1
|
van der Meer PF, Novotny VMJ, Klei TLR. Considerations on risk mitigating strategies for bacterial contamination of platelet concentrates - The Dutch perspective. Transfus Apher Sci 2025; 64:104087. [PMID: 39933219 DOI: 10.1016/j.transci.2025.104087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Due to their storage at room temperature, platelet concentrates are at risk for bacterial outgrowth if the unit is contaminated. Nowadays, various mitigation strategies are available, including bacterial screening and pathogen inactivation. Since pathogen inactivation technologies impact the clinical efficacy of the platelets, including but not limited to lower increments after transfusion and more significant bleeding, a balance needs to be struck between the safety and efficacy of platelet transfusions. In this Brief Review, we discuss the current situation in the Netherlands.
Collapse
Affiliation(s)
| | - Vĕra M J Novotny
- Department of Transfusion Medicine, Sanquin Blood Bank, Amsterdam, the Netherlands
| | - Thomas L R Klei
- Department of Product and Process Development, Sanquin Blood Bank, the Netherlands
| |
Collapse
|
2
|
Ventura-Enríquez Y, Casas-Guerrero A, Sánchez-Guzmán MDJ, Loyola-Cruz MÁ, Cruz-Cruz C, Nolasco-Rojas AE, Durán-Manuel EM, Blanco-Hernández DMR, Álvarez-Mora F, Ibáñez-Cervantes G, Cureño-Díaz MA, Bello-López JM, Fernández-Sánchez V. Plasma Photoinactivation of Bacterial Isolated from Blood Donors Skin: Potential of Security Barrier in Transfusional Therapy. Pathogens 2024; 13:577. [PMID: 39057804 PMCID: PMC11280016 DOI: 10.3390/pathogens13070577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The presence of skin bacteria capable of forming biofilm, exhibiting antibiotic resistance, and displaying virulence represents a significant challenge in the field of transfusion medicine. This underscores the necessity of enhancing the microbiological safety of blood and blood components against pathogens with virulent characteristics. The aim of this work was to demonstrate bacterial inactivation in plasma by using a photoinactivation method against virulent bacteria and to evaluate coagulation factors before and after treatment. Logarithmic loads of biofilm-producing, antibiotic-resistant, and virulent bacteria isolated from skin (Enterobacter cloacae, Klebsiella ozaenae, and Staphylococcus epidermidis) were used in artificial contamination assays of fresh frozen plasma bags and subjected to photoreduction. FVIII and FI activity were evaluated before and after photoinactivation. The photoinactivation of plasma was demonstrated to be an effective method for the elimination of these bacteria. However, the efficiency of this method was found to be dependent on the bacterial load and the type of test microorganism. Conversely, decay of coagulation factors was observed with net residual activities of 61 and 69% for FVIII and FI, respectively. The photoinactivation system could have a bias in its effectiveness that is dependent on the test pathogen. These findings highlight the importance of employing technologies that increase the safety of the recipient of blood and/or blood components, especially against virulent bacteria, and show the relevance of the role of photoinactivation systems as an option in transfusion practice.
Collapse
Affiliation(s)
| | | | | | | | - Clemente Cruz-Cruz
- Hospital Juárez de México, Mexico City 07760, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Andres Emmanuel Nolasco-Rojas
- Hospital Juárez de México, Mexico City 07760, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Emilio Mariano Durán-Manuel
- Hospital Juárez de México, Mexico City 07760, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | | | | - Gabriela Ibáñez-Cervantes
- Hospital Juárez de México, Mexico City 07760, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | | | | - Verónica Fernández-Sánchez
- Banco de Sangre, Centro Médico Naval (CEMENAV), Mexico City 04470, Mexico
- Hospital Juárez de México, Mexico City 07760, Mexico
- Facultad de Estudios Superiores Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México (UNAM), Mexico City 54090, Mexico
| |
Collapse
|
3
|
Gravemann U, Handke W, Schulze TJ, Seltsam A. Growth and Distribution of Bacteria in Contaminated Whole Blood and Derived Blood Components. Transfus Med Hemother 2024; 51:76-83. [PMID: 38584696 PMCID: PMC10996057 DOI: 10.1159/000536242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/10/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Bacterial contamination of blood products presumably occurs mainly during blood collection, starting from low initial concentrations of 10-100 colony-forming units (CFUs) per bag. As little is known about bacterial growth behavior and distribution in stored whole blood (WB) and WB-derived blood products, this study aims to provide data on this subject. Methods WB units were inoculated with transfusion-relevant bacterial species (Acinetobacter baumannii, Bacillus cereus, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Pseudomonas fluorescens, Serratia marcescens, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus dysgalactiae, Streptococcus pyogenes, Yersinia enterocolitica; n = 12 for each species), stored for 22-24 h at room temperature, and then centrifuged for separation into plasma, red blood cells (RBCs), and buffy coats (BCs). The latter were pooled with 3 random donor BCs and one unit of PAS-E each to yield plasma-reduced platelet concentrates (PCs). Samples for bacterial colony counting were collected after WB storage and immediately after blood component production. Sterility testing in PCs (n = 12 for each species) was performed by bacterial culture after 7 days of storage. Results Bacterial growth in WB varied remarkably between donations and species. Streptococcus species produced the highest titers in WB, whereas Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas fluorescens did not multiply. Centrifugation resulted in preferential accumulation of bacteria in BCs, with titers of up to 3.5 × 103 CFU/mL in BCs and up to ≤0.9 × 103 CFU/mL in BC-derived PCs. Overall, 72/144 PCs (50%) tested positive for bacteria after storage. Sterility test results were species-dependent, ranging from 12 of 12 PCs tested positive for Streptococcus pyogenes to 1 of 12 PCs positive for Escherichia coli. Bacterial contamination of RBC and plasma units was much less common and was associated with higher initial bacterial counts in the parent WB units. Conclusions Bacterial growth in WB is species-dependent and varies greatly between donations. Preferential accumulation of bacteria in BCs during manufacturing is a critical determinant of the contamination risk of BC-derived pooled PCs.
Collapse
Affiliation(s)
- Ute Gravemann
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Wiebke Handke
- Bavarian Red Cross Blood Service, Institute Nuremberg, Nuremberg, Germany
| | - Torsten J. Schulze
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Axel Seltsam
- Bavarian Red Cross Blood Service, Institute Nuremberg, Nuremberg, Germany
| |
Collapse
|
4
|
Koepsell SA, Stolla M, Sedjo RL, Carson J, Knudson M, Cook R, Fasano R, Ngamsuntikul SG, Cohn C, Gorlin J, Delaney M, Slichter S, Ness P, McCullough J. Results of clinical effectiveness of conventional versus Mirasol-treated Apheresis Platelets in Patients with Hypoproliferative Thrombocytopenia (MiPLATE) trial. Transfusion 2024; 64:457-465. [PMID: 38314476 DOI: 10.1111/trf.17720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/27/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND The Mirasol® Pathogen Reduction Technology System was developed to reduce transfusion-transmitted diseases in platelet (PLT) products. STUDY DESIGN AND METHODS MiPLATE trial was a prospective, multicenter, controlled, randomized, non-inferiority (NI) study of the clinical effectiveness of conventional versus Mirasol-treated Apheresis PLTs in participants with hypoproliferative thrombocytopenia. The novel primary endpoint was days of ≥Grade 2 bleeding with an NI margin of 1.6. RESULTS After 330 participants were randomized, a planned interim analysis of 297 participants (145 MIRASOL, 152 CONTROL) receiving ≥1 study transfusion found a 2.79-relative rate (RR) in the MIRASOL compared to the CONTROL in number of days with ≥Grade 2 bleeding (95% confidence interval [CI] 1.67-4.67). The proportion of subjects with ≥Grade 2 bleeding was 40.0% (n = 58) in MIRASOL and 30.3% (n = 46) in CONTROL (RR = 1.32, 95% CI 0.97-1.81, p = .08). Corrected count increments were lower (p < .01) and the number of PLT transfusion episodes per participant was higher (RR = 1.22, 95% CI 1.05-1.41) in MIRASOL. There was no difference in the days of PLT support (hazard ratio = 0.86, 95% CI 0.68-1.08) or total number of red blood cell transfusions (RR = 1.12, 95% CI 0.91-1.37) between MIRASOL versus CONTROL. Transfusion emergent adverse events were reported in 119 MIRASOL participants (84.4%) compared to 133 (82.6%) participants in CONTROL (p = NS). DISCUSSION This study did not support that MIRASOL was non-inferior compared to conventional platelets using the novel endpoint number of days with ≥Grade 2 bleeding in MIRASOL when compared to CONTROL.
