1
|
Cooper MS, Mackay MT, Shepherd DA, Dagia C, Fahey MC, Reddihough D, Reid SM, Harvey AS. Distinct manifestations and potential mechanisms of seizures due to cortical versus white matter injury in children. Epilepsy Res 2024; 199:107267. [PMID: 38113603 DOI: 10.1016/j.eplepsyres.2023.107267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE To study seizure manifestations and outcomes in children with cortical versus white matter injury, differences potentially explaining variability of epilepsy in children with cerebral palsy. METHODS In this population-based retrospective cohort study, MRIs of children with cerebral palsy due to ischemia or haemorrhage were classified according to presence or absence of cortical injury. MRI findings were then correlated with history of neonatal seizures, seizures during childhood, epilepsy syndromes, and seizure outcomes. RESULTS Of 256 children studied, neonatal seizures occurred in 57 and seizures during childhood occurred in 93. Children with neonatal seizures were more likely to develop seizures during childhood, mostly those with cortical injury. Cortical injury was more strongly associated with (1) developing seizures during childhood, (2) more severe epilepsy syndromes (infantile spasms syndrome, focal epilepsy, Lennox-Gastaut syndrome), and (3) less likelihood of reaching > 2 years without seizures at last follow-up, compared to children without cortical injury. Children without cortical injury, mainly those with white matter injury, were less likely to develop neonatal seizures and seizures during childhood, and when they did, epilepsy syndromes were more commonly febrile seizures and self-limited focal epilepsies of childhood, with most achieving > 2 years without seizures at last follow-up. The presence of cortical injury also influenced seizure occurrence, severity, and outcome within the different predominant injury patterns of the MRI Classification System in cerebral palsy, most notably white matter injury. CONCLUSIONS Epileptogenesis is understood with cortical injury but not well with white matter injury, the latter potentially related to altered postnatal white matter development or myelination leading to apoptosis, abnormal synaptogenesis or altered thalamic connectivity of cortical neurons. These findings, and the potential mechanisms discussed, likely explain the variability of epilepsy in children with cerebral palsy and epilepsy following early-life brain injury in general.
Collapse
Affiliation(s)
- Monica S Cooper
- Department of Neurodevelopment & Disability, The Royal Children's Hospital, Melbourne, Victoria, Australia; Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia.
| | - Mark T Mackay
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia; Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Daisy A Shepherd
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - Charuta Dagia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia; Department of Medical Imaging, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Dinah Reddihough
- Department of Neurodevelopment & Disability, The Royal Children's Hospital, Melbourne, Victoria, Australia; Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - Susan M Reid
- Department of Neurodevelopment & Disability, The Royal Children's Hospital, Melbourne, Victoria, Australia; Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - A Simon Harvey
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia; Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Bashkatova VG, Bogdanova NG, Nazarova GA, Sudakov SK. Features of the Effects of Glutamatergic System Modulators in the Model of Hyperthermal Seizures in Rat Pups. Bull Exp Biol Med 2022; 174:43-46. [PMID: 36437319 DOI: 10.1007/s10517-022-05645-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/29/2022]
Abstract
We studied the effect of lamotrigine, an anticonvulsant inhibiting the presynaptic release of glutamate, and LY341495, an antagonist of metabotropic glutamate 2/3 receptors, on the development of hyperthermic seizures and the content of LPO products in the brain of 8-10-day-old Wistar rats. Rat pups in the early postnatal period demonstrated pronounced seizures in response to thermal exposure, which was accompanied by an increase in the level of LPO products in the cerebral cortex. It was shown that the latency of generalized seizures increased after administration of both lamotrigine and LY341495. The most pronounced effect was observed in animals treated with lamotrigine. Both test substances prevented LPO intensification induced by hyperthermic exposure to varying degrees.
Collapse
Affiliation(s)
- V G Bashkatova
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia.
