1
|
Huang WC, Shu LH, Kuo YJ, Lai KSL, Hsia CW, Yen TL, Hsia CH, Jayakumar T, Yang CH, Sheu JR. Eugenol Suppresses Platelet Activation and Mitigates Pulmonary Thromboembolism in Humans and Murine Models. Int J Mol Sci 2024; 25:2098. [PMID: 38396774 PMCID: PMC10888574 DOI: 10.3390/ijms25042098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Platelets assume a pivotal role in the pathogenesis of cardiovascular diseases (CVDs), emphasizing their significance in disease progression. Consequently, addressing CVDs necessitates a targeted approach focused on mitigating platelet activation. Eugenol, predominantly derived from clove oil, is recognized for its antibacterial, anticancer, and anti-inflammatory properties, rendering it a valuable medicinal agent. This investigation delves into the intricate mechanisms through which eugenol influences human platelets. At a low concentration of 2 μM, eugenol demonstrates inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Notably, thrombin and U46619 remain unaffected by eugenol. Its modulatory effects extend to ATP release, P-selectin expression, and intracellular calcium levels ([Ca2+]i). Eugenol significantly inhibits various signaling cascades, including phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3β, mitogen-activated protein kinases, and cytosolic phospholipase A2 (cPLA2)/thromboxane A2 (TxA2) formation induced by collagen. Eugenol selectively inhibited cPLA2/TxA2 phosphorylation induced by AA, not affecting p38 MAPK. In ADP-treated mice, eugenol reduced occluded lung vessels by platelet thrombi without extending bleeding time. In conclusion, eugenol exerts a potent inhibitory effect on platelet activation, achieved through the inhibition of the PLCγ2-PKC and cPLA2-TxA2 cascade, consequently suppressing platelet aggregation. These findings underscore the potential therapeutic applications of eugenol in CVDs.
Collapse
Affiliation(s)
- Wei-Chieh Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (Y.-J.K.)
| | - Lan-Hsin Shu
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Ju Kuo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (Y.-J.K.)
| | - Kevin Shu-Leung Lai
- Division of Critical Care Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chih-Wei Hsia
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Ting-Lin Yen
- Department of Medical Research, Cathay General Hospital, Taipei 106, Taiwan
| | - Chih-Hsuan Hsia
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan
| | - Thanasekaran Jayakumar
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry 605014, India;
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (Y.-J.K.)
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
2
|
Spurgeon BEJ, Frelinger AL. OMIP-097: High-parameter phenotyping of human platelets by spectral flow cytometry. Cytometry A 2023; 103:935-940. [PMID: 37786346 DOI: 10.1002/cyto.a.24797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/24/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Using spectral flow cytometry, we developed a 16-color panel for analysis of platelet phenotype and function in human whole blood. The panel contains markers of clinical relevance and follows an optimized protocol for the high-parameter phenotyping of (phosphatidylserine positive) procoagulant platelets. Inclusion of established markers, such as CD62P and PAC-1, allows the subsetting of classic (proinflammatory and proaggregatory) phenotypes, while addition of novel markers, such as TLR9, allows the resolution of platelets with nonclassic functions. Multiple inducible (C3b, CD63, CD107a, CD154, and TLT-1) and constitutive (CD29, CD31, CD32, CD36, CD42a, CD61, and GPVI) markers are also measurable, and we demonstrate the use of automatic gating for platelet analysis. The panel is widely applicable to research and clinical settings and can be readily modified, should users wish to tailor the panel to more specific needs.
Collapse
Affiliation(s)
- Benjamin E J Spurgeon
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew L Frelinger
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Chang Y, Hsia CW, Huang WC, Jayakumar T, Hsia CH, Yen TL, Sheu JR, Hou SM. Myricetin as a promising inhibitor of platelet fibrinogen receptor in humans. Heliyon 2023; 9:e20286. [PMID: 37767484 PMCID: PMC10520825 DOI: 10.1016/j.heliyon.2023.e20286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Platelets play a vital role in the formation of dangerous arterial thrombosis. Platelets are activated by adhesive proteins or soluble agonists through their specific receptors. The receptor-mediated signaling pathways lead to common signaling events, which result in shape changes and inside-out signaling, leading fibrinogen binding to glycoprotein IIb/IIIa complex (integrin αIIbβ3). This interaction initiates integrin αIIbβ3-mediated outside-in signaling, subsequently culminating in granule secretion and aggregation. Myricetin is a flavonoid that occurs in a variety of plants. Although myricetin has been demonstrated to have several bioactive properties, its role in platelet activation has not been extensively studied. The present study demonstrated the ability of myricetin to inhibit platelet aggregation stimulated by collagen, thrombin, and U46619. Myricetin reduced the ATP-release, cytosolic Ca2+ mobilization, and P-selectin expression and the activation of PLCγ2/PKC, PI3K/Akt/GSK3β, and MAPK. Myricetin exerted a direct inhibitory effect on the activation of integrin αIIbβ3 by disrupting the binding between FITC-PAC-1 and the integrin. Moreover, myricetin suppressed integrin αIIbβ3-mediated outside-in signaling, such as integrin β3, Src, and Syk phosphorylation on immobilized fibrinogen. In animal studies, myricetin significantly prolonged the occlusion time of thrombotic platelet plug formation in mesenteric microvessels without extending bleeding time. This study concludes that myricetin is a natural integrin αIIbβ3 inhibitor and a novel antithrombotic agent.
Collapse
Affiliation(s)
- Yi Chang
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Chih-Wei Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wei-Chieh Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Thanasekaran Jayakumar
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605014, India
| | - Chih-Hsuan Hsia
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan
| | - Ting-Lin Yen
- Department of Medical Research, Cathay General Hospital, Taipei, 106, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Shaw-Min Hou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan
- Department of Cardiovascular Center, Cathay General Hospital, Taipei, 106, Taiwan
| |
Collapse
|
4
|
Krott KJ, Feige T, Elvers M. Flow Chamber Analyses in Cardiovascular Research: Impact of Platelets and the Intercellular Crosstalk with Endothelial Cells, Leukocytes, and Red Blood Cells. Hamostaseologie 2023; 43:338-347. [PMID: 37857296 DOI: 10.1055/a-2113-1134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Platelets are main drivers of thrombus formation. Besides platelet aggregate formation, platelets interact with different blood cells such as red blood and white blood cells (RBCs, WBCs) and endothelial cells (ECs), to promote thrombus formation and inflammation. In the past, the role of different proteins in platelet adhesion, activation, and aggregate formation has been analyzed using platelets/mice with a genetic loss of a certain protein. These knock-out mouse models have been investigated for changes in experimental arterial thrombosis or hemostasis. In this review, we focused on the Maastricht flow chamber, which is a very elegant tool to analyze thrombus formation under flow using whole blood or different blood cell components of genetically modified mice. Besides, the interaction of platelets with RBCs, WBCs, and ECs under flow conditions has been evaluated with regard to thrombus formation and platelet-mediated inflammation. Importantly, alterations in thrombus formation as emerged in the flow chamber frequently reflect arterial thrombosis in different mouse models. Thus, the results of flow chamber experiments in vitro are excellent indicators for differences in arterial thrombosis in vivo. Taken together, the Maastricht flow chamber can be used to (1) determine the severity of platelet alterations in different knock-out mice; (2) analyze differences in platelet adhesion, aggregation, and activation; (3) investigate collagen and non-collagen-dependent alterations of thrombus formation; and (4) highlight differences in the interaction of platelets with different blood/ECs. Thus, this experimental approach is a useful tool to increase our understanding of signaling mechanisms that drive arterial thrombosis and hemostasis.
Collapse
Affiliation(s)
- Kim Jürgen Krott
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Feige
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
5
|
Yang B, Wang X, Hu X, Xiao Y, Xu X, Yu X, Wang M, Luo H, Li J, Ma Y, Shen W. Platelet morphology, ultrastructure and function changes in acute ischemic stroke patients based on structured illumination microscopy. Heliyon 2023; 9:e18543. [PMID: 37600369 PMCID: PMC10432616 DOI: 10.1016/j.heliyon.2023.e18543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Acute ischemic stroke (AIS) is the second leading cause of death worldwide. This study aims at assessing platelet morphology, ultrastructure and function changes of platelets in acute ischemic stroke (AIS) patients by the technique of Structured Illumination Microscopy (SIM). This assay collected platelet-rich plasma (PRP) from 11 AIS patients and 12 healthy controls. Each PRP sample was divided into 7 groups:1) rest group; 2) Thrombin-treated 5 min group; 3) Thrombin plus 2MeSAMP-treated 5 min group; 4) Thrombin plus Aspirin-treated 5 min group; 5) Thrombin-treated 1 h group; 6) Thrombin plus 2MeSAMP-treated 1 h group; 7) Thrombin plus Aspirin-treated 1 h group. SIM was applied to observe dense granules and α-granules morphology changes of platelet in AIS patients. FIJI was used to quantify the image data. We finally observed 1448 images of platelets within the 7 groups. In rest group, 7162 platelets were calculated platelet diameter, CD63 dots, average CD63-positive dots area, CD63-positive area per platelet, CD63-positive area Fov, VWF dots, average VWF-positive dots area, VWF-positive area per platelet and VWF-positive area Fov. ELISA was used to detect release of platelet factor 4 (PF4) of α-granules. The results showed that AIS patients had lower number and smaller area of platelet granules. Platelet α-granules of AIS patients concentrated to parenchymal-like fluorescent blocks in Thrombin-treated 1 h group. Antiplatelet drug treatment could reverse the concentration of platelets α-granules, and 2MeSAMP was more powerful than Aspirin in vitro. This study complemented detail information of platelet ultrastructure of AIS patients, provided a new perspective on the pathogenesis of AIS and the mechanism of antiplatelet drugs based on SIM and provided a reference for future related studies. SIM-based analysis of platelet ultrastructure may be useful for detecting antiplatelet drugs and AIS in the future.
