1
|
Vorholt SM, Hamker N, Sparka H, Enczmann J, Zeiler T, Reimer T, Fischer J, Balz V. High-Throughput Screening of Blood Donors for Twelve Human Platelet Antigen Systems Using Next-Generation Sequencing Reveals Detection of Rare Polymorphisms and Two Novel Protein-Changing Variants. Transfus Med Hemother 2020; 47:33-44. [PMID: 32110192 DOI: 10.1159/000504894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/15/2019] [Indexed: 01/19/2023] Open
Abstract
Background Exposure to non-matching human platelet alloantigens (HPA) may result in alloimmunization. Antibodies to HPA can be responsible for post-transfusion purpura, refractoriness to donor platelets, and fetal and neonatal alloimmune thrombocytopenia. For the supply of compatible apheresis platelet concentrates, the HPA genotypes are determined in a routine manner. Methods Here, we describe a novel method for genotyping twelve different HPA systems simultaneously, including HPA-1 to HPA-5, HPA-9w, HPA-10w, HPA-16w, HPA-19w, HPA-27w, and the novel HPA-34w by means of amplicon-based next-generation sequencing (NGS). Blood donor samples of 757 individuals with a migration background and 547 of Western European ancestry were genotyped in a mass-screening setup. An in-house software was developed for fast and automatic analysis. TaqMan assay and Sanger sequencing results served for validation of the NGS workflow. Finally, blood donors were divided in several groups based on their country of origin and the allele frequencies were compared. Results For 1,299 of 1,304 samples (99.6%) NGS was successfully performed. The concordance with TaqMan assay and Sanger sequencing results was 99.8%. Allele-calling dropouts that were observed for two samples with the TaqMan assay caused by rare single nucleotide polymorphisms were resolved by NGS. Additionally, twenty rare and two novel variants in the coding regions of the genes ITGB3, GPB1A, ITGBA2, and CD109 were detected. The determined allele frequencies were similar to those published in the gnomAD database. Conclusions No significant differences were observed in the distribution of allele frequencies of HPA-1 through HPA-5 and HPA-15 throughout the analyzed groups except for a lower allele frequency for the HPA-1b allele in the group of donors with Southern Asian ancestry. In contrast, other nucleotide variants that have not yet been phenotypically characterized occurred three times more often in blood donors with a migration background. High-throughput amplicon-based NGS is a reliable method for screening HPA genotypes in a large sample cohort simultaneously. It is easily upgradeable for genotyping additional targets without changing the setup or the analysis pipeline. Mass-screening methods will help building up blood donor registries to provide matched blood products.
Collapse
Affiliation(s)
- Stephanie Maria Vorholt
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Nele Hamker
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Hagen Sparka
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Jürgen Enczmann
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Thomas Zeiler
- German Red Cross Blood Service West, Hagen/Breitscheid/Münster/Bad-Salzuflen, Germany
| | - Tanja Reimer
- German Red Cross Blood Service West, Hagen/Breitscheid/Münster/Bad-Salzuflen, Germany
| | - Johannes Fischer
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Vera Balz
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Ahlen MT, Husebekk A, Killie IL, Skogen B, Stuge TB. T cell responses to human platelet antigen-1a involve a unique form of indirect allorecognition. JCI Insight 2016; 1:e86558. [PMID: 27699233 DOI: 10.1172/jci.insight.86558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a pregnancy-related condition caused by maternal antibodies binding an alloantigen on fetal platelets. In most cases the alloantigen is formed by a single amino acid, integrin β3 Leu33, referred to as human platelet antigen-1a (HPA-1a). Production of anti-HPA-1a antibodies likely depends on CD4+ T cells that recognize the same alloantigen in complex with the HLA-DRA/DRB3*01:01 molecule. While this complex is well characterized, T cell recognition of it is not. Here, to examine the nature of antigen recognition by HPA-1a-specific T cells, we assayed native and synthetic variants of the integrin β3 peptide antigen for binding to DRA/DRB3*01:01-positive antigen-presenting cells and for T cell activation. We found that HPA-1a-specific T cells recognize non-allogeneic integrin β3 residues anchored to DRA/DRB3*01:01 by the allogeneic Leu33, which itself is not directly recognized by these T cells. Furthermore, these T cell responses are diverse, with different T cells depending on different residues for recognition. This represents a unique form of indirect allorecognition in which a non-allogeneic peptide sequence becomes immunogenic by stable anchoring to MHC by an allogeneic residue.