| | - N G Bogdanova
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - G A Nazarova
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - S K Sudakov
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| |
Collapse
|
3
|
Zayachkivsky A, Lehmkuhle MJ, Ekstrand JJ, Dudek FE. Background suppression of electrical activity is a potential biomarker of subsequent brain injury in a rat model of neonatal hypoxia-ischemia. J Neurophysiol 2022; 128:118-130. [PMID: 35675445 DOI: 10.1152/jn.00024.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrographic seizures and abnormal background activity in the neonatal electroencephalogram (EEG) may differentiate between harmful versus benign brain insults. Using two animal models of neonatal seizures, electrical activity was recorded in freely behaving rats and examined quantitatively during successive time periods with field-potential recordings obtained shortly after the brain insult (i.e., 0-4 days). Single-channel, differential recordings with miniature wireless telemetry were used to analyze spontaneous electrographic seizures and background suppression of electrical activity after 1) hypoxia-ischemia (HI), which is a model of neonatal encephalopathy that causes acute seizures and a large brain lesion with possible development of epilepsy, 2) hypoxia alone (Ha), which causes severe acute seizures without an obvious lesion or subsequent epilepsy, and 3) sham control rats. Background EEG exhibited increases in power as a function of age in control animals. Although background electrical activity was depressed in all frequency bands immediately after HI, suppression in the β and γ bands was greatest and lasted longest. Spontaneous electrographic seizures were recorded, but only in a few HI-treated animals. Ha-treated rat pups were similar to sham controls, they had no subsequent spontaneous electrographic seizures after the treatment and background suppression was only briefly observed in one frequency band. Thus, the normal age-dependent maturation of electrical activity patterns in control animals was significantly disrupted after HI. Suppression of the background EEG observed here after HI-induced acute seizures and subsequent brain injury may be a noninvasive biomarker for detecting severe brain injuries and may help predict subsequent epilepsy.NEW & NOTEWORTHY Biomarkers of neonatal brain injury are needed. Hypoxia-ischemia (HI) in immature rat pups caused severe brain injury, which was associated with strongly suppressed background EEG. The suppression was most robust in the β and γ bands; it started immediately after the HI injury and persisted for days. Thus, background suppression may be a noninvasive biomarker for detecting severe brain injuries and may help predict subsequent epilepsy.
Collapse
Affiliation(s)
- A Zayachkivsky
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - M J Lehmkuhle
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - J J Ekstrand
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - F E Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
4
|
Spontaneous Recurrent Absence Seizure-like Events in Wild-Caught Rats. J Neurosci 2019; 39:4829-4841. [PMID: 30971439 DOI: 10.1523/jneurosci.1167-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 03/09/2019] [Accepted: 03/27/2019] [Indexed: 11/21/2022] Open
Abstract
Absence epilepsy is a heritable human neurological disorder characterized by brief nonconvulsive seizures with behavioral arrest, moderate-to-severe loss of consciousness (absence), and distinct spike-wave discharges (SWDs) in the EEG and electrocorticogram (ECoG). Genetic models of this disorder have been created by selectively inbreeding rats for absence seizure-like events with similar electrical and behavioral characteristics. However, these events are also common in outbred laboratory rats, raising concerns about whether SWD/immobility accurately reflects absence epilepsy as opposed to "normal" rodent behavior. We hypothesized that, if SWD/immobility models absence seizures, it would not exist in wild-caught rats due to the pressures of natural selection. To test this hypothesis, we compared chronic video/electrocorticogram recordings from male and female wild-caught (Brown-Norway [BN]) rats to recordings from laboratory outbred BN, outbred Long-Evans, and inbred WAG/Rij rats (i.e., a model of absence epilepsy). Wild-caught BN rats displayed absence-like SWD/immobility events that were highly similar to outbred BN rats in terms of spike-wave morphology, frequency, diurnal rhythmicity, associated immobility, and sensitivity to the anti-absence drug, ethosuximide; however, SWD bursts were less frequent and of shorter duration in wild-caught and outbred BN rats than the outbred Long-Evans and inbred WAG/Rij strains. We conclude that SWD/immobility in rats does not represent absence seizures, although they appear to have many similarities. In wild rats, SWD/immobility appears to represent normal brain activity that does not reduce survival in natural environments, a conclusion that logically extends to outbred laboratory rats and possibly to those that have been inbred to model absence epilepsy.SIGNIFICANCE STATEMENT Spike-wave discharges (SWDs), behavioral arrest, and diminished consciousness are cardinal signs of seizures in human absence epilepsy and are used to model this disorder in inbred rats. These characteristics, however, are routinely found in outbred laboratory rats, leading to debate on whether SWD/immobility is a valid model of absence seizures. The SWD/immobility events in wild-caught rats appear equivalent to those found in outbred and inbred rat strains, except for lower incidence and shorter durations. Our results indicate that the electrophysiological and behavioral characteristics of events underlying hypothetical absence epilepsy in rodent models are found in wild rats captured in their natural environment. Other criteria beyond observation of SWDs and associated immobility are required to objectively establish absence epilepsy in rat models.
Collapse
|
5
|
Pisani F, Pavlidis E, Facini C, La Morgia C, Fusco C, Cantalupo G. A 15-year epileptogenic period after perinatal brain injury. FUNCTIONAL NEUROLOGY 2017; 32:49-53. [PMID: 28380324 DOI: 10.11138/fneur/2017.32.1.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Seizures are a frequent acute neurological event in the neonatal period. Up to 12 to 18% of all seizures in newborns are due to perinatal stroke and up to 39% of affected children can then develop epilepsy in childhood. We report the case of a young patient who presented stroke-related seizures in the neonatal period and then developed focal symptomatic epilepsy at 15 years of age, and in whom the epileptic focus was found to co-localize with the site of his ischemic brain lesion. Such a prolonged silent period before onset of remote symptomatic epilepsy has not previously been reported. This case suggests that newborns with seizures due to a neonatal stroke are at higher risk of epilepsy and that the epileptogenic process in these subjects can last longer than a decade.