Collapse
Affiliation(s)
- Bingxin Yang
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xifeng Wang
- Wuhan Forth Hospital, Wuhan, Hubei, 430030, China
| | - Xiaoyu Hu
- Wuhan Blood Center-Huazhong University of Science and Technology United Hematology Optical Imaging Center, Hubei Institute of Blood Transfusion, Wuhan Blood Center, Wuhan, Hubei, 430030, China
| | - Yao Xiao
- Wuhan Forth Hospital, Wuhan, Hubei, 430030, China
| | - Xueyu Xu
- Wuhan Forth Hospital, Wuhan, Hubei, 430030, China
| | - Xiaomei Yu
- Wuhan Forth Hospital, Wuhan, Hubei, 430030, China
| | - Min Wang
- Wuhan Forth Hospital, Wuhan, Hubei, 430030, China
| | - Honglian Luo
- Wuhan Forth Hospital, Wuhan, Hubei, 430030, China
| | - Jun Li
- Wuhan Forth Hospital, Wuhan, Hubei, 430030, China
| | - Yan Ma
- Wuhan Blood Center-Huazhong University of Science and Technology United Hematology Optical Imaging Center, Hubei Institute of Blood Transfusion, Wuhan Blood Center, Wuhan, Hubei, 430030, China
| | - Wei Shen
- Wuhan Forth Hospital, Wuhan, Hubei, 430030, China
| |
Collapse
|
6
|
Hsia CW, Huang WC, Jayakumar T, Hsia CH, Hou SM, Chang CC, Yen TL, Sheu JR. Garcinol acts as a novel integrin α IIbβ 3 inhibitor in human platelets. Life Sci 2023; 326:121791. [PMID: 37211346 DOI: 10.1016/j.lfs.2023.121791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
AIMS Platelet activation plays a central role in arterial thrombosis. Platelets are activated by adhesive proteins (i.e., collagen) or soluble agonists (i.e., thrombin), the respective receptor-specific signaling cause inside-out signaling, leading to the binding of fibrinogen to integrin αIIbβ3. This binding triggers outside-in signaling, resulting in platelet aggregation. Garcinol, a polyisoprenylated benzophenone, is extracted from the fruit rind of Garcinia indica. Although garcinol exhibits considerable bioactivities, few studies have investigated the effect of garcinol on platelet activation. MAIN METHODS Aggregometry, immunoblotting, flow cytometer, confocal microscopic analysis, fibrin clot retraction, animal studies such as fluorescein-induced platelet plug formation in mesenteric microvessels, acute pulmonary thromboembolism, and tail bleeding time were performed in this study. KEY FINDINGS This study indicates that garcinol inhibited platelet aggregation stimulated by collagen, thrombin, arachidonic acid, and U46619. Garcinol reduced integrin αIIbβ3 inside-out signaling, including ATP release; cytosolic Ca2+ mobilization; P-selectin expression; and Syk, PLCγ2/PKC, PI3K/Akt/GSK3β, MAPKs, and NF-κB activation stimulated by collagen. Garcinol directly inhibited integrin αIIbβ3 activation by interfering with FITC-PAC-1 and FITC-triflavin by collagen. Additionally, garcinol affected integrin αIIbβ3-mediated outside-in signaling, such as decreasing platelet adhesion and the single-platelet spreading area; suppressing integrin β3, Src, FAK, and Syk phosphorylation on immobilized fibrinogen; and inhibiting thrombin-stimulated fibrin clot retraction. Garcinol substantially reduced mortality caused by pulmonary thromboembolism and prolonged the occlusion time of thrombotic platelet plug formation without extending bleeding time in mice. SIGNIFICANCE This study identified that garcinol, a novel antithrombotic agent, acts as a naturally occurring integrin αIIbβ3 inhibitor.
Collapse
Affiliation(s)
- Chih-Wei Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Chieh Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Thanasekaran Jayakumar
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry 605014, India
| | - Chih-Hsuan Hsia
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Shaw-Min Hou
- Department of Cardiovascular Center, Cathay General Hospital, Taipei 106, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Chao-Chien Chang
- Department of Cardiovascular Center, Cathay General Hospital, Taipei 106, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Ting-Lin Yen
- Department of Medical Research, Cathay General Hospital, Taipei 106, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
7
|
Nieman MT, Neeves KB. Flipping the script: defining the reversibility of platelet activation. J Thromb Haemost 2023; 21:1102-1103. [PMID: 37121617 DOI: 10.1016/j.jtha.2023.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 05/02/2023]
Affiliation(s)
- Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA. https://twitter.com/marvnieman
| | - Keith B Neeves
- Departments of Bioengineering and Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
8
|
De Simone I, Baaten CCFMJ, Gibbins JM, Ten Cate H, Heemskerk JWM, Jones CI, van der Meijden PEJ. Repeated platelet activation and the potential of previously activated platelets to contribute to thrombus formation. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:1289-1306. [PMID: 36754678 DOI: 10.1016/j.jtha.2023.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Especially in disease conditions, platelets can encounter activating agents in circulation. OBJECTIVES To investigate the extent to which previously activated platelets can be reactivated and whether in-and reactivation applies to different aspects of platelet activation and thrombus formation. METHODS Short-and long-term effects of glycoprotein VI (GPVI) and G protein-coupled receptor (GPCR) stimulation on platelet activation and aggregation potential were compared via flow cytometry and plate-based aggregation. Using fluorescence and electron microscopy, we assessed platelet morphology and content, as well as thrombus formation. RESULTS After 30 minutes of stimulation with thrombin receptor activator peptide 6 (TRAP6) or adenosine diphosphate (ADP), platelets secondarily decreased in PAC-1 binding and were less able to aggregate. The reversibility of platelets after thrombin stimulation was concentration dependent. Reactivation was possible via another receptor. In contrast, cross-linked collagen-related peptide (CRP-XL) or high thrombin stimulation evoked persistent effects in αIIbβ3 activation and platelet aggregation. However, after 60 minutes of CRP-XL or high thrombin stimulation, when αIIbβ3 activation slightly decreased, restimulation with ADP or CRP-XL, respectively, increased integrin activation again. Compatible with decreased integrin activation, platelet morphology was reversed. Interestingly, reactivation of reversed platelets again resulted in shape change and if not fully degranulated, additional secretion. Moreover, platelets that were previously activated with TRAP6 or ADP regained their potential to contribute to thrombus formation under flow. On the contrary, prior platelet triggering with CRP-XL was accompanied by prolonged platelet activity, leading to a decreased secondary platelet adhesion under flow. CONCLUSION This work emphasizes that prior platelet activation can be reversed, whereafter platelets can be reactivated through a different receptor. Reversed, previously activated platelets can contribute to thrombus formation.
Collapse
Affiliation(s)
- Ilaria De Simone
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands; Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Constance C F M J Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands; Institute for Molecular Cardiovascular Research, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Hugo Ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands; Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | - Chris I Jones
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Paola E J van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands; Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, the Netherlands.
| |
Collapse
|
9
|
Zhou Y, Zhang D, Tan P, Xian B, Jiang H, Wu Q, Huang X, Zhang P, Xiao X, Pei J. Mechanism of platelet activation and potential therapeutic effects of natural drugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154463. [PMID: 36347177 DOI: 10.1016/j.phymed.2022.154463] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/20/2022] [Accepted: 09/18/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Cardiovascular disease is one of the most concerning chronic diseases in the world. Many studies have shown that platelet overactivation is a very important factor in the occurrence and development of cardiovascular diseases. At present, the widely used antiplatelet drugs have some defects, such as drug resistance and adverse reactions. PURPOSE The purpose of this article is to summarize the main mechanisms and pathways of platelet activation, the main targets of antiplatelet aggregation, and the antiplatelet aggregation components of natural drugs and their mechanisms of action to provide new research ideas for the development and application of antiplatelet drugs. STUDY DESIGN AND METHODS In this review, we systematically searched the PubMed, Google Scholar, Web of Science, and CNKI databases and selected studies based on predefined eligibility criteria. We then assessed their quality and extracted data. RESULTS ADP, AA, THR, AF, collagen, SDF-1α, and Ca2+ can induce platelet aggregation and trigger thrombosis. Natural drugs have a good inhibitory effect on platelet activation. More than 50 kinds of natural drugs and over 120 kinds of chemical compounds, including flavonoids, alkaloids, saponins, terpenoids, coumarins, and organic acids, have significantly inhibited platelet activation activity. The MAPK pathway, cGMP-PKG pathway, cAMP-PKA pathway, PI3K-AKT pathway, PTK pathway, PLC pathway, and AA pathway are the main mechanisms and pathways of platelet activation. CONCLUSION Natural drugs and their active ingredients have shown good activity and application prospects in anti-platelet aggregation. We hope that this review provides new research ideas for the development and application of antiplatelet drugs.
Collapse
Affiliation(s)
- Yongfeng Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Tan
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu 610041, China
| | - Bin Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huajuan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qinghua Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xulong Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Zhang
- Medical Supplies Centre of PLA General Hospital, Beijing 100036, China.
| | - Xiaohe Xiao
- Department of Liver Disease, Fifth Medical Center of PLA General Hospital, Beijing 10039, China.
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
10
|
Reversible Platelet Integrin αIIbβ3 Activation and Thrombus Instability. Int J Mol Sci 2022; 23:ijms232012512. [PMID: 36293367 PMCID: PMC9604507 DOI: 10.3390/ijms232012512] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Integrin αIIbβ3 activation is essential for platelet aggregation and, accordingly, for hemostasis and arterial thrombosis. The αIIbβ3 integrin is highly expressed on platelets and requires an activation step for binding to fibrinogen, fibrin or von Willebrand factor (VWF). A current model assumes that the process of integrin activation relies on actomyosin force-dependent molecular changes from a bent-closed and extended-closed to an extended-open conformation. In this paper we review the pathways that point to a functional reversibility of platelet αIIbβ3 activation and transient aggregation. Furthermore, we refer to mouse models indicating that genetic defects that lead to reversible platelet aggregation can also cause instable thrombus formation. We discuss the platelet agonists and signaling pathways that lead to a transient binding of ligands to integrin αIIbβ3. Our analysis points to the (autocrine) ADP P2Y1 and P2Y12 receptor signaling via phosphoinositide 3-kinases and Akt as principal pathways linked to reversible integrin activation. Downstream signaling events by protein kinase C, CalDAG-GEFI and Rap1b have not been linked to transient integrin activation. Insight into the functional reversibility of integrin activation pathways will help to better understand the effects of antiplatelet agents.