Collapse
Affiliation(s)
- Scott A Koepsell
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Moritz Stolla
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Rebecca L Sedjo
- Clinical Research and Development, Terumo BCT, Inc., Lakewood, Colorado, USA
| | - Jeffrey Carson
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Michael Knudson
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Richard Cook
- Lifetime Scientific Inc., Waterloo, Ontario, Canada
| | - Ross Fasano
- Center for Transfusion and Cellular Therapies, Department of Pathologyand Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | | | - Claudia Cohn
- Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jed Gorlin
- Memorial Blood Centers, Minneapolis, Minnesota, USA
| | - Meghan Delaney
- Department of Pathology, Children's National Hospital and The George Washington University School of Medicine, Washington, DC, USA
| | - Sherrill Slichter
- Department of Medicine, Division of Hematology, University of Washington, Seattle, Washington, USA
| | - Paul Ness
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeffrey McCullough
- Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Burnouf T, Chou ML, Lundy DJ, Chuang EY, Tseng CL, Goubran H. Expanding applications of allogeneic platelets, platelet lysates, and platelet extracellular vesicles in cell therapy, regenerative medicine, and targeted drug delivery. J Biomed Sci 2023; 30:79. [PMID: 37704991 PMCID: PMC10500824 DOI: 10.1186/s12929-023-00972-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Platelets are small anucleated blood cells primarily known for their vital hemostatic role. Allogeneic platelet concentrates (PCs) collected from healthy donors are an essential cellular product transfused by hospitals to control or prevent bleeding in patients affected by thrombocytopenia or platelet dysfunctions. Platelets fulfill additional essential functions in innate and adaptive immunity and inflammation, as well as in wound-healing and tissue-repair mechanisms. Platelets contain mitochondria, lysosomes, dense granules, and alpha-granules, which collectively are a remarkable reservoir of multiple trophic factors, enzymes, and signaling molecules. In addition, platelets are prone to release in the blood circulation a unique set of extracellular vesicles (p-EVs), which carry a rich biomolecular cargo influential in cell-cell communications. The exceptional functional roles played by platelets and p-EVs explain the recent interest in exploring the use of allogeneic PCs as source material to develop new biotherapies that could address needs in cell therapy, regenerative medicine, and targeted drug delivery. Pooled human platelet lysates (HPLs) can be produced from allogeneic PCs that have reached their expiration date and are no longer suitable for transfusion but remain valuable source materials for other applications. These HPLs can substitute for fetal bovine serum as a clinical grade xeno-free supplement of growth media used in the in vitro expansion of human cells for transplantation purposes. The use of expired allogeneic platelet concentrates has opened the way for small-pool or large-pool allogeneic HPLs and HPL-derived p-EVs as biotherapy for ocular surface disorders, wound care and, potentially, neurodegenerative diseases, osteoarthritis, and others. Additionally, allogeneic platelets are now seen as a readily available source of cells and EVs that can be exploited for targeted drug delivery vehicles. This article aims to offer an in-depth update on emerging translational applications of allogeneic platelet biotherapies while also highlighting their advantages and limitations as a clinical modality in regenerative medicine and cell therapies.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - David J Lundy
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| |
Collapse
|
6
|
Jordan A, Jain AG, Koipallil GK, Reddy M, Chakkoli S, Midha S, Phuoc V, Eatrides J, Erhardt C, Patel AK, Rico J, Visweshar N, Mhaskar R, Parikh N, Laber D, Jaglal M. Can we lower the platelet threshold of ≥ 50 × 10 9/L for performing a lumbar puncture safely in patients with hematological malignancies? Ann Hematol 2023; 102:663-668. [PMID: 36534146 DOI: 10.1007/s00277-022-05073-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Lumbar punctures (LP) are routinely used to administer intrathecal chemotherapy for children and adults with hematologic malignancies. The current guidelines suggest a platelet threshold of ≥ 50 × 109/L prior to LP for intrathecal chemotherapy (ITC). This can be challenging in patients with hematological malignancies who are thrombocytopenic. We conducted a retrospective chart review of 900 LPs for ITC and compared adverse events in patients with a platelet count of ≥ 50 × 109/L and < 50 × 109/L. Cohort 1 included 682 LPs (75.8%) with a pre-procedure platelet count ≥ 50 × 109/L, and cohort 2 included 218 LPs (24.2%) with a pre-procedure platelet count < 50 × 109/L. Cohort 2 was further subdivided into pre-procedure platelet counts of 41 × 109/L-49 × 109/L (n = 43), 31 × 109/L-40 × 109/L (n = 77), 21 × 109/L-30 × 109/L (n = 84), and 11 × 109/L-20 × 109/L (n = 14). Among 900 LP procedures, a pre-procedure platelet count < 50 × 109/L did not demonstrate a higher rate of post-procedure adverse events (6.5% vs 6.8%, p = 0.8237). When cohort 2 was further stratified, the cohort with a pre-procedure platelet count of 21 × 109/L-30 × 109/L had the highest percentage of complications from LP (9.5%) and the highest rates of traumatic taps with observed LP RBC count > 200 (35.7%, p = 0.0015). The rate of red blood cells (RBC) in the CSF was significantly higher in the group with platelets < 50 × 109/L with observed LP RBC count ≥ 200 (31.2% vs 20.5%, p = 0.0016), ≥ 500 (27.1% vs 14.6%, p < 0.0001), and ≥ 1000 (23% vs 11.6%, p < 0.0001). No instances of epidural hematomas were seen. We found no significant difference in bleeding complications between patients undergoing LPs for ITC with a platelet count above or below 50 × 109/L.
Collapse
Affiliation(s)
- Aryanna Jordan
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA.
| | - Akriti G Jain
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Meghana Reddy
- University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Sanjay Chakkoli
- University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Shonali Midha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Vania Phuoc
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jennifer Eatrides
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Crystal Erhardt
- H. Lee Moffitt Center and Research Institute, Tampa, FL, USA
| | - Ankita K Patel
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Juan Rico
- Department of Pediatrics, University of South Florida, Tampa, FL, USA
| | - Nathan Visweshar
- Department of Internal Medicine, Division of Hematology and Oncology, University of South Florida, Tampa, FL, USA
| | - Rahul Mhaskar
- University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Nainesh Parikh
- H. Lee Moffitt Center and Research Institute, Tampa, FL, USA
| | - Damian Laber
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Michael Jaglal
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
7
|
González MB, Cuerva RC, Muñoz BF, Rosell-Valle C, López MM, Arribas BA, Montiel MÁ, Sánchez GC, González MS. Optimization of human platelet lysate production and pathogen reduction in a public blood transfusion center. Transfusion 2022; 62:1839-1849. [PMID: 35924726 DOI: 10.1111/trf.17045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Human platelet lysate (HPL) has been proposed as a safe and efficient xeno-free alternative to fetal bovine serum (FBS) for large-scale culturing of cell-based medicinal products. However, the use of blood derivatives poses a potential risk of pathogen transmission. To mitigate this risk, different pathogen reduction treatment (PRT) practices can be applied on starting materials or on final products, but these methods might modify the final composition and the quality of the products. STUDY DESIGN AND METHODS We evaluated the impact of applying a PRT based on riboflavin and ultraviolet irradiation on the raw materials used to manufacture an improved Good Manufacturing Practices (GMP)-grade HPL product in a public blood center. Growth promotion and the levels of growth factors and proteins were compared between an inactivated product (HPL4-i) and a non-inactivated product (HPL4). Stability studies were performed at 4°C, -20°C, and -80°C. RESULTS The application of a PRT on the starting materials significantly altered the protein composition of HPL4-i as compared with HPL4. Despite this, the growth promoting rates were unaffected when compared with FBS used as a control. While all products were stable at -20°C and -80°C for 24 months, a significant decrease in the activity of HPL4-i was observed when stored at 4°C. CONCLUSION Our results show that the application of a PRT based on riboflavin and ultraviolet light on starting materials used in the manufacture of HPL modifies the final composition of the product, yet its cell growth promoting activity is maintained at levels similar to those of non-inactivated products.
Collapse
Affiliation(s)
- María Bermejo González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,PhD Program in Biología Molecular, Biomedicina e Investigación Clínica, University of Seville, Seville, Spain
| | - Rafael Campos Cuerva
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| | - Beatriz Fernández Muñoz
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - Cristina Rosell-Valle
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - María Martín López
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - Blanca Arribas Arribas
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,PhD Program in Pharmaceutical Technology and Medicine Sciences (Pharmacy), University of Seville, Seville, Spain
| | - Migue Ángel Montiel
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,PhD Program in Pharmaceutical Technology and Medicine Sciences (Pharmacy), University of Seville, Seville, Spain
| | - Gloria Carmona Sánchez
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,PhD Program in Biomedicine, University of Granada, Granada, Spain
| | - Mónica Santos González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| |
Collapse
|
8
|
Cloutier M, De Korte D. Residual risks of bacterial contamination for
pathogen‐reduced
platelet components. Vox Sang 2022; 117:879-886. [DOI: 10.1111/vox.13272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Marc Cloutier
- Medical Affairs and Innovation Héma‐Québec Québec Canada
- Biochemistry, Microbiology and Bio‐informatics Université Laval Québec Canada
| | - Dirk De Korte
- Blood Cell Research Sanquin Research Amsterdam The Netherlands
- Product and Process Development Sanquin Blood Bank Amsterdam The Netherlands
| | | |
Collapse
|
9
|
Liu H, Wang X. Pathogen reduction technology for blood component: A promising solution for prevention of emerging infectious disease and bacterial contamination in blood transfusion services. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Russell WA, Owusu-Ofori S, Owusu-Ofori A, Micah E, Norman B, Custer B. Cost-effectiveness and budget impact of whole blood pathogen reduction in Ghana. Transfusion 2021; 61:3402-3412. [PMID: 34651313 DOI: 10.1111/trf.16704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Despite the promise of pathogen reduction for reducing transfusion-associated adverse events in sub-Saharan Africa, no health-economic assessment is publicly available. STUDY DESIGN AND METHODS We developed a mathematical risk reduction model to estimate the impact of nationwide whole blood pathogen reduction in Ghana on the incidence of six infectious and one non-infectious transfusion-associated adverse events. We estimated the lifetime direct healthcare costs and disability-adjusted life years lost for each adverse event. For HIV, HCV, and HBV, we simulated disease progression using Markov models, accounting for the likelihood and timing of clinical detection and treatment. We performed probabilistic and univariate sensitivity analysis. RESULTS Adding whole blood pathogen reduction to Ghana's blood safety portfolio would avert an estimated 19,898 (11,948-27,353) adverse events and 38,491 (16,444-67,118) disability-adjusted life years annually, primarily by averting sepsis (49%) and malaria (31%) infections. One year of pathogen reduction would cost an estimated $8,037,191 ($6,381,946-$9,880,760) and eliminate $8,656,389 ($4,462,614-$13,469,448) in direct healthcare spending on transfusion-associated adverse events. We estimate a 58% probability that the addition of pathogen reduction would reduce overall direct healthcare spending. Findings were most sensitive to uncertainty in the probability that a bacterially contaminated blood donation causes sepsis. CONCLUSION Whole blood pathogen reduction would substantially reduce the burden of known transfusion-associated adverse events in Ghana and may reduce overall healthcare spending. Additional benefits not captured by this analysis may include averting secondary transmission of infectious diseases, reducing non-medical costs, and averting new or re-emerging transfusion-transmitted infections.