Collapse
Affiliation(s)
- Maria Therese Ahlen
- Division of Diagnostic Services, Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway.,Immunology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Anne Husebekk
- Immunology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Ida Løken Killie
- Immunology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Bjørn Skogen
- Division of Diagnostic Services, Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway.,Immunology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Tor Brynjar Stuge
- Immunology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Eksteen M, Tiller H, Averina M, Heide G, Kjaer M, Ghevaert C, Michaelsen TE, Ihle Ø, Husebekk A, Skogen B, Stuge TB. Characterization of a human platelet antigen-1a-specific monoclonal antibody derived from a B cell from a woman alloimmunized in pregnancy. THE JOURNAL OF IMMUNOLOGY 2015; 194:5751-60. [PMID: 25972474 DOI: 10.4049/jimmunol.1401599] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 04/09/2015] [Indexed: 11/19/2022]
Abstract
Human platelet Ag (HPA)-1a, located on integrin β3, is the main target for alloantibodies responsible for fetal and neonatal alloimmune thrombocytopenia (FNAIT) in the white population. There are ongoing efforts to develop an Ab prophylaxis and therapy to prevent or treat FNAIT. In this study, an mAb specific for HPA-1a, named 26.4, was derived from an immortalized B cell from an alloimmunized woman who had an infant affected by FNAIT. It is the only HPA-1a-specific human mAb with naturally paired H and L chains. Specific binding of mAb 26.4, both native and recombinant forms, to platelets and to purified integrins αIIbβ3 (from platelets) and αVβ3 (from trophoblasts) from HPA-1a(+) donors was demonstrated by flow cytometry and surface plasmon resonance technology, respectively. No binding to HPA-1a(-) platelets or integrins was detected. Moreover, the Ab binds with higher affinity to integrin αVβ3 compared with a second HPA-1a-specific human mAb, B2G1. Further in vitro experimentation demonstrated that mAb 26.4 can opsonize HPA-1a(+) platelets for enhanced phagocytosis by monocytes, inhibit binding of maternal polyclonal anti-HPA-1a Abs, and weakly inhibit aggregation of HPA-1a-heterozygous platelets, the latter with no predicted clinical relevance. Thus, mAb 26.4 is highly specific for HPA-1a and could potentially be explored for use as a prophylactic or therapeutic reagent for FNAIT intervention and as a phenotyping reagent to identify women at risk for immunization.
Collapse
Affiliation(s)
- Mariana Eksteen
- Immunology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Heidi Tiller
- Immunology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway; Department of Obstetrics and Gynecology, University Hospital of North Norway, N-9038 Tromsø, Norway
| | - Maria Averina
- Department of Laboratory Medicine, Diagnostic Clinic, University Hospital of North Norway, N-9038 Tromsø, Norway
| | - Gøril Heide
- Immunology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Mette Kjaer
- Immunology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway; Department of Laboratory Medicine, Diagnostic Clinic, University Hospital of North Norway, N-9038 Tromsø, Norway; Prophylix Pharma AS, Forskningsparken, N-9294 Tromsø, Norway
| | - Cedric Ghevaert
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, United Kingdom; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, United Kingdom
| | - Terje E Michaelsen
- The Norwegian Institute of Public Health, N-0403 Oslo, Norway; and School of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | - Øistein Ihle
- The Norwegian Institute of Public Health, N-0403 Oslo, Norway; and
| | - Anne Husebekk
- Immunology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway; Department of Laboratory Medicine, Diagnostic Clinic, University Hospital of North Norway, N-9038 Tromsø, Norway
| | - Bjørn Skogen
- Immunology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway; Department of Laboratory Medicine, Diagnostic Clinic, University Hospital of North Norway, N-9038 Tromsø, Norway; Prophylix Pharma AS, Forskningsparken, N-9294 Tromsø, Norway
| | - Tor B Stuge
- Immunology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway;
| |
Collapse
|
4
|
Modeling and molecular dynamics simulations of the V33 variant of the integrin subunit β3: Structural comparison with the L33 (HPA-1a) and P33 (HPA-1b) variants. Biochimie 2014; 105:84-90. [DOI: 10.1016/j.biochi.2014.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/21/2014] [Indexed: 11/21/2022]
|
5
|
Jackson DJ, Eastlake JL, Kumpel BM. Human platelet antigen (HPA)-1a peptides do not reliably suppress anti-HPA-1a responses using a humanized severe combined immunodeficiency (SCID) mouse model. Clin Exp Immunol 2014; 176:23-36. [PMID: 24261689 DOI: 10.1111/cei.12242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2013] [Indexed: 12/21/2022] Open
Abstract
Fetal and neonatal alloimmune thrombocytopenia (FNAIT) occurs most frequently when human platelet antigen (HPA)-1a-positive fetal platelets are destroyed by maternal HPA-1a immunoglobulin (Ig)G antibodies. Pregnancies at risk are treated by administration of high-dose intravenous Ig (IVIG) to women, but this is expensive and often not well tolerated. Peptide immunotherapy may be effective for ameliorating some allergic and autoimmune diseases. The HPA-1a/1b polymorphism is Leu/Pro33 on β3 integrin (CD61), and the anti-HPA-1a response is restricted to HPA-1b1b and HLA-DRB3*0101-positive pregnant women with an HPA-1a-positive fetus. We investigated whether or not HPA-1a antigen-specific peptides that formed the T cell epitope could reduce IgG anti-HPA-1a responses, using a mouse model we had developed previously. Peripheral blood mononuclear cells (PBMC) in blood donations from HPA-1a-immunized women were injected intraperitoneally (i.p.) into severe combined immunodeficient (SCID) mice with peptides and HPA-1a-positive platelets. Human anti-HPA-1a in murine plasma was quantitated at intervals up to 15 weeks. HPA-1a-specific T cells in PBMC were identified by proliferation assays. Using PBMC of three donors who had little T cell reactivity to HPA-1a peptides in vitro, stimulation of anti-HPA-1a responses by these peptides occurred in vivo. However, with a second donation from one of these women which, uniquely, had high HPA-1a-specific T cell proliferation in vitro, marked suppression of the anti-HPA-1a response by HPA-1a peptides occurred in vivo. HPA-1a peptide immunotherapy in this model depended upon reactivation of HPA-1a T cell responses in the donor. For FNAIT, we suggest that administration of antigen-specific peptides to pregnant women might cause either enhancement or reduction of pathogenic antibodies.
