1
|
Klein P, Friedman D, Kwan P. Recent Advances in Pharmacologic Treatments of Drug-Resistant Epilepsy: Breakthrough in Sight. CNS Drugs 2024; 38:949-960. [PMID: 39433725 DOI: 10.1007/s40263-024-01130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2024] [Indexed: 10/23/2024]
Abstract
Epilepsy affects approximately 1% of the world population. Patients have recurrent seizures, increased physical and psychiatric comorbidities, and higher mortality rate than the general population. Over the last 40 years, research has resulted in 20 new antiseizure medications (ASMs) approved between 1990 and 2018. In spite of this, up to one-third of patients (~ 1 million patients in the USA) have drug-resistant epilepsy (DRE), with little change between 1982 and 2018, a period of intense new ASM development. A minority of patients with DRE may benefit from surgical treatment, but this specialized care remains challenging to scale. Therefore, the greatest hope for breakthroughs for patients with DRE is in pharmacologic therapies. Recently, several advances promise to change the outcomes for patients with DRE. Cenobamate, a drug with dual mechanisms of modulating sodium channel currents and GABA-A receptors, achieves 90-100% seizure reduction in 25-33% of patients with focal DRE, a response not observed with other ASMs. Fenfluramine, a serotonin-acting drug, dramatically reduces the frequency of convulsive seizures in Dravet syndrome, a devastating developmental epileptic encephalopathy with severe DRE. Both drugs reduce mortality. In addition, the possibility of DRE prevention was recently raised in patients with tuberous sclerosis complex, a relatively common genetic form of epilepsy. A paradigm shift is emerging in the treatment of epilepsy. Seizure freedom has become attainable in a significant proportion of patients with focal DRE, and dramatic seizure reduction has been achieved in a developmental encephalopathy. Coupled with a rich pipeline of new compounds under clinical development, the long sought-after breakthrough in the treatment of epilepsy may finally be in sight.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 410, Bethesda, MD, 20817, USA.
| | - Daniel Friedman
- Department of Neurology, NYU Grossman School of Medicine, 223 East 34th Street, New York, NY, USA
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Hospital, Melbourne, Australia
- Departments of Medicine and Neurology, The University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
2
|
Salaria P, Reddy M A. Network Pharmacology Approach to Identify the Calotropis Phytoconstituents' Potential Epileptic Targets and Evaluation of Molecular Docking, MD Simulation, and MM-PBSA Performance. Chem Biodivers 2024; 21:e202400255. [PMID: 38533537 DOI: 10.1002/cbdv.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
Epilepsy originates from unusual electrical rhythm within brain cells, causes seizures. Calotropis species have been utilized to treat a wide spectrum of ailments since antiquity. Despite chemical and biological investigations, there have been minimal studies on their anticonvulsant activity, and the molecular targets of this plant constituents are unexplored. This study aimed to investigate the plausible epileptic targets of Calotropis phytoconstituents through network pharmacology, and to evaluate their binding strength and stability with the identified targets. In detail, 125 phytoconstituents of the Calotropis plant (C. procera and C. gigantea) were assessed for their drug-likeness (DL), blood-brain-barrier (BBB) permeability and oral bioavailability (OB). Network analysis revealed that targets PTGS2 and PPAR-γ were ranked first and fourth, respectively, among the top ten hub genes significantly linked with antiepileptic drug targets. Additionally, docking, molecular dynamic (MD) simulation, and Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) were employed to validate the compound-gene interactions. Docking studies suggested ergost-5-en-3-ol, stigmasterol and β-sitosterol exhibit stronger binding affinity and favorable interactions than co-crystallized ligands with both the targets. Furthermore, both MD simulations and MM-PBSA calculations substantiated the docking results. Combined data revealed that Calotropis phytoconstituents ergost-5-en-3-ol, stigmasterol, and β-sitosterol might be the best inhibitors of both PTGS2 and PPAR-γ.
Collapse
Affiliation(s)
- Punam Salaria
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India
| | - Amarendar Reddy M
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India
| |
Collapse
|
3
|
Yang D, Ma R, Yang N, Sun K, Han J, Duan Y, Liu A, Zhao X, Li T, Liu J, Liu W, Chen F, Hu N, Xu C, Fan C, Wang Y. Repeated long sessions of transcranial direct current stimulation reduces seizure frequency in patients with refractory focal epilepsy: An open-label extension study. Epilepsy Behav 2022; 135:108876. [PMID: 36088785 DOI: 10.1016/j.yebeh.2022.108876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 05/17/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Although clinical trials have demonstrated that cathodal transcranial direct current stimulation (tDCS) is effective for seizure reduction, its long-term efficacy is unknown. This study aimed to determine the long-term effects of repeated cathodal long tDCS sessions on seizure suppression in patients with refractory epilepsy. METHODS Patients were recruited to participate in an extended phase of a previous randomized, double-blind, sham-controlled, three-arm, parallel, multicenter study on tDCS. The patients were divided into an active tDCS group (20 min of tDCS per day) and an intensified tDCS group (2 × 20 min of tDCS per day). Each tDCS session lasted 2 weeks and the patients underwent repeated sessions at intervals of 2 to 6 months. The cathode was placed over the epileptogenic focus with the current intensity set as 2 mA. Seizure frequency reduction from baseline was analyzed using the Wilcoxon signed-rank test for two related samples. A generalized estimating equation model was used to estimate group, time, and interaction effects. RESULTS Among the 19 patients who participated in the extended phase, 11 were in the active tDCS group and underwent 2-16 active tDCS sessions, and eight were in the intensified tDCS group and underwent 3-11 intensified tDCS sessions. Seizure reduction was significant from the first to the seventh follow-up, with a median seizure frequency reduction of 41.7%-83.3% (p < 0.05). Compared to the regular tDCS protocol, each intensified tDCS session substantially decreased seizure frequency by 0.3680 (p < 0.05). One patient experienced an increase of 8.5%-232.8% in the total number of seizures during three treatment sessions and follow-ups. CONCLUSION Repeated long cathodal tDCS sessions yielded significant and progressive long-term seizure reductions in patients with refractory focal epilepsy.
Collapse
Affiliation(s)
- Dongju Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Rui Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Nuo Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Ke Sun
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiaqi Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Yiran Duan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Aihua Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xuan Zhao
- Department of Pediatric, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ting Li
- Department of Pediatric, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjing Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fang Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ningning Hu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cuiping Xu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chunqiu Fan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neuromodulation, Beijing, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Abstract
Drug-resistant epilepsy is associated with poor health outcomes and increased economic burden. In the last three decades, various new antiseizure medications have been developed, but the proportion of people with drug-resistant epilepsy remains relatively unchanged. Developing strategies to address drug-resistant epilepsy is essential. Here, we define drug-resistant epilepsy and emphasize its relationship to the conceptualization of epilepsy as a symptom complex, delineate clinical risk factors, and characterize mechanisms based on current knowledge. We address the importance of ruling out pseudoresistance and consider the impact of nonadherence on determining whether an individual has drug-resistant epilepsy. We then review the principles of epilepsy drug therapy and briefly touch upon newly approved and experimental antiseizure medications.
Collapse
|
5
|
Fischer A, Hülsmeyer VI, Munoz Schmieder VP, Tipold A, Kornberg M, König F, Gesell FK, Ahrend LK, Volk HA, Potschka H. Cyclooxygenase-2 Inhibition as an Add-On Strategy in Drug Resistant Epilepsy—A Canine Translational Study. Front Vet Sci 2022; 9:864293. [PMID: 35464372 PMCID: PMC9021788 DOI: 10.3389/fvets.2022.864293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Drug-resistant epilepsy is a common complaint in dogs and affects up to 30% of dogs with idiopathic epilepsy. Experimental data suggest that targeting cyclooxygenase-2 (COX-2) mediated signaling might limit excessive excitability and prevent ictogenesis. Moreover, the role of COX-2 signaling in the seizure-associated induction of P-glycoprotein has been described. Thus, targeting this pathway may improve seizure control based on disease-modifying effects as well as enhancement of brain access and efficacy of the co-administered antiseizure medication. The present open-label non-controlled pilot study investigated the efficacy and tolerability of a COX-2 inhibitor (firocoxib) add-on therapy in a translational natural occurring chronic epilepsy animal model (client-owned dogs with phenobarbital-resistant idiopathic epilepsy). The study cohort was characterized by frequent tonic–clonic seizures and cluster seizures despite adequate phenobarbital treatment. Enrolled dogs (n = 17) received a firocoxib add-on therapy for 6 months. Tonic–clonic seizure and cluster seizure frequencies were analyzed at baseline (6 months) months during the study (6 months). The responders were defined by a substantial reduction of tonic–clonic seizure and cluster seizure frequency (≥50%). In total, eleven dogs completed the study and were considered for the statistical analysis. Two dogs (18%, 2/11) were classified as responders based on their change in seizure frequency. Interestingly, those two dogs had the highest baseline seizure frequency. The overall tolerability was good. However, given the low percentage of responders, the present data do not support an overall considerable efficacy of COX-2 inhibitor add-on therapy to overcome naturally occurring phenobarbital-resistant epilepsy in dogs. Further translational evaluation should only be considered in the canine patients with a very high baseline seizure density.
