biophysical properties of T162I and three other SCN1A variants associated with neonatal-onset DEE (I236V) and early infantile DEE (P1345S, R1636Q). In voltage clamp experiments, three variants (T162I, P1345S and R1636Q) exhibited changes in activation and inactivation properties that enhanced window current, consistent with gain-of-function. Dynamic action potential clamp experiments utilising model neurons incorporating Nav1.1. channels supported a gain-of-function mechanism for all four variants. Here, the T162I, I236V, P1345S, and R1636Q variants exhibited higher peak firing rates relative to wild type and the T162I and R1636Q variants produced a hyperpolarized threshold and reduced neuronal rheobase. To explore the impact of these variants upon cortical excitability, we used a spiking network model containing an excitatory pyramidal cell (PC) and parvalbumin positive (PV) interneuron population. SCN1A gain-of-function was modelled by enhancing the excitability of PV interneurons and then incorporating three simple forms of homeostatic plasticity that restored pyramidal cell firing rates. We found that homeostatic plasticity mechanisms exerted differential impact upon network function, with changes to PV-to-PC and PC-to-PC synaptic strength predisposing to network instability. Overall, our findings support a role for SCN1A gain-of-function and inhibitory interneuron hyperexcitability in early onset DEE. We propose a mechanism through which homeostatic plasticity pathways can predispose to pathological excitatory activity and contribute to phenotypic variability in SCN1A disorders.
Collapse
Affiliation(s)
- Géza Berecki
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - Alexander Bryson
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Neurology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Tilman Polster
- Krankenhaus Mara, Bethel Epilepsy Centre, Department of Epileptology, Medical School, Bielefeld University, Campus Bielefeld-Bethel, Bielefeld, Germany
| | - Steven Petrou
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia; Praxis Precision Medicines, Inc., Cambridge, MA 02142, USA; Department of the Florey Institute, University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
25
|
Savotchenko A, Klymenko M, Shypshyna M, Isaev D. The role of thrombin in early-onset seizures. Front Cell Neurosci 2023; 17:1101006. [PMID: 36970419 PMCID: PMC10034332 DOI: 10.3389/fncel.2023.1101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
A variety of clinical observations and studies in animal models of temporal lobe epilepsy (TLE) reveal dysfunction of blood-brain barrier (BBB) during seizures. It is accompanied by shifts in ionic composition, imbalance in transmitters and metabolic products, extravasation of blood plasma proteins in the interstitial fluid, causing further abnormal neuronal activity. A significant amount of blood components capable of causing seizures get through the BBB due to its disruption. And only thrombin has been demonstrated to generate early-onset seizures. Using the whole-cell recordings from the single hippocampal neurons we recently showed the induction of epileptiform firing activity immediately after the addition of thrombin to the blood plasma ionic media. In the present work, we mimic some effects of BBB disruption in vitro to examine the effect of modified blood plasma artificial cerebrospinal fluid (ACSF) on the excitability of hippocampal neurons and the role of serum protein thrombin in seizure susceptibility. Comparative analysis of model conditions simulating BBB dysfunction was performed using the lithium-pilocarpine model of TLE, which most clearly reflects the BBB disruption in the acute stage. Our results demonstrate the particular role of thrombin in seizure-onset in conditions of BBB disruption.
Collapse
Affiliation(s)
- Alina Savotchenko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- *Correspondence: Alina Savotchenko
| | - Mariia Klymenko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Mariia Shypshyna
- Laboratory of Synaptic Transmission, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Dmytro Isaev
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| |
Collapse
|
26
|
Liao S, Liu T, Yang R, Tan W, Gu J, Deng M. Structure and Function of Sodium Channel Nav1.3 in Neurological Disorders. Cell Mol Neurobiol 2023; 43:575-584. [PMID: 35332400 PMCID: PMC11415190 DOI: 10.1007/s10571-022-01211-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/07/2022] [Indexed: 11/03/2022]
Abstract
Nav1.3, encoded by the SCN3A gene, is a voltage-gated sodium channel on the cell membrane. It is expressed abundantly in the fetal brain but little in the normal adult brain. It is involved in the generation and conduction of action potentials in excitable cells. Nav1.3 plays an important role in many neurological diseases. The aim of this review is to summarize new findings about Nav1.3 in the field of neurology. Many mutations of SCN3A can lead to neuronal hyperexcitability and then cause epilepsy. The rapid recovery from inactivation and slow closed-state inactivation kinetics of Nav1.3 leads to a reduced activation threshold of the channel and a high frequency of firing of neurons. Hyperactivity of Nav1.3 also induces increased excitability of sensory neurons, a lower nociceptive threshold, and neuropathic pain. This review summarizes the structure and the function of Nav1.3 and focuses on its relationship with epilepsy and neuropathic pain.
Collapse
Affiliation(s)
- Sheng Liao
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Tao Liu
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Ruozhu Yang
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Weitong Tan
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Jiaqi Gu
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
27
|
Makridis KL, Friedo AL, Kellinghaus C, Losch FP, Schmitz B, Boßelmann C, Kaindl AM. Successful treatment of adult Dravet syndrome patients with cenobamate. Epilepsia 2022; 63:e164-e171. [PMID: 36176237 DOI: 10.1111/epi.17427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 01/11/2023]
Abstract
Dravet syndrome (DS) is a rare, drug-resistant, severe developmental and epileptic encephalopathy caused by pathogenic variants in the α subunit of the voltage-gated sodium channel gene SCN1A. Hyperexcitability in DS results from loss of function in inhibitory interneurons. Thus sodium channel blockers are usually contraindicated in patients with DS as they may lead to disease aggravation. Cenobamate (CNB) is a novel antiseizure medication (ASM) with promising rates of seizure freedom in patients with focal-onset, drug-resistant epilepsy. CNB blocks persistent sodium currents by promoting the inactive states of sodium channels. In a multi-center study, we analyzed retrospectively the effect of an add-on therapy of CNB in adult patients with DS. We report four adult patients with DS in whom the use of CNB resulted in a significant seizure reduction of more than 80%, with a follow-up of up to 542 days. CNB was the first drug in these patients that resulted in a long-lasting and significant seizure reduction. No severe adverse events occurred. We highlight CNB as an ASM that may lead to a clinically meaningful reduction of seizure frequency in adult patients with DS. It is unclear, however, if all patients with DS benefit, requiring further investigation and functional experiments.