Collapse
Affiliation(s)
- D J Jackson
- International Blood Group Reference Laboratory, Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK
| | | | | |
Collapse
|
6
|
Detection of anti-human platelet antibodies against integrin α2β1 using cell lines. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2012; 12 Suppl 1:s273-80. [PMID: 23245717 DOI: 10.2450/2012.0126-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/12/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Antibodies against human platelet antigens (HPA) are a cause of thrombocytopenia. Detection of rare anti-HPA antibodies using platelet preparations is difficult and would be improved by an alternative method that does not require platelets. In the present study, we describe the establishment of cell lines that stably express specific HPA associated with integrin α2β1 and the application of these cell lines for detecting anti-HPA-5a and anti-HPA-5b antibodies. MATERIALS AND METHODS Complementary DNA of the integrin α2 variants HPA-5b, -13b and -18b were individually transfected into K562 cells using retroviral vectors. Expression of integrin α2 was confirmed by flow cytometric analysis, immunoprecipitation and western blotting analysis. To verify whether the cell line panel was suitable for clinical diagnosis, we analysed its properties using monoclonal antibody-specific immobilisation of platelet antigens (MAIPA) and well-characterised serum samples. RESULTS Exogenous integrin α2 expression was observed in the transfected cells for over 6 months. The cell line panel specifically detected previously characterised anti-HPA-5a and anti-HPA-5b antisera. No reactivity was observed with control sera, including normal sera and HLA antisera. DISCUSSION We successfully established a cell line panel to facilitate the sensitive and reliable detection of anti-HPA-5a and anti-HPA-5b antibodies.
Collapse
|
7
|
Jallu V, Poulain P, Fuchs PFJ, Kaplan C, de Brevern AG. Modeling and molecular dynamics of HPA-1a and -1b polymorphisms: effects on the structure of the β3 subunit of the αIIbβ3 integrin. PLoS One 2012; 7:e47304. [PMID: 23155369 PMCID: PMC3498292 DOI: 10.1371/journal.pone.0047304] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 09/11/2012] [Indexed: 11/18/2022] Open
Abstract
Background The HPA-1 alloimmune system carried by the platelet integrin αIIbβ3 is the primary cause of alloimmune thrombocytopenia in Caucasians and the HPA-1b allele might be a risk factor for thrombosis. HPA-1a and -1b alleles are defined by a leucine and a proline, respectively, at position 33 in the β3 subunit. Although the structure of αIIbβ3 is available, little is known about structural effects of the L33P substitution and its consequences on immune response and integrin functions. Methodology/Principal Findings A complete 3D model of the L33-β3 extracellular domain was built and a P33 model was obtained by in silico mutagenesis. We then performed molecular dynamics simulations. Analyses focused on the PSI, I-EGF-1, and I-EGF-2 domains and confirmed higher exposure of residue 33 in the L33 β3 form. These analyses also showed major structural flexibility of all three domains in both forms, but increased flexibility in the P33 β3 form. The L33P substitution does not alter the local structure (residues 33 to 35) of the PSI domain, but modifies the structural equilibrium of the three domains. Conclusions These results provide a better understanding of HPA-1 epitopes complexity and alloimmunization prevalence of HPA-1a. P33 gain of structure flexibility in the β3 knee may explain the increased adhesion capacity of HPA-1b platelets and the associated thrombotic risk. Our study provides important new insights into the relationship between HPA-1 variants and β3 structure that suggest possible effects on the alloimmune response and platelet function.