Collapse
|
6
|
Seo SY, Shim GH, Chey MJ, You SJ. Prognostic factors of neurological outcomes in late-preterm and term infants with perinatal asphyxia. KOREAN JOURNAL OF PEDIATRICS 2016; 59:440-445. [PMID: 27895691 PMCID: PMC5118503 DOI: 10.3345/kjp.2016.59.11.440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 02/04/2023]
Abstract
PURPOSE This study aimed to identify prognostic factors of neurological outcomes, including developmental delay, cerebral palsy and epilepsy in late-preterm and term infants with perinatal asphyxia. METHODS All late-preterm and term infants with perinatal asphyxia or hypoxic-ischemic insults who admitted the neonatal intensive care unit of Inje University Sanggye Paik Hospital between 2006 and 2014 and were followed up for at least 2 years were included in this retrospective study. Abnormal neurological outcomes were defined as cerebral palsy, developmental delay and epilepsy. RESULTS Of the 114 infants with perinatal asphyxia, 31 were lost to follow-up. Of the remaining 83 infants, 10 died, 56 had normal outcomes, and 17 had abnormal outcomes: 14 epilepsy (82.4%), 13 cerebral palsy (76.5%), 16 developmental delay (94.1%). Abnormal outcomes were significantly more frequent in infants with later onset seizure, clinical seizure, poor electroencephalography (EEG) background activity, lower Apgar score at 1 and 5 minutes and abnormal brain imaging (P<0.05). Infants with and without epilepsy showed significant differences in EEG background activity, clinical and electrographic seizures on EEG, Apgar score at 5 minutes and brain imaging findings. CONCLUSION We should apply with long-term video EEG or amplitude integrated EEG in order to detect and management subtle clinical or electrographic seizures in neonates with perinatal asphyxia. Also, long-term, prospective studies with large number of patients are needed to evaluate more exact prognostic factors in neonates with perinatal asphyxia.
Collapse
Affiliation(s)
- Sun Young Seo
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Gyu Hong Shim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Myoung Jae Chey
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Su Jeong You
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Shima A, Nitta N, Suzuki F, Laharie AM, Nozaki K, Depaulis A. Activation of mTOR signaling pathway is secondary to neuronal excitability in a mouse model of mesio-temporal lobe epilepsy. Eur J Neurosci 2015; 41:976-88. [DOI: 10.1111/ejn.12835] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Ayako Shima
- Department of Neurosurgery; Shiga University of Medical Science, Seta-Tsukinowa-Cho; Otsu Shiga 520-2192 Japan
- Department of Neurosurgery; Koto Memorial Hospital; Higashioumi Shiga Japan
| | - Naoki Nitta
- Department of Neurosurgery; Shiga University of Medical Science, Seta-Tsukinowa-Cho; Otsu Shiga 520-2192 Japan
- Inserm, U836; Grenoble France
- Grenoble Institut des Neurosciences; University of Grenoble Alpes; Grenoble France
| | - Fumio Suzuki
- Department of Neurosurgery; Koto Memorial Hospital; Higashioumi Shiga Japan
| | - Anne-Marie Laharie
- Inserm, U836; Grenoble France
- Grenoble Institut des Neurosciences; University of Grenoble Alpes; Grenoble France
| | - Kazuhiko Nozaki
- Department of Neurosurgery; Shiga University of Medical Science, Seta-Tsukinowa-Cho; Otsu Shiga 520-2192 Japan
| | - Antoine Depaulis
- Inserm, U836; Grenoble France
- Grenoble Institut des Neurosciences; University of Grenoble Alpes; Grenoble France
- CHU de Grenoble; Hôpital Michallon; Grenoble France
| |
Collapse
|
8
|
Risk factors and scoring system as a prognostic tool for epilepsy after neonatal seizures. Pediatr Neurol 2014; 50:77-84. [PMID: 24138951 DOI: 10.1016/j.pediatrneurol.2013.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 07/20/2013] [Accepted: 08/11/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND Neonatal seizures may cause irreversible changes to the immature brain and. A scoring system for early prognostic information could be a useful clinical tool. The aim of the study was to analyze risk factors for epilepsy after neonatal seizures, to validate Garfinkle's scoring system, and to analyze whether a new scoring system is feasible. METHODS A retrospective study of 176 newborns (59.1% boys, 40.9% girls, 70.5% term, 29.5% preterm; mean birth weight 2820 g), admitted to the Department of Neonatology, Division of Pediatrics, University Medical Centre, Ljubljana, because of neonatal seizures (clinical and/or neurophysiological), was performed. Epilepsy rate between 2 and 12 years of follow-up was 18.1%. Five independent predictors from Garfinkle's study and other known predictors were entered into hierarchical binary logistic regression models and analyzed through four steps to identify independent predictors of epilepsy. We tested whether any of the predictors was an effect modifier. RESULTS Of five potential predictors from Garfinkle's score, electroencephalograph background findings and etiology were predictive. Etiologies, gestation, mode of delivery, duration of seizures, and other risk factors at birth were found to be independent predictors. Duration of seizures has a different effect on prognosis depending on the gestational age. CONCLUSION Gestational age determines the association between duration of seizures and epilepsy. Scoring systems to predict development of epilepsy after neonatal seizures need to limit interaction between important predictor variables.