Collapse
Affiliation(s)
- Andrea Fischer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- *Correspondence: Andrea Fischer
| | - Velia-Isabel Hülsmeyer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Viviana P. Munoz Schmieder
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | | | - Florian König
- Small Animal Practice Dr. Florian König, Wiesbaden, Germany
| | - Felix K. Gesell
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Liza K. Ahrend
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
6
|
Alan T. Antiseizure medication discovery: Recent and future paradigm shifts. Epilepsia Open 2022; 7 Suppl 1:S133-S141. [PMID: 35090197 PMCID: PMC9340309 DOI: 10.1002/epi4.12581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/06/2022] Open
Abstract
Despite the ever-increasing number of available options for the treatment of epilepsies and the remarkable advances on the understanding of their pathophysiology, the proportion of refractory patients has remained approximately unmodified during the last 100 years. How efficient are we translating positive outcomes from basic research to clinical trials and/or the clinical scenario? It is possible that fresh thinking and exploration of new paradigms is required to arrive at truly novel therapeutic solutions, as seemingly proven by recently approved first-in-class antiseizure medications and drug candidates undergoing late clinical trials. Here, the author discusses some approximations in line with the network pharmacology philosophy, which may result in highly innovative (and, hopefully, safer and/or more efficacious) medications for the control of seizures, as embodied with some recent examples in the field, namely tailored multi-target agents and low-affinity ligands.
Collapse
Affiliation(s)
- Talevi Alan
- Laboratory of Bioactive Research and Development (LIDeB), Faculty of exact Sciences, University of La Plata (UNLP), 47 & 15, La Plata (B1900AJK), Buenos Aires, Argentina
| |
Collapse
|
7
|
Li Y, Xia L, Wang Y, Li R, Li J, Pan S. Long-term response and response patterns to antiepileptic drugs in patients with newly diagnosed epilepsy. Epilepsy Behav 2021; 124:108309. [PMID: 34536736 DOI: 10.1016/j.yebeh.2021.108309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE This study investigated the long-term response and response patterns to antiepileptic drugs (AEDs) in patients with newly diagnosed epilepsy. METHODS Patients who had been newly diagnosed with epilepsy and had at least 3-year follow-up records were enrolled. Their long-term response and response patterns to AEDs were retrospectively analyzed. Patients were divided into two groups, a controlled group and an uncontrolled group, according to whether 3-year seizure freedom (3YSF) was achieved. Multiple logistic regression analyses were used to identify risk factors associated with a poor drug response. RESULTS Of the 472 patients with epilepsy, 180 achieved immediate seizure control, 36 achieved early seizure control, 118 achieved late seizure control, and 138 did not achieve 3YSF. Patients who achieved 3YSF (334/472, 70.8%) were categorized into the controlled group. Among them, 53.9% (180/334) achieved 3YSF immediately, 10.8% (36/334) achieved 3YSF within 6 months, and 35.3% (118/334) achieved 3YSF after 6 months. Also in this group, 228 (228/472, 48.3%), 84 (84/472, 17.8%), 15 (15/472, 3.2%), and 7 (7/472, 1.5%) patients achieved 3YSF on the first, second, third, and fourth regimen, respectively. Multivariate analyses showed that multiple seizure types (odds ratio [OR] = 3.903, 95% confidence interval [CI]: 2.098-7.264; P < 0.001] and polytherapy (OR = 5.093, 95% CI: 3.183-8.149; P < 0.001) were independent risk factors for a poor drug response. CONCLUSION The 3YSF rate in this cohort was 70.8%. More than half of the patients achieved long-term remission immediately after treatment. The probability of attaining 3YSF decreased with the increase in number of drug regimens, especially in patients who experienced failure of two treatment regimens.
Collapse
Affiliation(s)
- Yudan Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Xia
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuxuan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songqing Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Bohosova J, Vajcner J, Jabandziev P, Oslejskova H, Slaby O, Aulicka S. MicroRNAs in the development of resistance to antiseizure drugs and their potential as biomarkers in pharmacoresistant epilepsy. Epilepsia 2021; 62:2573-2588. [PMID: 34486106 DOI: 10.1111/epi.17063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023]
Abstract
Although many new antiseizure drugs have been developed in the past decade, approximately 30%-40% of patients remain pharmacoresistant. There are no clinical tools or guidelines for predicting therapeutic response in individual patients, leaving them no choice other than to try all antiseizure drugs available as they suffer debilitating seizures with no relief. The discovery of predictive biomarkers and early identification of pharmacoresistant patients is of the highest priority in this group. MicroRNAs (miRNAs), a class of short noncoding RNAs negatively regulating gene expression, have emerged in recent years in epilepsy, following a broader trend of their exploitation as biomarkers of various complex human diseases. We performed a systematic search of the PubMed database for original research articles focused on miRNA expression level profiling in patients with drug-resistant epilepsy or drug-resistant precilinical models and cell cultures. In this review, we summarize 17 publications concerning miRNAs as potential new biomarkers of resistance to antiseizure drugs and their potential role in the development of drug resistance or epilepsy. Although numerous knowledge gaps need to be filled and reviewed, and articles share some study design pitfalls, several miRNAs dysregulated in brain tissue and blood serum were identified independently by more than one paper. These results suggest a unique opportunity for disease monitoring and personalized therapeutic management in the future.
Collapse
Affiliation(s)
- Julia Bohosova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiri Vajcner
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Jabandziev
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Pediatrics, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Oslejskova
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Stefania Aulicka
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
9
|
Łukawski K, Czuczwar SJ. Understanding mechanisms of drug resistance in epilepsy and strategies for overcoming it. Expert Opin Drug Metab Toxicol 2021; 17:1075-1090. [PMID: 34310255 DOI: 10.1080/17425255.2021.1959912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The present evidence indicates that approximately 70% of patients with epilepsy can be successfully treated with antiepileptic drugs (AEDs). A significant proportion of patients are not under sufficient control, and pharmacoresistant epilepsy is clearly associated with poor quality of life and increased morbidity and mortality. There is a great need for newer therapeutic options able to reduce the percentage of drug-resistant patients. AREAS COVERED A number of hypotheses trying to explain the development of pharmacoresistance have been put forward. These include: target hypothesis (altered AED targets), transporter (overexpression of brain efflux transporters), pharmacokinetic (overexpression of peripheral efflux transporters in the intestine or kidneys), intrinsic severity (initial high seizure frequency), neural network (aberrant networks), and gene variant hypothesis (genetic polymorphisms). EXPERT OPINION A continuous search for newer AEDs or among non-AEDs (blockers of efflux transporters, interleukin antagonists, cyclooxygenase inhibitors, mTOR inhibitors, angiotensin II receptor antagonists) may provide efficacious drugs for the management of drug-resistant epilepsy. Also, combinations of AEDs exerting synergy in preclinical and clinical studies (for instance, lamotrigine + valproate, levetiracetam + valproate, topiramate + carbamazepine) might be of importance in this respect. Preclinically antagonistic combinations must be avoided (lamotrigine + carbamazepine, lamotrigine + oxcarbazepine).
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Lublin, Poland.,Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
10
|
Sunwoo JS, Jo H, Kang KW, Kim KT, Kim D, Kim DW, Kim MJ, Kim S, Kim W, Moon HJ, Park HR, Byun JI, Seo JG, Lim SC, Chu MK, Han SH, Hwang KJ, Seo DW. Survey on Antiepileptic Drug Therapy in Patients with Drug Resistant Epilepsy. J Epilepsy Res 2021; 11:72-82. [PMID: 34395226 PMCID: PMC8357558 DOI: 10.14581/jer.21010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/03/2022] Open
Abstract
Background and Purpose Individualized anti-epileptic drug (AED) selection in patient with epilepsy is crucial. However, there is no unified opinion in treating patients with drug resistant epilepsy (DRE). This survey aimed to make a consolidate consensus with epileptologists’ perspectives of the treatment for Korean DRE patients by survey responses. Methods The survey was conducted with Korean epilepsy experts who have experience prescribing AEDs via e-mail. Survey questionnaires consisted of six items regarding prescription patterns and practical questions in treating patients with DRE in Korea. The research period was from February 2021 to March 2021. Results The survey response rate was 83.3% (90/108). Most (77.8%) of the responders are neurologists. The proportion of patients whose seizures were not controlled by the second AED was 26.9%. The proportion of patients who had taken five or more AEDs is 13.9%, and those who are currently taking five or more AEDs are 7.3%, of which 54.5% and 37.9% reported positive effects on additional AED, respectively. The majority (91.1%) of respondents answered that the mechanism of action was the top priority factor when adding AED. Regarding data priority, responders considered that expert opinion should have the top priority, followed by clinical experiences, reimbursement guidelines and clinical evidence. Responders gave 64.9 points (range from 0 to 100) about overall satisfaction on reimbursement system of Health Insurance Review and Assessment Service for AED. Conclusions This study on AED therapy for DRE patients is the first nationwide trial in Korean epilepsy experts. In five drug failure, the top priorities on AED selection are mechanism of action and expert opinion. These findings might help to achieve consensus and recognize the insight on optimal therapy of AED in DRE.