Collapse
|
11
|
Glabridin, a Bioactive Flavonoid from Licorice, Effectively Inhibits Platelet Activation in Humans and Mice. Int J Mol Sci 2022; 23:ijms231911372. [PMID: 36232674 PMCID: PMC9570097 DOI: 10.3390/ijms231911372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Platelets are crucial for hemostasis and arterial thrombosis, which may lead to severe cardiovascular diseases (CVDs). Thus, therapeutic agents must be developed to prevent pathological platelet activation. Glabridin, a major bioalkaloid extracted from licorice root, improves metabolic abnormalities (i.e., obesity and diabetes) and protects against CVDs and neuronal disorders. To the best of our knowledge, no studies have focused on glabridin’s effects on platelet activation. Therefore, we investigated these effects in humans and mice. Glabridin exhibited the highest inhibitory effects on collagen-stimulated platelet aggregation and moderate effects on arachidonic-acid-stimulated activation; however, no effects were observed for any other agonists (e.g., thrombin or U46619). Glabridin evidently reduced P-selectin expression, ATP release, and intracellular Ca2+ ([Ca2+]i) mobilization and thromboxane A2 formation; it further reduced the activation of phospholipase C (PLC)γ2/protein kinase C (PKC), phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase-3β (GSK3β), mitogen-activated protein kinase (MAPK), and NF-κB. In mice, glabridin reduced the mortality rate caused by acute pulmonary thromboembolism without altering bleeding time. Thus, glabridin effectively inhibits the PLCγ2/PKC cascade and prevents the activation of the PI3K/Akt/GSK3β and MAPK pathways; this leads to a reduction in [Ca2+]i mobilization, which eventually inhibits platelet aggregation. Therefore, glabridin may be a promising therapeutic agent for thromboembolic disorders.
Collapse
|
12
|
Huang WC, Hou SM, Wu MP, Hsia CW, Jayakumar T, Hsia CH, Bhavan PS, Chung CL, Sheu JR. Decreased Human Platelet Activation and Mouse Pulmonary Thrombosis by Rutaecarpine and Comparison of the Relative Effectiveness with BAY11-7082: Crucial Signals of p38-NF-κB. Molecules 2022; 27:476. [PMID: 35056795 PMCID: PMC8780806 DOI: 10.3390/molecules27020476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Platelets play a critical role in arterial thrombosis. Rutaecarpine (RUT) was purified from Tetradium ruticarpum, a well-known Chinese medicine. This study examined the relative activity of RUT with NF-κB inhibitors in human platelets. BAY11-7082 (an inhibitor of IκB kinase [IKK]), Ro106-9920 (an inhibitor of proteasomes), and RUT concentration-dependently (1-6 μM) inhibited platelet aggregation and P-selectin expression. RUT was found to have a similar effect to that of BAY11-7082; however, it exhibits more effectiveness than Ro106-9920. RUT suppresses the NF-κB pathway as it inhibits IKK, IκBα, and p65 phosphorylation and reverses IκBα degradation in activated platelets. This study also investigated the role of p38 and NF-κB in cell signaling events and found that SB203580 (an inhibitor of p38) markedly reduced p38, IKK, and p65 phosphorylation and reversed IκBα degradation as well as p65 activation in a confocal microscope, whereas BAY11-7082 had no effects in p38 phosphorylation. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay shows that RUT and BAY11-7082 did not exhibit free radical scavenging activity. In the in vivo study, compared with BAY11-7082, RUT more effectively reduced mortality in adenosine diphosphate (ADP)-induced acute pulmonary thromboembolism without affecting the bleeding time. In conclusion, a distinctive pathway of p38-mediated NF-κB activation may involve RUT-mediated antiplatelet activation, and RUT could act as a strong prophylactic or therapeutic drug for cardiovascular diseases.
Collapse
Affiliation(s)
- Wei-Chieh Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.H.); (S.-M.H.); (M.-P.W.); (C.-W.H.); (T.J.)
| | - Shaw-Min Hou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.H.); (S.-M.H.); (M.-P.W.); (C.-W.H.); (T.J.)
- Department of Cardiovascular Center, Cathay General Hospital, Taipei 106, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Ming-Ping Wu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.H.); (S.-M.H.); (M.-P.W.); (C.-W.H.); (T.J.)
- Division of Urogynecology, Department of Obstetrics and Gynecology, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Chih-Wei Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.H.); (S.-M.H.); (M.-P.W.); (C.-W.H.); (T.J.)
| | - Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.H.); (S.-M.H.); (M.-P.W.); (C.-W.H.); (T.J.)
| | - Chih-Hsuan Hsia
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
| | | | - Chi-Li Chung
- Department of Internal Medicine, Division of Pulmonary Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.H.); (S.-M.H.); (M.-P.W.); (C.-W.H.); (T.J.)
| |
Collapse
|
13
|
Baaten CC, Schröer JR, Floege J, Marx N, Jankowski J, Berger M, Noels H. Platelet Abnormalities in CKD and Their Implications for Antiplatelet Therapy. Clin J Am Soc Nephrol 2022; 17:155-170. [PMID: 34750169 PMCID: PMC8763166 DOI: 10.2215/cjn.04100321] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Patients with CKD display a significantly higher risk of cardiovascular and thromboembolic complications, with around half of patients with advanced CKD ultimately dying of cardiovascular disease. Paradoxically, these patients also have a higher risk of hemorrhages, greatly complicating patient therapy. Platelets are central to hemostasis, and altered platelet function resulting in either platelet hyper- or hyporeactivity may contribute to thrombotic or hemorrhagic complications. Different molecular changes have been identified that may underlie altered platelet activity and hemostasis in CKD. In this study, we summarize the knowledge on CKD-induced aberrations in hemostasis, with a special focus on platelet abnormalities. We also discuss how prominent alterations in vascular integrity, coagulation, and red blood cell count in CKD may contribute to altered hemostasis in these patients who are high risk. Furthermore, with patients with CKD commonly receiving antiplatelet therapy to prevent secondary atherothrombotic complications, we discuss antiplatelet treatment strategies and their risk versus benefit in terms of thrombosis prevention, bleeding, and clinical outcome depending on CKD stage. This reveals a careful consideration of benefits versus risks of antiplatelet therapy in patients with CKD, balancing thrombotic versus bleeding risk. Nonetheless, despite antiplatelet therapy, patients with CKD remain at high cardiovascular risk. Thus, deep insights into altered platelet activity in CKD and underlying mechanisms are important for the optimization and development of current and novel antiplatelet treatment strategies, specifically tailored to these patients who are high risk. Ultimately, this review underlines the importance of a closer investigation of altered platelet function, hemostasis, and antiplatelet therapy in patients with CKD.
Collapse
Affiliation(s)
- Constance C.F.M.J. Baaten
- Institute for Molecular Cardiovascular Research, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Jonas R. Schröer
- Institute for Molecular Cardiovascular Research, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany,Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Martin Berger
- Department of Internal Medicine I, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
14
|
Huang CJ, Huang WC, Lin WT, Shu LH, Sheu JR, Tran OT, Hsia CW, Jayakumar T, Bhavan PS, Hsieh CY, Chang CC. Rutaecarpine, an Alkaloid from Evodia rutaecarpa, Can Prevent Platelet Activation in Humans and Reduce Microvascular Thrombosis in Mice: Crucial Role of the PI3K/Akt/GSK3β Signal Axis through a Cyclic Nucleotides/VASP-Independent Mechanism. Int J Mol Sci 2021; 22:ijms222011109. [PMID: 34681769 PMCID: PMC8537152 DOI: 10.3390/ijms222011109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022] Open
Abstract
The role of activated platelets in acute and chronic cardiovascular diseases (CVDs) is well established. Therefore, antiplatelet drugs significantly reduce the risk of severe CVDs. Evodia rutaecarpa (Wu-Chu-Yu) is a well-known Chinese medicine, and rutaecarpine (Rut) is a main bioactive component with substantial beneficial properties including vasodilation. To address a research gap, we investigated the inhibitory mechanisms of Rut in washed human platelets and experimental mice. At low concentrations (1–5 μM), Rut strongly inhibited collagen-induced platelet aggregation, whereas it exerted only a slight or no effect on platelets stimulated with other agonists (e.g., thrombin). Rut markedly inhibited P-selectin expression; adenosine triphosphate release; [Ca2+]i mobilization; hydroxyl radical formation; and phospholipase C (PLC)γ2/protein kinase C (PKC), mitogen-activated protein kinase, and phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase-3β (GSK3β) phosphorylation stimulated by collagen. SQ22536 (an adenylate cyclase inhibitor) or ODQ (a guanylate cyclase inhibitor) did not reverse Rut-mediated antiplatelet aggregation. Rut was not directly responding to vasodilator-stimulated phosphoprotein phosphorylation. Rut significantly increased the occlusion time of fluorescence irradiated thrombotic platelet plug formation. The findings demonstrated that Rut exerts a strong effect against platelet activation through the PLCγ2/PKC and PI3K/Akt/GSK3β pathways. Thus, Rut can be a potential therapeutic agent for thromboembolic disorders.
Collapse
Affiliation(s)
- Chun-Jen Huang
- Department of Anesthesiology and Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Chieh Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.H.); (W.-T.L.); (J.-R.S.); (C.-W.H.); (T.J.)
| | - Wei-Ting Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.H.); (W.-T.L.); (J.-R.S.); (C.-W.H.); (T.J.)
| | - Lan-Hsin Shu
- Department of Nutrition, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.H.); (W.-T.L.); (J.-R.S.); (C.-W.H.); (T.J.)
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Oanh-Thi Tran
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Chih-Wei Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.H.); (W.-T.L.); (J.-R.S.); (C.-W.H.); (T.J.)
| | - Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.H.); (W.-T.L.); (J.-R.S.); (C.-W.H.); (T.J.)
| | | | - Cheng-Ying Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (C.-Y.H.); (C.-C.C.); Tel.: +886-2-27361661 (ext. 3194) (C.-Y.H.)
| | - Chao-Chien Chang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Cardiovascular Center, Cathay General Hospital, Taipei 106, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Correspondence: (C.-Y.H.); (C.-C.C.); Tel.: +886-2-27361661 (ext. 3194) (C.-Y.H.)
| |
Collapse
|
15
|
Huang WC, Liu JC, Hsia CW, Fong TH, Hsia CH, Tran OT, Velusamy M, Yang CH, Sheu JR. Pterostilbene, a Dimethylether Analogue of Resveratrol, Possesses High Potency in the Prevention of Platelet Activation in Humans and the Reduction of Vascular Thrombosis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4697-4707. [PMID: 33852294 DOI: 10.1021/acs.jafc.1c00367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Platelets play a crucial role in cardiovascular disorders (CVDs); thus, development of a therapeutic target that prevents platelet activation reduces CVDs. Pterostilbene (PTE) has several remarkable pharmacological activities, including anticancer and neuroprotection. Herein, we examined the inhibitory mechanisms of PTE in human platelets and its role in the prevention of vascular thrombosis in mice. At very low concentrations (1-5 μmol/L), PTE strongly inhibited collagen-induced platelet aggregation, but it did not have significant effects against thrombin and 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin (U46619). PTE markedly reduced P-selectin expression on isolated α-granules by a novel microchip. Moreover, PTE inhibited adenosine triphosphate (ATP) release, intracellular ([Ca2+]i) mobilization (resting, 216.6 ± 14.0 nmol/L; collagen-activated platelets, 396.5 ± 25.7 nmol/L; 2.5 μmol/L PTE, 259.4 ± 8.8 nmol/L; 5 μmol/L PTE, 231.8 ± 9.7 nmol/L), phospholipase C (PLC)γ2/protein kinase C (PKC), Akt, and mitogen-activated protein kinase (MAPK) phosphorylation. Neither 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536) nor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) reversed platelet aggregation inhibited by PTE. PTE did not affect vasodilator-stimulated phosphoprotein phosphorylation. In mice, PTE obviously reduced the mortality (from 100 to 37.5%) associated with acute pulmonary thromboembolism without increasing the bleeding time. Thus, PTE could be used to prevent CVDs.