Collapse
|
9
|
Experimental models of status epilepticus and neuronal injury for evaluation of therapeutic interventions. Int J Mol Sci 2013; 14:18284-318. [PMID: 24013377 PMCID: PMC3794781 DOI: 10.3390/ijms140918284] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 07/31/2013] [Accepted: 08/09/2013] [Indexed: 01/19/2023] Open
Abstract
This article describes current experimental models of status epilepticus (SE) and neuronal injury for use in the screening of new therapeutic agents. Epilepsy is a common neurological disorder characterized by recurrent unprovoked seizures. SE is an emergency condition associated with continuous seizures lasting more than 30 min. It causes significant mortality and morbidity. SE can cause devastating damage to the brain leading to cognitive impairment and increased risk of epilepsy. Benzodiazepines are the first-line drugs for the treatment of SE, however, many people exhibit partial or complete resistance due to a breakdown of GABA inhibition. Therefore, new drugs with neuroprotective effects against the SE-induced neuronal injury and degeneration are desirable. Animal models are used to study the pathophysiology of SE and for the discovery of newer anticonvulsants. In SE paradigms, seizures are induced in rodents by chemical agents or by electrical stimulation of brain structures. Electrical stimulation includes perforant path and self-sustaining stimulation models. Pharmacological models include kainic acid, pilocarpine, flurothyl, organophosphates and other convulsants that induce SE in rodents. Neuronal injury occurs within the initial SE episode, and animals exhibit cognitive dysfunction and spontaneous seizures several weeks after this precipitating event. Current SE models have potential applications but have some limitations. In general, the experimental SE model should be analogous to the human seizure state and it should share very similar neuropathological mechanisms. The pilocarpine and diisopropylfluorophosphate models are associated with prolonged, diazepam-insensitive seizures and neurodegeneration and therefore represent paradigms of refractory SE. Novel mechanism-based or clinically relevant models are essential to identify new therapies for SE and neuroprotective interventions.
Collapse
|
10
|
Scholl EA, Dudek FE, Ekstrand JJ. Neuronal degeneration is observed in multiple regions outside the hippocampus after lithium pilocarpine-induced status epilepticus in the immature rat. Neuroscience 2013; 252:45-59. [PMID: 23896573 DOI: 10.1016/j.neuroscience.2013.07.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 01/25/2023]
Abstract
Although hippocampal sclerosis is frequently identified as a possible epileptic focus in patients with temporal lobe epilepsy, neuronal loss has also been observed in additional structures, including areas outside the temporal lobe. The claim from several researchers using animal models of acquired epilepsy that the immature brain can develop epilepsy without evidence of hippocampal neuronal death raises the possibility that neuronal death in some of these other regions may also be important for epileptogenesis. The present study used the lithium pilocarpine model of acquired epilepsy in immature animals to assess which structures outside the hippocampus are injured acutely after status epilepticus. Sprague-Dawley rat pups were implanted with surface EEG electrodes, and status epilepticus was induced at 20 days of age with lithium pilocarpine. After 72 h, brain tissue from 12 animals was examined with Fluoro-Jade B, a histochemical marker for degenerating neurons. All animals that had confirmed status epilepticus demonstrated Fluoro-Jade B staining in areas outside the hippocampus. The most prominent staining was seen in the thalamus (mediodorsal, paratenial, reuniens, and ventral lateral geniculate nuclei), amygdala (ventral lateral, posteromedial, and basomedial nuclei), ventral premammillary nuclei of hypothalamus, and paralimbic cortices (perirhinal, entorhinal, and piriform) as well as parasubiculum and dorsal endopiriform nuclei. These results demonstrate that lithium pilocarpine-induced status epilepticus in the immature rat brain consistently results in neuronal injury in several distinct areas outside of the hippocampus. Many of these regions are similar to areas damaged in patients with temporal lobe epilepsy, thus suggesting a possible role in epileptogenesis.