Collapse
Affiliation(s)
- Jun-Sang Sunwoo
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Hyunjin Jo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Wook Kang
- Department of Neurology, Chonnam National University Hospital, Chonnam National University School of Medicine, Gwangju, Korea
| | - Keun Tae Kim
- , KoreaDepartment of Neurology, Keimyung University School of Medicine, Daegu
| | - Daeyoung Kim
- Department of Neurology, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea
| | - Dong Wook Kim
- Department of Neurology, Konkuk University School of Medicine, Seoul, Korea
| | - Min-Jee Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Saeyoon Kim
- Department of Pediatrics, College of Medicine, Yeungnam University, Daegu, Korea
| | - Woojun Kim
- Department of Neurology, The Catholic University of Korea Seoul St. Mary's Hospital, Seoul, Korea
| | - Hye-Jin Moon
- Department of Neurology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Ha Ree Park
- Department of Neurology, Inje University Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Jung-Ick Byun
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Jong-Geun Seo
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sung Chul Lim
- Department of Neurology, The Catholic University of Korea St. Vincent's Hospital, Suwon, Korea
| | - Min Kyung Chu
- Department of Neurology, Severance Hospital, Seoul, Korea
| | - Su-Hyun Han
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kyoung Jin Hwang
- Department of Neurology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Dae-Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Rahim F, Azizimalamiri R, Sayyah M, Malayeri A. Experimental Therapeutic Strategies in Epilepsies Using Anti-Seizure Medications. J Exp Pharmacol 2021; 13:265-290. [PMID: 33732031 PMCID: PMC7959000 DOI: 10.2147/jep.s267029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/10/2021] [Indexed: 02/02/2023] Open
Abstract
Epilepsies are among the most common neurological problems. The disease burden in patients with epilepsy is significantly high, and epilepsy has a huge negative impact on patients' quality of life with epilepsy and their families. Anti-seizure medications are the mainstay treatment in patients with epilepsy, and around 70% of patients will ultimately control with a combination of at least two appropriately selected anti-seizure medications. However, in one-third of patients, seizures are resistant to drugs, and other measures will be needed. The primary goal in using experimental therapeutic medication strategies in patients with epilepsy is to prevent recurrent seizures and reduce the rate of traumatic events that may occur during seizures. So far, various treatments using medications have been offered for patients with epilepsies, which have been classified according to the type of epilepsy, the effectiveness of the medications, and the adverse effects. Medications such as Levetiracetam, valproic acid, and lamotrigine are at the forefront of these patients' treatment. Epilepsy surgery, neuro-stimulation, and the ketogenic diet are the main measures in patients with medication-resistant epilepsies. In this paper, we will review the therapeutic approach using anti-seizure medications in patients with epilepsy. However, it should be noted that some of these patients still do not respond to existing treatments; therefore, the limited ability of current therapies has fueled research efforts for the development of novel treatment strategies. Thus, it seems that in addition to surgical measures, we should look for more specific agents that have less adverse events and have a greater effect in stopping seizures.
Collapse
Affiliation(s)
- Fakher Rahim
- Molecular Medicine and Bioinformatics, Research Center of Thalassemia & Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azizimalamiri
- Department of Pediatrics, Division of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Sayyah
- Education Development Center (EDC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Malayeri
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
13
|
The role of chronobiology in drug-resistance epilepsy: The potential use of a variability and chronotherapy-based individualized platform for improving the response to anti-seizure drugs. Seizure 2020; 80:201-211. [DOI: 10.1016/j.seizure.2020.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
|
14
|
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev 2020; 72:606-638. [PMID: 32540959 PMCID: PMC7300324 DOI: 10.1124/pr.120.019539] [Citation(s) in RCA: 446] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a chronic neurologic disorder that affects over 70 million people worldwide. Despite the availability of over 20 antiseizure drugs (ASDs) for symptomatic treatment of epileptic seizures, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Patients with such drug-resistant epilepsy (DRE) have increased risks of premature death, injuries, psychosocial dysfunction, and a reduced quality of life, so development of more effective therapies is an urgent clinical need. However, the various types of epilepsy and seizures and the complex temporal patterns of refractoriness complicate the issue. Furthermore, the underlying mechanisms of DRE are not fully understood, though recent work has begun to shape our understanding more clearly. Experimental models of DRE offer opportunities to discover, characterize, and challenge putative mechanisms of drug resistance. Furthermore, such preclinical models are important in developing therapies that may overcome drug resistance. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of ASD resistance and discuss how to overcome this problem. Encouragingly, better elucidation of the pathophysiological mechanisms underpinning epilepsies and drug resistance by concerted preclinical and clinical efforts have recently enabled a revised approach to the development of more promising therapies, including numerous potential etiology-specific drugs ("precision medicine") for severe pediatric (monogenetic) epilepsies and novel multitargeted ASDs for acquired partial epilepsies, suggesting that the long hoped-for breakthrough in therapy for as-yet ASD-resistant patients is a feasible goal. SIGNIFICANCE STATEMENT: Drug resistance provides a major challenge in epilepsy management. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of drug resistance in epilepsy and discuss how the problem might be overcome.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Sanjay M Sisodiya
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Annamaria Vezzani
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| |
Collapse
|
15
|
Salih KS, Hamdan FB, Al-Mayah QS, Al-Mahdawi AM. Association of ABCB1 gene polymorphism (C1236T and C3435T) with refractory epilepsy in Iraqi patients. Mol Biol Rep 2020; 47:4245-4254. [PMID: 32462562 DOI: 10.1007/s11033-020-05540-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/17/2020] [Indexed: 01/11/2023]
Abstract
The mechanisms of refractory epilepsy (RE) are most likely multifactorial, involving environmental, genetic, as well as disease- and drug-related factors. We aimed to study is to investigate the possible association of two ABCB1 gene polymorphism (C3435T and C1236T) with the development of RE in Iraqi patients. One hundred patients with either generalized tonic-clonic seizures, myoclonic epilepsy, or absence epilepsy comprised of 60 patients responsive to AEDs and 40 patients who were refractory to treatment who used multi AEDs for at least one month were studied. Fifty family-unrelated age- and sex-matched healthy subjects represent the control group. ABCB1 gene fragments corresponding to two targeted polymorphisms were amplified with conventional polymerase chain reaction using specific sets of primers. Genotyping was performed by restriction fragment length polymorphism (RFLP) technique. Epileptic patients refractory to AEDs showed a significantly higher frequency of CC genotypes of C3435T polymorphism than controls. Allele C was significantly higher in patients than controls and far more frequent among patients with RE. C1235T polymorphism had no significant role neither in the incidence of epilepsy nor in the AEDs resistance. The CT haplotype was more frequent among patients refractory to AEDs. In contrast, the haplotype block TT was more frequent among responsive (41.3%) than refractory patients (28.7%) (p = 0.068). The CC genotype and C allele of the C3435T polymorphism can increase the risk of RE. The haplotype block CT of C3435T and C1236T can predispose for epilepsy as well as the drug resistance.