Collapse
Affiliation(s)
- Wei-Chieh Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
| | - Ju-Chi Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Chih-Wei Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
| | - Tsorng-Harn Fong
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Hsuan Hsia
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Oanh-Thi Tran
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
| |
Collapse
|
16
|
The Antithrombotic Agent Pterostilbene Interferes with Integrin α IIbβ 3-Mediated Inside-Out and Outside-In Signals in Human Platelets. Int J Mol Sci 2021; 22:ijms22073643. [PMID: 33807403 PMCID: PMC8037547 DOI: 10.3390/ijms22073643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 01/16/2023] Open
Abstract
Platelets play a crucial role in the physiology of primary hemostasis and pathological processes such as arterial thrombosis; thus, developing a therapeutic target that prevents platelet activation can reduce arterial thrombosis. Pterostilbene (PTE) has remarkable pharmacological activities, including anticancer and neuroprotection. Few studies have reported the effects of pterostilbene on platelet activation. Thus, we examined the inhibitory mechanisms of pterostilbene in human platelets and its role in vascular thrombosis prevention in mice. At low concentrations (2–8 μM), pterostilbene strongly inhibited collagen-induced platelet aggregation. Furthermore, pterostilbene markedly diminished Lyn, Fyn, and Syk phosphorylation and hydroxyl radical formation stimulated by collagen. Moreover, PTE directly hindered integrin αIIbβ3 activation through interfering with PAC-1 binding stimulated by collagen. In addition, pterostilbene affected integrin αIIbβ3-mediated outside-in signaling, such as integrin β3, Src, and FAK phosphorylation, and reduced the number of adherent platelets and the single platelet spreading area on immobilized fibrinogen as well as thrombin-stimulated fibrin clot retraction. Furthermore, pterostilbene substantially prolonged the occlusion time of thrombotic platelet plug formation in mice. This study demonstrated that pterostilbene exhibits a strong activity against platelet activation through the inhibition of integrin αIIbβ3-mediated inside-out and outside-in signaling, suggesting that pterostilbene can serve as a therapeutic agent for thromboembolic disorders.
Collapse
|
17
|
Long-term platelet priming after glycoprotein VI stimulation in comparison to Protease-Activating Receptor (PAR) stimulation. PLoS One 2021; 16:e0247425. [PMID: 33657162 PMCID: PMC7928515 DOI: 10.1371/journal.pone.0247425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/08/2021] [Indexed: 12/05/2022] Open
Abstract
Platelets can respond to multiple antagonists and agonists, implying that their activation state is a consequence of past exposure to these substances. While platelets are often considered as one-time responsive cells, they likely can respond to sequential application of inhibitors and stimuli. We hypothesized that the ability of platelets to sequentially respond depends on the time and type of repeated agonist application. The present proof-of-concept data show that iloprost (cAMP elevation), tirofiban (integrin αIIbβ3 blocker) and Syk kinase inhibition subacutely modulated platelet aggregation, i.e. halted this process even when applied after agonist. In comparison to thrombin-activated receptor (PAR) stimulation, glycoprotein VI (GPVI) stimulation was less sensitive to time-dependent blockage of aggregation, with Syk inhibition as an exception. Furthermore, cytosolic Ca2+ measurements indicated that, when compared to PAR, prior GPVI stimulation induced a more persistent, priming activation state of platelets that influenced the response to a next agent. Overall, these data point to an unexpected priming memory of activated platelets in subacutely responding to another inhibitor or stimulus, with a higher versatility and faster offset after PAR stimulation than after GPVI stimulation.
Collapse
|
18
|
Bates NM, Heidenreich HE, Fallon ME, Yao Y, Yim EKF, Hinds MT, Anderson DEJ. Bioconjugation of a Collagen-Mimicking Peptide Onto Poly(vinyl alcohol) Encourages Endothelialization While Minimizing Thrombosis. Front Bioeng Biotechnol 2021; 8:621768. [PMID: 33425883 PMCID: PMC7793657 DOI: 10.3389/fbioe.2020.621768] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Poly(vinyl alcohol) hydrogel, PVA, is a suitable material for small-diameter vascular grafting. However, the bioinert properties of the material do not allow for in situ endothelialization, which is needed to combat common graft failure mechanisms, such as intimal hyperplasia and thrombosis. In this work, the surface of planar and tubular PVA was covalently modified with a collagen-mimicking peptide, GFPGER. The surface of modified PVA was characterized by measuring contact angle and x-ray photoelectron spectroscopy. Endothelial cell attachment to GFPGER-modified PVA was quantified and qualitatively examined using immunohistochemical staining. Then, in vitro hemocompatibility testing was performed by quantifying platelet attachment, coagulation factor XII activation, and initiation of fibrin formation. Finally, an established ex vivo, non-human primate model was employed to examine platelet attachment and fibrin formation under non-anticoagulated, whole blood flow conditions. GFPGER-modified PVA supported increased EC attachment. In vitro initiation of fibrin formation on the modified material was significantly delayed. Ex vivo thrombosis assessment showed a reduction in platelet attachment and fibrin formation on GFPGER-modified PVA. Overall, GFPGER-modified PVA encouraged cell attachment while maintaining the material’s hemocompatibility. This work is a significant step toward the development and characterization of a modified-hydrogel surface to improve endothelialization while reducing platelet attachment.
Collapse
Affiliation(s)
- Novella M Bates
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Heather E Heidenreich
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Meghan E Fallon
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Deirdre E J Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
19
|
K. Poddar M, Banerjee S. Molecular Aspects of Pathophysiology of Platelet Receptors. Platelets 2020. [DOI: 10.5772/intechopen.92856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Receptor is a dynamic instrumental surface protein that helps to interact with specific molecules to respond accordingly. Platelet is the smallest in size among the blood components, but it plays many pivotal roles to maintain hemostasis involving its surface receptors. It (platelet) has cell adhesion receptors (e.g., integrins and glycoproteins), leucine-rich repeats receptors (e.g., TLRs, glycoprotein complex, and MMPs), selectins (e.g., CLEC, P-selectin, and CD), tetraspanins (e.g., CD and LAMP), transmembrane receptors (e.g., purinergic—P2Y and P2X1), prostaglandin receptors (e.g., TxA2, PGH2, and PGI2), immunoglobulin superfamily receptors (e.g., FcRγ and FcεR), etc. on its surface. The platelet receptors (e.g., glycoproteins, protease-activated receptors, and GPCRs) during platelet activation are over expressed and their granule contents are secreted (including neurotransmitters, cytokines, and chemokines) into circulation, which are found to be correlated with different physiological conditions. Interestingly, platelets promote metastasis through circulation protecting from cytolysis and endogenous immune surveillance involving several platelets receptors. The updated knowledge about different types of platelet receptors in all probable aspects, including their inter- and intra-signaling mechanisms, are discussed with respect to not only its (platelets) receptor type but also under different pathophysiological conditions.
Collapse
|
20
|
Trigani KT, Diamond SL. Intrathrombus Fibrin Attenuates Spatial Sorting of Phosphatidylserine Exposing Platelets during Clotting Under Flow. Thromb Haemost 2020; 121:46-57. [PMID: 32961573 DOI: 10.1055/s-0040-1715648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND As thrombosis proceeds, certain platelets in a clot expose phosphatidylserine (PS) on their outer membrane. These PS+ platelets subsequently sort to the perimeter of the mass via platelet contraction. It remains unclear how thrombin and fibrin may alter PS+ platelet sorting within a clot. OBJECTIVE We investigated the role of fibrin in PS+ platelet sorting. METHODS We used an 8-channel microfluidic assay of clotting over collagen (±tissue factor) at 100 s-1 initial wall shear rate. Temporal PS+ platelet sorting was measured using a Pearson's correlation coefficient between the annexin V distribution in a clot at 9 versus 15 minutes. Spatial PS+ platelet sorting was measured using an autocorrelation metric of the final annexin V distribution. RESULTS By 6 minutes, PS+ platelets were distributed throughout the platelet deposits and became highly spatially sorted by 15 minutes when thrombin and fibrin were blocked with Phe-Pro-Arg-chloromethylketone (PPACK). Fibrin polymerization (no PPACK) attenuated temporal and spatial PS sorting and clot contraction. With Gly-Pro-Arg-Pro (GPRP) added to block fibrin polymerization, PS sorting was prominent as was clot contraction. Exogenously added tissue plasminogen activator drove fibrinolysis that in turn promoted clot contraction and PS sorting, albeit to a lesser degree than the PPACK or GPRP conditions. Clots lacking fibrin displayed 3.6 times greater contraction than clots with fibrin. CONCLUSION PS sorting correlated with clot contraction, as previously reported. However, fibrin inversely correlated with both percent contraction and PS sorting. Fibrin attenuated clot contraction and PS sorting relative to clots without fibrin.