Collapse
Affiliation(s)
- Vincent Jallu
- Laboratoire d'Immunologie Plaquettaire, INTS, Paris, France
| | | | | | | | | |
Collapse
|
8
|
Allen DL, Abrahamsson S, Murphy MF, Roberts DJ. Human platelet antigen 1a epitopes are dependent on the cation-regulated conformation of integrin α(IIb)β(3) (GPIIb/IIIa). J Immunol Methods 2011; 375:166-75. [PMID: 22036924 DOI: 10.1016/j.jim.2011.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/18/2011] [Accepted: 10/07/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND The HPA-1a (Leu(33)) polymorphism of platelet integrin αIIbβ3 is the target of alloantibodies in 70-80% cases of neonatal alloimmune thrombocytopenia (NAIT) in Caucasians and reliable detection of these antibodies is essential for appropriate clinical management. However, the ability to detect such antibodies is highly variable between laboratories and, in a number of clinical cases where there is a HPA-1 genotype mismatch between mother and neonate, HPA-1a antibodies are undetectable. Furthermore, some studies have not shown a consistent relationship between maternal anti-HPA-1a level and neonatal platelet count. Since the integrity and conformation of the αIIbβ3 complex are dependent on divalent cations, we investigated whether HPA-1a epitope integrity and/or conformation might be affected by the presence of the cation chelator EDTA in patient samples or in assay buffers, thus providing a possible explanation for the variable sensitivity of current assays. PRINCIPLE FINDINGS Exposure of the αIIbβ3 complex to EDTA resulted in reduced reactivity of three anti-HPA-1a mAbs (B2, 19-7 and 23-15). More significantly, cation chelation adversely affected detection of polyclonal anti-HPA-1a, not only in the platelet immunofluorescence assay, where alloantibody binding was reduced compared to control platelets (mean MFI reduction 44.5%, range 17.3-69.7%, n=4), but also in the commonly used monoclonal antibody specific immobilisation of platelet antigens assay (MAIPA) where both alloantibody and monoclonal capture antibody binding were reduced (mean OD reduction 82.8%, range 68.3-96.6%, n=9). CONCLUSIONS These data show that HPA-1a antibodies recognise epitopes on αIIbβ3 that are sensitive to EDTA treatment and that cation chelation grossly reduces the sensitivity of the MAIPA assay by diminishing not only HPA-1a alloantibody binding but also 'capture' monoclonal antibody binding. These findings may, in part, explain the current variability in antibody measurement and will guide the development of more sensitive tests for anti-integrin antibodies in NAIT and other conditions.
Collapse
Affiliation(s)
- David L Allen
- NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK.
| | | | | | | |
Collapse
|
9
|
Stuge TB, Skogen B, Ahlen MT, Husebekk A, Urbaniak SJ, Bessos H. The cellular immunobiology associated with fetal and neonatal alloimmune thrombocytopenia. Transfus Apher Sci 2011; 45:53-9. [PMID: 21708486 DOI: 10.1016/j.transci.2011.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is caused by maternal antibodies that cross the placenta in connection with pregnancy and destroy fetal platelets. Recently, maternal T cell responses associated with FNAIT have been studied at the clonal level. These T cell clones recognize an integrin β3 epitope, which is anchored to the HLA-DRB3∗0101-encoded MHC molecule DR52a. The same MHC allele is strongly associated with FNAIT. As the production of pathological antibodies reactive with fetal platelets is likely dependent on these T cell responses, there exists a potential for preventing FNAIT by targeting these T cells.
Collapse
Affiliation(s)
- Tor B Stuge
- Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway.
| | | | | | | | | | | |
Collapse
|
10
|
Kroll H, Feldmann K, Zwingel C, Hoch J, Bald R, Bein G, Bayat B, Santoso S. A new platelet alloantigen, Swi(a) , located on glycoprotein Ia identified in a family with fetal and neonatal alloimmune thrombocytopenia. Transfusion 2011; 51:1745-54. [PMID: 21332723 DOI: 10.1111/j.1537-2995.2010.03038.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a bleeding disorder caused by transplacental passage of maternal antibodies to fetuses whose platelets (PLTs) express the corresponding human PLT antigen (HPA). STUDY DESIGNS AND METHODS We observed a fetus with FNAIT who died from a severe intracranial hemorrhage. Analysis of maternal serum in antigen capture assay with paternal PLTs showed reactivity with PLT glycoprotein (GP)IIb/IIIa (α(IIb) β(3) ) and GPIa/IIa (α(2) β(1) integrin), indicating the presence of anti-HPA-1a and an additional alloantibody against GPIa (termed anti-Swi(a) ). RESULTS By immunochemical studies, the localization of the Swi(a) antigen on GPIa/IIa could be confirmed. Analysis of paternal GPIa full-length cDNA showed a single-nucleotide substitution C(3347) T in Exon 28 resulting in a Thr(1087) Met amino acid substitution. Testing of family members by polymerase chain reaction-restriction fragment length polymorphism using MslI endonuclease showed perfect correlation with phenotyping. Extended family and population studies showed that 4 of 10 members of the paternal family but none of 500 unrelated blood donors were Swi(a) carriers. Expression studies on allele-specific transfected Chinese hamster ovary (CHO) cells confirmed that the single-amino-acid substitution Thr(1087) Met was responsible for the formation of the Swi(a) epitope. Adhesion of CHO cells expressing the Swi(a) alloantigen to immobilized collagens was not impaired compared to the wild-type control and was not inhibited by anti-Swi(a) alloantibodies. CONCLUSION In this study we defined a new PLT alloantigen Swi(a) that was involved in a case of additional immunization against HPA-1a. Our observations demonstrate that combinations of PLT-specific alloantibodies may comprise low-frequency alloantigens.