Collapse
Affiliation(s)
- W Alton Russell
- Department of Management Science and Engineering, Stanford University, Stanford, California, USA.,Vitalant Research Institute, San Francisco, California, USA.,MGH Institute for Technology Assessment, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Alex Owusu-Ofori
- Laboratory Services Directorate, Komfo-Anokye Teaching Hospital, Kumasi, Ghana.,Department of Clinical Microbiology, Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Eileen Micah
- Department of Medicine, Komfo-Anokye Teaching Hospital, Kumasi, Ghana
| | - Betty Norman
- Department of Medicine, Komfo-Anokye Teaching Hospital, Kumasi, Ghana
| | - Brian Custer
- Vitalant Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
11
|
Focosi D, Macera L, Spezia PG, Ceccarelli F, Lanza M, Maggi F. Molecular validation of pathogen-reduction technologies using rolling-circle amplification coupled with real-time PCR for torquetenovirus DNA quantification. Transfus Med 2021; 31:371-376. [PMID: 34390068 DOI: 10.1111/tme.12807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Pathogen reduction technologies (PRT) based on nucleic-acid damaging chemicals and/or irradiation are increasingly being used to increase safety of blood components against emerging pathogens, such as convalescent plasma in the ongoing COVID-19 pandemic. Current methods for PRT validation are limited by the resources available to the blood component manufacturer, and quality control rely over pathogen spiking and hence invariably require sacrifice of the tested blood units: quantitative real-time PCR is the current pathogen detection method but, due to the high likelihood of detecting nonviable fragments, requires downstream pathogen culture. We propose here a new molecular validation of PRT based on the highly prevalent human symbiont torquetenovirus (TTV) and rolling circle amplification (RCA). MATERIALS AND METHODS Serial apheresis plasma donations were tested for TTV before and after inactivation with Intercept® PRT using real-time quantitative PCR (conventional validation), RCA followed by real-time PCR (our validation), and reverse PCR (for cross-validation). RESULTS While only 20% of inactivated units showed significant decrease in TTV viral load using real-time qPCR, all donations tested with RCA followed by real-time PCR showed TTV reductions. As further validation, 2 units were additionally tested with reverse PCR, which confirmed absence of entire circular genomes. DISCUSSION We have described and validated a conservative and easy-to-setup protocol for molecular validation of PRT based on RCA and real-time PCR for TTV.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Lisa Macera
- Department of Translational Research, University of Pisa, Pisa, Italy
| | | | | | - Maria Lanza
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
12
|
McDonald CP, Bearne J, Aplin K, Sawicka D. Assessing the inactivation capabilities of two commercially available platelet component pathogen inactivation systems: effectiveness at end of shelf life. Vox Sang 2021; 116:416-424. [PMID: 33616238 DOI: 10.1111/vox.13040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVES The inactivation capabilities of the two current commercially available pathogen inactivation (PI) systems for platelet components (PC), Mirasol and Intercept, were investigated by determination of the absence of viable bacteria at the end of shelf life by testing the entire contents of the PC by enrichment culture (terminal sterility). METHODS A pool-and-split method was used, with two treated units and one untreated control per inoculum concentration. Pairs of PC bags were inoculated with a single bacterial species. Three concentrations (n = 2 per concentration), which incremented tenfold, were tested initially based on published data from the manufacturer. Dependent on these results, the concentrations subsequently tested were either increased or decreased until the inactivation capability of the system was derived. Bacterial count was determined post-spiking, immediately prior to treatment (2 h from spiking), immediately after treatment and at the end of shelf life (day seven). Enrichment culture was performed immediately prior to treatment, after treatment and at the end of shelf life. RESULTS The inactivation capabilities, in CFU/ml, of Intercept and Mirasol, respectively, at the end of PC shelf life were as follows: Staphylococcus aureus ≥ 107 , <101 ; Staphylococcus epidermidis ≥106 , <102 ; Klebsiella pneumoniae 105 , <101 ; Streptococcus bovis ≥107 , 101 , Escherichia coli ≥106 , <101 ; Streptococcus pneumoniae ≥106 , 103 ; Streptococcus mitis ≥107 , 101 ; Listeria monocytogenes ≥107 , 101 ; Streptococcus dysgalactiae ≥107 , <101 ; Serratia marcescens 103 , <101 ; Pseudomonas aeruginosa 103 , Mirasol not tested; and Bacillus cereus < 102 , Mirasol not tested. CONCLUSION The inactivation capability of Intercept was greater than that of Mirasol. Inactivation capability (by terminal sterility) is the most meaningful measure to evaluate a PI system for bacteria, rather than logarithmic reduction assessed immediately after treatment by plate count. PI offers a possible alternative to bacterial screening if treatment is performed at an appropriate time dependent on the inactivation capabilities of the system.
Collapse
Affiliation(s)
- Carl P McDonald
- Microbiology Services Laboratory - Bacteriology, NHS Blood and Transplant, London, UK
| | - Jennifer Bearne
- Microbiology Services Laboratory - Bacteriology, NHS Blood and Transplant, London, UK
| | - Kate Aplin
- Microbiology Services Laboratory - Bacteriology, NHS Blood and Transplant, London, UK
| | - Danuta Sawicka
- Microbiology Services Laboratory - Bacteriology, NHS Blood and Transplant, London, UK
| |
Collapse
|
13
|
Sterility Testing of Platelets Concentrate within Quality Control: Experiences and Opportunities to Extend the Application. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020. [DOI: 10.2478/sjecr-2020-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Despite numerous measures, bacterial sepsis associated with the transfusion remains a major threat. The incidence of septic events induced by platelets transfusion is approximately 10 times higher than with transfused red blood cells due to their storage temperature. This caused new Standard that implements the methods for the detection and reduction of bacteria in the platelet concentrates (PC). The aim is to consider the possibility of wider application of this tests in order to extend the shelf-life of PC. Sterility testing of PC is done once or twice per month using BacT/Alert BPA and BacT/Alert BPN bottles. If positive, all products from the initial unit were tested to confirm or deny the status. During six years period, 67236 PC units were made and 872 of them were tested. Only two were found initially positive. After testing the other products from the same initial unit, results were negative so, final results proclaimed false positive. Pretransfusion bacterial detection is an important potential method for reducing the risk of bacteriemia and transfusion-associated septic reactions. In addition to routine measures, Mirasol PRT pathogen inactivation system, could be included. This allows certain amount of PC to be inactivated during the first 32 hours. Untreated PC units would be stored in standard conditions and for given time (three days) potentially present bacteria would reach a detectable level. This way the quantity of samples for sterility testing could be reduced, taking only 2 mL of each of four units of PC. Samples would be planted at the same vial-aerobic bottle, which would also, double the capacity in BacT/Alert 3D automated system.
Collapse
|
14
|
Zhu L, Li C, Wang D. A novel ultraviolet illumination used in riboflavin photochemical method to inactivate drug-resistant bacteria in blood components. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111782. [PMID: 32062389 DOI: 10.1016/j.jphotobiol.2020.111782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ultraviolet (UV) fluorescent lamp (FL) was applied in mainstream riboflavin photochemical method (RPM) to inactivate pathogens in blood components. Low UV irradiance emitted by UV-FL resulted in more time to achieve effective inactivation. MATERIALS AND METHODS A novel light emitting diode (LED) UV illumination with adjustable irradiance was developed by us. Two strains of drug-resistant bacteria (DRB), pan-drug resistant Acinetobacter baumannii (PDRAB) and methicillin-resistant Staphylococcus aureus (MRSA) were cultured and used for evaluating the inactivation effectiveness of RPM using UV-LED or UV-FL against DRB in plasma or platelets. Three plasma factors and four platelet parameters were measured after treatments. RESULTS There was a linear relationship between UV-LED irradiance and electric current, the minimum UV irradiance was 24 mW/cm2, and the maximum was 258 mW/cm2. At the same UV dose of 15 J/cm2, inactivation effectiveness of UV-LED with 258 mW/cm2 against PDRAB in plasma or platelets were comparable to that of UV-FL with 16 mW/cm2, both above 98%. UV-FL treatment required 10-15 min, but UV-LED only required 1-2 min. However, MRSA showed a resistance to UV-LED (inactivation effectiveness was around 40%) compared with UV-FL (inactivation effectiveness was above 98%). The retention of fibrinogen, factor V, factor VII in plasma and platelet counts in platelets with UV-LED treatment were significantly higher than UV-FL at the same UV dose. CONCLUSION The treatment of RPM using UV-LED with high UV irradiance was able to dramatically shorten inactivation time against PDRAB in plasma or platelets and improve retention of blood components compared with UV-FL.
Collapse
Affiliation(s)
- Liguo Zhu
- Institute of Blood Transfusion, Peking Union Medical College and Chinese Academy of Medical Sciences, No.26 Huacai Road, Chenghua District, Chengdu, China.
| | - Changqing Li
- Institute of Blood Transfusion, Peking Union Medical College and Chinese Academy of Medical Sciences, No.26 Huacai Road, Chenghua District, Chengdu, China.
| | - Deqing Wang
- Department of Blood Transfusion, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, China.
| |
Collapse
|
15
|
Domanović D, Ushiro-Lumb I, Compernolle V, Brusin S, Funk M, Gallian P, Georgsen J, Janssen M, Jimenez-Marco T, Knutson F, Liumbruno GM, Mali P, Marano G, Maryuningsih Y, Niederhauser C, Politis C, Pupella S, Rautmann G, Saadat K, Sandid I, Sousa AP, Vaglio S, Velati C, Verdun N, Vesga M, Rebulla P. Pathogen reduction of blood components during outbreaks of infectious diseases in the European Union: an expert opinion from the European Centre for Disease Prevention and Control consultation meeting. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:433-448. [PMID: 31846608 PMCID: PMC6917531 DOI: 10.2450/2019.0288-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Pathogen reduction (PR) of selected blood components is a technology that has been adopted in practice in various ways. Although they offer great advantages in improving the safety of the blood supply, these technologies have limitations which hinder their broader use, e.g. increased costs. In this context, the European Centre for Disease Prevention and Control (ECDC), in co-operation with the Italian National Blood Centre, organised an expert consultation meeting to discuss the potential role of pathogen reduction technologies (PRT) as a blood safety intervention during outbreaks of infectious diseases for which (in most cases) laboratory screening of blood donations is not available. The meeting brought together 26 experts and representatives of national competent authorities for blood from thirteen European Union and European Economic Area (EU/EEA) Member States (MS), Switzerland, the World Health Organization, the European Directorate for the Quality of Medicines and Health Care of the Council of Europe, the US Food and Drug Administration, and the ECDC. During the meeting, the current use of PRTs in the EU/EEA MS and Switzerland was verified, with particular reference to emerging infectious diseases (see Appendix). In this article, we also present expert discussions and a common view on the potential use of PRT as a part of both preparedness and response to threats posed to blood safety by outbreaks of infectious disease.