Collapse
Affiliation(s)
- Kevin T Trigani
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
21
|
Hou SM, Hsia CW, Tsai CL, Hsia CH, Jayakumar T, Velusamy M, Sheu JR. Modulation of human platelet activation and in vivo vascular thrombosis by columbianadin: regulation by integrin α IIbβ 3 inside-out but not outside-in signals. J Biomed Sci 2020; 27:60. [PMID: 32375785 PMCID: PMC7201758 DOI: 10.1186/s12929-020-0619-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/14/2020] [Indexed: 01/05/2023] Open
Abstract
Background Columbianadin (CBN) is one of the main coumarin constituents isolated from Angelica pubescens. The pharmacological value of CBN is well demonstrated, especially in the prevention of several cancers and analgesic activity. A striking therapeutic target for arterial thrombosis is inhibition of platelet activation because platelet activation significantly contributes to these diseases. The current study examined the influence of CBN on human platelet activation in vitro and vascular thrombotic formation in vivo. Methods Aggregometry, immunoblotting, immunoprecipitation, confocal microscopic analysis, fibrin clot retraction, and thrombogenic animals were used in this study. Results CBN markedly inhibited platelet aggregation in washed human platelets stimulated only by collagen, but was not effective in platelets stimulated by other agonists such as thrombin, arachidonic acid, and U46619. CBN evidently inhibited ATP release, intracellular ([Ca2+]i) mobilization, and P-selectin expression. It also inhibited the phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), Akt (protein kinase B), and mitogen-activated protein kinases (MAPKs; extracellular signal-regulated kinase [ERK] 1/2 and c-Jun N-terminal kinase [JNK] 1/2, but not p38 MAPK) in collagen-activated platelets. Neither SQ22536, an adenylate cyclase inhibitor, nor ODQ, a guanylate cyclase inhibitor, reversed the CBN-mediated inhibition of platelet aggregation. CBN had no significant effect in triggering vasodilator-stimulated phosphoprotein phosphorylation. Moreover, it markedly hindered integrin αIIbβ3 activation by interfering with the binding of PAC-1; nevertheless, it had no influences on integrin αIIbβ3-mediated outside-in signaling such as adhesion number and spreading area of platelets on immobilized fibrinogen as well as thrombin-stimulated fibrin clot retraction. Additionally, CBN did not attenuate FITC-triflavin binding or phosphorylation of proteins, such as integrin β3, Src, and focal adhesion kinase, in platelets spreading on immobilized fibrinogen. In experimental mice, CBN increased the occlusion time of thrombotic platelet plug formation. Conclusion This study demonstrated that CBN exhibits an exceptional activity against platelet activation through inhibition of the PLCγ2-PKC cascade, subsequently suppressing the activation of Akt and ERKs/JNKs and influencing platelet aggregation. Consequently, this work provides solid evidence and considers that CBN has the potential to serve as a therapeutic agent for the treatment of thromboembolic disorders.
Collapse
Affiliation(s)
- Shaw-Min Hou
- Department of Cardiovascular Center, Cathay General Hospital, No. 280 Renai Rd. Sec.4, Taipei, 106, Taiwan.,Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd, New Taipei City, 242, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
| | - Chih-Wei Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
| | - Cheng-Lin Tsai
- Graduate Institute of Metabolism and Obesity Sciences, Collage of Nutrition, Taipei Medical University, No. 250, Wu Hsing St, Taipei, 110, Taiwan
| | - Chih-Hsuan Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan.,Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, No. 95, Wenchang Rd, Taipei, 111, Taiwan
| | - Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong, 793022, India
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan.
| |
Collapse
|
22
|
Kerris EWJ, Hoptay C, Calderon T, Freishtat RJ. Platelets and platelet extracellular vesicles in hemostasis and sepsis. J Investig Med 2019; 68:813-820. [PMID: 31843956 DOI: 10.1136/jim-2019-001195] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2019] [Indexed: 01/09/2023]
Abstract
Platelets, cell fragments traditionally thought of as important only for hemostasis, substantially and dynamically contribute to the immune system's response to infection. In addition, there is increasing evidence that externally active platelet entities, including platelet granules and platelet extracellular vesicles (PEVs), play a role not only in hemostasis, but also in inflammatory actions previously ascribed to platelets themselves. Given the functions of platelets and PEVs during inflammation and infection, their role in sepsis is being investigated. Sepsis is a condition marked by the dysregulation of the body's normal activation of the immune system in response to a pathogen. The mechanisms for controlling infection locally become detrimental to the host if they are applied systemically. Similar to cells traditionally ascribed to the immune system, including neutrophils, lymphocytes, and macrophages, platelets are instrumental in helping a host clear an infection, but are also implicated in the uncontrolled amplification of the immune response that leads to sepsis. Clearly, the function of platelets is more complicated than its simple structure and primary role in hemostasis initially suggest. This review provides an overview of platelet and platelet extracellular vesicle structure and function, highlighting the complex role platelets and PEVs play in the body in the context of infection and sepsis.
Collapse
Affiliation(s)
- Elizabeth W J Kerris
- Division of Critical Care Medicine, Children's National Hospital, Washington, DC, USA.,Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Claire Hoptay
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Thais Calderon
- Department of Medical Education, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA.,Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
23
|
Hsia CW, Tsai CL, Sheu JR, Lu WJ, Hsia CH, Velusamy M, Jayakumar T, Li JY. Suppression of Human Platelet Activation via Integrin α IIbβ 3 Outside-In Independent Signal and Reduction of the Mortality in Pulmonary Thrombosis by Auraptene. Int J Mol Sci 2019; 20:ijms20225585. [PMID: 31717348 PMCID: PMC6888276 DOI: 10.3390/ijms20225585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
Auraptene is the most abundant coumarin derivative from plants. The pharmacological value of this compound has been well demonstrated, especially in the prevention of cancer and neurodegenerative diseases. Platelet activation is a major factor contributing to arterial thrombosis. Thus, this study evaluated the influence of auraptene in platelet aggregation and thrombotic formation. Auraptene inhibited platelet aggregation in human platelets stimulated with collagen only. However, auraptene was not effective in inhibiting platelet aggregation stimulated with thrombin, arachidonic acid, and U46619. Auraptene also repressed ATP release, [Ca2+]i mobilization, and P-selectin expression. Moreover, it markedly blocked PAC-1 binding to integrin αIIbβ3. However, it had no influence on properties related to integrin αIIbβ3-mediated outside-in signaling, such as the adhesion number, spreading area of platelets, and fibrin clot retraction. Auraptene inhibited the phosphorylation of Lyn-Fyn-Syk, phospholipase Cγ2 (PLCγ2), protein kinase C (PKC), Akt, and mitogen-activated protein kinases (MAPKs; extracellular-signal-regulated kinase (ERK1/2), and c-Jun N-terminal kinase (JNK1/2), but not p38 MAPK). Neither SQ22536, an adenylate cyclase inhibitor, nor ODQ, a guanylate cyclase inhibitor, reversed the auraptene-mediated inhibition of platelet aggregation. Auraptene reduced mortality caused by adenosine diphosphate (ADP)-induced pulmonary thromboembolism. In conclusion, this study provides definite evidence that auraptene signifies a potential therapeutic agent for preventing thromboembolic disorders.
Collapse
Affiliation(s)
- Chih-Wei Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-W.H.); (J.-R.S.); (C.-H.H.); (T.J.)
| | - Cheng-Lin Tsai
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; (C.-L.T.); (W.-J.L.)
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-W.H.); (J.-R.S.); (C.-H.H.); (T.J.)
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wan-Jung Lu
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; (C.-L.T.); (W.-J.L.)
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chih-Hsuan Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-W.H.); (J.-R.S.); (C.-H.H.); (T.J.)
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India;
| | - Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-W.H.); (J.-R.S.); (C.-H.H.); (T.J.)
| | - Jiun-Yi Li
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-W.H.); (J.-R.S.); (C.-H.H.); (T.J.)
- Department of Cardiovascular Surgery, Mackay Memorial Hospital, Taipei 104, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
- Correspondence: ; Tel.: +886-2-2543-3535 (ext. 2945)
| |
Collapse
|
24
|
Griffin MT, Kim D, Ku DN. Shear-induced platelet aggregation: 3D-grayscale microfluidics for repeatable and localized occlusive thrombosis. BIOMICROFLUIDICS 2019; 13:054106. [PMID: 31592301 PMCID: PMC6773594 DOI: 10.1063/1.5113508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/13/2019] [Indexed: 05/20/2023]
Abstract
Atherothrombosis leads to complications of myocardial infarction and stroke as a result of shear-induced platelet aggregation (SIPA). Clinicians and researchers may benefit from diagnostic and benchtop microfluidic assays that assess the thrombotic activity of an individual. Currently, there are several different proposed point-of-care diagnostics and microfluidic thrombosis assays with different design parameters and end points. The microfluidic geometry, surface coatings, and anticoagulation may strongly influence the precision of these assays. Variability in selected end points also persists, leading to ambiguous results. This study aims to assess the effects of three physiologically relevant extrinsic design factors on the variability of a single end point to provide a quantified rationale for design parameter and end-point standardization. Using a design of experiments approach, we show that the methods of channel fabrication and collagen surface coating significantly impact the variability of occlusion time from porcine whole blood, while anticoagulant selection between heparin and citrate did not significantly impact the variability. No factor was determined to significantly impact the mean occlusion time within the assay. Occlusive thrombus was found to consistently form in the first third (333 μm) of the high shear zone and not in the shear gradient regions. The selection of these factors in the design of point-of-care diagnostics and experimental SIPA assays may lead to increased precision and specificity in high shear thrombosis studies.
Collapse
Affiliation(s)
| | - Dongjune Kim
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, USA
| | - David N. Ku
- Author to whom correspondence should be addressed:
| |
Collapse
|
25
|
Gao Y, Yu C, Pi S, Mao L, Hu B. The role of P2Y 12 receptor in ischemic stroke of atherosclerotic origin. Cell Mol Life Sci 2019; 76:341-354. [PMID: 30302530 PMCID: PMC11105791 DOI: 10.1007/s00018-018-2937-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/11/2018] [Accepted: 10/05/2018] [Indexed: 12/29/2022]
Abstract
Atherosclerosis is a chronic and progressive disease of the arterial walls and a leading cause of non-cardioembolic ischemic stroke. P2Y12 is a well-recognized receptor that is expressed on platelets and is a target of thienopyridine-type antiplatelet drugs. In the last few decades, P2Y12 receptor inhibitors, such as clopidogrel, have been applied for the secondary prevention of non-cardioembolic ischemic stroke. Recent clinical studies have suggested that these P2Y12 receptor inhibitors may be more effective than other antiplatelet drugs in patients with ischemic stroke/transient ischemic attack of atherosclerotic origin. Moreover, animal studies have also shown that the P2Y12 receptor may participate in atherogenesis by promoting the proliferation and migration of vascular smooth muscle cells (VSMCs) and endothelial dysfunction, and affecting inflammatory cell activities in addition to amplifying and maintaining ADP-induced platelet activation and platelet aggregation. P2Y12 receptor inhibitors may also exert neuroprotective effects after ischemic stroke. Thus, P2Y12 receptor inhibitors may be a better choice for secondary prevention in patients with atherosclerotic ischemic stroke subtypes because of their triple functions (i.e., their anti-atherosclerotic, anti-platelet aggregation, and neuroprotective activities), and the P2Y12 receptor may also serve as a noval therapeutic target for atherosclerosis. In this review, we summarize the current knowledge on the P2Y12 receptor and its key roles in atherosclerosis and ischemic stroke of atherosclerotic origin.