Collapse
Affiliation(s)
| | - Farqad B Hamdan
- Department of Physiology, College of Medicine, Al-Nahrain University, Baghdad, Iraq.
| | - Qasim S Al-Mayah
- Medical Research Unit, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
16
|
Effects of intrahippocampal injection of Leptin on seizure-induced cognitive impairment in male rats. LEARNING AND MOTIVATION 2020. [DOI: 10.1016/j.lmot.2020.101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Rawat C, Kukal S, Dahiya UR, Kukreti R. Cyclooxygenase-2 (COX-2) inhibitors: future therapeutic strategies for epilepsy management. J Neuroinflammation 2019; 16:197. [PMID: 31666079 PMCID: PMC6822425 DOI: 10.1186/s12974-019-1592-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 09/23/2019] [Indexed: 01/15/2023] Open
Abstract
Epilepsy, a common multifactorial neurological disease, affects about 69 million people worldwide constituting nearly 1% of the world population. Despite decades of extensive research on understanding its underlying mechanism and developing the pharmacological treatment, very little is known about the biological alterations leading to epileptogenesis. Due to this gap, the currently available antiepileptic drug therapy is symptomatic in nature and is ineffective in 30% of the cases. Mounting evidences revealed the pathophysiological role of neuroinflammation in epilepsy which has shifted the focus of epilepsy researchers towards the development of neuroinflammation-targeted therapeutics for epilepsy management. Markedly increased expression of key inflammatory mediators in the brain and blood-brain barrier may affect neuronal function and excitability and thus may increase seizure susceptibility in preclinical and clinical settings. Cyclooxygenase-2 (COX-2), an enzyme synthesizing the proinflammatory mediators, prostaglandins, has widely been reported to be induced during seizures and is considered to be a potential neurotherapeutic target for epilepsy management. However, the efficacy of such therapy involving COX-2 inhibition depends on various factors viz., therapeutic dose, time of administration, treatment duration, and selectivity of COX-2 inhibitors. This article reviews the preclinical and clinical evidences supporting the role of COX-2 in seizure-associated neuroinflammation in epilepsy and the potential clinical use of COX-2 inhibitors as a future strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ujjwal Ranjan Dahiya
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India. .,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India.
| |
Collapse
|
18
|
Janmohamed M, Brodie MJ, Kwan P. Pharmacoresistance - Epidemiology, mechanisms, and impact on epilepsy treatment. Neuropharmacology 2019; 168:107790. [PMID: 31560910 DOI: 10.1016/j.neuropharm.2019.107790] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/01/2019] [Accepted: 09/21/2019] [Indexed: 12/25/2022]
Abstract
Understanding the natural history of and factors associated with pharmacoresistant epilepsy provides the foundation for formulating mechanistic hypotheses that can be evaluated to drive the development of novel treatments. This article reviews the modern definition of drug-resistant epilepsy, its prevalence and incidence, risk factors, hypothesized mechanisms, and the implication of recognizing pharmacoresistance in therapeutic strategies. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Mubeen Janmohamed
- Department of Neuroscience, Alfred Hospital, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | | - Patrick Kwan
- Department of Neuroscience, Alfred Hospital, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Departments of Medicine and Neurology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
19
|
Yang X, Yan Y, Fang S, Zeng S, Ma H, Qian L, Chen X, Wei J, Gong Z, Xu Z. Comparison of oxcarbazepine efficacy and MHD concentrations relative to age and BMI: Associations among ABCB1, ABCC2, UGT2B7, and SCN2A polymorphisms. Medicine (Baltimore) 2019; 98:e14908. [PMID: 30896644 PMCID: PMC6708905 DOI: 10.1097/md.0000000000014908] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 02/05/2023] Open
Abstract
Genetic polymorphisms are related to the concentration and efficacy of oxcarbazepine (OXC). 10-Hydroxycarbazepine (MHD) is the major pharmacologically active metabolite of OXC, and it exerts an antiepileptic effect. This study aimed to explore the connection between the MHD concentration and genes such as ATP-binding cassette B1 (ABCB1), ATP-binding cassette C2 (ABCC2), UDP-glucuronosyltransferase-2B7 and sodium voltage-gated channel alpha subunit 2 (SCN2A), which participate in the antiepileptic function of OXC.Total 218 Chinese epileptic patients, were stratified into different groups according to their age, body mass index (BMI) and OXC efficacy. The genotypes of 7 single nucleotide polymorphisms in all subjects were determined by polymerase chain reaction-improved multiple ligase detection reaction assay. The MHD plasma concentration was detected by high-performance liquid chromatography and then standardized through dosage and body weight.In general, the ABCC2 rs2273697 mutant (P = .026) required a significantly higher standardized MHD concentration. For age groups, carriers of the ABCC2 rs2273697 mutant showed a significantly higher standardized MHD concentration than noncarriers in the juvenile group (P = .033). In terms of BMI, a significantly higher standardized MHD concentration was found in the ABCB1 rs2032582 mutant of the normal weight group (P = .026). The SCN2A rs17183814 mutant required a significantly higher OXC maintenance (P = .014) in the low-weight group, while lower OXC maintenance dose (P = .044) and higher standardized MHD concentration (P = .007) in the overweight group.The ABCC2 rs2273697 polymorphism was significantly associated with MHD plasma concentration in the whole patient cohort and in patients stratified by different ages, this finding provides potential theoretical guidance for the rational and safe clinical use of OXC.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pharmacy
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders
| | - Yuanliang Yan
- Department of Pharmacy
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders
| | - Shu Fang
- Department of Pharmacy
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders
| | - Shuangshuang Zeng
- Department of Pharmacy
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders
| | | | - Long Qian
- Department of Pharmacy
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders
| | - Xi Chen
- Department of Pharmacy
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders
| | - Jie Wei
- Department of Pharmacy
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders
| | - Zhicheng Gong
- Department of Pharmacy
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, China
| |
Collapse
|
20
|
Campos G, Fortuna A, Falcão A, Alves G. In vitro and in vivo experimental models employed in the discovery and development of antiepileptic drugs for pharmacoresistant epilepsy. Epilepsy Res 2018; 146:63-86. [PMID: 30086482 DOI: 10.1016/j.eplepsyres.2018.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/16/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022]
Abstract
Epilepsy is one of the most common chronic, recurrent and progressive neurological diseases. In spite of the large number of antiepileptic drugs currently available for the suppression of seizures, about one-third of patients develop drug-resistant epilepsy, even when they are administered the most appropriate treatment available. Thus, nonclinical models can be valuable tools for the elucidation of the mechanisms underlying the development of pharmacoresistance and also for the development of new therapeutic agents that may be promising therapeutic approaches for this unmet medical need. Up today, several epilepsy and seizure models have been developed, exhibiting similar physiopathological features of human drug-resistant epilepsy; moreover, pharmacological response to antiepileptic drugs clinically available tends to be similar in animal models and humans. Therefore, they should be more intensively used in the preclinical discovery and development of new candidates to antiepileptic drugs. Although useful, in vitro models cannot completely replicate the complexity of a living being and their potential for a systematic use in antiepileptic drug screening is limited. The whole-animal models are the most commonly employed and they can be classified as per se drug-resistant due to an inherent poor drug response or be based on the selection of subgroups of epileptic animals that respond or not to a specific antiepileptic drug. Although more expensive and time-consuming, the latter are chronic models of epilepsy that better exhibit the disease-associated alterations found in human epilepsy. Several antiepileptic drugs in development or already marketed have been already tested and shown to be effective in these models of drug-resistant epilepsy, constituting a new hope for the treatment of drug-resistant epilepsy. This review will provide epilepsy researchers with detailed information on the in vitro and in vivo nonclinical models of interest in drug-resistant epilepsy, which may enable a refined selection of most relevant models for understanding the mechanisms of the disease and developing novel antiepileptic drugs.
Collapse
Affiliation(s)
- Gonçalo Campos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Ana Fortuna
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Amílcar Falcão
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
21
|
Tang F, Hartz AMS, Bauer B. Drug-Resistant Epilepsy: Multiple Hypotheses, Few Answers. Front Neurol 2017; 8:301. [PMID: 28729850 PMCID: PMC5498483 DOI: 10.3389/fneur.2017.00301] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/12/2017] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is a common neurological disorder that affects over 70 million people worldwide. Despite the recent introduction of new antiseizure drugs (ASDs), about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Early identification of patients who will become refractory to ASDs could help direct such patients to appropriate non-pharmacological treatment, but the complexity in the temporal patterns of epilepsy could make such identification difficult. The target hypothesis and transporter hypothesis are the most cited theories trying to explain refractory epilepsy, but neither theory alone fully explains the neurobiological basis of pharmacoresistance. This review summarizes evidence for and against several major theories, including the pharmacokinetic hypothesis, neural network hypothesis, intrinsic severity hypothesis, gene variant hypothesis, target hypothesis, and transporter hypothesis. The discussion is mainly focused on the transporter hypothesis, where clinical and experimental data are discussed on multidrug transporter overexpression, substrate profiles of ASDs, mechanism of transporter upregulation, polymorphisms of transporters, and the use of transporter inhibitors. Finally, future perspectives are presented for the improvement of current hypotheses and the development of treatment strategies as guided by the current understanding of refractory epilepsy.