Collapse
Affiliation(s)
- Hartmut Kroll
- Institute for Transfusion Medicine Dessau, Red Cross Blood Transfusion Service NSTOB, Dessau, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Establishment of a cell line panel for the detection of antibodies against human platelet antigen 4b. Int J Hematol 2011; 93:170-175. [PMID: 21286877 DOI: 10.1007/s12185-011-0772-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 01/06/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
Antibodies against human platelet antigens (HPAs) play important roles in thrombocytopenia. In Japan, HPA-4b antibody is frequently responsible for HPA-related neonatal alloimmune thrombocytopenia. A highly sensitive assay using platelets has been developed for the detection of antibodies against HPAs. However, it is difficult to obtain the platelets expressing specific HPAs required for the assay. Therefore, an alternative method not requiring platelets would be helpful to detect antibodies against HPAs. Glycoprotein IIIa (GPIIIa) cDNA encoding HPA-4b was individually co-transduced with that of wild-type GPIIb in K562 cells, which is a non-adherent cell line, using a retroviral vector. The expression of transgene products in cultured cells were observed for over 6 months. Next, to evaluating the sensitivity and specificity of this cell line panel, we performed monoclonal antibody-specific immobilization of platelet antigens (MAIPA) assay with a serum previously identified by another method. All HPA-4b antibodies in serum samples were positive, and all serum samples, including normal serum and serum containing HLA antibodies were negative. No difference was observed in the specificity and sensitivity between our method and conventional MAIPA using platelets. The present results indicate that this established cell line panel permits highly sensitive detection of specific antibodies against HPA-4b.
Collapse
|
12
|
Hayashi T, Amakishi E, Matsuyama N, Yasui K, Furuta RA, Hori Y, Tanaka S, Fukumori Y, Hirayama F, Inoue M. Establishment of a cell line panel as an alternative source of platelet antigens for a screening assay of anti-human platelet antibodies. Transfus Med 2011; 21:199-204. [PMID: 21208305 DOI: 10.1111/j.1365-3148.2010.01064.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND A panel of platelets expressing various human platelet antigens (HPAs) for a platelet antibody screening assay is difficult to prepare because some antigens are rarely expressed. Therefore, an alternative method without using platelets would be helpful in detecting HPA antibodies. This study describes the establishment of cell lines that stably express specific HPAs and their application for detecting specific antibodies. METHODS Wild-type β3, HPA-1b, -6b, -7b and -7 variant cDNA as well as wild-type αIIb and HPA-3b cDNA were individually co-transduced with wild-type αIIb and β3 cDNA in the K562 cell line. We performed an immunobead monoclonal antibody immobilisation of platelet antigens (MAIPA) assay to evaluate this cell line panel for antibody detection using identified sera containing HPA antibodies, whose specificities had been determined by the mixed passive haemagglutination test. RESULTS AND CONCLUSION Of the 12 sera containing HPA-1a (n = 2), HPA-3a (n = 6), HPA-6b (n = 3) or HPA-7 variant (n = 1) antibodies, all antibodies were detected and determined by our new method, except for two HPA-3a antibodies. One of the two antibodies was also negative for conventional platelet MAIPA, suggesting that the cell line panel might be used as an alternative source of platelet antigens in the MAIPA assay.