Collapse
Affiliation(s)
- Ying Gao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Yu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shulan Pi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
26
|
Yeung J, Li W, Holinstat M. Platelet Signaling and Disease: Targeted Therapy for Thrombosis and Other Related Diseases. Pharmacol Rev 2018; 70:526-548. [PMID: 29925522 PMCID: PMC6013590 DOI: 10.1124/pr.117.014530] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Platelets are essential for clotting in the blood and maintenance of normal hemostasis. Under pathologic conditions such as atherosclerosis, vascular injury often results in hyperactive platelet activation, resulting in occlusive thrombus formation, myocardial infarction, and stroke. Recent work in the field has elucidated a number of platelet functions unique from that of maintaining hemostasis, including regulation of tumor growth and metastasis, inflammation, infection, and immune response. Traditional therapeutic targets for inhibiting platelet activation have primarily been limited to cyclooxygenase-1, integrin αIIbβ3, and the P2Y12 receptor. Recently identified signaling pathways regulating platelet function have made it possible to develop novel approaches for pharmacological intervention in the blood to limit platelet reactivity. In this review, we cover the newly discovered roles for platelets as well as their role in hemostasis and thrombosis. These new roles for platelets lend importance to the development of new therapies targeted to the platelet. Additionally, we highlight the promising receptor and enzymatic targets that may further decrease platelet activation and help to address the myriad of pathologic conditions now known to involve platelets without significant effects on hemostasis.
Collapse
Affiliation(s)
- Jennifer Yeung
- Departments of Pharmacology (J.Y., W.L., M.H.) and Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor, Michigan
| | - Wenjie Li
- Departments of Pharmacology (J.Y., W.L., M.H.) and Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor, Michigan
| | - Michael Holinstat
- Departments of Pharmacology (J.Y., W.L., M.H.) and Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
27
|
Swieringa F, Spronk HM, Heemskerk JW, van der Meijden PE. Integrating platelet and coagulation activation in fibrin clot formation. Res Pract Thromb Haemost 2018; 2:450-460. [PMID: 30046749 PMCID: PMC6046596 DOI: 10.1002/rth2.12107] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/31/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets interact with the coagulation system in a multitude of ways, not only during the phases of thrombus formation, but also in specific areas within a formed thrombus. This review discusses current concepts of platelet control of thrombin generation, fibrin formation and structure, and anticoagulation. Indicated are how combined signalling via the platelet receptors for collagen (glycoprotein VI) and thrombin induces the secretion of (anti)coagulation factors, as well as surface exposure of phosphatidylserine, thereby catalysing thrombin generation. This procoagulant platelet response is also facilitated by the adhesive complexes glycoprotein Ib-V-IX and integrin αIIbβ3. In the buildup of a platelet-fibrin thrombus, the extrinsic, tissue factor-driven coagulation pathway is predominant in early stages, while the intrinsic, factor XII pathway seems to promote at later time points. Already early generation of thrombin enforces platelet responses and stimulates intra-thrombus heterogeneity with patches of loosely aggregated, contracted, and phosphatidylserine-exposing platelets. Fibrin actively formed on the surface of activated platelets supports thrombus growth, but also captures thrombin. The fibrin distribution in a thrombus appears to rely on the local procoagulant trigger and the blood flow rate. Clinical studies support the importance of the platelet-coagulation interplay, by showing beneficial effects of combination therapy in the secondary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Frauke Swieringa
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
- Leibniz Institute for Analytical SciencesISASDortmundGermany
| | - Henri M.H. Spronk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Johan W.M. Heemskerk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Paola E.J. van der Meijden
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
28
|
Cosemans JMEM. At the MERcy of platelet primers. J Thromb Haemost 2018; 16:349-351. [PMID: 29194956 DOI: 10.1111/jth.13915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 11/26/2022]
Affiliation(s)
- J M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
29
|
Hsia CH, Lu WJ, Lin KH, Chou DS, Geraldine P, Jayakuma T, Chang NC, Sheu JR. Norcantharidin, a clinical used chemotherapeutic agent, acts as a powerful inhibitor by interfering with fibrinogen-integrin α IIb β 3 binding in human platelets. J Cell Mol Med 2018; 22:2142-2152. [PMID: 29369482 PMCID: PMC5867116 DOI: 10.1111/jcmm.13488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022] Open
Abstract
During platelet activation, fibrinogen binds to its specific platelet receptor, integrin αIIb β3 , thus completing the final common pathway for platelet aggregation. Norcantharidin (NCTD) is a promising anticancer agent in China from medicinal insect blister beetle. In this study, we provided the evidence to demonstrate NCTD (0.1-1.0 μM) possesses very powerful antiplatelet activity in human platelets; nevertheless, it had no effects on surface P-selectin expression and only slight inhibition on ATP-release reaction in activated platelets. Moreover, NCTD markedly hindered integrin αIIb β3 activation by interfering with the binding of FITC-labelled PAC-1. It also markedly reduced the number of adherent platelets and the single platelet spreading area on immobilized fibrinogen as well as clot retraction. Additionally, NCTD attenuated phosphorylation of proteins such as integrin β3 , Src and FAK in platelets spreading on immobilized fibrinogen. These results indicate that NCTD restricts integrin αIIb β3 -mediated outside-in signalling in human platelets. Besides, NCTD substantially prolonged the closure time in human whole blood and increased the occlusion time of thrombotic platelet plug formation and prolonged the bleeding time in mice. In conclusion, NCTD has dual activities, it can be a chemotherapeutic agent for cancer treatment, and the other side it possesses powerful antiplatelet activity for treating thromboembolic disorders.
Collapse
Affiliation(s)
- Chih-Hsuan Hsia
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wan-Jung Lu
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kuan-Hung Lin
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Duen-Suey Chou
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pitchairaj Geraldine
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Thanasekaran Jayakuma
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nen-Chung Chang
- Department of Cardiology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
30
|
Didelot M, Docq C, Wahl D, Lacolley P, Regnault V, Lagrange J. Platelet aggregation impacts thrombin generation assessed by calibrated automated thrombography. Platelets 2017; 29:156-161. [PMID: 29022492 DOI: 10.1080/09537104.2017.1356452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A calibrated automated thrombogram (CAT) is performed usually with human platelet-free plasma (PFP) but may be more relevant with platelet-rich plasma (PRP). In this case, platelets are not stimulated by subendothelial molecules like collagen. Our aim was to assess the consequence of strong (collagen) or weak (ADP) induction of platelet release and aggregation on thrombin generation. Platelet aggregation in PRP was triggered with 10 µg/mL collagen or 10 µM ADP using a lumi-aggregometer. Thrombin generation curves were monitored by CAT in different conditions: PRP, PRP with activated platelets (actPRP), aggregated PRP (agPRP), aggregated platelets resuspended in autologous PFP (resPRP), PFP and PFP obtained after aggregation (agPFP). We found a 3-fold shortening of the lag time and time to peak and a marked increase in velocity and thrombin peak without changes in endogenous thrombin potential (ETP) in agPRP with both agonists compared with PRP. The same holds true in agPFP but with a marked increase in ETP compared with PFP. Similar changes in the kinetics of thrombin generation were observed with actPRP-collagen and to a lesser extent in resPRP-collagen compared with PRP. By contrast, there were no modifications of the thrombin generation curves in actPRP-ADP. Alpha-2-macroglobin-thrombin complexes were unchanged in the different PRP conditions but were increased in PFP prepared from agPFP compared to control PFP. Platelet aggregation during activation by agonists other than thrombin did not increase thrombin generation but accelerated its kinetics mainly via platelet content release and platelet-derived extracellular vesicules formation. In diseases characterized by altered platelet granule content or release as well as altered platelet activation, a platelet aggregation step prior to CAT analysis may be clinically relevant to improve laboratory estimation of the bleeding/thrombotic balance.
Collapse
Affiliation(s)
- Mélusine Didelot
- a INSERM, U1116 , Faculté de Médecine , Vandoeuvre-les-Nancy , France.,b Université de Lorraine , Nancy , France
| | - Clémence Docq
- a INSERM, U1116 , Faculté de Médecine , Vandoeuvre-les-Nancy , France.,b Université de Lorraine , Nancy , France
| | - Denis Wahl
- a INSERM, U1116 , Faculté de Médecine , Vandoeuvre-les-Nancy , France.,b Université de Lorraine , Nancy , France.,c CHRU Nancy , Vandœuvre-lès-Nancy , France
| | - Patrick Lacolley
- a INSERM, U1116 , Faculté de Médecine , Vandoeuvre-les-Nancy , France.,b Université de Lorraine , Nancy , France.,c CHRU Nancy , Vandœuvre-lès-Nancy , France
| | - Véronique Regnault
- a INSERM, U1116 , Faculté de Médecine , Vandoeuvre-les-Nancy , France.,b Université de Lorraine , Nancy , France.,c CHRU Nancy , Vandœuvre-lès-Nancy , France
| | - Jérémy Lagrange
- a INSERM, U1116 , Faculté de Médecine , Vandoeuvre-les-Nancy , France.,b Université de Lorraine , Nancy , France.,d Center for Thrombosis and Hemostasis , University Medical Center Mainz , Mainz , Germany
| |
Collapse
|
31
|
Platelet interaction with activated endothelium: mechanistic insights from microfluidics. Blood 2017; 130:2819-2828. [PMID: 29018081 DOI: 10.1182/blood-2017-04-780825] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/03/2017] [Indexed: 11/20/2022] Open
Abstract
Traditionally, in vitro flow chamber experiments and in vivo arterial thrombosis studies have been proved to be of vital importance to elucidate the mechanisms of platelet thrombus formation after vessel wall injury. In recent years, it has become clear that platelets also act as modulators of inflammatory processes, such as atherosclerosis. A key element herein is the complex cross talk between platelets, the coagulation system, leukocytes, and the activated endothelium. This review provides insight into the platelet-endothelial interface, based on in vitro flow chamber studies and cross referenced with in vivo thrombosis studies. The main mechanisms of platelet interaction with the activated endothelium encompass (1) platelet rolling via interaction of platelet glycoprotein Ib-IX-V with endothelial-released von Willebrand factor with a supporting role for the P-selectin/P-selectin glycoprotein ligand 1 axis, followed by (2) firm platelet adhesion to the endothelium via interaction of platelet αIIbβ3 with endothelial αvβ3 and intercellular adhesion molecule 1, and (3) a stimulatory role for thrombin, the thrombospondin-1/CD36 axis and cyclooxygenase 1 in subsequent platelet activation and stable thrombus formation. In addition, the molecular mechanisms underlying the stimulatory effect of platelets on leukocyte transendothelial migration, a key mediator of atheroprogression, are discussed. Throughout the review, emphasis is placed on recommendations for setting up, reporting, interpreting, and comparing endothelial-lined flow chamber studies and suggestions for future studies.