Collapse
Key Words
- AA
- ACH
- ACo
- AD
- AHC
- AI
- AM
- AO
- APir
- AStr
- AV
- Acb
- AcbSh
- BAOT
- BLA
- BLP
- BLV
- BMA
- BMP
- BSTIA
- BSTM
- CA
- CL
- CM
- CPu
- CeL
- CeM
- Cg1-3
- DEn
- DG
- DI
- DLG
- DP
- EEG
- Ent
- Fluoro-jade B
- Fr1-3
- GABA
- GI
- GP
- HC
- Hil
- I
- IL
- LDDM
- LDVL
- LHb
- LM
- LO
- LOT
- LPLR
- LPMR
- LSD
- LSI
- LSV
- LaD
- LaV
- MD
- MGD
- MGM
- MGP
- MGV
- MHb
- MO
- MS
- MTu
- MeA
- MePD
- MePV
- NAc
- Oc2L
- P
- PC
- PF
- PLCo
- PMCo
- PMD
- PMV
- PRh
- PT
- PVA
- PVP
- PaS
- Par1
- Pir
- Po
- PrS
- RSA
- RSG
- Re
- Rh
- Rt
- S
- SG
- SI
- SNR
- STh
- TLE
- Te1,3
- VL
- VLG
- VLO
- VM
- VP
- VPL
- VPM
- VTR
- ZI
- accumbens
- accumbens shell
- agranular insular cortex
- amygdalopiriform transition area
- amygdalostriatal transition area
- anterior amygdaloid area
- anterior cingulate
- anterior cortical nucleus
- anterior hypothalamic area
- anterior hypothalamic area, central
- anterior olfactory nucleus
- anterodorsal nucleus
- anteromedial
- anteroventral nucleus
- basolateral nucleus, anterior
- basolateral nucleus, posterior
- basolateral nucleus, ventral
- basomedial nucleus, anterior
- basomedial nucleus, posterior
- bed nucleus accessory olfactory tract
- bed nucleus stria terminalis, intraamygdaloid division
- bed stria terminalis nuclei
- caudate putamen
- central nucleus, lateral
- central nucleus, medial
- centrolateral nucleus
- centromedial nucleus
- cornu ammonis
- dentate gyrus
- dorsal endopiriform nucleus
- dorsal peduncular
- dorsolateral geniculate nucleus
- dysgranular insular cortex
- electroencephalogram
- entorhinal cortex
- frontal cortex
- globus pallidus
- granular insular cortex
- hilus
- hippocampus
- immature brain
- infralimbic
- intercalated masses
- lateral habenula
- lateral mammillary
- lateral nucleus, dorsal
- lateral nucleus, ventral
- lateral orbital cortex
- lateral septal, dorsal
- lateral septal, intermediate
- lateral septal, ventral
- laterodorsal nucleus, dorsomedial
- laterodorsal nucleus, ventrolateral
- lateroposterior nucleus, lateral rostral
- lateroposterior nucleus, medial rostral
- lithium pilocarpine
- medial geniculate nucleus, dorsal
- medial geniculate nucleus, medial
- medial geniculate nucleus, ventral
- medial globus pallidus
- medial habenula
- medial nucleus, anterior
- medial nucleus, posterodorsal
- medial nucleus, posteroventral
- medial orbital cortex
- medial septal
- medial tuberal
- mediodorsal nucleus
- nucleus accumbens
- nucleus lateral olfactory tract
- occipital cortex
- paracentral
- parafasicular
- parasubiculum
- paratenial
- paraventricular nucleus, anterior
- paraventricular nucleus, posterior
- parietal cortex
- perirhinal cortex
- piriform cortex
- post-natal day
- posterior nucleus
- posterolateral cortical nucleus
- posteromedial cortical nucleus
- premammillary nucleus, dorsal
- premammillary nucleus, ventral
- presubiculum
- reticular nucleus
- retrosplenial agranular cortex
- retrosplenial granular cortex
- reuniens nucleus
- rhomboid nucleus
- status epilepticus
- subiculum
- substantia innominate
- substantia nigra pars reticulate
- subthalamic nucleus
- suprageniculate nucleus
- temporal cortex
- temporal lobe epilepsy
- vRe
- ventral pallidum
- ventral posterolateral nucleus
- ventral posteromedial nucleus
- ventral reuniens nucleus
- ventral tegmental area
- ventrolateral geniculate nucleus
- ventrolateral nucleus
- ventrolateral orbital cortex
- ventromedial nucleus
- zona incerta
- γ-aminobutyric acid
Collapse
Affiliation(s)
- E A Scholl
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | | | | |
Collapse
|
11
|
Abstract
BACKGROUND Seizures are one of the most common symptoms of acute neurological disorders in newborns. This study aimed at evaluating predictors of epilepsy in newborns with neonatal seizures. METHODS We recruited consecutively 85 neonates with repeated neonatal video-electroencephalogram (EEG)-confirmed seizures between January 1999 and December 2004. The relationship between clinical, EEG, and ultrasound (US) data in the neonatal period and the development of postneonatal epilepsy was investigated at 7 y of age. RESULTS Fifteen patients (17.6%) developed postneonatal epilepsy. Partial or no response to anticonvulsant therapy (odds ratio (OR) 16.7, 95% confidence interval (CI): 1.8-155.8, P = 0.01; OR 47, 95% CI: 5.2-418.1, P < 0.01, respectively), severely abnormal cerebral US scan findings (OR: 5.4; 95% CI: 1.1-27.4; P < 0.04), severely abnormal EEG background activity (OR: 9.5; 95% CI: 1.6-54.2; P = 0.01), and the presence of status epilepticus (OR: 6.1; 95% CI: 1.8-20.3; P < 0.01) were found to be predictors of epilepsy. However, only the response to therapy seemed to be an independent predictor of postneonatal epilepsy. CONCLUSION Neonatal seizures seem to be related to postneonatal epilepsy. Recurrent and prolonged neonatal seizures may act on an epileptogenic substrate, causing further damage, which is responsible for the subsequent clinical expression of epilepsy.