Collapse
Affiliation(s)
- Konstantin L Makridis
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Cell and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Epilepsy Center for Children and Adolescents, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna-Lena Friedo
- Epilepsy Center Berlin-Brandenburg, Epilepsieklinik Tabor, Bernau, Germany
| | | | | | - Bettina Schmitz
- Department of Neurology, Vivantes Humboldt-Klinikum, Berlin, Germany
| | - Christian Boßelmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Cell and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Epilepsy Center for Children and Adolescents, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
28
|
Smith MC, Klein P, Krauss GL, Rashid S, Seiden LG, Stern JM, Rosenfeld WE. Dose Adjustment of Concomitant Antiseizure Medications During Cenobamate Treatment: Expert Opinion Consensus Recommendations. Neurol Ther 2022; 11:1705-1720. [PMID: 36057761 PMCID: PMC9588096 DOI: 10.1007/s40120-022-00400-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Our objective was to provide expert consensus recommendations to improve treatment tolerability through dose adjustments of concomitant antiseizure medications (ASMs) during addition of cenobamate to existing ASM therapy in adult patients with uncontrolled focal seizures. METHODS A panel of seven epileptologists experienced in the use of ASMs, including cenobamate, used a modified Delphi process to reach consensus. The panelists discussed tolerability issues with concomitant ASMs during cenobamate titration and practical strategies for dose adjustments that may prevent or mitigate adverse effects. The resulting recommendations consider concomitant ASM dose level and specify proactive (prior to report of an adverse effect) and reactive (in response to report of an adverse effect) dose adjustment suggestions based on concomitant ASM pharmacokinetic and pharmacodynamic interactions with cenobamate. Specific dose adjustment recommendations are provided. RESULTS We recommend proactively lowering the dose of clobazam, phenytoin, and phenobarbital due to their known drug-drug interactions with cenobamate, and lacosamide due to a pharmacodynamic interaction with cenobamate, to prevent adverse effects during cenobamate titration. Reactive lowering of a concomitant ASM dose is sufficient for other ASMs at standard dosing owing to quick resolution of adverse effects. For carbamazepine and lamotrigine doses exceeding the upper end of standard dosing (e.g., carbamazepine, greater than 1200 mg/day; lamotrigine, greater than 500 mg/day), we encourage consideration of proactive dose reduction at cenobamate 200 mg/day to prevent potential adverse effects. All dose reductions for adverse effects can be repeated every 2 weeks as dictated by the adverse effects. At cenobamate 200 mg/day, we recommend that patients be evaluated for marked improvement of seizures and further dose reductions be considered to reduce potentially unnecessary polypharmacy. CONCLUSION The primary goal of the recommended dose reductions of concomitant ASMs is to prevent or resolve adverse effects, thereby allowing cenobamate to reach the optimal dose to achieve the maximal potential of improving seizure control.
Collapse
Affiliation(s)
- Michael C. Smith
- Department of Neurological Sciences, Section of Clinical Neurophysiology and Epilepsy, Rush Medical College, 1725 W. Harrison Street, Suite 885, Chicago, IL 60612 USA
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD USA
| | | | - Samiya Rashid
- Epilepsy and Neurology Specialists of San Diego, Encinitas, CA USA
| | | | - John M. Stern
- University of California at Los Angeles, Los Angeles, CA USA
| | | |
Collapse
|
29
|
Mirhoseini M, Rezanejad Gatabi Z, Das S, Joveini S, Rezanezhad Gatabi I. Applications of Electrical Impedance Tomography in Neurology. Basic Clin Neurosci 2022; 13:595-608. [PMID: 37313030 PMCID: PMC10258591 DOI: 10.32598/bcn.2021.3087.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/24/2021] [Accepted: 05/14/2021] [Indexed: 11/02/2023] Open
Abstract
Introduction Electrical impedance tomography (EIT) is a non-invasive technique utilized in various medical applications, including brain imaging and other neurological diseases. Recognizing the physiological and anatomical characteristics of organs based on their electrical properties is one of the main applications of EIT, as each variety of tissue structure has its own electrical characteristics. The high potential of brain EIT is established in real-time supervision and early recognition of cerebral brain infarction, hemorrhage, and other diseases. In this paper, we review the studies on the neurological applications of EIT. Methods EIT calculates the internal electrical conductivity distribution of an organ by measuring its surface impedance. A series of electrodes are placed on the surface of the target tissue, and small alternating currents are injected. The related voltages are then observed and analyzed. The electrical permittivity and conductivity distributions inside the tissue are reconstructed by measuring the electrode voltages. Results The electrical characteristic of biological tissues is remarkably dependent on their structures. Some tissues are better electrical conductors than the others since they have more ions that can carry the electrical charges. This difference is attributed to changes in cellular water content, membrane properties, and destruction of tight junctions within cell membranes. Conclusion EIT is an extremely practical device for brain imaging, capturing fast electrical activities in the brain, imaging epileptic seizures, detecting intracranial bleeding, detecting cerebral edema, and diagnosing stroke.
Collapse
Affiliation(s)
- Mehri Mirhoseini
- Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Rezanejad Gatabi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sayantan Das
- Faculty/College of Science and Mathematics, Texas A&M University, San Antonio, United States
| | - Sepideh Joveini
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Iman Rezanezhad Gatabi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, United States
| |
Collapse
|
30
|
Shiau AL, Liao CS, Tu CW, Wu SN, Cho HY, Yu MC. Characterization in Effective Stimulation on the Magnitude, Gating, Frequency Dependence, and Hysteresis of INa Exerted by Picaridin (or Icaridin), a Known Insect Repellent. Int J Mol Sci 2022; 23:9696. [PMID: 36077093 PMCID: PMC9456182 DOI: 10.3390/ijms23179696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Picaridin (icaridin), a member of the piperidine chemical family, is a broad-spectrum arthropod repellent. Its actions have been largely thought to be due to its interaction with odorant receptor proteins. However, to our knowledge, to what extent the presence of picaridin can modify the magnitude, gating, and/or the strength of voltage-dependent hysteresis (Hys(V)) of plasmalemmal ionic currents, such as, voltage-gated Na+ current [INa], has not been entirely explored. In GH3 pituitary tumor cells, we demonstrated that with exposure to picaridin the transient (INa(T)) and late (INa(L)) components of voltage-gated Na+ current (INa) were differentially stimulated with effective EC50's of 32.7 and 2.8 μM, respectively. Upon cell exposure to it, the steady-state current versus voltage relationship INa(T) was shifted to more hyperpolarized potentials. Moreover, its presence caused a rightward shift in the midpoint for the steady-state inactivate curve of the current. The cumulative inhibition of INa(T) induced during repetitive stimuli became retarded during its exposure. The recovery time course from the INa block elicited, following the conditioning pulse stimulation, was satisfactorily fitted by two exponential processes. Moreover, the fast and slow time constants of recovery from the INa block by the same conditioning protocol were noticeably increased in the presence of picaridin. However, the fraction in fast or slow component of recovery time course was, respectively, increased or decreased with an increase in picaridin concentrations. The Hys(V)'s strength of persistent INa (INa(P)), responding to triangular ramp voltage, was also enhanced during cell exposure to picaridin. The magnitude of resurgent INa (INa(R)) was raised in its presence. Picaritin-induced increases of INa(P) or INa(R) intrinsically in GH3 cells could be attenuated by further addition of ranolazine. The predictions of molecular docking also disclosed that there are possible interactions of the picaridin molecule with the hNaV1.7 channel. Taken literally, the stimulation of INa exerted by the exposure to picaridin is expected to exert impacts on the functional activities residing in electrically excitable cells.