Collapse
Affiliation(s)
- Fei Tang
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States.,Epilepsy Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
22
|
Qian L, Fang S, Yan YL, Zeng SS, Xu ZJ, Gong ZC. The ABCC2 c.-24C>T polymorphism increases the risk of resistance to antiepileptic drugs: A meta-analysis. J Clin Neurosci 2017; 37:6-14. [PMID: 27816260 DOI: 10.1016/j.jocn.2016.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/15/2016] [Indexed: 02/05/2023]
Abstract
Several studies examined a possible link between multidrug resistance-associated protein 2 (ABCC2) gene variants and the risk of resistance to antiepileptic drugs (AEDs) in epilepsy, but the results were contradictory. In this study, a meta-analysis was conducted to assess the relevance of ABCC2 common variants (c.-24C>T, c.1249G>A, c.3972C>T) with the response risk of AEDs. We searched Embase, PubMed, the Cochrane Library and CNKI databases for case-control studies published through May 2016 that evaluated the role of ABCC2 gene variants in pharmacoresistance to AEDs. Odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated to assess the strength of associations between the ABCC2 c.-24C>T, c.1249G>A and c.3972C>T variants and the risk of resistance to AEDs using an allele frequency model, dominant model and recessive model. Subgroup analyses were performed by ethnicity and the definition of drug-resistance. A total of 13 published studies involving 4300 patients (2261 patients with drug-resistant epilepsy and 2039 controls with drug-responsive epilepsy) met the selection criteria. We observed that the variant c.-24C>T was associated with a significantly increased risk of AED resistance (TT+CT vs CC: OR=1.24, 95%CI=1.06-1.46, p=0.009; TT vs CT+CC: OR=1.90, 95%CI=1.31-2.76, p=0.0008; T vs C: OR=1.27, 95%CI=1.11-1.46, p=0.0006). However, we identified no significant association of the ABCC2 c.1249G>A, c.3972C>T variants and haplotypes with the response to anticonvulsant drug in the overall population. In summary, these observations suggest that the ABCC2 c.-24C>T polymorphism is a likely risk factor for resistance to AEDs.
Collapse
Affiliation(s)
- Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| | - Shu Fang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| | - Yuan-Liang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| | - Shuang-Shuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Hospital Pharmacy, Central South University, Changsha 410008, China
| | - Zhi-Jie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhi-Cheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Hospital Pharmacy, Central South University, Changsha 410008, China.
| |
Collapse
|
23
|
Villanueva V, Garcés M, López-González F, Rodriguez-Osorio X, Toledo M, Salas-Puig J, González-Cuevas M, Campos D, Serratosa J, González-Giráldez B, Mauri J, Camacho J, Suller A, Carreño M, Gómez J, Montoya J, Rodríguez-Uranga J, Saiz-Diaz R, González-de la Aleja J, Castillo A, López-Trigo J, Poza J, Flores J, Querol R, Ojeda J, Giner P, Molins A, Esteve P, Baiges J. Safety, efficacy and outcome-related factors of perampanel over 12 months in a real-world setting: The FYDATA study. Epilepsy Res 2016; 126:201-10. [DOI: 10.1016/j.eplepsyres.2016.08.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 07/18/2016] [Accepted: 08/03/2016] [Indexed: 01/05/2023]
|
24
|
Study of the anti-seizure effects of low-frequency stimulation following kindling (a review of the cellular mechanism related to the anti-seizure effects of low-frequency electrical stimulation). Neurol Sci 2016; 38:19-26. [DOI: 10.1007/s10072-016-2694-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/17/2016] [Indexed: 02/04/2023]
|
25
|
Talevi A. Computational approaches for innovative antiepileptic drug discovery. Expert Opin Drug Discov 2016; 11:1001-16. [DOI: 10.1080/17460441.2016.1216965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Mirza N, Vasieva O, Appleton R, Burn S, Carr D, Crooks D, du Plessis D, Duncan R, Farah JO, Josan V, Miyajima F, Mohanraj R, Shukralla A, Sills GJ, Marson AG, Pirmohamed M. An integrative in silico system for predicting dysregulated genes in the human epileptic focus: Application to SLC transporters. Epilepsia 2016; 57:1467-74. [PMID: 27421837 DOI: 10.1111/epi.13473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Many different gene families are currently being investigated for their potential role in epilepsy and in the response to antiepileptic drugs. A common research challenge is identifying the members of a gene family that are most significantly dysregulated within the human epileptic focus, before taking them forward for resource-intensive functional studies. Published data about transcriptomic changes within the human epileptic focus remains incomplete. A need exists for an accurate in silico system for the prediction of dysregulated genes within the epileptic focus. We present such a bioinformatic system. We demonstrate the validity of our approach by applying it to the solute carrier (SLC) gene family. There are >400 known SLCs. SLCs have never been systematically studied in epilepsy. METHODS Using our in silico system, we predicted the SLCs likely to be dysregulated in the epileptic focus. We validated our in silico predictions by identifying ex vivo the SLCs dysregulated in epileptic foci, and determining the overlap between our in silico and ex vivo results. For the ex vivo analysis, we used a custom oligonucleotide microarray containing exon probes for all known SLCs to analyze 24 hippocampal samples obtained from surgery for pharmacoresistant mesial temporal lobe epilepsy and 24 hippocampal samples from normal postmortem controls. RESULTS There was a highly significant (p < 9.99 × 10(-7) ) overlap between the genes identified by our in silico and ex vivo strategies. The SLCs identified were either metal ion exchangers or neurotransmitter transporters, which are likely to play a part in epilepsy by influencing neuronal excitability. SIGNIFICANCE The identified SLCs are most likely to mediate pharmacoresistance in epilepsy by enhancing the intrinsic severity of epilepsy, but further functional work will be needed to fully evaluate their role. Our successful in silico strategy can be adapted in order to prioritize genes relevant to epilepsy from other gene families.
Collapse
Affiliation(s)
- Nasir Mirza
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Olga Vasieva
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Richard Appleton
- The Roald Dahl EEG Unit, Paediatric Neurosciences Foundation, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Sasha Burn
- Department of Neurosurgery, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Daniel Carr
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel Crooks
- Department of Neuropathology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Daniel du Plessis
- Department of Cellular Pathology, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Roderick Duncan
- Department of Neurology, Christchurch Hospital, Christchurch, New Zealand
| | - Jibril Osman Farah
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Vivek Josan
- Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Fabio Miyajima
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Rajiv Mohanraj
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Arif Shukralla
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Graeme J Sills
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Anthony G Marson
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
27
|
Bankstahl M, Klein S, Römermann K, Löscher W. Knockout of P-glycoprotein does not alter antiepileptic drug efficacy in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice. Neuropharmacology 2016; 109:183-195. [PMID: 27288003 DOI: 10.1016/j.neuropharm.2016.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/12/2016] [Accepted: 06/06/2016] [Indexed: 01/01/2023]
Abstract
Pharmacoresistance to antiepileptic drugs (AEDs) is a major challenge in epilepsy therapy, affecting at least 30% of patients. Thus, there is considerable interest in the mechanisms responsible for such pharmacoresistance, with particular attention on the specific cellular and molecular factors that lead to reduced drug sensitivity. Current hypotheses of refractory epilepsy include the multidrug transporter hypothesis, which posits that increased expression or function of drug efflux transporters, such as P-glycoprotein (Pgp), in brain capillaries reduces the local concentration of AEDs in epileptic brain regions to subtherapeutic levels. In the present study, this hypothesis was addressed by evaluating the efficacy of six AEDs in wildtype and Pgp deficient Mdr1a/b(-/-) mice in the intrahippocampal kainate model of mesial temporal lobe epilepsy. In this model, frequent focal electrographic seizures develop after an initial kainate-induced status epilepticus. These seizures are resistant to major AEDs, but the mechanisms of this resistance are unknown. In the present experiments, the focal nonconvulsive seizures were resistant to carbamazepine and phenytoin, whereas high doses of valproate and levetiracetam exerted moderate and phenobarbital and diazepam marked anti-seizure effects. All AEDs suppressed generalized convulsive seizures. No significant differences between wildtype and Pgp-deficient mice were observed in anti-seizure drug efficacies. Also, the individual responder and nonresponder rates in each experiment did not differ between mouse genotypes. This does not argue against the multidrug transporter hypothesis in general, but indicates that Pgp is not involved in the mechanisms explaining that focal electrographic seizures are resistant to some AEDs in the intrahippocampal mouse model of partial epilepsy. This was substantiated by the finding that epileptic wildtype mice do not exhibit increased Pgp expression in this model.