Collapse
Affiliation(s)
- Dragoslav Domanović
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Ines Ushiro-Lumb
- National Transfusion Microbiology Reference Laboratory, NHS Blood and Transplant and Public Health England, London, England
| | | | - Sergio Brusin
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Markus Funk
- Pharmacovigilance II, Paul-Ehrlich-Institut Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Pierre Gallian
- Etablissement Français du Sang Provence Alpes Côte d’Azur et Corse, Marseille, France
| | - Jørgen Georgsen
- South Danish Transfusion Service, Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Mart Janssen
- Department of Donor Medicine Research, Transfusion Technology Assessment, Sanquin Research, Amsterdam, The Netherlands
| | | | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | | | - Polonca Mali
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Giuseppe Marano
- Italian National Blood Centre, National Institute of Health, Rome
| | | | - Christoph Niederhauser
- Interregional Blood Transfusion Swiss Red Cross, Laboratory Diagnostics, Bern, Switzerland
| | - Constantina Politis
- Hellenic Coordinating Hemovigilance Center, Hellenic National Public Health Organization, Athens, Greece
| | | | - Guy Rautmann
- European Directorate for the Quality of Medicines and HealthCare, Strasbourg, France
| | - Karmin Saadat
- Austrian Agency for Health and Food Safety, Wien, Austria
| | - Imad Sandid
- French National Agency for Medicines and Health Products Safety (ANSM), Saint Denis, France
| | - Ana P. Sousa
- Portuguese Blood and Transplantation Center, Lisbon, Portugal
| | - Stefania Vaglio
- Italian National Blood Centre, National Institute of Health, Rome
| | - Claudio Velati
- Italian National Blood Centre, National Institute of Health, Rome
| | - Nicole Verdun
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, FDA, Silver Spring, United States of America
| | - Miguel Vesga
- Basque Center for Transfusion and Human Tissues/Spanish Scientific Committee for Transfusion Safety, Galdakao, Spain
| | - Paolo Rebulla
- IRCCS Foundation Ca’ Granda Maggiore Policlinico Hospital, Milan, Italy
| |
Collapse
|
16
|
Wagner SJ, Getz TM. Is a platelet suntan the answer? Transfusion 2019; 59:1163-1165. [DOI: 10.1111/trf.15196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 01/23/2023]
Affiliation(s)
| | - Todd M. Getz
- Transfusion Innovation; American Red Cross; Rockville MD
| |
Collapse
|
17
|
Agzie M, Niguse S, Tsegay E, Kahsay G, Mahmud MA. Bacterial contaminants of stored blood and blood components ready for transfusion at blood banks in Mekelle, Northern Ethiopia. BMC Res Notes 2019; 12:169. [PMID: 30909947 PMCID: PMC6434862 DOI: 10.1186/s13104-019-4217-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/19/2019] [Indexed: 11/19/2022] Open
Abstract
Objective Bacterial contamination of donated blood and blood components is a major public health problem globally. The aim of the study was to evaluate the rate and spectrum of bacterial contaminations and antimicrobial susceptibility pattern of contaminants in stored blood and blood components. Results A total of 196 blood and blood components (concentrated red blood cells, fresh frozen plasma, and platelets) were included. Bacterial contamination was observed in 18 (9.2%) of the blood and blood components, of which 14 (77.8%) and 4 (22.2%) were gram positive and gram negative bacteria, respectively. The predominantly isolated bacteria were Coagulase-negative Staphylococcus, Bacillus spp., and Staphylococcus aureus. Majority of isolated gram-negative bacteria isolates showed resistance to tetracycline and doxycycline. Multidrug resistance was observed in 12 (66%) of the isolates.
Collapse
Affiliation(s)
| | - Selam Niguse
- Department of Medical Microbiology and Immunology, College of Health Science, Mekelle University, P. O. Box 1871, Mekelle, Ethiopia.
| | - Ephrem Tsegay
- Department of Medical Microbiology and Immunology, College of Health Science, Mekelle University, P. O. Box 1871, Mekelle, Ethiopia
| | - Getahun Kahsay
- Department of Medical Microbiology and Immunology, College of Health Science, Mekelle University, P. O. Box 1871, Mekelle, Ethiopia
| | - Mahmud Abdulkader Mahmud
- Department of Medical Microbiology and Immunology, College of Health Science, Mekelle University, P. O. Box 1871, Mekelle, Ethiopia
| |
Collapse
|
18
|
Ramirez‐Arcos S, McDonald C, Deol P, Kreuger AL, Patel N, Pidcoke H, Prax M, Seltsam A, Stassinopoulos A. Bacterial safety of blood components–a congress review of the ISBT transfusion‐transmitted infectious diseases working party, bacterial subgroup. ACTA ACUST UNITED AC 2019. [DOI: 10.1111/voxs.12483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Axel Seltsam
- German Red Cross Blood Service NSTOB Springe Germany
| | | | | |
Collapse
|
19
|
Haass KA, Sapiano MRP, Savinkina A, Kuehnert MJ, Basavaraju SV. Transfusion-Transmitted Infections Reported to the National Healthcare Safety Network Hemovigilance Module. Transfus Med Rev 2019; 33:84-91. [PMID: 30930009 DOI: 10.1016/j.tmrv.2019.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/04/2018] [Accepted: 01/02/2019] [Indexed: 11/29/2022]
Abstract
Transfusion-transmitted infections (TTIs) can be severe and result in death. Transfusion-transmitted viral pathogen transmission has been substantially reduced, whereas sepsis due to bacterial contamination of platelets and transfusion-transmitted babesiosis may occur more frequently. Quantifying the burden of TTI is important to develop targeted interventions. From January 1, 2010, to December 31, 2016, health care facilities participating in the National Healthcare Safety Network Hemovigilance Module monitored transfusion recipients for evidence of TTI and recorded the total number of units transfused. Facilities use standard criteria to report TTIs. Incidence rates of TTIs, including for bacterial contamination of platelets and transfusion-transmitted babesiosis, are presented. One hundred ninety-five facilities reported 111 TTIs and 7.9 million transfused components to the National Healthcare Safety Network Hemovigilance Module. Of these 111 reports, 54 met inclusion criteria. The most frequently reported pathogens were Babesia spp in RBCs (16/23, 70%) and Staphylococcus aureus in platelets (12/30, 40%). There were 1.95 (26 apheresis, 4 whole blood derived) TTIs per 100 000 transfused platelet units and 0.53 TTI per 100 000 transfused RBC components, compared to 0.68 TTI per 100 000 all transfused components. Bacterial contamination of platelets and transfusion-transmitted babesiosis were the most frequently reported TTIs. Interventions that reduce the burden of bacterial contamination of platelets, particularly collected by apheresis, and Babesia transmission through RBC transfusion would reduce transfusion recipient morbidity and mortality. These analyses demonstrate the value and importance of facility participation in national recipient hemovigilance using standard reporting criteria.
Collapse
Affiliation(s)
- Kathryn A Haass
- Office of Blood, Organ, and Other Tissue Safety, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention.
| | - Mathew R P Sapiano
- Surveillance Branch, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, US Centers for Disease Control and Prevention
| | - Alexandra Savinkina
- Office of Blood, Organ, and Other Tissue Safety, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention; Oak Ridge Institute for Science and Education
| | - Matthew J Kuehnert
- Office of Blood, Organ, and Other Tissue Safety, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention
| | - Sridhar V Basavaraju
- Office of Blood, Organ, and Other Tissue Safety, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention
| |
Collapse
|
20
|
Gravemann U, Handke W, Müller TH, Seltsam A. Bacterial inactivation of platelet concentrates with the THERAFLEX UV-Platelets pathogen inactivation system. Transfusion 2018; 59:1324-1332. [PMID: 30588633 DOI: 10.1111/trf.15119] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The THERAFLEX UV-Platelets system (Maco Pharma) uses ultraviolet C (UVC) light for pathogen inactivation (PI) of platelet concentrates (PCs) without any additional photoactive compound. The aim of the study was to systematically investigate bacterial inactivation with this system under conditions of intended use. STUDY DESIGN AND METHODS The robustness of the system was evaluated by assessing its capacity to inactivate high concentrations of different bacterial species in accordance with World Health Organization guidelines. The optimal use of the PI system was explored in time-to-treatment experiments by testing its ability to sterilize PCs contaminated with low levels of bacteria on the day of manufacture (target concentration, 100 colony-forming units/unit). The bacteria panel used for spiking experiments in this study included the World Health Organization International Repository Platelet Transfusion Relevant Reference Strains (n = 14), commercially available strains (n = 13), and in-house clinical isolates (n = 2). RESULTS Mean log reduction factors after UVC treatment ranged from 3.1 to 7.5 and varied between different strains of the same species. All PCs (n = 12/species) spiked with up to 200 colony-forming units/bag remained sterile until the end of storage when UVC treated 6 hours after spiking. UVC treatment 8 hours after spiking resulted in single breakthrough contaminations with the fast-growing species Escherichia coli and Streptococcus pyogenes. CONCLUSION The UVC-based THERAFLEX UV-Platelets system efficiently inactivates transfusion-relevant bacterial species in PCs. The comprehensive data from this study may provide a valuable basis for the optimal use of this UVC-based PI system.
Collapse
Affiliation(s)
- Ute Gravemann
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Wiebke Handke
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Thomas H Müller
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Axel Seltsam
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| |
Collapse
|
21
|
Levy JH, Neal MD, Herman JH. Bacterial contamination of platelets for transfusion: strategies for prevention. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:271. [PMID: 30367640 PMCID: PMC6204059 DOI: 10.1186/s13054-018-2212-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/25/2018] [Indexed: 01/07/2023]
Abstract
Platelet transfusions carry greater risks of infection, sepsis, and death than any other blood product, owing primarily to bacterial contamination. Many patients may be at particular risk, including critically ill patients in the intensive care unit. This narrative review provides an overview of the problem and an update on strategies for the prevention, detection, and reduction/inactivation of bacterial contaminants in platelets. Bacterial contamination and septic transfusion reactions are major sources of morbidity and mortality. Between 1:1000 and 1:2500 platelet units are bacterially contaminated. The skin bacterial microflora is a primary source of contamination, and enteric contaminants are rare but may be clinically devastating, while platelet storage conditions can support bacterial growth. Donor selection, blood diversion, and hemovigilance are effective but have limitations. Biofilm-producing species can adhere to biological and non-biological surfaces and evade detection. Primary bacterial culture testing of apheresis platelets is in routine use in the US. Pathogen reduction/inactivation technologies compatible with platelets use ultraviolet light-based mechanisms to target nucleic acids of contaminating bacteria and other pathogens. These methods have demonstrated safety and efficacy and represent a proactive approach for inactivating contaminants before transfusion to prevent transfusion-transmitted infections. One system, which combines ultraviolet A and amotosalen for broad-spectrum pathogen inactivation, is approved in both the US and Europe. Current US Food and Drug Administration recommendations advocate enhanced bacterial testing or pathogen reduction/inactivation strategies (or both) to further improve platelet safety. Risks of bacterial contamination of platelets and transfusion-transmitted infections have been significantly mitigated, but not eliminated, by improvements in prevention and detection strategies. Regulatory-approved technologies for pathogen reduction/inactivation have further enhanced the safety of platelet transfusions. Ongoing development of these technologies holds great promise.