Collapse
Affiliation(s)
- Ai-Li Shiau
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Chih-Szu Liao
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Chi-Wen Tu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Meng-Cheng Yu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| |
Collapse
|
31
|
Contribution of tetrodotoxin-resistant persistent Na + currents to the excitability of C-type dural afferent neurons in rats. J Headache Pain 2022; 23:73. [PMID: 35764917 PMCID: PMC9238149 DOI: 10.1186/s10194-022-01443-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/20/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Growing evidence supports the important role of persistent sodium currents (INaP) in the neuronal excitability of various central neurons. However, the role of tetrodotoxin-resistant (TTX-R) Na+ channel-mediated INaP in the neuronal excitability of nociceptive neurons remains poorly understood. METHODS We investigated the functional role of TTX-R INaP in the excitability of C-type nociceptive dural afferent neurons, which was identified using a fluorescent dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchloride (DiI), and a whole-cell patch-clamp technique. RESULTS TTX-R INaP were found in most DiI-positive neurons, but their density was proportional to neuronal size. Although the voltage dependence of TTX-R Na+ channels did not differ among DiI-positive neurons, the extent of the onset of slow inactivation, recovery from inactivation, and use-dependent inhibition of these channels was highly correlated with neuronal size and, to a great extent, the density of TTX-R INaP. In the presence of TTX, treatment with a specific INaP inhibitor, riluzole, substantially decreased the number of action potentials generated by depolarizing current injection, suggesting that TTX-R INaP are related to the excitability of dural afferent neurons. In animals treated chronically with inflammatory mediators, the density of TTX-R INaP was significantly increased, and it was difficult to inactivate TTX-R Na+ channels. CONCLUSIONS TTX-R INaP apparently contributes to the differential properties of TTX-R Na+ channels and neuronal excitability. Consequently, the selective modulation of TTX-R INaP could be, at least in part, a new approach for the treatment of migraine headaches.
Collapse
|
32
|
Liu R, Sun L, Wang Y, Jia M, Wang Q, Cai X, Wu J. Double-edged Role of K Na Channels in Brain Tuning: Identifying Epileptogenic Network Micro-Macro Disconnection. Curr Neuropharmacol 2022; 20:916-928. [PMID: 34911427 PMCID: PMC9881102 DOI: 10.2174/1570159x19666211215104829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is commonly recognized as a disease driven by generalized hyperexcited and hypersynchronous neural activity. Sodium-activated potassium channels (KNa channels), which are encoded by the Slo 2.2 and Slo 2.1 genes, are widely expressed in the central nervous system and considered as "brakes" to adjust neuronal adaptation through regulating action potential threshold or after-hyperpolarization under physiological condition. However, the variants in KNa channels, especially gain-of-function variants, have been found in several childhood epileptic conditions. Most previous studies focused on mapping the epileptic network on the macroscopic scale while ignoring the value of microscopic changes. Notably, paradoxical role of KNa channels working on individual neuron/microcircuit and the macroscopic epileptic expression highlights the importance of understanding epileptogenic network through combining microscopic and macroscopic methods. Here, we first illustrated the molecular and physiological function of KNa channels on preclinical seizure models and patients with epilepsy. Next, we summarized current hypothesis on the potential role of KNa channels during seizures to provide essential insight into what emerged as a micro-macro disconnection at different levels. Additionally, we highlighted the potential utility of KNa channels as therapeutic targets for developing innovative anti-seizure medications.
Collapse
Affiliation(s)
- Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lei Sun
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiang Cai
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,Address correspondence to these authors at the Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tel: +0086-18062552085; E-mail: Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Tel: +0086-13319285082; E-mail:
| | - Jianping Wu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China;,Address correspondence to these authors at the Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tel: +0086-18062552085; E-mail: Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Tel: +0086-13319285082; E-mail:
| |
Collapse
|
33
|
Almog M, Degani-Katzav N, Korngreen A. Kinetic and thermodynamic modeling of a voltage-gated sodium channel. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:241-256. [PMID: 35199191 DOI: 10.1007/s00249-022-01591-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Like all biological and chemical reactions, ion channel kinetics are highly sensitive to changes in temperature. Therefore, it is prudent to investigate channel dynamics at physiological temperatures. However, most ion channel investigations are performed at room temperature due to practical considerations, such as recording stability and technical limitations. This problem is especially severe for the fast voltage-gated sodium channel, whose activation kinetics are faster than the time constant of the standard patch-clamp amplifier at physiological temperatures. Thus, biologically detailed simulations of the action potential generation evenly scale the kinetic models of voltage-gated channels acquired at room temperature. To quantitatively study voltage-gated sodium channels' temperature sensitivity, we recorded sodium currents from nucleated patches extracted from the rat's layer five neocortical pyramidal neurons at several temperatures from 13.5 to 30 °C. We use these recordings to model the kinetics of the voltage-gated sodium channel as a function of temperature. We show that the temperature dependence of activation differs from that of inactivation. Furthermore, the data indicate that the sustained current has a different temperature dependence than the fast current. Our kinetic and thermodynamic analysis of the current provided a numerical model spanning the entire temperature range. This model reproduced vital features of channel activation and inactivation. Furthermore, the model also reproduced action potential dependence on temperature. Thus, we provide an essential building block for the generation of biologically detailed models of cortical neurons.