Collapse
Affiliation(s)
- Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Sabine Klein
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
28
|
Low-frequency electrical stimulation enhances the effectiveness of phenobarbital on GABAergic currents in hippocampal slices of kindled rats. Neuroscience 2016; 330:26-38. [PMID: 27235746 DOI: 10.1016/j.neuroscience.2016.05.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 01/11/2023]
Abstract
Low frequency stimulation (LFS) has been proposed as a new approach in the treatment of epilepsy. The anticonvulsant mechanism of LFS may be through its effect on GABAA receptors, which are the main target of phenobarbital anticonvulsant action. We supposed that co-application of LFS and phenobarbital may increase the efficacy of phenobarbital. Therefore, the interaction of LFS and phenobarbital on GABAergic inhibitory post-synaptic currents (IPSCs) in kindled and control rats was investigated. Animals were kindled by electrical stimulation of basolateral amygdala in a semi rapid manner (12 stimulations/day). The effect of phenobarbital, LFS and phenobarbital+LFS was investigated on GABAA-mediated evoked and miniature IPSCs in the hippocampal brain slices in control and fully kindled animals. Phenobarbital and LFS had positive interaction on GABAergic currents. In vitro co-application of an ineffective pattern of LFS (100 pulses at afterdischarge threshold intensity) and a sub-threshold dose of phenobarbital (100μM) which had no significant effect on GABAergic currents alone, increased the amplitude and area under curve of GABAergic currents in CA1 pyramidal neurons of hippocampal slices significantly. Interestingly, the sub-threshold dose of phenobarbital potentiated the GABAergic currents when applied on the hippocampal slices of kindled animals which received LFS in vivo. Post-synaptic mechanisms may be involved in observed interactions. Obtained results implied a positive interaction between LFS and phenobarbital through GABAA currents. It may be suggested that a combined therapy of phenobarbital and LFS may be a useful manner for reinforcing the anticonvulsant action of phenobarbital.
Collapse
|
29
|
Factors predictive of late remission in a cohort of Chinese patients with newly diagnosed epilepsy. Seizure 2016; 37:20-4. [PMID: 26921482 DOI: 10.1016/j.seizure.2016.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/05/2016] [Accepted: 02/12/2016] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Limited data have focused on predictive factors of late remission in patients with newly diagnosed epilepsy. We are aiming to identify prognostic predictors of late remission in a prospective cohort of Chinese patients. METHODS Patients with newly diagnosed epilepsy were included from 2009 to September 2012 at a tertiary hospital, with follow-up of at least two years. Early remission was defined by seizure free either immediately or within six months of treatment initiation, late remission was defined by seizure free achieved after more than six months. All analyses were performed with SPSS 13.0 software. RESULTS A total of 223 patients were included, and followed for an average of 43 months. 115 patients (51.6%) achieved early remission and 39 patients (17.5%) achieved late remission. Multivariable logistic regression analysis demonstrated more than 3 seizures prior to treatment (OR=3.12, 95% CI 1.39-7.04, p=0.006) and multiple seizure types (OR=2.49, 95% CI 1.02-6.11, p=0.046) may predict late remission. However, nonadherence was not significantly associated with late remission. CONCLUSION Patients with a high frequency of seizures prior to treatment or multiple seizure types may achieve late remission. Particular consideration should be given to these patients.
Collapse
|
30
|
Leclercq K, Kaminski RM. Status epilepticus induction has prolonged effects on the efficacy of antiepileptic drugs in the 6-Hz seizure model. Epilepsy Behav 2015; 49:55-60. [PMID: 26123104 DOI: 10.1016/j.yebeh.2015.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/07/2015] [Indexed: 01/09/2023]
Abstract
Several factors may influence the efficacy of antiepileptic drugs (AEDs) in patients with epilepsy, and treatment resistance could be related to genetics, neuronal network alterations, and modification of drug transporters or targets. Consequently, preclinical models used for the identification of potential new, more efficacious AEDs should reflect at least a few of these factors. Previous studies indicate that induction of status epilepticus (SE) may alter drug efficacy and that this effect could be long-lasting. In this context, we wanted to assess the protective effects of mechanistically diverse AEDs in mice subjected to pilocarpine-induced SE in another seizure model. We first determined seizure thresholds in mice subjected to pilocarpine-induced SE in the 6-Hz model, 2 weeks and 8 weeks following SE. We then evaluated the protective effects of mechanistically diverse AEDs in post-SE and control animals. No major differences in 6-Hz seizure susceptibility were observed between control groups, while the seizure threshold of pilocarpine mice at 8 weeks after SE was higher than at 2 weeks and higher than in control groups. Treatment with AEDs revealed major differences in drug response depending on their mechanism of action. Diazepam produced a dose-dependent protection against 6-Hz seizures in control and pilocarpine mice, both at 2 weeks and 8 weeks after SE, but with a more pronounced increase in potency in post-SE animals at 2 weeks. Levetiracetam induced a potent and dose-dependent protection in pilocarpine mice, 2 weeks after SE, while its protective effects were observed only at much higher doses in control mice. Its potency decreased in post-SE mice at 8 weeks and was very limited (30% protection at the highest tested dose) in the control group. Carbamazepine induced a dose-dependent protection at 2 weeks in control mice but only limited effect (50% at the highest tested dose) in pilocarpine mice. Its efficacy deeply decreased in post-SE mice at 8 weeks after SE. Perampanel and phenytoin showed almost comparable protective effects in all groups of mice. These experiments confirm that prior SE may have an impact on both potency and efficacy of AEDs and indicate that this effect may be dependent on the underlying epileptogenic processes. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
|
31
|
Sha'ari HM, Haerian BS, Baum L, Saruwatari J, Tan HJ, Rafia MH, Raymond AA, Kwan P, Ishitsu T, Nakagawa K, Lim KS, Mohamed Z. ABCC2 rs2273697 and rs3740066 polymorphisms and resistance to antiepileptic drugs in Asia Pacific epilepsy cohorts. Pharmacogenomics 2015; 15:459-66. [PMID: 24624913 DOI: 10.2217/pgs.13.239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIM To examine the relevance of ABCC2 polymorphisms to drug responsiveness in epilepsy cohorts from the Asia Pacific region. MATERIALS & METHODS The rs2273697 and rs3740066 polymorphisms were genotyped in 2056 Malaysian (55%), Hong Kong (32%) and Japanese (13%) epilepsy patients. RESULTS Significant allele association of rs2273697 was observed in Chinese females with epilepsy, Malaysian Chinese patients with generalized seizure and Japanese patients with partial seizure for the AA versus GG genotype model and Malaysian Chinese patients with generalized seizure for the GA versus GG and autosomal dominant models. Significant association of the rs3740066 allele was observed in Malaysian females of Malay origin with cryptogenic epilepsy and Chinese patients with partial seizure and for genotypes in Malay patients with cryptogenic epilepsy for the CT versus CC and autosomal dominant genotype models. Significant results were observed for all haplotypes, but following Bonferroni correction, only the GT haplotype in Chinese patients remained significant. CONCLUSION This study suggests that the GT haplotype might be a risk factor for resistance to medication in Chinese patients.
Collapse
Affiliation(s)
- Hidayati Mohd Sha'ari
- Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Barker-Haliski ML, Friedman D, French JA, White HS. Disease Modification in Epilepsy: From Animal Models to Clinical Applications. Drugs 2015; 75:749-67. [DOI: 10.1007/s40265-015-0395-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Sandow N, Kim S, Raue C, Päsler D, Klaft ZJ, Antonio LL, Hollnagel JO, Kovacs R, Kann O, Horn P, Vajkoczy P, Holtkamp M, Meencke HJ, Cavalheiro EA, Pragst F, Gabriel S, Lehmann TN, Heinemann U. Drug resistance in cortical and hippocampal slices from resected tissue of epilepsy patients: no significant impact of p-glycoprotein and multidrug resistance-associated proteins. Front Neurol 2015; 6:30. [PMID: 25741317 PMCID: PMC4332373 DOI: 10.3389/fneur.2015.00030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/03/2015] [Indexed: 01/16/2023] Open
Abstract
Drug resistant patients undergoing epilepsy surgery have a good chance to become sensitive to anticonvulsant medication, suggesting that the resected brain tissue is responsible for drug resistance. Here, we address the question whether P-glycoprotein (Pgp) and multidrug resistance-associated proteins (MRPs) expressed in the resected tissue contribute to drug resistance in vitro. Effects of anti-epileptic drugs [carbamazepine (CBZ), sodium valproate, phenytoin] and two unspecific inhibitors of Pgp and MRPs [verapamil (VPM) and probenecid (PBN)] on seizure-like events (SLEs) induced in slices from 35 hippocampal and 35 temporal cortex specimens of altogether 51 patients (161 slices) were studied. Although in slice preparations the blood brain barrier is not functional, we found that SLEs predominantly persisted in the presence of anticonvulsant drugs (90%) and also in the presence of VPM and PBN (86%). Following subsequent co-administration of anti-epileptic drugs and drug transport inhibitors, SLEs continued in 63% of 143 slices. Drug sensitivity in slices was recognized either as transition to recurrent epileptiform transients (30%) or as suppression (7%), particularly by perfusion with CBZ in PBN containing solutions (43, 9%). Summarizing responses to co-administration from more than one slice per patient revealed that suppression of seizure-like activity in all slices was only observed in 7% of patients. Patients whose tissue was completely or partially sensitive (65%) presented with higher seizure frequencies than those with resistant tissue (35%). However, corresponding subgroups of patients do not differ with respect to expression rates of drug transporters. Our results imply that parenchymal MRPs and Pgp are not responsible for drug resistance in resected tissue.