Collapse
|
12
|
Sanchez RM, Ribak CE, Shapiro LA. Synaptic connections of hilar basal dendrites of dentate granule cells in a neonatal hypoxia model of epilepsy. Epilepsia 2012; 53 Suppl 1:98-108. [PMID: 22612814 DOI: 10.1111/j.1528-1167.2012.03481.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Numerous animal models of epileptogenesis demonstrate neuroplastic changes in the hippocampus. These changes occur not only for the mature neurons and glia, but also for the newly generated granule cells in the dentate gyrus. One of these changes, the sprouting of mossy fiber axons, is derived predominantly from newborn granule cells in adult rats with pilocarpine-induced temporal lobe epilepsy. Newborn granule cells also mainly contribute to another neuroplastic change, hilar basal dendrites (HBDs), which are synaptically targeted by mossy fibers in the hilus. Both sprouted mossy fibers and HBDs contribute to recurrent excitatory circuitry that is hypothesized to be involved in increased seizure susceptibility and the development of spontaneous recurrent seizures (SRS) that occur following the initial pilocarpine-induced status epilepticus. Considering the putative role of these neuroplastic changes in epileptogenesis, a critical question is whether similar anatomic phenomena occur after epileptogenic insults to the immature brain, where the proportion of recently born granule cells is higher due to ongoing maturation. The current study aimed to determine if such neuroplastic changes could be observed in a standardized model of neonatal seizure-inducing hypoxia that results in development of SRS. We used immunoelectron microscopy for the immature neuronal marker doublecortin to label newborn neurons and their HBDs following neonatal hypoxia. Our goal was to determine whether synapses form on HBDs from neurons born after neonatal hypoxia. Our results show a robust synapse formation on HBDs from animals that experienced neonatal hypoxia, regardless of whether the animals experienced tonic-clonic seizures during the hypoxic event. In both cases, the axon terminals that synapse onto HBDs were identified as mossy fiber terminals, based on the appearance of dense core vesicles. No such synapses were observed on HBDs from newborn granule cells obtained from sham animals analyzed at the same time points. This aberrant circuit formation may provide an anatomic substrate for increased seizure susceptibility and the development of epilepsy.
Collapse
Affiliation(s)
- Russell M Sanchez
- Department of Surgery and Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, 1901 S. 1st Street, Temple, TX 76504, U.S.A
| | | | | |
Collapse
|
13
|
Abstract
When mimicking epileptic processes in a laboratory setting, it is important to understand the differences between experimental models of seizures and epilepsy. Because human epilepsy is defined by the appearance of multiple spontaneous recurrent seizures, the induction of a single acute seizure without recurrence does not constitute an adequate epilepsy model. Animal models of epilepsy might be useful for various tasks. They allow for the investigation of pathophysiological mechanisms of the disease, the evaluation, or the development of new antiepileptic treatments, and the study of the consequences of recurrent seizures and neurological and psychiatric comorbidities. Although clinical relevance is always an issue, the development of models of pediatric epilepsies is particularly challenging due to the existence of several key differences in the dynamics of human and rodent brain maturation. Another important consideration in modeling pediatric epilepsy is that "children are not little adults," and therefore a mere application of models of adult epilepsies to the immature specimens is irrelevant. Herein, we review the models of pediatric epilepsy. First, we illustrate the differences between models of pediatric epilepsy and models of the adulthood consequences of a precipitating insult in early life. Next, we focus on new animal models of specific forms of epilepsies that occur in the developing brain. We conclude by emphasizing the deficiencies in the existing animal models and the need for several new models.