Collapse
Affiliation(s)
- Mara Almog
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, 52900, Ramat Gan, Israel
| | - Nurit Degani-Katzav
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, 52900, Ramat Gan, Israel
| | - Alon Korngreen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 52900, Ramat Gan, Israel.
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, 52900, Ramat Gan, Israel.
| |
Collapse
|
34
|
Borowicz-Reutt KK. Effects of Antiarrhythmic Drugs on Antiepileptic Drug Action-A Critical Review of Experimental Findings. Int J Mol Sci 2022; 23:ijms23052891. [PMID: 35270033 PMCID: PMC8911389 DOI: 10.3390/ijms23052891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Severe cardiac arrhythmias developing in the course of seizures increase the risk of SUDEP (sudden unexpected death in epilepsy). Hence, epilepsy patients with pre-existing arrhythmias should receive appropriate pharmacotherapy. Concomitant treatment with antiarrhythmic and antiseizure medications creates, however, the possibility of drug–drug interactions. This is due, among other reasons, to a similar mechanism of action. Both groups of drugs inhibit the conduction of electrical impulses in excitable tissues. The aim of this review was the analysis of such interactions in animal seizure models, including the maximal electroshock (MES) test in mice, a widely accepted screening test for antiepileptic drugs.
Collapse
Affiliation(s)
- Kinga K Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Toxicology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
35
|
Darpo B, Sager PT, Xue H, Kamin M. A Phase 1 Clinical Study Evaluating the Effects of Cenobamate on the QT Interval. Clin Pharmacol Drug Dev 2022; 11:523-534. [PMID: 35182037 DOI: 10.1002/cpdd.1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/27/2021] [Indexed: 11/12/2022]
Abstract
Cenobamate is an antiseizure medication for uncontrolled focal seizures. This thorough QT study assessed the effects of therapeutic and supratherapeutic cenobamate doses (maximum recommended dose, 400 mg/day) on correct QT interval (QTc) in healthy adults (N = 108) randomly assigned to 1 of 3 treatments: (A) cenobamate (days 1-63) up-titrated by 50-mg increments weekly to a 200 mg/day therapeutic dose (day 35) and then by 100 mg weekly to a 500 mg/day supratherapeutic dose (day 63), with placebo-moxifloxacin (days -1 and 64); (B) moxifloxacin 400 mg (day -1; positive control), placebo-cenobamate (days 1-63), and placebo-moxifloxacin (day 64); and (C) placebo-moxifloxacin (day -1), placebo-cenobamate (days 1-64), and moxifloxacin 400 mg (day 64). The primary end point was baseline-adjusted, placebo-corrected QTc (ΔΔQTcF; corrected for heart rate [HR] by Fridericia's method) with cenobamate 200 and 500 mg/day. Baseline electrocardiographic parameters were balanced across groups. Mean ΔΔQTcF was negative throughout for cenobamate doses (largest: day 35, -10.8 milliseconds; day 63, -18.4 milliseconds). Based on concentration-QTc analysis, ∆∆QTcF effect was predicted as -9.85 and -17.14 milliseconds at mean peak plasma levels of therapeutic (200 mg/day; 23.06 μg/mL) and supratherapeutic (500 mg/day; 63.96 μg/mL) doses. Cenobamate had no clinically relevant prolonging effect on electrocardiographic parameters (eg, PR, QRS); HR effects were similar to placebo. Cenobamate showed slight dose-related shortening of QTc, but to a degree not known to be clinically relevant (no reductions ≤340 milliseconds). Cenobamate had no clinically relevant effects on HR or electrocardiographic parameters and no QTc-prolonging effect at therapeutic/supratherapeutic doses. Cenobamate is contraindicated in patients with short-QT syndrome and caution should be used when coadministering with drugs that shorten QT interval.
Collapse
Affiliation(s)
| | - Philip T Sager
- Cardiovascular Research Institute and Department of Medicine, Stanford University, Palo Alto, California, USA
| | | | - Marc Kamin
- SK Life Science, Inc., Paramus, New Jersey, USA
| |
Collapse
|
36
|
Horváth B, Szentandrássy N, Almássy J, Dienes C, Kovács ZM, Nánási PP, Banyasz T. Late Sodium Current of the Heart: Where Do We Stand and Where Are We Going? Pharmaceuticals (Basel) 2022; 15:ph15020231. [PMID: 35215342 PMCID: PMC8879921 DOI: 10.3390/ph15020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Late sodium current has long been linked to dysrhythmia and contractile malfunction in the heart. Despite the increasing body of accumulating information on the subject, our understanding of its role in normal or pathologic states is not complete. Even though the role of late sodium current in shaping action potential under physiologic circumstances is debated, it’s unquestioned role in arrhythmogenesis keeps it in the focus of research. Transgenic mouse models and isoform-specific pharmacological tools have proved useful in understanding the mechanism of late sodium current in health and disease. This review will outline the mechanism and function of cardiac late sodium current with special focus on the recent advances of the area.