Collapse
Affiliation(s)
- T Hayashi
- Japanese Red Cross Osaka Blood Center Department of Biochemistry and Molecular Pathology, Medical School, Osaka City University, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Landau M, Rosenberg N. Molecular insight into human platelet antigens: structural and evolutionary conservation analyses offer new perspective to immunogenic disorders. Transfusion 2010; 51:558-69. [PMID: 20804530 PMCID: PMC3084503 DOI: 10.1111/j.1537-2995.2010.02862.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Human platelet antigens (HPAs) are polymorphisms in platelet membrane glycoproteins (GPs) that can stimulate production of alloantibodies once exposed to foreign platelets (PLTs) with different HPAs. These antibodies can cause neonatal alloimmune thrombocytopenia, posttransfusion purpura, and PLT transfusion refractoriness. Most HPAs are localized on the main PLT receptors: 1) integrin αIIbβ3, known as the fibrinogen receptor; 2) the GPIb-IX-V complex that functions as the receptor for von Willebrand factor; and 3) integrin α2β1, which functions as the collagen receptor. STUDY DESIGN AND METHODS We analyzed the structural location and the evolutionary conservation of the residues associated with the HPAs to characterize the features that induce immunologic responses but do not cause inherited diseases. RESULTS We found that all HPAs reside in positions located on the protein surface, apart from the ligand-binding site, and are evolutionary variable. CONCLUSION Disease-causing mutations often reside in highly conserved and buried positions. In contrast, the HPAs affect residues on the protein surface that were not conserved throughout evolution; this explains their naive effect on the protein function. Nonetheless, the HPAs involve substitutions of solvent-exposed positions that lead to altered interfaces on the surface of the protein and might present epitopes foreign to the immune system.
Collapse
Affiliation(s)
- Meytal Landau
- Amalia Biron Research Institute of Thrombosis and Hemostasis, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | | |
Collapse
|
14
|
Rayment R, Kooij TW, Zhang W, Siebold C, Murphy MF, Allen D, Willcox N, Roberts DJ. Evidence for the specificity for platelet HPA-1a alloepitope and the presenting HLA-DR52a of diverse antigen-specific helper T cell clones from alloimmunized mothers. THE JOURNAL OF IMMUNOLOGY 2009; 183:677-86. [PMID: 19535639 DOI: 10.4049/jimmunol.0801473] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Maternal alloantibodies against the human platelet Ag (HPA)-1a allotype of the platelet beta(3) integrin GpIIb/IIIa can cause severe fetal or neonatal hemorrhage. Almost all anti-HPA-1a-immune mothers are homozygous for HPA-1b and carry HLA-DR52a (DRB3*0101). The single Pro(33) -->Leu substitution (HPA-1b-->HPA-1a) was previously predicted to create a binding motif for HLA-DR52a that can lead to alloimmunization. We have isolated six CD4(+) T cell clones from three such mothers, which all respond to intact HPA-1a(+), but not HPA-1b(+), platelets. We used them to define the "core" and "anchor" residues of this natural T cell epitope. Molecular modeling based on a recently published crystal structure can explain the preferential presentation of the Leu(33) (but not Pro(33) variant) by HLA-DR52a rather than the linked HLA-DR3 or the allelic DR52b. The modeling also predicts efficient anchoring at position 33 by several alternative hydrophobic alpha-amino acids; indeed, a recently identified variant with Val(33) is presented well to two clones, and is therefore potentially alloimmunogenic. Finally, these HPA-1a-specific T cell clones use a variety of T cell receptors, but all have a "Th1" (IFN-gamma-producing) profile and are suitable for testing selective immunotherapies that might be applicable in vivo.
Collapse
Affiliation(s)
- Rachel Rayment
- Nuffield Department of Clinical Laboratory Sciences and National Blood Service Oxford Centre, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Socher I, Andrei-Selmer C, Bein G, Kroll H, Santoso S. Low-avidity HPA-1a alloantibodies in severe neonatal alloimmune thrombocytopenia are detectable with surface plasmon resonance technology. Transfusion 2009; 49:943-52. [PMID: 19175553 DOI: 10.1111/j.1537-2995.2008.02065.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is mostly caused by maternal alloantibodies directed against the human platelet alloantigen (HPA)-1a. Currently, the serologic diagnosis of FNAIT is based on the characterization of the HPA alloantibodies in monoclonal antibody-based antigen-capture assays (e.g., MAIPA assay). Accumulated current evidence indicated that such assays may overlook some HPA-1a antibodies. STUDY DESIGN AND METHODS This study employed surface plasmon resonance (SPR) technology using immunoaffinity-purified glycoprotein IIb/IIIa isoforms immobilized on biosensor chips to study the binding kinetics of HPA-1a alloantibodies from different FNAIT cases in real time. RESULTS Analysis of HPA-1a alloantibodies from FNAIT cases (n = 9) in SPR showed a moderate relative response (22.2-69.7 resonance units [RU]) and slow antibody dissociation. After the dissociation phase, varying amounts of bound antibodies (41%-79%) remained on the chip. In contrast in HPA-1a alloantibodies from a patient suffering from posttransfusion purpura, a high relative response (approximately 490 RU) was observed at the end of the association phase and no dissociation of antibody binding was detectable. Of particular relevance, by the use of this SPR technique, HPA-1a alloantibodies were detected in two severe FNAIT cases that had determined as false negative by MAIPA assay. In SPR, these HPA-1a alloantibodies showed low-avidity nature characterized by gradual dissociation of antibody during the association phase and complete detachment of antibody binding after the dissociation phase. This high "off-rate" character of low-avidity HPA-1a alloantibodies indicates that such antibody binding is easily detachable by the extensive washing procedure of the MAIPA. CONCLUSIONS Our results demonstrated that the SPR method can facilitate the diagnosis of clinically relevant low-avidity HPA-1a antibodies.