Collapse
Affiliation(s)
- Jerrold H Levy
- Duke University Hospital, 2301 Erwin Road, Durham, NC, 27710, USA.
| | - Matthew D Neal
- University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Jay H Herman
- Thomas Jefferson University Hospital, 111 S. 11th Street, Philadelphia, PA, 19107, USA
| |
Collapse
|
22
|
Lotens A, de Valensart N, Najdovski T, Acquart S, Cognasse F, Rapaille A. Influence of platelet preparation techniques on in vitro storage quality after psoralen-based photochemical treatment using new processing sets for triple-dose units. Transfusion 2018; 58:2942-2951. [PMID: 30362131 DOI: 10.1111/trf.14909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND The INTERCEPT Blood System (IBS) for platelets (PLTs) uses a combination of psoralen and ultraviolet-A light to inactivate pathogens that may contaminate PLT concentrates (PCs). However, no data are available on the quality of IBS-treated PLTs from different apheresis and buffy-coat PC preparation platforms using the new triple storage (TS) set. STUDY DESIGN AND METHODS The objective of this study was to evaluate the TS set on three different preparation platforms compared with the large-volume (LV) set, as control. PLT in vitro metabolic and activation parameters were studied over 7 days. RESULTS Several statistical differences are observed between the two sets, particularly for pH, oxygen pressure (pO2 ), carbonic gaz pressure (pCO2 ), and bicarbonate. The three different preparation techniques influence PLT parameters, and the difference is statistically significant for all the studied parameters, except for pCO2 . The TS set has the advantage of shorter compound adsorption device time, higher PLT recoveries, and less PLT activation. CONCLUSION Results from the measured metabolic parameters and PLT variables obtained from PCs treated by LV and TS sets indicated good PLT function preservation up to 7 days of storage. The in vitro assessment results demonstrated acceptable PLT function for transfusion.
Collapse
Affiliation(s)
- Anaïs Lotens
- Service du Sang, Belgian Red Cross, Namur, Belgium
| | | | | | | | - Fabrice Cognasse
- Etablissement Français du Sang, Saint-Etienne, France.,Université de Lyon, GIMAP-EA3064, Saint-Etienne, France
| | | |
Collapse
|
23
|
Pathogen-Inaktivierungssysteme für Thrombozytenkonzentrate. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2018; 61:874-893. [PMID: 29931520 PMCID: PMC7079973 DOI: 10.1007/s00103-018-2766-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Feys HB, Van Aelst B, Compernolle V. Biomolecular Consequences of Platelet Pathogen Inactivation Methods. Transfus Med Rev 2018; 33:29-34. [PMID: 30021699 DOI: 10.1016/j.tmrv.2018.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022]
Abstract
Pathogen inactivation (PI) for platelet concentrates (PC) is a fairly recent development in transfusion medicine that is intended to decrease infectious disease transmission from the donor to the receiving patient. Effective inactivation of viruses, bacteria and eukaryotic parasites adds a layer of safety, protecting the blood supply against customary and emerging pathogens. Three PI methods have been described for platelets. These are based on photochemical damage of nucleic acids which prevents replication of most infectious pathogens and contaminating donor leukocytes. Because platelets do not replicate, the collateral damage to platelet function is considered low to non-existing. This is disputable however because photochemistry is not specific for nucleic acids and significantly affects platelet biomolecules as well. The impact of these biomolecular changes on platelet function and hemostasis is not well understood, but is increasingly being studied. The results of these studies can help explain current and future clinical observations with PI platelets, including the impact on transfusion yield and bleeding. This review summarizes the biomolecular effects of PI treatment on platelets. We conclude that despite a comparable principle of photochemical inactivation, all three methods affect platelets in different ways. This knowledge can help blood banks and transfusion specialists to guide their choice when considering the implementation or clinical use of PI treated platelets.
Collapse
Affiliation(s)
- Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - Britt Van Aelst
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium; Blood Service of the Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Blood Service of the Belgian Red Cross-Flanders, Mechelen, Belgium
| |
Collapse
|
25
|
Seltsam A. Pathogen Inactivation of Cellular Blood Products-An Additional Safety Layer in Transfusion Medicine. Front Med (Lausanne) 2017; 4:219. [PMID: 29255710 PMCID: PMC5722787 DOI: 10.3389/fmed.2017.00219] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/20/2017] [Indexed: 01/23/2023] Open
Abstract
In line with current microbial risk reduction efforts, pathogen inactivation (PI) technologies for blood components promise to reduce the residual risk of known and emerging infectious agents. The implementation of PI of labile blood components is slowly but steadily increasing. This review discusses the relevance of PI for the field of transfusion medicine and describes the available and emerging PI technologies that can be used to treat cellular blood products such as platelet and red blood cell units. In collaboration with the French medical device manufacturer Macopharma, the German Red Cross Blood Services developed a new UVC light-based PI method for platelet units, which is currently being investigated in clinical trials.
Collapse
Affiliation(s)
- Axel Seltsam
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| |
Collapse
|
26
|
Drew VJ, Barro L, Seghatchian J, Burnouf T. Towards pathogen inactivation of red blood cells and whole blood targeting viral DNA/RNA: design, technologies, and future prospects for developing countries. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:512-521. [PMID: 28488960 PMCID: PMC5649960 DOI: 10.2450/2017.0344-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/15/2016] [Indexed: 01/22/2023]
Abstract
Over 110 million units of blood are collected yearly. The need for blood products is greater in developing countries, but so is the risk of contracting a transfusion-transmitted infection. Without efficient donor screening/viral testing and validated pathogen inactivation technology, the risk of transfusion-transmitted infections correlates with the infection rate of the donor population. The World Health Organization has published guidelines on good manufacturing practices in an effort to ensure a strong global standard of transfusion and blood product safety. Sub-Saharan Africa is a high-risk region for malaria, human immunodeficiency virus (HIV), hepatitis B virus and syphilis. Southeast Asia experiences high rates of hepatitis C virus. Areas with a tropical climate have an increased risk of Zika virus, Dengue virus, West Nile virus and Chikungunya, and impoverished countries face economical limitations which hinder efforts to acquire the most modern pathogen inactivation technology. These systems include Mirasol® Pathogen Reduction Technology, INTERCEPT®, and THERAFLEX®. Their procedures use a chemical and ultraviolet or visible light for pathogen inactivation and significantly decrease the threat of pathogen transmission in plasma and platelets. They are licensed for use in Europe and are used in several other countries. The current interest in the blood industry is the development of pathogen inactivation technologies that can treat whole blood (WB) and red blood cell (RBC). The Mirasol system has recently undergone phase III clinical trials for treating WB in Ghana and has demonstrated some efficacy toward malaria inactivation and low risk of adverse effects. A 2nd-generation of the INTERCEPT® S-303 system for WB is currently undergoing a phase III clinical trial. Both methodologies are applicable for WB and components derived from virally reduced WB or RBC.
Collapse
Affiliation(s)
- Victor J. Drew
- International PhD Program of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taiwan
| | - Lassina Barro
- International PhD Program of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taiwan
- National Center of Blood Transfusion, Ouagadougou, Burkina Faso, United Kingdom
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality Improvement/Safety, Audit/Inspection and DDR Strategy, London, United Kingdom
| | - Thierry Burnouf
- International PhD Program of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taiwan
| |
Collapse
|
27
|
Schubert P, Culibrk B, Karwal S, Serrano K, Levin E, Yi Q, Thiele T, Greinacher A, Marschner S, Devine DV. Altered timing of riboflavin and ultraviolet light pathogen inactivation improves platelet in vitro quality. Transfusion 2017; 57:2026-2034. [DOI: 10.1111/trf.14159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/08/2017] [Accepted: 04/09/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Peter Schubert
- Centre for Innovation, Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - Brankica Culibrk
- Centre for Innovation, Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research
| | - Simrath Karwal
- Centre for Innovation, Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research
| | - Katherine Serrano
- Centre for Innovation, Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - Elena Levin
- Centre for Innovation, Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - QiLong Yi
- Centre for Innovation, Canadian Blood Services; Ottawa Ontario Canada
| | - Thomas Thiele
- Institut für Immunologie und Transfusionsmedizin, Universität Greifswald; Greifswald Germany
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universität Greifswald; Greifswald Germany
| | | | - Dana V. Devine
- Centre for Innovation, Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
28
|
Taha M, Culibrk B, Kalab M, Schubert P, Yi QL, Goodrich R, Ramirez-Arcos S. Efficiency of riboflavin and ultraviolet light treatment against high levels of biofilm-derived Staphylococcus epidermidis in buffy coat platelet concentrates. Vox Sang 2017; 112:408-416. [PMID: 28378343 DOI: 10.1111/vox.12519] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/03/2017] [Accepted: 03/05/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Staphylococcus epidermidis forms surface-attached aggregates (biofilms) in platelet concentrates (PCs), which are linked to missed detection during PC screening. This study was aimed at evaluating the efficacy of riboflavin-UV treatment to inactivate S. epidermidis biofilms in buffy coat (BC) PCs. MATERIALS AND METHODS Biofilm and non-biofilm cells from S. epidermidis ST-10002 and S. epidermidis AZ-66 were individually inoculated into whole blood (WB) units (~106 colony-forming units (CFU)/ml) (N = 4-5). One spiked and three unspiked WB units were processed to produce a BC-PC pool. Riboflavin was added to the pool which was then split into two bags: one for UV treatment and the second was untreated. Bacterial counts were determined before and after treatment. In vitro PC quality was assessed by flow cytometry and dynamic light scattering. RESULTS Bacterial counts were reduced during BC-PC production from ~106 CFU/ml in WB to 103 -104 CFU/ml in PCs (P < 0·0001). Riboflavin-UV treatment resulted in significantly higher reduction of S. epidermidis AZ-66 than strain ST-10002 (≥3·5 log reduction and 2·6-2·8 log reduction, respectively, P < 0·0001). Remaining bacteria post-treatment were able to proliferate in PCs. No differences in S. epidermidis inactivation were observed in PCs produced from WB inoculated with biofilm or non-biofilm cells (P > 0·05). Platelet activation was enhanced in PCs produced with WB inoculated with biofilms compared to non-biofilm cells (P < 0·05). CONCLUSION Riboflavin-UV treatment was similarly efficacious in PCs produced from WB inoculated with S. epidermidis biofilm or non-biofilm cells. Levels of biofilm-derived S. epidermidis ≥103 CFU/ml were not completely inactivated; however, further testing is necessary with lower (real-life) bacterial levels.