Collapse
Affiliation(s)
- Balázs Horváth
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Norbert Szentandrássy
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
- Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - János Almássy
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Csaba Dienes
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Zsigmond Máté Kovács
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Péter P. Nánási
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
- Department of Dental Physiology and Pharmacology, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamas Banyasz
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
- Correspondence: ; Tel.: +36-(52)-255-575; Fax: +36-(52)-255-116
| |
Collapse
|
37
|
Efficacy and safety of adjunctive cenobamate: post-hoc analysis of study C017 in patients grouped by mechanism of action of concomitant antiseizure medications. Seizure 2022; 96:86-93. [DOI: 10.1016/j.seizure.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 11/22/2022] Open
|
38
|
Kahlig KM, Scott L, Hatch RJ, Griffin A, Martinez Botella G, Hughes ZA, Wittmann M. The novel persistent sodium current inhibitor PRAX-562 has potent anticonvulsant activity with improved protective index relative to standard of care sodium channel blockers. Epilepsia 2022; 63:697-708. [PMID: 35037706 PMCID: PMC9304232 DOI: 10.1111/epi.17149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study investigates the effects of PRAX-562 on sodium current (INa ), intrinsic neuronal excitability, and protection from evoked seizures to determine whether a preferential persistent INa inhibitor would exhibit improved preclinical efficacy and tolerability compared to two standard voltage-gated sodium channel (NaV ) blockers. METHODS Inhibition of INa was characterized using patch clamp analysis. The effect on intrinsic excitability was measured using evoked action potentials recorded from hippocampal CA1 pyramidal neurons in mouse brain slices. Anticonvulsant activity was evaluated using the maximal electroshock seizure (MES) model, and tolerability was assessed by measuring spontaneous locomotor activity (sLMA). RESULTS PRAX-562 potently and preferentially inhibited persistent INa induced by ATX-II or the SCN8A mutation N1768D (half-maximal inhibitory concentration [IC50 ] = 141 and 75 nmol·L-1 , respectively) relative to peak INa tonic/resting block (60× preference). PRAX-562 also exhibited potent use-dependent block (31× preference to tonic block). This profile is considerably different from standard NaV blockers, including carbamazepine (CBZ; persistent INa IC50 = 77 500 nmol·L-1 , preference ratios of 30× [tonic block], less use-dependent block observed at various frequencies). In contrast to CBZ, PRAX-562 reduced neuronal intrinsic excitability with only a minor reduction in action potential amplitude. PRAX-562 (10 mg/kg po) completely prevented evoked seizures without affecting sLMA (MES unbound brain half-maximal efficacious concentration = 4.3 nmol·L-1 , sLMA half-maximal tolerated concentration = 69.7 nmol·L-1 , protective index [PI] = 16×). In contrast, CBZ and lamotrigine (LTG) had PIs of approximately 5.5×, with significant overlap between doses that were anticonvulsant and that reduced locomotor activity. SIGNIFICANCE PRAX-562 demonstrated robust preclinical anticonvulsant activity similar to CBZ but improved compared to LTG. PRAX-562 exhibited significantly improved preclinical tolerability compared with standard NaV blockers (CBZ and LTG), potentially due to the preference for persistent INa . Preferential targeting of persistent INa may represent a differentiated therapeutic option for diseases of hyperexcitability, where standard NaV blockers have demonstrated efficacy but poor tolerability.
Collapse
Affiliation(s)
| | - Liam Scott
- Praxis Precision Medicines, Boston, Massachusetts, USA
| | - Robert J Hatch
- Praxis Precision Medicines, Boston, Massachusetts, USA.,Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | | | | | - Zoë A Hughes
- Praxis Precision Medicines, Boston, Massachusetts, USA
| | | |
Collapse
|
39
|
Boada CM, Grossman SN, Grzeskowiak CL, Dumanis S, French JA. Proceedings of the 2020 Epilepsy Foundation Pipeline Conference: Emerging Drugs and Devices. Epilepsy Behav 2021; 125:108364. [PMID: 34731723 DOI: 10.1016/j.yebeh.2021.108364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022]
Abstract
From August 27-28, 2020 the Epilepsy Foundation hosted the Pipeline Conference, exploring emerging issues related to antiepileptic drug and device development. The conference featured epilepsy therapeutic companies and academic laboratories developing drugs for focal epilepsies, innovations for rare and ultra-rare diseases, and devices both in clinical trials and approved for use. In this paper, we outline the virtual presentations by the authors, including novel data from their development pipeline.
Collapse
Affiliation(s)
- Christina M Boada
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Scott N Grossman
- Department of Neurology, New York University Langone Health, New York, NY, USA
| | | | | | - Jacqueline A French
- Department of Neurology, New York University Langone Health, New York, NY, USA
| |
Collapse
|
40
|
Sander JW, Rosenfeld WE, Halford JJ, Steinhoff BJ, Biton V, Toledo M. Long-term individual retention with cenobamate in adults with focal seizures: Pooled data from the clinical development program. Epilepsia 2021; 63:139-149. [PMID: 34813673 PMCID: PMC9299487 DOI: 10.1111/epi.17134] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Abstract
Objective We determined retention on open‐label cenobamate therapy in the clinical development program to assess the long‐term efficacy and tolerability of adjunctive cenobamate in individuals with uncontrolled focal seizures. Methods Data from two randomized, controlled cenobamate studies and one open‐label safety and pharmacokinetic study were pooled. Based on the percentage of participants remaining on treatment, retention rates were estimated using Kaplan‐Meier survival analyses. We performed two additional analyses to assess factors contributing to retention, stratifying a robust data set (through 2 years) by cenobamate modal dose and frequently used concomitant anti‐seizure medications. Cenobamate discontinuations and treatment‐emergent adverse events were summarized. Results Data from 1844 participants were pooled: 149 from a single‐dose randomized trial, 355 from a multi‐dose randomized trial, and 1340 from an open‐label safety and pharmacokinetic study. Most participants from randomized trials continued in open‐label extensions, and pooled data represent >95% of participants exposed to cenobamate. Baseline characteristics and disease and treatment histories were similar across studies. Median duration of cenobamate exposure was 34 months, with a median modal dose of 200 mg/day. Kaplan‐Meier estimates of cumulative cenobamate retention rates were 80% at 1 year and 72% at 2 years. Once participants reached the maintenance phase, retention rates were consistently high in participants receiving ≥100 mg/day cenobamate, and concomitant anti‐seizure medications did not affect long‐term retention. By 2 years, 535 (29%) had actually discontinued cenobamate; the most common reasons for discontinuation were adverse events (37.6%), withdrawal of consent (21.1%), and other (16.8%). Significance Treatment retention rates provide a proxy measure for long‐term efficacy, safety, tolerability, and adherence. The consistently high retention rates we found suggest that cenobamate may be an effective and well‐tolerated new treatment option for people with drug‐resistant focal seizures.