Collapse
Affiliation(s)
- Ines Socher
- Institute for Clinical Immunology and Transfusion Medicine, Giessen, Germany
| | | | | | | | | |
Collapse
|
16
|
van Gils JM, Stutterheim J, van Duijn TJ, Zwaginga JJ, Porcelijn L, de Haas M, Hordijk PL. HPA-1a alloantibodies reduce endothelial cell spreading and monolayer integrity. Mol Immunol 2008; 46:406-15. [PMID: 19038456 DOI: 10.1016/j.molimm.2008.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/13/2008] [Accepted: 10/14/2008] [Indexed: 12/01/2022]
Abstract
Maternal human platelet antigen (HPA)-1a alloantibodies causing neonatal alloimmune thrombocytopenia can bind also to endothelium, via the beta3-integrin (CD61). The aim of this study was to investigate the effect of HPA-1a Abs on endothelial cell function, with emphasis on monolayer integrity. We used a CD61 mAb as a model for the HPA-1a alloantibodies and confirmed the results with purified IgG fractions from HPA-1a alloimmunized women. The effect of these antibodies was examined by monitoring the adhesion, spreading, and monolayer integrity of primary HUVECs with conventional adhesion assays as well as electrical cell-substrate impedance sensing. We found that both the mAb CD61 and the HPA-1a antibodies caused a significant reduction in HUVEC spreading. Moreover, addition of the mAb CD61 and the HPA-1a antibodies prior to or following formation of a stable endothelial monolayer negatively affected endothelial monolayer integrity, which was accompanied by a redistribution of junctional proteins. Our data suggest that HPA-1a alloantibodies have a direct effect on endothelial cell spreading and monolayer integrity, which could contribute to the increased bleeding tendency in children with neonatal alloimmune thrombocytopenia.
Collapse
Affiliation(s)
- Janine M van Gils
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Ghevaert C, Wilcox DA, Fang J, Armour KL, Clark MR, Ouwehand WH, Williamson LM. Developing recombinant HPA-1a-specific antibodies with abrogated Fcgamma receptor binding for the treatment of fetomaternal alloimmune thrombocytopenia. J Clin Invest 2008; 118:2929-38. [PMID: 18654666 DOI: 10.1172/jci34708] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 05/21/2008] [Indexed: 11/17/2022] Open
Abstract
Fetomaternal alloimmune thrombocytopenia (FMAIT) is caused by maternal generation of antibodies specific for paternal platelet antigens and can lead to fetal intracranial hemorrhage. A SNP in the gene encoding integrin beta3 causes a clinically important maternal-paternal antigenic difference; Leu33 generates the human platelet antigen 1a (HPA-1a), whereas Pro33 generates HPA-1b. As a potential treatment to prevent fetal intracranial hemorrhage in HPA-1a alloimmunized pregnancies, we generated an antibody that blocks the binding of maternal HPA-1a-specific antibodies to fetal HPA-1a1b platelets by combining a high-affinity human HPA-1a-specific scFv (B2) with an IgG1 constant region modified to minimize Fcgamma receptor-dependent platelet destruction (G1Deltanab). B2G1Deltanab saturated HPA-1a+ platelets and substantially inhibited binding of clinical HPA-1a-specific sera to HPA-1a+ platelets. The response of monocytes to B2G1Deltanab-sensitized platelets was substantially less than their response to unmodified B2G1, as measured by chemiluminescence. In addition, B2G1Deltanab inhibited chemiluminescence induced by B2G1 and HPA-1a-specific sera. In a chimeric mouse model, B2G1 and polyclonal Ig preparations from clinical HPA-1a-specific sera reduced circulating HPA-1a+ platelets, concomitant with transient thrombocytopenia. As the Deltanab constant region is uninformative in mice, F(ab')2 B2G1 was used as a proof of principle blocking antibody and prevented the in vivo platelet destruction seen with B2G1 and polyclonal HPA-1a-specific antibodies. These results provide rationale for human clinical studies.