Collapse
Affiliation(s)
- M Taha
- Canadian Blood Services, Ottawa, ON, Canada
| | - B Culibrk
- Canadian Blood Services, Ottawa, ON, Canada
| | - M Kalab
- Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - P Schubert
- Canadian Blood Services, Ottawa, ON, Canada
| | - Q-L Yi
- Canadian Blood Services, Ottawa, ON, Canada
| | - R Goodrich
- Infectious Disease Research Center, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
29
|
van der Meer PF, Couture C, Hervig T, Kruit G, Devine DV, de Korte D, Kerkhoffs JL. Experiences with semi-routine production of riboflavin and UV-B pathogen-inactivated platelet concentrates in three blood centres. Vox Sang 2016; 112:9-17. [DOI: 10.1111/vox.12465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 11/28/2022]
Affiliation(s)
- P. F. van der Meer
- Department of Product and Process Development; Sanquin Blood Bank; Amsterdam The Netherlands
- Department of Clinical Transfusion Research; Sanquin Research; Leiden The Netherlands
| | - C. Couture
- Canadian Blood Services; Ottawa ON Canada
| | - T. Hervig
- Department of Immunology and Transfusion Medicine; Haukeland University Hospital; Bergen Norway
| | - G. Kruit
- Department of Production; Sanquin Blood Bank; Amsterdam The Netherlands
| | | | - D. de Korte
- Department of Product and Process Development; Sanquin Blood Bank; Amsterdam The Netherlands
| | - J.-L. Kerkhoffs
- Department of Clinical Transfusion Research; Sanquin Research; Leiden The Netherlands
- Department of Hematology; Haga Teaching Hospital; The Hague The Netherlands
| |
Collapse
|
30
|
Chatterjee K, Zaman S, Chaurasia R, Singh S, Keil SD, Tewari S, Bisht A, Agarwal N, Rout D, Chand S, Saha K. Evaluation of Mirasol pathogen reduction system by artificially contaminating platelet concentrates with Staphylococcus epidermidis: A pilot study from India. Asian J Transfus Sci 2016; 10:127-31. [PMID: 27605849 PMCID: PMC4993081 DOI: 10.4103/0973-6247.187946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND AND OBJECTIVES This study was conducted to assess the efficacy of Mirasol pathogen reduction system for platelets aimed at preventing bacterial regrowth by spiking buffy coat pooled platelets (BCPP) with clinically relevant load of Staphylococous epidermidis. MATERIALS AND METHODS BCPP units were prepared using Teruflex BP-kit with Imugard III-S-PL (Terumo BCT, Tokyo, Japan). Two BCPP units were pooled, of which 40 ml of negative control (NC) was removed. The remaining volume of the platelet unit was inoculated with clinically relevant load of bacteria (total of 30 CFU of S. epidermidis in 1 ml); following this the platelet unit was split into two parts. One part served as positive control (PC) and the other part was subjected to pathogen reduction technique (Mirasol PRT, CaridianBCT Biotechnologies, Lakewood, CO, USA). Bacterial detection was performed using BacT/ALERT system, controls after day 1 and day 7 following inoculation of bacteria and on day 7 for Mirasol-treated unit. RESULTS Of the 32 treatment cycles, 28 were valid and 4 were invalid. No regrowth was observed in 96.4% (27 of 28) after treatment with Mirasol pathogen reduction system. Of four invalid tests, on two instances the NC showed growth, whereas in other 2 no regrowth was detected in 7(th) day PC. Bacterial screening of PCs by BacT/ALERT after 24 h of incubation was 28.6%, whereas the effectiveness increased to 100% when incubated for 7 days. CONCLUSIONS Mirasol system was effective in inactivating S. epidermidis when it was deliberately inoculated into BCPP at clinically relevant concentrations. Such systems may significantly improve blood safety by inactivating traditional and emerging transfusion-transmitted pathogens.
Collapse
Affiliation(s)
- Kabita Chatterjee
- Department of Transfusion Medicine, All Institute of Medical Sciences, New Delhi, India
| | - Shamsuz Zaman
- Department of Transfusion Medicine, All Institute of Medical Sciences, New Delhi, India
| | - Rahul Chaurasia
- Department of Transfusion Medicine, All Institute of Medical Sciences, New Delhi, India
| | - Surinder Singh
- National Institute of Biologicals, Noida, Uttar Pradesh, India
| | | | - Shalini Tewari
- National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Akanksha Bisht
- Haemovigilance Programme, National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Nitin Agarwal
- Department of Transfusion Medicine, All Institute of Medical Sciences, New Delhi, India
| | - Diptiranjan Rout
- Department of Transfusion Medicine, All Institute of Medical Sciences, New Delhi, India
| | - Subhash Chand
- National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Kallol Saha
- National Institute of Biologicals, Noida, Uttar Pradesh, India
| |
Collapse
|
31
|
Cap AP, Pidcoke HF, Keil SD, Staples HM, Anantpadma M, Carrion R, Davey RA, Frazer-Abel A, Taylor AL, Gonzales R, Patterson JL, Goodrich RP. Treatment of blood with a pathogen reduction technology using ultraviolet light and riboflavin inactivates Ebola virus in vitro. Transfusion 2016; 56 Suppl 1:S6-15. [PMID: 27001363 DOI: 10.1111/trf.13393] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Transfusion of plasma from recovered patients after Ebolavirus (EBOV) infection, typically called "convalescent plasma," is an effective treatment for active disease available in endemic areas, but carries the risk of introducing other pathogens, including other strains of EBOV. A pathogen reduction technology using ultraviolet light and riboflavin (UV+RB) is effective against multiple enveloped, negative-sense, single-stranded RNA viruses that are similar in structure to EBOV. We hypothesized that UV+RB is effective against EBOV in blood products without activating complement or reducing protective immunoglobulin titers that are important for the treatment of Ebola virus disease (EVD). STUDY DESIGN AND METHODS Four in vitro experiments were conducted to evaluate effects of UV+RB on green fluorescent protein EBOV (EBOV-GFP), wild-type EBOV in serum, and whole blood, respectively, and on immunoglobulins and complement in plasma. Initial titers for Experiments 1 to 3 were 4.21 log GFP units/mL, 4.96 log infectious units/mL, and 4.23 log plaque-forming units/mL. Conditions tested in the first three experiments included the following: 1-EBOV-GFP plus UV+RB; 2-EBOV-GFP plus RB only; 3-EBOV-GFP plus UV only; 4-EBOV-GFP without RB or UV; 5-virus-free control plus UV only; and 6-virus-free control without RB or UV. RESULTS UV+RB reduced EBOV titers to nondetectable levels in both nonhuman primate serum (≥2.8- to 3.2-log reduction) and human whole blood (≥3.0-log reduction) without decreasing protective antibody titers in human plasma. CONCLUSION Our in vitro results demonstrate that the UV+RB treatment efficiently reduces EBOV titers to below limits of detection in both serum and whole blood. In vivo testing to determine whether UV+RB can improve convalescent blood product safety is indicated.
Collapse
Affiliation(s)
- Andrew P Cap
- Coagulation and Blood Research, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Heather F Pidcoke
- Coagulation and Blood Research, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | | | - Hilary M Staples
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas
| | - Ricardo Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas
| | - Robert A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas
| | | | - Audra L Taylor
- United States Army Blood Program, JBSA Fort Sam Houston, Texas
| | - Richard Gonzales
- Terumo BCT, Lakewood, Colorado.,United States Army Blood Program, JBSA Fort Sam Houston, Texas
| | - Jean L Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas
| | | |
Collapse
|
32
|
Wagner SJ, Benjamin RJ, Hapip CA, Kaelber NS, Turgeon AM, Skripchenko A, Stassinopoulos A. Investigation of bacterial inactivation in apheresis platelets with 24 or 30 hours between inoculation and inactivation. Vox Sang 2016; 111:226-234. [DOI: 10.1111/vox.12410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/09/2016] [Accepted: 03/22/2016] [Indexed: 02/06/2023]
Affiliation(s)
- S. J. Wagner
- Transfusion Innovation Department American Red Cross Holland Laboratory Rockville MD USA
| | | | - C. A. Hapip
- Transfusion Innovation Department American Red Cross Holland Laboratory Rockville MD USA
| | - N. S. Kaelber
- Transfusion Innovation Department American Red Cross Holland Laboratory Rockville MD USA
| | - A. M. Turgeon
- Transfusion Innovation Department American Red Cross Holland Laboratory Rockville MD USA
| | - A. Skripchenko
- Transfusion Innovation Department American Red Cross Holland Laboratory Rockville MD USA
| | | |
Collapse
|
33
|
Kaplan A, Lindgren B, Marschner S, Aznar M, Zalba S, Sánchez P, Ayape ML, Olavarría E, Antelo ML. Evaluation of the post-transfusion platelet increment and safety of riboflavin-based pathogen reduction technology (PRT) treated platelet products stored in platelet additive solution for 5 days or less versus 6–7 days. Transfus Apher Sci 2016; 54:248-52. [DOI: 10.1016/j.transci.2015.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 11/24/2022]
|
34
|
Ypma PF, van der Meer PF, Heddle NM, van Hilten JA, Stijnen T, Middelburg RA, Hervig T, van der Bom JG, Brand A, Kerkhoffs JLH. A study protocol for a randomised controlled trial evaluating clinical effects of platelet transfusion products: the Pathogen Reduction Evaluation and Predictive Analytical Rating Score (PREPAReS) trial. BMJ Open 2016; 6:e010156. [PMID: 26817642 PMCID: PMC4735127 DOI: 10.1136/bmjopen-2015-010156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Patients with chemotherapy-induced thrombocytopaenia frequently experience minor and sometimes severe bleeding complications. Unrestrictive availability of safe and effective blood products is presumed by treating physicians as well as patients. Pathogen reduction technology potentially offers the opportunity to enhance safety by reducing bacterial and viral contamination of platelet products along with a potential reduction of alloimmunisation in patients receiving multiple platelet transfusions. METHODS AND ANALYSIS To test efficacy, a randomised, single-blinded, multicentre controlled trial was designed to evaluate clinical non-inferiority of pathogen-reduced platelet concentrates treated by the Mirasol system, compared with standard plasma-stored platelet concentrates using the percentage of patients with WHO grade ≥ 2 bleeding complications as the primary endpoint. The upper limit of the 95% CI of the non-inferiority margin was chosen to be a ≤ 12.5% increase in this percentage. Bleeding symptoms are actively monitored on a daily basis. The adjudication of the bleeding grade is performed by 3 adjudicators, blinded to the platelet product randomisation as well as by an automated computer algorithm. Interim analyses evaluating bleeding complications as well as serious adverse events are performed after each batch of 60 patients. The study started in 2010 and patients will be enrolled up to a maximum of 618 patients, depending on the results of consecutive interim analyses. A flexible stopping rule was designed allowing stopping for non-inferiority or futility. Besides analysing effects of pathogen reduction on clinical efficacy, the Pathogen Reduction Evaluation and Predictive Analytical Rating Score (PREPAReS) is designed to answer several other pending questions and translational issues related to bleeding and alloimmunisation, formulated as secondary and tertiary endpoints. ETHICS AND DISSEMINATION Ethics approval was obtained in all 3 participating countries. Results of the main trial and each of the secondary endpoints will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NTR2106; Pre-results.