Collapse
Affiliation(s)
- Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St. Peter, UK.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - William E Rosenfeld
- Comprehensive Epilepsy Care Center for Children and Adults, St. Louis, Missouri, USA
| | - Jonathan J Halford
- Comprehensive Epilepsy Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bernhard J Steinhoff
- Department of Neurology and Clinical Neurophysiology, Kork Epilepsy Center, Kehl-Kork, Germany.,Clinic for Neurology and Neurophysiology, Freiburg, Germany
| | - Victor Biton
- Arkansas Epilepsy Program, Little Rock, Arkansas, USA
| | - Manuel Toledo
- Epilepsy Unit, Neurology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
41
|
Abstract
SCN8A epileptic encephalopathy is a devastating epilepsy syndrome caused by mutant SCN8A, which encodes the voltage-gated sodium channel NaV1.6. To date, it is unclear if and how inhibitory interneurons, which express NaV1.6, influence disease pathology. Using both sexes of a transgenic mouse model of SCN8A epileptic encephalopathy, we found that selective expression of the R1872W SCN8A mutation in somatostatin (SST) interneurons was sufficient to convey susceptibility to audiogenic seizures. Patch-clamp electrophysiology experiments revealed that SST interneurons from mutant mice were hyperexcitable but hypersensitive to action potential failure via depolarization block under normal and seizure-like conditions. Remarkably, GqDREADD-mediated activation of WT SST interneurons resulted in prolonged electrographic seizures and was accompanied by SST hyperexcitability and depolarization block. Aberrantly large persistent sodium currents, a hallmark of SCN8A mutations, were observed and were found to contribute directly to aberrant SST physiology in computational modeling and pharmacological experiments. These novel findings demonstrate a critical and previously unidentified contribution of SST interneurons to seizure generation not only in SCN8A epileptic encephalopathy, but epilepsy in general.SIGNIFICANCE STATEMENT SCN8A epileptic encephalopathy is a devastating neurological disorder that results from de novo mutations in the sodium channel isoform Nav1.6. Inhibitory neurons express NaV1.6, yet their contribution to seizure generation in SCN8A epileptic encephalopathy has not been determined. We show that mice expressing a human-derived SCN8A variant (R1872W) selectively in somatostatin (SST) interneurons have audiogenic seizures. Physiological recordings from SST interneurons show that SCN8A mutations lead to an elevated persistent sodium current which drives initial hyperexcitability, followed by premature action potential failure because of depolarization block. Furthermore, chemogenetic activation of WT SST interneurons leads to audiogenic seizure activity. These findings provide new insight into the importance of SST inhibitory interneurons in seizure initiation, not only in SCN8A epileptic encephalopathy, but for epilepsy broadly.
Collapse
|
42
|
Rosenfeld WE, Abou-Khalil B, Aboumatar S, Bhatia P, Biton V, Krauss GL, Sperling MR, Vossler DG, Klein P, Wechsler R. Post hoc analysis of a phase 3, multicenter, open-label study of cenobamate for treatment of uncontrolled focal seizures: Effects of dose adjustments of concomitant antiseizure medications. Epilepsia 2021; 62:3016-3028. [PMID: 34633074 PMCID: PMC9292883 DOI: 10.1111/epi.17092] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 01/23/2023]
Abstract
Objective To report post hoc results on how adjustments to baseline antiseizure medications (ASMs) in a subset of study sites (10 US sites) from a long‐term, open‐label phase 3 study of adjunctive cenobamate affected tolerability, efficacy, and retention. Methods Patients with uncontrolled focal seizures taking stable doses of one to three ASMs were administered increasing doses of cenobamate (12.5, 25, 50, 100, 150, 200 mg/day) over 12 weeks at 2‐week intervals (target dose = 200 mg/day). Further increases to 400 mg/day by 50 mg/day biweekly increments were allowed during maintenance phase. Dose adjustments of cenobamate and concomitant ASMs were allowed. Data were assessed until last visit, at data cut‐off, on or after September 1, 2019. Results A total of 240 patients meeting eligibility criteria were assessed (median [max] exposure 30.2 [43.0] months), with 177 patients continuing cenobamate at data cut‐off. Most common baseline concomitant ASMs were lacosamide, levetiracetam, lamotrigine, zonisamide, and clobazam. For most baseline concomitant ASMs, ~70% of patients taking that ASM were continuing cenobamate at data cut‐off. Patients continuing cenobamate had greater mean ASM dose reductions and percent dose changes from baseline vs those who discontinued. Of patients continuing cenobamate, 24.6% discontinued one or more concomitant ASMs completely. Dose decreases for all concomitant ASMs generally occurred during titration or early maintenance phases and were mostly due to central nervous system (CNS)–related adverse events such as somnolence, dizziness, unsteady gait, and fatigue. Responder rates from ≥50% through 100% for patients continuing cenobamate were generally similar regardless of concomitant ASMs (of those most commonly taken), with ~81% being ≥50% responders and ~12% achieving 100% seizure reduction in the maintenance phase, which lasted up to 40.2 (median = 29.5) months. Significance Concomitant ASM dose reductions were associated with more patients remaining on cenobamate. This is likely due to efficacy and improved tolerability, with overall reduced concomitant drug burden in patients with uncontrolled seizures despite taking one to three baseline concomitant ASMs.
Collapse
Affiliation(s)
- William E Rosenfeld
- Comprehensive Epilepsy Care Center for Children and Adults, St. Louis, Missouri, USA
| | | | | | | | - Victor Biton
- Arkansas Epilepsy Program, Little Rock, Arkansas, USA
| | - Gregory L Krauss
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - David G Vossler
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, Maryland, USA
| | - Robert Wechsler
- Consultants in Epilepsy & Neurology, PLLC, Boise, Idaho, USA.,Idaho Comprehensive Epilepsy Center, Boise, Idaho, USA
| |
Collapse
|
43
|
Vasu SO, Kaphzan H. The role of sodium channels in direct current stimulation-axonal perspective. Cell Rep 2021; 37:109832. [PMID: 34644580 DOI: 10.1016/j.celrep.2021.109832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/24/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Transcranial neurostimulation methods are utilized as therapies for various neuropsychiatric disorders. Primarily, they entail the delivery of weak subthreshold currents across the brain, which modulate neuronal excitability. However, it is still a puzzle how such weak electrical fields actuate their effects. Previous studies showed that axons are the most sensitive subcellular compartment for direct current stimulation, and maximal polarization is achieved at their terminals. Nonetheless, polarization of axon terminals according to models was predicted to be weak, and the mechanism for substantial axon terminals polarization was obscure. Here, we show that a weak subthreshold electrical field modifies the conductance of voltage-dependent sodium channels in axon terminals, subsequently amplifying their membrane polarization. Moreover, we show that this amplification has substantial effects on synaptic functioning. Finally, we employ analytical modeling to explain how sodium currents modifications enhance axon terminal polarization. These findings relate to the mechanistic aspects of any neurostimulation technique.