Collapse
Affiliation(s)
- Cedric Ghevaert
- NHS Blood and Transplant, Department of Haematology, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
18
|
Stafford P, Ghevaert C, Campbell K, Proulx C, Smith G, Williamson LM, Ranasinghe E, Watkins NA, Huntington JA, Ouwehand WH. Immunologic and structural analysis of eight novel domain-deletion beta3 integrin peptides designed for detection of HPA-1 antibodies. J Thromb Haemost 2008; 6:366-75. [PMID: 18045240 DOI: 10.1111/j.1538-7836.2008.02858.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The single-nucleotide polymorphism (SNP) rs5918 in the ITGB3 gene defines the human platelet antigen-1 (HPA-1) system encoding a Leu (HPA-1a) or Pro (HPA-1b) at position 33. HPA-1 antibodies are clinically the most relevant in the Caucasoid population, but detection currently requires alpha(IIb)beta3 integrin from the platelets of HPA-genotyped donors. OBJECTIVES We set out to define the beta3 integrin domains required for HPA-1a antibody binding and produce recombinant soluble beta3 peptides for HPA-1 antibody detection. METHODS We designed two sets (1a and 1b) of four soluble beta3 domain-deletion peptides (deltaSDL, deltabetaA, PSIHybrid, PSI), informed by crystallography studies and computer modeling. The footprints of three human HPA-1a-specific phage antibodies were defined by analyzing binding patterns to the beta3 peptides and canine platelets, and models of antibody-antigen interfaces were derived. Specificity and sensitivity for HPA-1a detection were assessed using sera from 140 cases of fetomaternal alloimmune thrombocytopenia (FMAIT). RESULTS Fusion of recombinant proteins to calmodulin resulted in high-level expression in Drosophila S2 cells of all eight beta3 peptides. Testing of FMAIT samples indicated that deltabetaA-Leu33 is the superior peptide for HPA-1a antibody detection, with 96% sensitivity and 95% specificity. The existence of type I and II categories of HPA-1a antibodies was confirmed by the study of HPA-1a phage antibody footprints and the reactivity pattern of clinical samples with the four beta3-Leu33 peptides, but there was no correlation between antibody category and clinical severity of FMAIT. CONCLUSIONS Soluble recombinant beta3 peptides can be used for detection of clinical HPA-1a antibodies.
Collapse
Affiliation(s)
- P Stafford
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Smith GA, Rankin A, Riddle C, Cheetham-Wilkinson C, Ranasinghe E, Ouwehand WH, Watkins NA. Severe fetomaternal alloimmune thrombocytopenia due to anti-human platelet antigen (HPA)-1a in a mother with a rare and silenced ITGB3*0101 (GPIIIa) allele. Vox Sang 2007; 93:325-30. [DOI: 10.1111/j.1423-0410.2007.00968.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Campbell K, Rishi K, Howkins G, Gilby D, Mushens R, Ghevaert C, Metcalfe P, Ouwehand WH, Lucas G. A modified rapid monoclonal antibody-specific immobilization of platelet antigen assay for the detection of human platelet antigen (HPA) antibodies: a multicentre evaluation. Vox Sang 2007; 93:289-97. [PMID: 18070271 DOI: 10.1111/j.1423-0410.2007.00989.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The monoclonal antibody-specific immobilization of platelet antigens (MAIPA) assay is the cornerstone technique for the detection and identification of human platelet antigen (HPA) antibodies. However, the original technique described by Kiefel and colleagues requires approximately 8 h adding to diagnostic delay. Moreover, proficiency exercises indicate that there are substantial variations in the MAIPA protocol, and that these may account for interlaboratory differences in sensitivity and specificity. STUDY DESIGN AND METHODS A review of current MAIPA assay protocols from six laboratories together with performance in quality-assessment schemes identified several key variables potentially affecting the assay results. An optimized protocol was derived and assay time reduced to 5 h. The modified rapid MAIPA (MR-MAIPA) assay was evaluated using 61 samples with a range of HPA antibodies typically encountered in cases of fetomaternal alloimmune thrombocytopenia (n = 22), post-transfusion purpura (n = 8), platelet refractoriness (n = 7) and other platelet immune conditions (n = 24). The sensitivity of the assay was assessed using three international standards and the recombinant HPA-1a antibody CamTran007. The results obtained were compared with the original findings obtained with the local MAIPA assays. In addition, four different glycoprotein IIb/IIIa capture monoclonal antibodies were evaluated for their effect on assay sensitivity. RESULTS Complete concordance was found between the original MAIPA results and those obtained with the new assay when testing a selected panel of clinical samples. The modified assay had nanogram level sensitivity for the detection of HPA-1a antibodies and titration of HPA-1a and HPA-5b antibody sensitivity standards yielded end-points equal to or greater than the mean recorded in international workshops. CONCLUSION The MR-MAIPA assay offers improved turnaround for the detection of HPA antibodies without loss of sensitivity.
Collapse
Affiliation(s)
- K Campbell
- National Health Service Blood and Transplant, Cambridge Centre, Long Road, Cambridge CB2 2PT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tinmouth AT, Semple E, Shehata N, Branch DR. Platelet Immunopathology and Therapy: A Canadian Blood Services Research and Development Symposium. Transfus Med Rev 2006; 20:294-314. [PMID: 17008167 DOI: 10.1016/j.tmrv.2006.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Alan T Tinmouth
- Adult Region Hemophilia/Bleeding Disorders Comprehensive Care Clinic, Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | | | | | | |
Collapse
|