Collapse
Affiliation(s)
- Paula F Ypma
- Department of Hematology, HAGA Teaching Hospital Den Haag, The Netherlands
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands
| | | | - Nancy M Heddle
- Faculty of Health Sciences, Department of Medicine, Canadian Blood Services, McMaster University, and Centre for Innovation, Hamilton, Ontario, Canada
| | - Joost A van Hilten
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands
| | - Theo Stijnen
- Leiden University Medical Centre, Leiden, The Netherlands
| | - Rutger A Middelburg
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tor Hervig
- Department of Immunology and Transfusion Medicine, and Department of Clinical Science, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Johanna G van der Bom
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anneke Brand
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands
| | - Jean-Louis H Kerkhoffs
- Department of Hematology, HAGA Teaching Hospital Den Haag, The Netherlands
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands
| |
Collapse
|
35
|
Benjamin RJ, Wagner SJ. Bacterial pathogen reduction requires validation under conditions of intended use. Transfusion 2015; 55:2060-3. [DOI: 10.1111/trf.13232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 11/29/2022]
|
36
|
Keil SD, Hovenga N, Gilmour D, Marschner S, Goodrich R. Treatment of Platelet Products with Riboflavin and UV Light: Effectiveness Against High Titer Bacterial Contamination. J Vis Exp 2015:e52820. [PMID: 26327141 PMCID: PMC4692557 DOI: 10.3791/52820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Contamination of platelet units by bacteria has long been acknowledged as a significant transfusion risk due to their post-donation storage conditions. Products are routinely stored at 22 °C on an agitating shaker, a condition that can promote bacterial growth. Although the total number of bacteria believed to be introduced into a platelet product is extremely low, these bacteria can multiply to a very high titer prior to transfusion, potentially resulting in serious adverse events. The aim of this study was to evaluate a riboflavin based pathogen reduction process against a panel of bacteria that have been identified as common contaminants of platelet products. This panel included the following organisms: S. epidermidis, S. aureus, S. mitis, S. pyogenes, S. marcescens, Y. enterocolitica, B. neotomae, B. cereus, E. coli, P. aeruginosa and K. pneumoniae. Each platelet unit was inoculated with a high bacterial load and samples were removed both before and after treatment. A colony forming assay, using an end point dilution scheme, was used to determine the pre-treatment and post-treatment bacterial titers. Log reduction was calculated by subtracting the post-treatment titer from the pre-treatment titer. The following log reductions were observed: S. epidermidis 4.7 log (99.998%), S. aureus 4.8 log (99.998%), S. mitis 3.7 log (99.98%), S. pyogenes 2.6 log (99.7%), S. marcescens 4.0 log (99.99%), Y. enterocolitica 3.3 log (99.95%), B. neotomae 5.4 log (99.9996%), B. cereus 2.6 log (99.7%), E. coli ≥5.4 log (99.9996%), P. aeruginosa 4.7 log (99.998%) and K. pneumoniae 2.8 log (99.8%). The results from this study suggest the process could help to lower the risk of severe adverse transfusion events associated with bacterial contamination.
Collapse
|
37
|
Loh YS, Dean MM, Johnson L, Marks DC. Treatment of platelets with riboflavin and ultraviolet light mediates complement activation and suppresses monocyte interleukin-12 production in whole blood. Vox Sang 2015; 109:327-35. [DOI: 10.1111/vox.12283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/03/2015] [Accepted: 03/17/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Y. S. Loh
- Research and Development; Australian Red Cross Blood Service; Sydney NSW Australia
| | - M. M. Dean
- Research and Development; Australian Red Cross Blood Service; Brisbane QLD Australia
| | - L. Johnson
- Research and Development; Australian Red Cross Blood Service; Sydney NSW Australia
| | - D. C. Marks
- Research and Development; Australian Red Cross Blood Service; Sydney NSW Australia
| |
Collapse
|
38
|
Abonnenc M, Sonego G, Crettaz D, Aliotta A, Prudent M, Tissot JD, Lion N. In vitro study of platelet function confirms the contribution of the ultraviolet B (UVB) radiation in the lesions observed in riboflavin/UVB-treated platelet concentrates. Transfusion 2015; 55:2219-30. [DOI: 10.1111/trf.13123] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Mélanie Abonnenc
- Laboratoire de Recherche sur les Produits Sanguins Epalinges; Transfusion Interrégionale CRS; Epalinges Switzerland
| | - Giona Sonego
- Laboratoire de Recherche sur les Produits Sanguins Epalinges; Transfusion Interrégionale CRS; Epalinges Switzerland
| | - David Crettaz
- Laboratoire de Recherche sur les Produits Sanguins Epalinges; Transfusion Interrégionale CRS; Epalinges Switzerland
| | - Alessandro Aliotta
- Laboratoire de Recherche sur les Produits Sanguins Epalinges; Transfusion Interrégionale CRS; Epalinges Switzerland
| | - Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins Epalinges; Transfusion Interrégionale CRS; Epalinges Switzerland
| | - Jean-Daniel Tissot
- Laboratoire de Recherche sur les Produits Sanguins Epalinges; Transfusion Interrégionale CRS; Epalinges Switzerland
| | - Niels Lion
- Laboratoire de Recherche sur les Produits Sanguins Epalinges; Transfusion Interrégionale CRS; Epalinges Switzerland
| |
Collapse
|
39
|
van der Meer PF, Bontekoe IJ, Daal BB, de Korte D. Riboflavin and UV light treatment of platelets: a protective effect of platelet additive solution? Transfusion 2015; 55:1900-8. [PMID: 25752624 DOI: 10.1111/trf.13033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Pathogen reduction technologies (PRTs) increase the safety of the blood supply, but are also associated with cell damage. Our aim was to investigate the effect of Mirasol PRT on platelet (PLT) concentrates stored in plasma and whether the use of a PLT additive solution (PAS) is able to improve in vitro quality. STUDY DESIGN AND METHODS Twenty-two buffy coats (BCs) were pooled and split into two equal parts. To one half, 2 units of plasma were added, and to the other, 2 units of SSP+ PAS were added. Each part was equally split in half again (to resemble pooling five BCs) and PLT concentrates were prepared. One plasma PLT concentrate was Mirasol treated, and the other served as control; similarly, one SSP+ PLT concentrate was Mirasol treated, and the other not. PLT concentrates were stored for 8 days (n = 12). RESULTS Mirasol PRT led to elevated lactate production in PLT concentrates in plasma, giving lower pH values throughout storage. The use of SSP+ mostly abrogated this effect, and Mirasol-treated PLT concentrates in SSP+ had only slightly higher lactate production rates and annexin A5 binding as control PLT concentrates in plasma. However, irrespective whether plasma or SSP+ was used, Mirasol PRT led to higher CD62P expression and lower hypotonic shock response (HSR) scores. CONCLUSION Mirasol treatment leads to higher PLT activation and lower HSR scores both when stored in plasma or SSP+. However, if Mirasol-treated PLTs are stored in SSP+, lactate metabolism and annexin A5 binding are lower, showing that PAS can partly mitigate the effect of PRT. The clinical relevance of this finding needs to be demonstrated.
Collapse
Affiliation(s)
- Pieter F van der Meer
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, the Netherlands
| | - Ido J Bontekoe
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, the Netherlands
| | - Brunette B Daal
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, the Netherlands
| | - Dirk de Korte
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, the Netherlands
| |
Collapse
|
40
|
Keil SD, Bengrine A, Bowen R, Marschner S, Hovenga N, Rouse L, Gilmour D, Duverlie G, Goodrich RP. Inactivation of viruses in platelet and plasma products using a riboflavin-and-UV-based photochemical treatment. Transfusion 2015; 55:1736-44. [PMID: 25731607 DOI: 10.1111/trf.13030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/17/2014] [Accepted: 12/26/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Multilayered blood safety programs reduce the risk of transfusion-transmitted diseases; however, there remains a risk of window period transmission of screened viruses and transmission of unscreened and emerging viruses from asymptomatic donors. To reduce this risk, a riboflavin-and-UV-light-based pathogen reduction process was evaluated against eight viral agents. STUDY DESIGN AND METHODS Riboflavin and UV light was evaluated against the following eight viral agents: encephalomyocarditis virus (EMC), hepatitis A virus (HAV), hepatitis C virus (HCV), influenza A (FLUAV), La Crosse virus (LACV), pseudorabies virus (PRV), sindbis virus (SINV), and vesicular stomatitis virus (VSV). Before treatment, a sample was removed to determine the product's initial viral load. After treatment the product's viral load was reevaluated and the log reduction was calculated. RESULTS Virus reduction after treatment with riboflavin and UV light is equivalent in platelet (PLT) and plasma units, as demonstrated by a 3.2-log reduction of EMC in plasma, PLTs, and PLT additive solution containing 35% plasma. Additionally, the following viral reductions values were observed: HAV 1.8 log, HCV at least 4.1 log, FLUAV at least 5.0 log, LACV at least 3.5 log, PRV 2.5 log, SINV 3.2 log, and VSV at least 6.3 log. CONCLUSIONS The results observed in this study suggest that treating PLT and plasma products with a riboflavin-and-UV-light-based pathogen reduction process could potentially eliminate window period transmission of screened viruses and greatly reduce the risk of transfusion transmission of unscreened viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gilles Duverlie
- Biobanque de Picardie, EA4294, UPJV, CHU-Amiens, Amiens, France
| | | |
Collapse
|
41
|
Drawz SM, Marschner S, Yañez M, García de Coca A, Feys HB, Deeren D, Coene J. Observational study of corrected count increments after transfusion of platelets treated with riboflavin pathogen reduction technology in additive solutions. Transfusion 2015; 55:1745-51. [PMID: 25702711 DOI: 10.1111/trf.13026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Mirasol pathogen reduction technology (PRT) treatment inactivates bacteria, viruses, and parasites in plasma products and platelets (PLTs) suspended in plasma and PLT additive solutions (PAS). Few clinical studies exist documenting transfusions with PAS. This study objective was to evaluate the count increments of PRT-treated PAS-C and PAS-E buffy coat (BC) PLTs in routine use observational settings. STUDY DESIGN AND METHODS PLT pools of five or six BCs were collected, processed, and suspended in PAS-C or PAS-E, respectively. Products were exposed to ultraviolet light in the presence of riboflavin and then transfused into 19 patients with hematologic diseases. Patients were monitored for PLT corrected count increment (CCI) at 1 and 24 hours and for any adverse events in the 72 hours after transfusion. Sterility monitoring was performed with a microbial detection system (BacT/ALERT, bioMérieux). RESULTS The PAS-E products had significantly higher PLT concentrations and counts than the PAS-C products. The mean CCIs of per-protocol (PP) units at 1 and 24 hours were 11,900 (n=27) and 5500 (n=30), respectively. Seventy-eight percent of PP transfusions classify as successful with CCIs at 1 hour of higher than 7500, and 63% higher than 4500 at 24 hours. One patient was excluded from all analyses as she was refractory to Mirasol-treated PLT transfusions and follow-up untreated transfusion products. No adverse events were observed and no contaminated products were detected by BacT/ALERT. CONCLUSION PRT-treated BC PLTs in PAS-C or PAS-E demonstrate PLT transfusion success rates in hematology patients with thrombocytopenia that are comparable to previous studies examining PLTs stored in plasma.