Collapse
|
32
|
Twinfilin 2a regulates platelet reactivity and turnover in mice. Blood 2017; 130:1746-1756. [PMID: 28743718 DOI: 10.1182/blood-2017-02-770768] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/21/2017] [Indexed: 01/22/2023] Open
Abstract
Regulated reorganization of the actin cytoskeleton is a prerequisite for proper platelet production and function. Consequently, defects in proteins controlling actin dynamics have been associated with platelet disorders in humans and mice. Twinfilin 2a (Twf2a) is a small actin-binding protein that inhibits actin filament assembly by sequestering actin monomers and capping filament barbed ends. Moreover, Twf2a binds heterodimeric capping proteins, but the role of this interaction in cytoskeletal dynamics has remained elusive. Even though Twf2a has pronounced effects on actin dynamics in vitro, only little is known about its function in vivo. Here, we report that constitutive Twf2a-deficient mice (Twf2a-/-) display mild macrothrombocytopenia due to a markedly accelerated platelet clearance in the spleen. Twf2a-/- platelets showed enhanced integrin activation and α-granule release in response to stimulation of (hem) immunoreceptor tyrosine-based activation motif (ITAM) and G-protein-coupled receptors, increased adhesion and aggregate formation on collagen I under flow, and accelerated clot retraction and spreading on fibrinogen. In vivo, Twf2a deficiency resulted in shortened tail bleeding times and faster occlusive arterial thrombus formation. The hyperreactivity of Twf2a-/- platelets was attributed to enhanced actin dynamics, characterized by an increased activity of n-cofilin and profilin 1, leading to a thickened cortical cytoskeleton and hence sustained integrin activation by limiting calpain-mediated integrin inactivation. In summary, our results reveal the first in vivo functions of mammalian Twf2a and demonstrate that Twf2a-controlled actin rearrangements dampen platelet activation responses in a n-cofilin- and profilin 1-dependent manner, thereby indirectly regulating platelet reactivity and half-life in mice.
Collapse
|
33
|
Bekő K, Koványi B, Gölöncsér F, Horváth G, Dénes Á, Környei Z, Botz B, Helyes Z, Müller CE, Sperlágh B. Contribution of platelet P2Y 12 receptors to chronic Complete Freund's adjuvant-induced inflammatory pain. J Thromb Haemost 2017; 15:1223-1235. [PMID: 28345287 DOI: 10.1111/jth.13684] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 11/30/2022]
Abstract
Essentials The role of platelet P2Y12 receptors in the regulation of chronic inflammatory pain is unknown. Complete Freund's Adjuvant (CFA)-induced chronic inflammatory pain model was used in mice. Gene deficiency and antagonists of P2Y12 receptors attenuate hyperalgesia and local inflammation. Platelet P2Y12 receptors contribute to these effects in the chronic phase of inflammation. SUMMARY Background P2Y12 receptor antagonists are widely used in clinical practice to inhibit platelet aggregation. P2Y12 receptors are also known to regulate different forms of pain as well as local and systemic inflammation. However, it is not known whether platelet P2Y12 receptors contribute to these effects. Objectives To explore the contribution of platelet P2Y12 receptors to chronic inflammatory pain in mice. Methods Complete Freund's adjuvant (CFA)-induced chronic inflammatory pain was induced in wild-type and P2ry12 gene-deficient (P2ry12-/- ) mice, and the potent, direct-acting and reversible P2Y12 receptor antagonists PSB-0739 and cangrelor were used. Results CFA-induced mechanical hyperalgesia was significantly decreased in P2ry12-/- mice for up to 14 days, and increased neutrophil myeloperoxidase activity and tumor necrosis factor (TNF)-α and CXCL1 (KC) levels in the hind paws were also attenuated in the acute inflammation phase. At day 14, increased interleukin (IL)-1β, IL-6, TNF-α and KC levels were attenuated in P2ry12-/- mice. PSB-0739 and cangrelor reversed hyperalgesia in wild-type mice but had no effect in P2ry12-/- mice, and PSB-0739 was also effective when applied locally. The effects of both local and systemic PSB-0739 were prevented by A-803467, a selective NaV1.8 channel antagonist, suggesting the involvement of NaV1.8 channels in the antihyperalgesic effect. Platelet depletion by anti-mouse CD41 antibody decreased hyperalgesia and attenuated the proinflammatory cytokine response in wild-type but not in P2ry12-/- mice on day 14. Conclusions In conclusion, P2Y12 receptors regulate CFA-induced hyperalgesia and the local inflammatory response, and platelet P2Y12 receptors contribute to these effects in the chronic inflammation phase.
Collapse
Affiliation(s)
- K Bekő
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - B Koványi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - F Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - G Horváth
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Á Dénes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Z Környei
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - B Botz
- Department of Pharmacology and Pharmacotherapy, Center for Neuroscience, and Molecular Pharmacology, Research Team, János Szentágothai Research Center, University of Pécs, University of Pécs Medical School, Pécs, Hungary
| | - Z Helyes
- Department of Pharmacology and Pharmacotherapy, Center for Neuroscience, and Molecular Pharmacology, Research Team, János Szentágothai Research Center, University of Pécs, University of Pécs Medical School, Pécs, Hungary
- MTA-PTE NAP B Chronic Pain Research Group, University of Pécs, Pécs, Hungary
| | - C E Müller
- Pharmaceutical Institute, PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - B Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
34
|
Pugh N, Maddox BD, Bihan D, Taylor KA, Mahaut-Smith MP, Farndale RW. Differential integrin activity mediated by platelet collagen receptor engagement under flow conditions. Thromb Haemost 2017; 117:1588-1600. [PMID: 28536721 PMCID: PMC6291897 DOI: 10.1160/th16-12-0906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/22/2017] [Indexed: 11/15/2022]
Abstract
The platelet receptors glycoprotein (Gp)VI, integrin α
2
β
1
and GpIb/V/IX mediate platelet adhesion and activation during thrombogenesis. Increases of intracellular Ca
2+
([Ca
2+
]
i
) are key signals during platelet activation; however, their relative importance in coupling different collagen receptors to functional responses under shear conditions remains unclear. To study shear-dependent, receptor-specific platelet responses, we used collagen or combinations of receptor-specific collagen-mimetic peptides as substrates for platelet adhesion and activation in whole human blood under arterial flow conditions and compared real-time and endpoint parameters of thrombus formation alongside [Ca
2+
]
i
measurements using confocal imaging. All three collagen receptors coupled to [Ca
2+
]
i
signals, but these varied in amplitude and temporal pattern alongside variable integrin activation. GpVI engagement produced large, sustained [Ca
2+
]
i
signals leading to realtime increases in integrins α
2
β
1
− and α
IIb
β
3
-mediated platelet adhesion. α
IIb
β
3
-dependent platelet aggregation was dependent on P
2
Y
12
signalling. Co-engagement of α
2
β
1
and GpIb/V/IX generated transient [Ca
2+
]
i
spikes and low amplitude [Ca
2+
]
i
responses that potentiated GpVI-dependent [Ca
2+
]
i
signalling. Therefore α
2
β
1
GpIb/V/IX and GpVI synergise to generate [Ca
2+
]
i
signals that regulate platelet behaviour and thrombus formation. Antagonism of secondary signalling pathways reveals distinct, separate roles for α
IIb
β
3
in stable platelet adhesion and aggregation.
Supplementary Material to this article is available online at
www.thrombosis-online.com
.
Collapse
Affiliation(s)
- Nicholas Pugh
- Nicholas Pugh, Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, UK, Tel.: +44 8451962661, E-mail:
| | | | | | | | | | | |
Collapse
|
35
|
Alshahrani MM, Kyriacou RP, O'Malley CJ, Heinrich G, Najjar SM, Jackson DE. CEACAM2 positively regulates integrin α IIbβ 3-mediated platelet functions. Platelets 2016; 27:743-750. [PMID: 27161904 DOI: 10.3109/09537104.2016.1171834] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/22/2016] [Indexed: 11/13/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is an Ig-ITIM superfamily member that regulates integrin αIIbβ3 function. We hypothesized that its twin protein, CEACAM2, exerts a similar physiologic role in murine platelets. CEACAM2-deficient mice (Cc2-/-) displayed prolonged tail bleeding times and increased volume of blood loss. Cc2-/- platelets have moderate integrin αIIbβ3-mediated functional defects with impaired kinetics of platelet spreading on fibrinogen and type I collagen and delayed kinetics in the retraction of fibrin clots in vitro. This functional integrin αIIbβ3 defect could not be attributed to altered integrin αIIbβ3 expression. Cc2-/- platelets displayed normal 'inside-out' signaling properties as demonstrated by normal agonist-induced binding of soluble fluorescein isothiocyanate (FITC)-fibrinogen and JON/A antibody binding. This data provides direct evidence that disruption of CEACAM2 induces a moderate integrin αIIbβ3-mediated platelet function defect, and that CEACAM2 is essential to maintain a normal integrin αIIbβ3-mediated platelet function.