Collapse
Affiliation(s)
- Sreerag Othayoth Vasu
- Laboratory for Neurobiology of Psychiatric Disorders, Sagol Department of Neurobiology, University of Haifa, 199 Aba Khoushy Avenue, Mt. Carmel, 3498838 Haifa, Israel
| | - Hanoch Kaphzan
- Laboratory for Neurobiology of Psychiatric Disorders, Sagol Department of Neurobiology, University of Haifa, 199 Aba Khoushy Avenue, Mt. Carmel, 3498838 Haifa, Israel.
| |
Collapse
|
44
|
Steinhoff BJ, Rosenfeld WE, Serratosa JM, Brandt C, Klein P, Toledo M, Krauss GL. Practical guidance for the management of adults receiving adjunctive cenobamate for the treatment of focal epilepsy-expert opinion. Epilepsy Behav 2021; 123:108270. [PMID: 34509033 DOI: 10.1016/j.yebeh.2021.108270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Clinical trial results have demonstrated that adjunctive cenobamate (CNB) substantially decreases seizure frequency in adults with uncontrolled focal onset seizures with an acceptable and well-identified safety profile. This manuscript summarizes an expert panel's recommendations regarding optimized CNB treatment of epilepsies with focal onset seizures. Cenobamate, when slowly titrated to the target maintenance dose, represents an effective new antiseizure medication (ASM) with a comparatively high rate of seizure freedom relative to existing treatment options. This paper reviews selection of suitable CNB treatment candidates, realistic treatment expectations and goals, appropriate CNB target doses, and methods to mitigate or avoid potential adverse events. Cenobamate can be a promising therapeutic choice for adult people with epilepsy with focal onset seizures who do not reach adequate seizure control despite treatment with conventional ASMs.
Collapse
Affiliation(s)
- Bernhard J Steinhoff
- Department for Adults, Kork Epilepsy Center, Kehl-Kork, Germany; Clinic for Neurology and Neurophysiology, Freiburg, Germany.
| | - William E Rosenfeld
- Comprehensive Epilepsy Care Center for Children and Adults, St. Louis, MO, USA
| | - José M Serratosa
- Epilepsy Unit, Department of Neurology, Fundación Jiménez Díaz, Madrid, Spain
| | - Christian Brandt
- Department of General Epileptology, Bethel Epilepsy Centre, Mara Hospital, Bielefeld, Germany
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| | - Manuel Toledo
- Epilepsy Unit, Department of Neurology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Gregory L Krauss
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Cellular, molecular, and therapeutic characterization of pilocarpine-induced temporal lobe epilepsy. Sci Rep 2021; 11:19102. [PMID: 34580351 PMCID: PMC8476594 DOI: 10.1038/s41598-021-98534-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
Animal models have expanded our understanding of temporal lobe epilepsy (TLE). However, translating these to cell-specific druggable hypotheses is not explored. Herein, we conducted an integrative insilico-analysis of an available transcriptomics dataset obtained from animals with pilocarpine-induced-TLE. A set of 119 genes with subtle-to-moderate impact predicted most forms of epilepsy with ~ 97% accuracy and characteristically mapped to upregulated homeostatic and downregulated synaptic pathways. The deconvolution of cellular proportions revealed opposing changes in diverse cell types. The proportion of nonneuronal cells increased whereas that of interneurons, except for those expressing vasoactive intestinal peptide (Vip), decreased, and pyramidal neurons of the cornu-ammonis (CA) subfields showed the highest variation in proportion. A probabilistic Bayesian-network demonstrated an aberrant and oscillating physiological interaction between nonneuronal cells involved in the blood–brain-barrier and Vip interneurons in driving seizures, and their role was evaluated insilico using transcriptomic changes induced by valproic-acid, which showed opposing effects in the two cell-types. Additionally, we revealed novel epileptic and antiepileptic mechanisms and predicted drugs using causal inference, outperforming the present drug repurposing approaches. These well-powered findings not only expand the understanding of TLE and seizure oscillation, but also provide predictive biomarkers of epilepsy, cellular and causal micro-circuitry changes associated with it, and a drug-discovery method focusing on these events.
Collapse
|
46
|
Peters CH, Watkins AR, Poirier OL, Ruben PC. E1784K, the most common Brugada syndrome and long-QT syndrome type 3 mutant, disrupts sodium channel inactivation through two separate mechanisms. J Gen Physiol 2021; 152:151877. [PMID: 32569350 PMCID: PMC7478868 DOI: 10.1085/jgp.202012595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022] Open
Abstract
Inheritable and de novo variants in the cardiac voltage-gated sodium channel, Nav1.5, are responsible for both long-QT syndrome type 3 (LQT3) and Brugada syndrome type 1 (BrS1). Interestingly, a subset of Nav1.5 variants can cause both LQT3 and BrS1. Many of these variants are found in channel structures that form the channel fast inactivation machinery, altering the rate, voltage dependence, and completeness of the fast inactivation process. We used a series of mutants at position 1784 to show that the most common inheritable Nav1.5 variant, E1784K, alters fast inactivation through two separable mechanisms: (1) a charge-dependent interaction that increases the noninactivating current characteristic of E1784K; and (2) a hyperpolarized voltage dependence and accelerated rate of fast inactivation that decreases the peak sodium current. Using a homology model built on the NavPaS structure, we find that the charge-dependent interaction is between E1784 and K1493 in the DIII-DIV linker of the channel, five residues downstream of the putative inactivation gate. This interaction can be disrupted by a positive charge at position 1784 and rescued with the K1493E/E1784K double mutant that abolishes the noninactivating current. However, the double mutant does not restore either the voltage dependence or rates of fast inactivation. Conversely, a mutant at the bottom of DIVS4, K1641D, causes a hyperpolarizing shift in the voltage dependence of fast inactivation and accelerates the rate of fast inactivation without causing an increase in noninactivating current. These findings provide novel mechanistic insights into how the most common inheritable arrhythmogenic mixed syndrome variant, E1784K, simultaneously decreases transient sodium currents and increases noninactivating currents, leading to both BrS1 and LQT3.