Collapse
Affiliation(s)
- Nora Sandow
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany ; Department of Neurosurgery, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Simon Kim
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Claudia Raue
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Dennis Päsler
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Zin-Juan Klaft
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Leandro Leite Antonio
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany ; Laboratorio de Neurologia Experimental, Universidade Federal de São Paulo-Escola Paulista de Medicina , São Paulo , Brazil
| | - Jan Oliver Hollnagel
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Richard Kovacs
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Oliver Kann
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany ; Institute of Physiology and Pathophysiology, University of Heidelberg , Heidelberg , Germany
| | - Peter Horn
- Department of Neurosurgery, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Martin Holtkamp
- Epilepsy Center of Berlin-Brandenburg, Ev. Krankenhaus Königin Elisabeth Herzberge , Berlin , Germany
| | - Heinz-Joachim Meencke
- Epilepsy Center of Berlin-Brandenburg, Ev. Krankenhaus Königin Elisabeth Herzberge , Berlin , Germany
| | - Esper A Cavalheiro
- Laboratorio de Neurologia Experimental, Universidade Federal de São Paulo-Escola Paulista de Medicina , São Paulo , Brazil
| | - Fritz Pragst
- Institute of Forensic Medicine - Forensic Toxicology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Siegrun Gabriel
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | | | - Uwe Heinemann
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|
34
|
Salar S, Maslarova A, Lippmann K, Nichtweiss J, Weissberg I, Sheintuch L, Kunz WS, Shorer Z, Friedman A, Heinemann U. Blood-brain barrier dysfunction can contribute to pharmacoresistance of seizures. Epilepsia 2014; 55:1255-63. [PMID: 24995798 DOI: 10.1111/epi.12713] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We tested the hypothesis that interstitial albumin can contribute to pharmacoresistance, which is common among patients with focal epilepsies. These patients often present with an open blood-brain barrier (BBB), resulting in diffusion of drug-binding albumin into the brain interstitial space. METHODS Seizure-like events (SLEs) induced by 100 μm 4-aminopyridine (4-AP) were monitored using extracellular field potential recordings from acute rat entorhinal cortex-hippocampus slices. Effects of standard antiepileptic drugs (phenytoin, valproic acid, carbamazepine, and phenobarbital) were studied in the presence of albumin applied acutely or by intraventricular injection. Unbound antiepileptic drugs (AEDs) were detected by ultrafiltration and high-performance liquid chromatography (HPLC). RESULTS Contrary to the absence of albumin, conventional AEDs failed to suppress SLEs in the rat entorhinal cortex in the presence of albumin. This effect was partially caused by buffering of phenytoin and carbamazepine (CBZ) by albumin. Increasing CBZ concentration from 50 μm to 100 μm resulted in block of SLEs. In slices obtained from animals that were pretreated with intraventricular albumin application 24 h prior to experiment, CBZ suppressed SLEs similar to control slices. We also found that application of serum-like electrolytes transformed SLEs into late recurrent discharges (LRDs), which were no longer responding to CBZ. SIGNIFICANCE A dysfunctional BBB with acute extravasation of serum albumin into the brain's interstitial space could contribute to pharmacoresistance. In such instances, choice of an AED with low albumin binding affinity may help in seizure control.
Collapse
Affiliation(s)
- Seda Salar
- Institute of Neurophysiology, Charite-University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Park KM, Hur Y, Kim HY, Ji KH, Hwang TG, Shin KJ, Ha SY, Park J, Kim SE. Initial response to antiepileptic drugs in patients with newly diagnosed epilepsy. J Clin Neurosci 2014; 21:923-6. [DOI: 10.1016/j.jocn.2013.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/14/2013] [Accepted: 10/27/2013] [Indexed: 12/18/2022]
|
36
|
Haerian BS, Baum L, Kwan P, Tan HJ, Raymond AA, Mohamed Z. SCN1A, SCN2A and SCN3A gene polymorphisms and responsiveness to antiepileptic drugs: a multicenter cohort study and meta-analysis. Pharmacogenomics 2014; 14:1153-66. [PMID: 23859570 DOI: 10.2217/pgs.13.104] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Approximately a third of newly diagnosed epilepsy patients do not respond to antiepileptic drugs (AEDs). Evidence suggests that low penetrance variants in the genes of drug targets such as voltage-gated sodium channels may be involved in drug responsiveness. To examine this hypothesis, we compared data from two epilepsy cohorts from Malaysia and Hong Kong, as well as a meta-analysis from published data. MATERIALS & METHODS Genotype analysis of 39 polymorphisms located in the SCN1A, SCN2A and SCN3A genes was performed on 1504 epilepsy patients from Malaysia and Hong Kong who were receiving AEDs. Meta-analysis was performed for pooled data of SCN1A rs3812718 and rs2298771, and SCN2A rs17183814 polymorphisms. RESULTS Our data from the Hong Kong and Malaysia cohorts showed no significant allele, genotype and haplotype association of polymorphisms in the SCN1A, SCN2A, and SCN3A genes with drug responsiveness in epilepsy. This finding was supported by a meta-analysis for SCN1A rs3812718 and rs2298771, and for SCN2A rs17183814 polymorphisms. CONCLUSION Our comprehensive study suggests that common polymorphisms in SCN1A, SCN2A and SCN3A do not play major roles in influencing response to AEDs. Original submitted 11 March 2013; Revision submitted 31 May 2013.
Collapse
Affiliation(s)
- Batoul Sadat Haerian
- Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
37
|
Asgari A, Semnanian S, Atapour N, Shojaei A, Moradi H, Mirnajafi-Zadeh J. Combined sub-threshold dosages of phenobarbital and low-frequency stimulation effectively reduce seizures in amygdala-kindled rats. Neurol Sci 2014; 35:1255-60. [DOI: 10.1007/s10072-014-1693-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 02/15/2014] [Indexed: 11/24/2022]
|
38
|
Moon J, Lee ST, Choi J, Jung KH, Yang H, Khalid A, Kim JM, Park KI, Shin JW, Ban JJ, Yi GS, Lee SK, Jeon D, Chu K. Unique behavioral characteristics and microRNA signatures in a drug resistant epilepsy model. PLoS One 2014; 9:e85617. [PMID: 24454901 PMCID: PMC3893246 DOI: 10.1371/journal.pone.0085617] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/05/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pharmacoresistance is a major issue in the treatment of epilepsy. However, the mechanism underlying pharmacoresistance to antiepileptic drugs (AEDs) is still unclear, and few animal models have been established for studying drug resistant epilepsy (DRE). In our study, spontaneous recurrent seizures (SRSs) were investigated by video-EEG monitoring during the entire procedure. METHODS/PRINCIPAL FINDINGS In the mouse pilocarpine-induced epilepsy model, we administered levetiracetam (LEV) and valproate (VPA) in sequence. AED-responsive and AED-resistant mice were naturally selected after 7-day treatment of LEV and VPA. Behavioral tests (open field, object exploration, elevated plus maze, and light-dark transition test) and a microRNA microarray test were performed. Among the 37 epileptic mice with SRS, 23 showed significantly fewer SRSs during administration of LEV (n = 16, LEV sensitive (LS) group) or VPA (n = 7, LEV resistant/VPA sensitive (LRVS) group), while 7 epileptic mice did not show any amelioration with either of the AEDs (n = 7, multidrug resistant (MDR) group). On the behavioral assessment, MDR mice displayed distinctive behaviors in the object exploration and elevated plus maze tests, which were not observed in the LS group. Expression of miRNA was altered in LS and MDR groups, and we identified 4 miRNAs (miR-206, miR-374, miR-468, and miR-142-5p), which were differently modulated in the MDR group versus both control and LS groups. CONCLUSION This is the first study to identify a pharmacoresistant subgroup, resistant to 2 AEDs, in the pilocarpine-induced epilepsy model. We hypothesize that modulation of the identified miRNAs may play a key role in developing pharmacoresistance and behavioral alterations in the MDR group.