Collapse
Affiliation(s)
- Sarah M Drawz
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | | | | | | | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | | | - José Coene
- Blood Service of the Belgian Red Cross-Flanders, Mechelen, Belgium
| |
Collapse
|
42
|
Salunkhe V, van der Meer PF, de Korte D, Seghatchian J, Gutiérrez L. Development of blood transfusion product pathogen reduction treatments: A review of methods, current applications and demands. Transfus Apher Sci 2015; 52:19-34. [DOI: 10.1016/j.transci.2014.12.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Chen Z, Schubert P, Culibrk B, Devine DV. p38MAPK is involved in apoptosis development in apheresis platelet concentrates after riboflavin and ultraviolet light treatment. Transfusion 2014; 55:848-57. [PMID: 25385501 DOI: 10.1111/trf.12905] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/29/2014] [Accepted: 09/08/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Pathogen inactivation (PI) accelerates the platelet (PLT) storage lesion, including apoptotic-like changes. Proteomic studies have shown that phosphorylation levels of several kinases increase in PLTs after riboflavin and UV light (RF-PI) treatment. Inhibition of p38MAPK improved in vitro PLT quality, but the biochemical basis of this kinase's contribution to PLT damage requires further analysis. STUDY DESIGN AND METHODS In a pool-and-split design, apheresis PLT concentrates were either treated or kept untreated with or without selected kinase inhibitors. Samples were analyzed throughout 7 days of storage, monitoring in vitro quality variables including phosphatidylserine exposure, degranulation, and glucose metabolism. Changes in the protein expression of Bax, Bak, and Bcl-xL and the activities of caspase-3 and -9 were determined by immunoblot analysis and flow cytometry, respectively. RESULTS The expression levels of the proapoptotic proteins Bax and Bak, but not the antiapoptotic protein Bcl-xL, were significantly increased after the RF-PI treatment. This trend was reversed in the presence of p38MAPK inhibitor SB203580. As a result of increasing proapoptotic protein levels, caspase-3 and -9 activities were significantly increased in RF-PI treatment during storage compared with control (p < 0.05). Similarly, p38MAPK inhibition significantly reduced these caspase activities compared with vehicle control after RF-PI treatment (p < 0.05). CONCLUSION These findings revealed that p38MAPK is involved in signaling leading to apoptosis triggered by RF-PI. Elucidation of the biochemical processes influenced by PI is a necessary step in the development of strategies to improve the PLT quality and ameliorate the negative effects of PI treatment.
Collapse
Affiliation(s)
- Zhongming Chen
- Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Schubert
- Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brankica Culibrk
- Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dana V Devine
- Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
44
|
|
45
|
Benjamin RJ. Pathogen inactivation - defining ‘adequate’ bacterial protection. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/voxs.12057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- R. J. Benjamin
- American Red Cross Holland Laboratories; Rockville MD USA
| |
Collapse
|
46
|
Schlenke P. Pathogen inactivation technologies for cellular blood components: an update. Transfus Med Hemother 2014; 41:309-25. [PMID: 25254027 PMCID: PMC4164100 DOI: 10.1159/000365646] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/27/2014] [Indexed: 01/19/2023] Open
Abstract
Nowadays patients receiving blood components are exposed to much less transfusion-transmitted infectious diseases than three decades before when among others HIV was identified as causative agent for the acquired immunodeficiency syndrome and the transmission by blood or coagulation factors became evident. Since that time the implementation of measures for risk prevention and safety precaution was socially and politically accepted. Currently emerging pathogens like arboviruses and the well-known bacterial contamination of platelet concentrates still remain major concerns of blood safety with important clinical consequences, but very rarely with fatal outcome for the blood recipient. In contrast to the well-established pathogen inactivation strategies for fresh frozen plasma using the solvent-detergent procedure or methylene blue and visible light, the bench-to-bedside translation of novel pathogen inactivation technologies for cell-containing blood components such as platelets and red blood cells are still underway. This review summarizes the pharmacological/toxicological assessment and the inactivation efficacy against viruses, bacteria, and protozoa of each of the currently available pathogen inactivation technologies and highlights the impact of the results obtained from several randomized clinical trials and hemovigilance data. Until now in some European countries pathogen inactivation technologies are in in routine use for single-donor plasma and platelets. The invention and adaption of pathogen inactivation technologies for red blood cell units and whole blood donations suggest the universal applicability of these technologies and foster a paradigm shift in the manufacturing of safe blood.
Collapse
Affiliation(s)
- Peter Schlenke
- Department for Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
47
|
Bakkour S, Chafets DM, Wen L, van der Meer PF, Mundt JM, Marschner S, Goodrich RP, Busch MP, Lee TH. Development of a mitochondrial DNA real-time polymerase chain reaction assay for quality control of pathogen reduction with riboflavin and ultraviolet light. Vox Sang 2014; 107:351-9. [PMID: 24976130 DOI: 10.1111/vox.12173] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Transfusion is associated with a risk of infection and alloimmunization. Pathogen reduction using riboflavin and UV light (Mirasol treatment) inactivates pathogens and leucocytes. With increasing adoption of the technology in clinical use, regulatory agencies have recommended the introduction of quality control measures to monitor pathogen reduction efficacy. We sought to develop a real-time PCR-based assay to document the impact of pathogen reduction on the mitochondrial genome in blood components. MATERIALS AND METHODS DNA was extracted from platelet and plasma components before and after treatment with riboflavin and UV light. Inhibition of PCR amplification of mitochondrial DNA (mtDNA) in short- and long-amplicon target regions, ranging from under 200 base pairs (bp) to over 1800 bp, was measured in treated relative to untreated components. RESULTS Pathogen reduction of platelets using riboflavin and UV light resulted in inhibition of PCR amplification of long-amplicon mtDNA targets, demonstrating approximately 1 log reduction of amplification relative to untreated products. Amplification of short-amplicon mtDNA targets was not affected by treatment. Evaluation of 110 blinded platelet samples from the PREPAReS clinical trial resulted in prediction of treatment status with 100% accuracy. Pathogen reduction of plasma components resulted in similar levels of PCR inhibition, while testing of 30 blinded plasma samples resulted in prediction of treatment status with 93% accuracy. CONCLUSION A differential sized amplicon real-time PCR assay of mitochondrial DNA effectively documents nucleic acid damage induced by Mirasol treatment of platelets. The use of the assay for plasma product pathogen reduction requires further investigation.
Collapse
Affiliation(s)
- S Bakkour
- Blood Systems Research Institute, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kwon SY, Kim IS, Bae JE, Kang JW, Cho YJ, Cho NS, Lee SW. Pathogen inactivation efficacy of Mirasol PRT System and Intercept Blood System for non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma. Vox Sang 2014; 107:254-60. [PMID: 24806328 DOI: 10.1111/vox.12158] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/14/2014] [Accepted: 04/13/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES This study was conducted to evaluate the efficacy of pathogen inactivation (PI) in non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma using the Mirasol PRT System and the Intercept Blood System. METHODS Platelets were pooled using the Acrodose PL system and separated into two aliquots for Mirasol and Intercept treatment. Four replicates of each viral strain were used for the evaluation. For bacteria, both low-titre (45-152 CFU/unit) inoculation and high-titre (7·34-10·18 log CFU/unit) inoculation with two replicates for each bacterial strain were used. Platelets with non-detectable bacterial growth and platelets inoculated with a low titre were stored for 5 days, and culture was performed with the BacT/ALERT system. RESULTS The inactivation efficacy expressed as log reduction for Mirasol and Intercept systems for viruses was as follows: human immunodeficiency virus 1, ≥4·19 vs. ≥4·23; bovine viral diarrhoea virus, 1·83 vs. ≥6·03; pseudorabies virus, 2·73 vs. ≥5·20; hepatitis A virus, 0·62 vs. 0·76; and porcine parvovirus, 0·28 vs. 0·38. The inactivation efficacy for bacteria was as follows: Escherichia coli, 5·45 vs. ≥9·22; Staphylococcus aureus, 4·26 vs. ≥10·11; and Bacillus subtilis, 5·09 vs. ≥7·74. Postinactivation bacterial growth in platelets inoculated with a low titre of S. aureus or B. subtilis was detected only with Mirasol. CONCLUSION Pathogen inactivation efficacy of Intercept for enveloped viruses was found to be satisfactory. Mirasol showed satisfactory inactivation efficacy for HIV-1 only. The two selected non-enveloped viruses were not inactivated by both systems. Inactivation efficacy of Intercept was more robust for all bacteria tested at high or low titres.
Collapse
Affiliation(s)
- S Y Kwon
- Blood Transfusion Research Institute, Korean Red Cross, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
The International Experience of Bacterial Screen Testing of Platelet Components With an Automated Microbial Detection System: A Need for Consensus Testing and Reporting Guidelines. Transfus Med Rev 2014; 28:61-71. [DOI: 10.1016/j.tmrv.2014.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 11/30/2022]
|
50
|
Zeddies S, De Cuyper IM, van der Meer PF, Daal BB, de Korte D, Gutiérrez L, Thijssen-Timmer DC. Pathogen reduction treatment using riboflavin and ultraviolet light impairs platelet reactivity toward specific agonists in vitro. Transfusion 2014; 54:2292-300. [DOI: 10.1111/trf.12636] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Sabrina Zeddies
- Department of Hematopoiesis; University of Amsterdam; Amsterdam the Netherlands
| | - Iris M. De Cuyper
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre; University of Amsterdam; Amsterdam the Netherlands
| | - Pieter F. van der Meer
- Department of Product and Process Development; Sanquin Blood Bank; Amsterdam the Netherlands
| | - Brunette B. Daal
- Department of Product and Process Development; Sanquin Blood Bank; Amsterdam the Netherlands
| | - Dirk de Korte
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre; University of Amsterdam; Amsterdam the Netherlands
- Department of Product and Process Development; Sanquin Blood Bank; Amsterdam the Netherlands
| | - Laura Gutiérrez
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre; University of Amsterdam; Amsterdam the Netherlands
| | | |
Collapse
|