Collapse
Affiliation(s)
- Colin H Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Abeline R Watkins
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Olivia L Poirier
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
47
|
Jones MG, Rogers ER, Harris JP, Sullivan A, Ackermann DM, Russo M, Lempka SF, McMahon SB. Neuromodulation using ultra low frequency current waveform reversibly blocks axonal conduction and chronic pain. Sci Transl Med 2021; 13:13/608/eabg9890. [PMID: 34433642 DOI: 10.1126/scitranslmed.abg9890] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/22/2021] [Indexed: 01/02/2023]
Abstract
Chronic pain remains a leading cause of disability worldwide, and there is still a clinical reliance on opioids despite the medical side effects associated with their use and societal impacts associated with their abuse. An alternative approach is the use of electrical neuromodulation to produce analgesia. Direct current can block action potential propagation but leads to tissue damage if maintained. We have developed a form of ultra low frequency (ULF) biphasic current and studied its effects. In anesthetized rats, this waveform produced a rapidly developing and completely reversible conduction block in >85% of spinal sensory nerve fibers excited by peripheral stimulation. Sustained ULF currents at lower amplitudes led to a slower onset but reversible conduction block. Similar changes were seen in an animal model of neuropathic pain, where ULF waveforms blocked sensory neuron ectopic activity, known to be an important driver of clinical neuropathic pain. Using a computational model, we showed that prolonged ULF currents could induce accumulation of extracellular potassium, accounting for the slowly developing block observed in rats. Last, we tested the analgesic effects of epidural ULF currents in 20 subjects with chronic leg and back pain. Pain ratings improved by 90% after 2 weeks. One week after explanting the electrodes, pain ratings reverted to 72% of pretreatment screening value. We conclude that epidural spinal ULF neuromodulation represents a promising therapy for treating chronic pain.
Collapse
Affiliation(s)
- Martyn G Jones
- Zenith NeuroTech Ltd., King's College London, London SE1 1UL, UK.,Wolfson CARD, King's College London, London SE1 1UL, UK
| | - Evan R Rogers
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - James P Harris
- Presidio Medical Inc., Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Andrew Sullivan
- Presidio Medical Inc., Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - D Michael Ackermann
- Presidio Medical Inc., Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Marc Russo
- Hunter Pain Clinic, Broadmeadow, New South Wales 2292, Australia
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
48
|
Platholi J, Hemmings HC. Effects of general anesthetics on synaptic transmission and plasticity. Curr Neuropharmacol 2021; 20:27-54. [PMID: 34344292 PMCID: PMC9199550 DOI: 10.2174/1570159x19666210803105232] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
General anesthetics depress excitatory and/or enhance inhibitory synaptic transmission principally by modulating the function of glutamatergic or GABAergic synapses, respectively, with relative anesthetic agent-specific mechanisms. Synaptic signaling proteins, including ligand- and voltage-gated ion channels, are targeted by general anesthetics to modulate various synaptic mechanisms, including presynaptic neurotransmitter release, postsynaptic receptor signaling, and dendritic spine dynamics to produce their characteristic acute neurophysiological effects. As synaptic structure and plasticity mediate higher-order functions such as learning and memory, long-term synaptic dysfunction following anesthesia may lead to undesirable neurocognitive consequences depending on the specific anesthetic agent and the vulnerability of the population. Here we review the cellular and molecular mechanisms of transient and persistent general anesthetic alterations of synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Jimcy Platholi
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| | - Hugh C Hemmings
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| |
Collapse
|
49
|
Shvartsman A, Kotler O, Stoler O, Khrapunsky Y, Melamed I, Fleidervish IA. Subcellular Distribution of Persistent Sodium Conductance in Cortical Pyramidal Neurons. J Neurosci 2021; 41:6190-6201. [PMID: 34099506 PMCID: PMC8287986 DOI: 10.1523/jneurosci.2989-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022] Open
Abstract
Cortical pyramidal neurons possess a persistent Na+ current (I NaP), which, in contrast to the larger transient current, does not undergo rapid inactivation. Although relatively quite small, I NaP is active at subthreshold voltages and therefore plays an important role in neuronal input-output processing. The subcellular distribution of channels responsible for I NaP and the mechanisms that render them persistent are not known. Using high-speed fluorescence Na+ imaging and whole-cell recordings in brain slices obtained from mice of either sex, we reconstructed the I NaP elicited by slow voltage ramps in soma and processes of cortical pyramidal neurons. We found that in all neuronal compartments, the relationship between persistent Na+ conductance and membrane voltage has the shape of a Boltzmann function. Although the density of channels underlying I NaP was about twofold lower in the axon initial segment (AIS) than in the soma, the axonal channels were activated by ∼10 mV less depolarization than were somatic channels. This difference in voltage dependence explains why, at functionally critical subthreshold voltages, most I NaP originates in the AIS. Finally, we show that endogenous polyamines constrain I NaP availability in both somatodendritic and axonal compartments of nondialyzed cortical neurons.SIGNIFICANCE STATEMENT The most salient characteristic of neuronal sodium channels is fast inactivation. However, a fraction of the sodium current does not inactivate. In cortical neurons, persistent current (I NaP) plays a prominent role in many important functions. Its subcellular distribution and generation mechanisms are, however, elusive. Using high-speed fluorescence Na+ imaging and electrical recordings, we reconstructed the I NaP in soma and processes of cortical pyramidal neurons. We found that at near-threshold voltages I NaP originates predominately from the axon, because of the distinctive voltage dependence of the underlying channels and not because of their high density. Finally, we show that the presence of endogenous polyamines significantly constrains I NaP availability in all compartments of nondialyzed cortical neurons.
Collapse
Affiliation(s)
- Arik Shvartsman
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Oron Kotler
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ohad Stoler
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Yana Khrapunsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Israel Melamed
- Department of Neurosurgery, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ilya A Fleidervish
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
50
|
Zybura A, Hudmon A, Cummins TR. Distinctive Properties and Powerful Neuromodulation of Na v1.6 Sodium Channels Regulates Neuronal Excitability. Cells 2021; 10:1595. [PMID: 34202119 PMCID: PMC8307729 DOI: 10.3390/cells10071595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) are critical determinants of cellular excitability. These ion channels exist as large heteromultimeric structures and their activity is tightly controlled. In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making it critical for the initiation and propagation of neuronal impulses. Changes in Nav1.6 expression and function profoundly impact the input-output properties of neurons in normal and pathological conditions. While mutations in Nav1.6 may cause channel dysfunction, aberrant changes may also be the result of complex modes of regulation, including various protein-protein interactions and post-translational modifications, which can alter membrane excitability and neuronal firing properties. Despite decades of research, the complexities of Nav1.6 modulation in health and disease are still being determined. While some modulatory mechanisms have similar effects on other Nav isoforms, others are isoform-specific. Additionally, considerable progress has been made toward understanding how individual protein interactions and/or modifications affect Nav1.6 function. However, there is still more to be learned about how these different modes of modulation interact. Here, we examine the role of Nav1.6 in neuronal function and provide a thorough review of this channel's complex regulatory mechanisms and how they may contribute to neuromodulation.
Collapse
Affiliation(s)
- Agnes Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Theodore R. Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|