Collapse
Affiliation(s)
- Jangsup Moon
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soon-Tae Lee
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jiye Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Keun-Hwa Jung
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunwoo Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Arshi Khalid
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jeong-Min Kim
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Jung-Won Shin
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Jun Ban
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sang Kun Lee
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Daejong Jeon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- * E-mail: (DJ); (KC)
| | - Kon Chu
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail: (DJ); (KC)
| |
Collapse
|
39
|
Levetiracetam resistance: Synaptic signatures & corresponding promoter SNPs in epileptic hippocampi. Neurobiol Dis 2013; 60:115-25. [DOI: 10.1016/j.nbd.2013.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/22/2013] [Accepted: 08/27/2013] [Indexed: 01/16/2023] Open
|
40
|
Löscher W, Klitgaard H, Twyman RE, Schmidt D. New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov 2013; 12:757-76. [DOI: 10.1038/nrd4126] [Citation(s) in RCA: 424] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Stępień KM, Tomaszewski M, Tomaszewska J, Czuczwar SJ. The multidrug transporter P-glycoprotein in pharmacoresistance to antiepileptic drugs. Pharmacol Rep 2013; 64:1011-9. [PMID: 23238460 DOI: 10.1016/s1734-1140(12)70900-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/08/2012] [Indexed: 01/16/2023]
Abstract
This review provides an overview of the knowledge on P-glycoprotein (P-gp) and its role as a membrane transporter in drug resistance in epilepsy and drug interactions. Overexpression of P-gp, encoded by the ABCB1 gene, is involved in resistance to antiepileptic drugs (AEDs), limits gastrointestinal absorption and brain access of AEDs. Although several association studies on ABCB1 gene with drug disposition and disease susceptibility are completed to date, the data remain unclear and incongruous. Although the literature describes other multidrug resistance transporters, P-gp is the main extensively studied drug efflux transporter in epilepsy.
Collapse
Affiliation(s)
- Karolina M Stępień
- Clinical Biochemistry and Metabolic Medicine Department, Central Manchester Foundation Trust, Oxford Road, M13 9WL Manchester, UK
| | | | | | | |
Collapse
|
42
|
Wilcox KS, Dixon-Salazar T, Sills GJ, Ben-Menachem E, White HS, Porter RJ, Dichter MA, Moshé SL, Noebels JL, Privitera MD, Rogawski MA. Issues related to development of new antiseizure treatments. Epilepsia 2013; 54 Suppl 4:24-34. [PMID: 23909851 PMCID: PMC3947404 DOI: 10.1111/epi.12296] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report represents a summary of the discussions led by the antiseizure treatment working group of the International League Against Epilepsy (ILAE)/American Epilepsy Society (AES) Working Groups joint meeting in London (London Meeting). We review here what is currently known about the pharmacologic characteristics of current models of refractory seizures, both for adult and pediatric epilepsy. In addition, we address how the National Institute of Neurological Disorders and Stroke (NINDS)-funded Anticonvulsant Screening Program (ASP) is evolving to incorporate appropriate animal models in the search for molecules that might be sufficiently novel to warrant further pharmacologic development. We also briefly address what we believe is necessary, going forward, to achieve the goal of stopping seizures in all patients, with a call to arms for funding agencies, the pharmaceutical industry, and basic researchers.
Collapse
Affiliation(s)
- Karen S Wilcox
- Anticonvulsant Drug Development Program, Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, Utah 84108, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rogawski MA. The intrinsic severity hypothesis of pharmacoresistance to antiepileptic drugs. Epilepsia 2013; 54 Suppl 2:33-40. [PMID: 23646969 DOI: 10.1111/epi.12182] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pharmacoresistance to antiepileptic drugs (AEDs) is a barrier to seizure freedom for many persons with epilepsy. For nearly two decades, pharmacoresistance has been framed in terms of factors affecting the access of AEDs to their molecular targets in the brain or the actions of the drugs on these targets. Shortcomings in this prevailing view led to the formulation of the intrinsic severity hypothesis of pharmacoresistance to AEDs, which is based on the recognition that there are neurobiologic factors that confer phenotypic variation among individuals with etiologically similar forms of epilepsy and postulates that more severe epilepsy is more difficult to treat with AEDs. In recent years, progress has been made identifying potential genetic mechanisms of variation in epilepsy severity, including subclinical mutations in ion channels that increase or reduce epilepsy severity in mice. Efforts are underway to identify clinically important genetic modifiers. If it can be demonstrated that such severity factors play a role in pharmacoresistance, treatments could be devised to reverse severity mechanisms. By overcoming pharmacoresistance, this new approach to epilepsy therapy may allow drug refractory patients to achieve seizure freedom without side effects.
Collapse
Affiliation(s)
- Michael A Rogawski
- Department of Neurology, School of Medicine and Center for Neuroscience, University of California, Davis, Sacramento, California 95817, USA.
| |
Collapse
|
44
|
Pohlmann-Eden B, Weaver DF. The puzzle(s) of pharmacoresistant epilepsy. Epilepsia 2013; 54 Suppl 2:1-4. [DOI: 10.1111/epi.12174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bernd Pohlmann-Eden
- Department of Medicine (Neurology); Dalhousie University; Halifax; Nova Scotia; Canada
| | | |
Collapse
|
45
|
Pohlmann-Eden B, Crocker CE, Schmidt MH. A conceptual framework for the use of neuroimaging to study and predict pharmacoresistance in epilepsy. Epilepsia 2013; 54 Suppl 2:75-9. [DOI: 10.1111/epi.12190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Candice E. Crocker
- Division of Neurology; Dalhousie University; Halifax; Nova Scotia; Canada
| | | |
Collapse
|
46
|
Local MEG networks: the missing link between protein expression and epilepsy in glioma patients? Neuroimage 2013; 75:195-203. [PMID: 23507380 DOI: 10.1016/j.neuroimage.2013.02.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/28/2013] [Accepted: 02/27/2013] [Indexed: 01/21/2023] Open
Abstract
Connectivity and network analysis in neuroscience has been applied to multiple spatial scales, but the links between these different scales have rarely been investigated. In tumor-related epilepsy, altered network topology is related to behavior, but the molecular basis of these observations is unknown. We elucidate the associations between microscopic features of brain tumors, local network topology, and functional patient status. We hypothesize that expression of proteins related to tumor-related epilepsy is directly correlated with network characteristics of the tumor area. Glioma patients underwent magnetoencephalography, and functional network topology of the tumor area was used to predict tissue protein expression patterns of tumor tissue collected during neurosurgery. Protein expression and network topology were interdependent; in particular between-module connectivity was selectively associated with two epilepsy-related proteins. Total number of seizures was related to both the role of the tumor area in the functional network and to protein expression. Importantly, classification of protein expression was predicted by between-module connectivity with up to 100% accuracy. Thus, network topology may serve as an intermediate level between molecular features of tumor tissue and symptomatology in brain tumor patients, and can potentially be used as a non-invasive marker for microscopic tissue characteristics.
Collapse
|
47
|
Role of oxidative stress in refractory epilepsy: evidence in patients and experimental models. Int J Mol Sci 2013; 14:1455-76. [PMID: 23344052 PMCID: PMC3565330 DOI: 10.3390/ijms14011455] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/06/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress, a state of imbalance in the production of reactive oxygen species and nitrogen, is induced by a wide variety of factors. This biochemical state is associated with systemic diseases, and diseases affecting the central nervous system. Epilepsy is a chronic neurological disorder with refractoriness to drug therapy at about 30%. Currently, experimental evidence supports the involvement of oxidative stress in seizures, in the process of their generation, and in the mechanisms associated with refractoriness to drug therapy. Hence, the aim of this review is to present information in order to facilitate the handling of this evidence and determine the therapeutic impact of the biochemical status for this pathology.
Collapse
|
48
|
Di Ianni ME, Enrique AV, Palestro PH, Gavernet L, Talevi A, Bruno-Blanch LE. Several new diverse anticonvulsant agents discovered in a virtual screening campaign aimed at novel antiepileptic drugs to treat refractory epilepsy. J Chem Inf Model 2012. [PMID: 23181365 DOI: 10.1021/ci300423q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A virtual screening campaign was conducted in order to discover new anticonvulsant drug candidates for the treatment of refractory epilepsy. To this purpose, a topological discriminant function to identify antiMES drugs and a sequential filtering methodology to discriminate P-glycoprotein substrates and nonsubstrates were jointly applied to ZINC 5 and DrugBank databases. The virtual filters combine an ensemble of 2D classifiers and docking simulations. In the light of the results, 10 structurally diverse compounds were acquired and tested in animal models of seizure and the rotorod test. All 10 candidates showed some level of protection against MES test.
Collapse
Affiliation(s)
- Mauricio E Di Ianni
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 & 115, La Plata B1900AJI, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
49
|
Mazzuferi M, Kumar G, Rospo C, Kaminski RM. Rapid epileptogenesis in the mouse pilocarpine model: Video-EEG, pharmacokinetic and histopathological characterization. Exp Neurol 2012; 238:156-67. [DOI: 10.1016/j.expneurol.2012.08.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/31/2012] [Accepted: 08/21/2012] [Indexed: 01/08/2023]
|
50
|
Syvänen S, Labots M, Tagawa Y, Eriksson J, Windhorst AD, Lammertsma AA, de Lange EC, Voskuyl RA. Altered GABAA Receptor Density and Unaltered Blood–Brain Barrier Transport in a Kainate Model of Epilepsy: An In Vivo Study Using 11C-Flumazenil and PET. J Nucl Med 2012; 53:1974-83. [DOI: 10.2967/jnumed.112.104588] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|