Collapse
|
14
|
Glass HC, Hong KJ, Rogers EE, Jeremy RJ, Bonifacio SL, Sullivan JE, Barkovich AJ, Ferriero DM. Risk factors for epilepsy in children with neonatal encephalopathy. Pediatr Res 2011; 70:535-40. [PMID: 21796017 PMCID: PMC3189270 DOI: 10.1203/pdr.0b013e31822f24c7] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We examined neonatal predictors of epilepsy in term newborns with neonatal encephalopathy (NE) by studying children enrolled in a longitudinal, single center cohort study. Clinical data were obtained through chart review, and MRI was performed in the neonatal period. We administered a seizure questionnaire to parents of children aged ≥ 12 mo (range, 12 mo to 16.5 y) to determine the outcome of epilepsy. The association between clinical predictors and time to onset of epilepsy was assessed using Cox proportional hazards regression. Thirteen of 129 children developed epilepsy: all had neonatal seizures and brain injury on neonatal MRI. Of the newborns with neonatal seizures, 25% (15.8/1000 person-years) developed epilepsy, with the highest hazard ratios (HRs) in the newborns with status epilepticus (HR, 35.8; 95% CI, 6.5-196.5). Children with severe or near-total brain injury were more likely to develop epilepsy compared with those with only mild or moderate injury (HR, 5.5; 95% CI, 1.8-16.8). In a multivariable analysis adjusting for degree of encephalopathy and severe/near-total brain injury, status epilepticus was independently associated with epilepsy. These data add to information regarding epilepsy pathogenesis and further aid clinicians to counsel parents regarding the likelihood that a newborn with NE will develop epilepsy.
Collapse
Affiliation(s)
- Hannah C Glass
- Department of Neurology, University of California at San Francisco, San Francisco, California 94143, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Febrile seizures research is really heating up! Epilepsy Curr 2011; 11:30-2. [PMID: 21852864 DOI: 10.5698/1535-7511-11.1.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Ekstrand JJ, Pouliot W, Scheerlinck P, Dudek FE. Lithium pilocarpine-induced status epilepticus in postnatal day 20 rats results in greater neuronal injury in ventral versus dorsal hippocampus. Neuroscience 2011; 192:699-707. [PMID: 21669257 DOI: 10.1016/j.neuroscience.2011.05.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/04/2011] [Accepted: 05/10/2011] [Indexed: 11/30/2022]
Abstract
Many quantitative animal studies examining the possible relationship between hippocampal neuronal loss and the development of epilepsy have examined only the dorsal hippocampus. The ventral hippocampus, however, represents the more homologous structure to the anterior hippocampus in humans, which is the area associated with the maximal damage in patients with temporal lobe epilepsy. This study tested the hypothesis that the ventral hippocampus has greater neuronal injury than the dorsal hippocampus in an animal model of chemoconvulsant-status epilepticus at postnatal day 20. Status epilepticus was induced in postnatal day 20 Sprague-Dawley rat pups with the chemoconvulsant lithium-pilocarpine and brain tissue was examined with Fluoro-Jade B. Horizontal sections (n=7) favoring a visualization of the ventral hippocampus showed marked Fluoro-Jade B staining in CA1, CA3, and hilar region. Coronal sections favoring a visualization of the dorsal hippocampus did not consistently show as robust a staining pattern in these regions. In coronal sections where both the dorsal and ventral hippocampus could be viewed, greater staining was always seen in ventral versus dorsal hippocampus. Quantitative analysis of cell counts demonstrated a significant difference between ventral and dorsal hippocampus in CA1 and CA3, but not hilus. These results demonstrate that in ventral hippocampus, lithium pilocarpine-induced status epilepticus consistently results in hippocampal neuronal injury in postnatal day 20 rats. This study shows the importance of including the ventral hippocampus in any analysis of seizure-induced hippocampal neuronal injury, and raises concerns about the accuracy of studies quantifying hippocampal neuronal loss when only the dorsal hippocampus is examined.
Collapse
Affiliation(s)
- J J Ekstrand
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| | | | | | | |
Collapse
|
17
|
Dudek FE, Staley KJ. The time course of acquired epilepsy: implications for therapeutic intervention to suppress epileptogenesis. Neurosci Lett 2011; 497:240-6. [PMID: 21458536 DOI: 10.1016/j.neulet.2011.03.071] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/23/2011] [Indexed: 01/27/2023]
Abstract
Relatively little is known about the time course of the development of spontaneous recurrent seizures (i.e., epileptogenesis) after brain injury in human patients, or even in animal models. This time course is determined, at least in part, by the underlying molecular and cellular mechanisms responsible for acquired epilepsy. An understanding of the critical mechanistic features of acquired epilepsy will be useful, if not essential, for developing strategies to block or suppress epileptogenesis. Here, data on the time course of the development of spontaneous recurrent seizures are summarized from experiments using nearly continuous electrographic (EEG) recordings in (1) kainate-treated rats, which are a model of temporal lobe epilepsy, and (2) rats subjected to unilateral carotid occlusion with superimposed hypoxia at postnatal day 7, which is a model of perinatal stroke. Although the classical view of the development of epileptogenesis is a step-function of time after the brain injury, with a latent period present between the brain injury and the first unprovoked seizure, the data described here show that seizure frequency was a sigmoid function of time after the insult in both animal models. Furthermore, the spontaneous recurrent seizures often occurred in clusters, even shortly after the first spontaneous seizure. These data suggest that (1) epileptogenesis is a continuous process that extends past the first spontaneous clinical seizure, (2) seizure clusters can obscure this continuous process, and (3) the potential time for administration of a therapy to suppress acquired epilepsy extends well past the first clinical seizure.
Collapse
Affiliation(s)
- F Edward Dudek
- Department of Physiology, University of Utah School of Medicine, 420 Chipeta Way, Suite 1700, Salt Lake City, UT 84108, United States.
| | | |
Collapse
|
18
|
Rakhade SN, Klein PM, Huynh T, Hilario-Gomez C, Kosaras B, Rotenberg A, Jensen FE. Development of later life spontaneous seizures in a rodent model of hypoxia-induced neonatal seizures. Epilepsia 2011; 52:753-65. [PMID: 21366558 DOI: 10.1111/j.1528-1167.2011.02992.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE To study the development of epilepsy following hypoxia-induced neonatal seizures in Long-Evans rats and to establish the presence of spontaneous seizures in this model of early life seizures. METHODS Long-Evans rat pups were subjected to hypoxia-induced neonatal seizures at postnatal day 10 (P10). Epidural cortical electroencephalography (EEG) and hippocampal depth electrodes were used to detect the presence of seizures in later adulthood (> P60). In addition, subdermal wire electrode recordings were used to monitor age at onset and progression of seizures in the juvenile period, at intervals between P10 and P60. Timm staining was performed to evaluate mossy fiber sprouting in the hippocampi of P100 adult rats that had experienced neonatal seizures. KEY FINDINGS In recordings made from adult rats (P60-180), the prevalence of epilepsy in cortical and hippocampal EEG recordings was 94.4% following early life hypoxic seizures. These spontaneous seizures were identified by characteristic spike and wave activity on EEG accompanied by behavioral arrest and facial automatisms (electroclinical seizures). Phenobarbital injection transiently abolished spontaneous seizures. EEG in the juvenile period (P10-60) showed that spontaneous seizures first occurred approximately 2 weeks after the initial episode of hypoxic seizures. Following this period, spontaneous seizure frequency and duration increased progressively with time. Furthermore, significantly increased sprouting of mossy fibers was observed in the CA3 pyramidal cell layer of the hippocampus in adult animals following hypoxia-induced neonatal seizures. Notably, Fluoro-Jade B staining confirmed that hypoxic seizures at P10 did not induce acute neuronal death. SIGNIFICANCE The rodent model of hypoxia-induced neonatal seizures leads to the development of epilepsy in later life, accompanied by increased mossy fiber sprouting. In addition, this model appears to exhibit a seizure-free latent period, following which there is a progressive increase in the frequency of electroclinical seizures.
Collapse
Affiliation(s)
- Sanjay N Rakhade
- Department of Neurology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Baram TZ, Jensen FE, Brooks-Kayal A. Does acquired epileptogenesis in the immature brain require neuronal death. Epilepsy Curr 2011; 11:21-6. [PMID: 21461261 PMCID: PMC3063568 DOI: 10.5698/1535-7511-11.1.21] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Because epilepsy often occurs during development, understanding the mechanisms by which this process takes place (epileptogenesis) is important. In addition, the age-specificity of seizures and epilepsies of the neonatal, infancy, and childhood periods suggests that the processes and mechanisms that culminate in epilepsy might be age specific as well. Here we provide an updated review of recent and existing literature and discuss evidence that neuronal loss may occur during epileptogenesis in the developing brain, but is not required for the epileptogenic process. We speculate about the mechanisms for the resilience of neurons in immature limbic structures to epileptogenic insults, and propose that the type, duration and severity of these insults influence the phenomenology of the resulting spontaneous seizures.
Collapse
Affiliation(s)
- Tallie Z Baram
- Departments of Anatomy/Neurobiology and Pediatrics, University of California Irvine, Irvine, CA
| | - Frances E Jensen
- Children's Hospital Boston and Harvard Medical School, Neurology, Boston, MA
| | - Amy Brooks-Kayal
- Pediatrics and Neurology, University of Colorado Denver School of Medicine and The Children's Hospital Denver and Aurora, CO
| |
Collapse
|