Collapse
Affiliation(s)
- Musaed M Alshahrani
- a Thrombosis and Vascular Diseases Laboratory, School of Medical Sciences, RMIT University , Bundoora , Australia
| | - Roula P Kyriacou
- a Thrombosis and Vascular Diseases Laboratory, School of Medical Sciences, RMIT University , Bundoora , Australia
| | - Cindy J O'Malley
- a Thrombosis and Vascular Diseases Laboratory, School of Medical Sciences, RMIT University , Bundoora , Australia
| | - Garrett Heinrich
- b Department of Physiology , Center for Diabetes and Endocrine Research, University of Toledo , Toledo , OH , USA
- c Department of Pharmacology , College of Medicine and Life Sciences, University of Toledo , Toledo , OH , USA
| | - Sonia M Najjar
- b Department of Physiology , Center for Diabetes and Endocrine Research, University of Toledo , Toledo , OH , USA
- c Department of Pharmacology , College of Medicine and Life Sciences, University of Toledo , Toledo , OH , USA
| | - Denise E Jackson
- a Thrombosis and Vascular Diseases Laboratory, School of Medical Sciences, RMIT University , Bundoora , Australia
| |
Collapse
|
36
|
Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition. Blood 2016; 129:e1-e12. [PMID: 28060719 DOI: 10.1182/blood-2016-05-714048] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/03/2016] [Indexed: 01/01/2023] Open
Abstract
Adenosine diphosphate (ADP) enhances platelet activation by virtually any other stimulant to complete aggregation. It binds specifically to the G-protein-coupled membrane receptors P2Y1 and P2Y12, stimulating intracellular signaling cascades, leading to integrin αIIbβ3 activation, a process antagonized by endothelial prostacyclin. P2Y12 inhibitors are among the most successful antiplatelet drugs, however, show remarkable variability in efficacy. We reasoned whether a more detailed molecular understanding of ADP-induced protein phosphorylation could identify (1) critical hubs in platelet signaling toward aggregation and (2) novel molecular targets for antiplatelet treatment strategies. We applied quantitative temporal phosphoproteomics to study ADP-mediated signaling at unprecedented molecular resolution. Furthermore, to mimic the antagonistic efficacy of endothelial-derived prostacyclin, we determined how Iloprost reverses ADP-mediated signaling events. We provide temporal profiles of 4797 phosphopeptides, 608 of which showed significant regulation. Regulated proteins are implicated in well-known activating functions such as degranulation and cytoskeletal reorganization, but also in less well-understood pathways, involving ubiquitin ligases and GTPase exchange factors/GTPase-activating proteins (GEF/GAP). Our data demonstrate that ADP-triggered phosphorylation occurs predominantly within the first 10 seconds, with many short rather than sustained changes. For a set of phosphorylation sites (eg, PDE3ASer312, CALDAG-GEFISer587, ENSASer109), we demonstrate an inverse regulation by ADP and Iloprost, suggesting that these are central modulators of platelet homeostasis. This study demonstrates an extensive spectrum of human platelet protein phosphorylation in response to ADP and Iloprost, which inversely overlap and represent major activating and inhibitory pathways.
Collapse
|
37
|
Grambow E, Leppin C, Leppin K, Kundt G, Klar E, Frank M, Vollmar B. The effects of hydrogen sulfide on platelet-leukocyte aggregation and microvascular thrombolysis. Platelets 2016; 28:509-517. [PMID: 27819526 DOI: 10.1080/09537104.2016.1235693] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The volatile transmitter hydrogen sulfide (H2S) is known for its various functions in vascular biology. This study evaluates the effect of the H2S-donor GYY4137 (GYY) on thrombus stability and microvascular thrombolysis. Human whole blood served for all in vitro studies and was analyzed in a resting state, after stimulation with thrombin-receptor activating peptide (TRAP) and after incubation with 10 or 30 mM GYY or its vehicle DMSO following TRAP-activation, respectively. As a marker for thrombus stability, platelet-leukocyte aggregation was assessed using flow cytometry after staining of human whole blood against CD62P and CD45, respectively. Furthermore, morphology and quantity of platelet-leukocyte aggregation were studied by means of scanning electron microscopy (scanning EM). Therefore, platelets were stained for CD62P followed by immuno gold labeling. In vivo, the dorsal skinfold chamber preparation was performed for light/dye induction of thrombi in arterioles and venules using intravital fluorescence microscopy. Thrombolysis was assessed 10 and 22 h after thrombus induction and treatment with the vehicle, GYY, or recombinant tissue plasminogen activator (rtPA). Flow cytometry revealed an increase of CD62P/CD45 positive aggregates after TRAP stimulation of human whole blood, which was significantly reduced by preincubation with 30 mM GYY. Scanning EM additionally showed a reduced platelet-leukocyte aggregation and a decreased leukocyte count within the aggregates after preincubation with GYY compared to TRAP stimulation alone. Further on, morphological signs of platelet activation were found markedly reduced upon treatment with GYY. In mice, both GYY and rtPA significantly accelerated arteriolar and venular thrombolysis compared to the vehicle control. In conclusion, GYY impairs thrombus stability by reducing platelet-leukocyte aggregation and thereby facilitates endogenous thrombolysis.
Collapse
Affiliation(s)
- Eberhard Grambow
- a Institute for Experimental Surgery, Rostock University Medical Center , Rostock , Germany.,b Department of General , Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center , Rostock , Germany
| | - Christian Leppin
- a Institute for Experimental Surgery, Rostock University Medical Center , Rostock , Germany
| | - Katja Leppin
- a Institute for Experimental Surgery, Rostock University Medical Center , Rostock , Germany
| | - Günther Kundt
- c Institute for Biostatistics and Informatics in Medicine and Aging Research, Rostock University Medical Center , Rostock , Germany
| | - Ernst Klar
- b Department of General , Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center , Rostock , Germany
| | - Marcus Frank
- d Medical Biology and Electron Microscopy Centre, Rostock University Medical Center , Rostock , Germany
| | - Brigitte Vollmar
- a Institute for Experimental Surgery, Rostock University Medical Center , Rostock , Germany
| |
Collapse
|
38
|
Dai B, Wu P, Xue F, Yang R, Yu Z, Dai K, Ruan C, Liu G, Newman PJ, Gao C. Integrin-αIIbβ3-mediated outside-in signalling activates a negative feedback pathway to suppress platelet activation. Thromb Haemost 2016; 116:918-930. [PMID: 27465472 DOI: 10.1160/th16-02-0096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/04/2016] [Indexed: 12/22/2022]
Abstract
Integrin-αIIbβ3-mediated outside-in signalling is widely accepted as an amplifier of platelet activation; accumulating evidence suggests that outside-in signalling can, under certain conditions, also function as an inhibitor of platelet activation. The role of integrin-αIIbβ3-mediated outside-in signalling in platelet activation is disputable. We employed flow cytometry, aggregometry, immunoprecipitation, and immunoblotting to investigate the role of integrin-αIIbβ3-mediated outside-in signalling in platelet activation. Integrin αIIbβ3 inhibition enhances agonist-induced platelet ATP secretion. Human platelets lacking expression of αIIbβ3 exhibited more platelet ATP secretion than their wild-type counterparts. Moreover, integrin-αIIbβ3-mediated outside-in signals activate SHIP-1, which in turn mediates p-Akt dephosphorylation, leading to inactivation of PI3K/Akt signalling. Furthermore, 3AC (SHIP-1 inhibitor) inhibits platelet disaggregation, and promotes platelet ATP secretion. Upon ADP stimulation, Talin is recruited to αIIbβ3, and it is dissociated from αIIbβ3 when platelets disaggregate. In addition, treatment with RUC2, an inhibitor of αIIbβ3, which blocks αIIbβ3-mediated outside-in signalling, can markedly prevent the dissociation of talin from integrin. SHIP1 Inhibitor 3AC inhibits the dissociation of talin from integrin-β3. These results suggest that integrin-αIIbβ3-mediated outside-in signalling can serve as a brake to restrict unnecessary platelet activation by activated SHIP-1, which mediated the disassociation of talin from β3, leading to integrin inactivation and blocking of PI3K/Akt signalling to restrict platelet ATP secretion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Peter J Newman
- Peter J. Newman, PhD, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, 53711 WI, USA, E-mail:
| | - Cunji Gao
- Cunji Gao, PhD, Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 310058 Hangzhou, China, Tel: +86 571 882 066 00, Fax: +86 571 882 066 00, E-mail:
| |
Collapse
|
39
|
van Geffen JP, Swieringa F, Heemskerk JW. Platelets and coagulation in thrombus formation: aberrations in the Scott syndrome. Thromb Res 2016; 141 Suppl 2:S12-6. [DOI: 10.1016/s0049-3848(16)30355-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
An Insight into the Triabin Protein Family of American Hematophagous Reduviids: Functional, Structural and Phylogenetic Analysis. Toxins (Basel) 2016; 8:44. [PMID: 26891325 PMCID: PMC4773797 DOI: 10.3390/toxins8020044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/24/2015] [Accepted: 01/18/2016] [Indexed: 11/22/2022] Open
Abstract
A transcriptomic analysis of the saliva of T. pallidipennis together with a short proteomic analysis were carried out to reveal novel primary structures of the lipocalin/triabin protein families in this reduviid. Although triabins share some structural characteristics to lipocalins and they are classified as in the calcyn/lipocalin superfamily, triabins differ from lipocalins in the direction of β-strands in the general conformation of the β-barrel. The triabin protein family encompasses a wide variety of proteins, which disrupt the hemostasis of warm-blooded animals. Likewise, the function of proteins classified as triabins includes proteins that are carriers of small molecules, protease inhibitors, binders of specific cell-surface receptors as well as proteins that form complexes with other macromolecules. For example, triabin and pallidipin from the saliva of T. pallidipennis are thrombin and platelet aggregation inhibitors, respectively; triplatin from T. infestans binds to thromboxane A2; and nitrophorin from Rhodnius prolixus carries nitric oxide. Therefore, based on 42 new transcriptome sequences of triabins from the salivary glands of T. pallidipennis reported at present, and on triabin sequences of other American hematophagous reduviids already reported in the literature, subfamilies of triabins were proposed following phylogenetic analyses and functional characterization of triabin members. Eight subfamilies of proteins were recognized with known functions, which were the nitrophorin and amine binding proteins, Rhodnius prolixus aggregation inhibitor, triafestin, triatin, dipetalodipin and pallidipin, triplatin and infestilin, dimiconin and triabin, and procalin subfamilies. Interestingly, 70% of the analyzed sequences came from these eight subfamilies because there was no biological function associated with them, implying the existence of a vast number of proteins with potential novel biological activities.
Collapse
|
41
|
Apelin: an antithrombotic factor that inhibits platelet function. Blood 2015; 127:908-20. [PMID: 26634301 DOI: 10.1182/blood-2014-05-578781] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/19/2015] [Indexed: 12/31/2022] Open
Abstract
Apelin peptide and its receptor APJ are directly implicated in various physiological processes ranging from cardiovascular homeostasis to immune signaling. Here, we show that apelin is a key player in hemostasis with an ability to inhibit thrombin- and collagen-mediated platelet activation. Mice lacking apelin displayed a shorter bleeding time and a prothrombotic profile. Their platelets exhibited increased adhesion and a reduced occlusion time in venules, and displayed a higher aggregation rate after their activation by thrombin compared with wild-type platelets. Consequently, human and mouse platelets express apelin and its receptor APJ. Apelin directly interferes with thrombin-mediated signaling pathways and platelet activation, secretion, and aggregation, but not with ADP and thromboxane A2-mediated pathways. IV apelin administration induced excessive bleeding and prevented thrombosis in mice. Taken together, these findings suggest that apelin and/or APJ agonists could potentially be useful adducts in antiplatelet therapies and may provide a promising perspective for patients who continue to display adverse thrombotic events with current antiplatelet therapies.
Collapse
|
42
|
Jurk K. Analysis of platelet function and dysfunction. Hamostaseologie 2014; 35:60-72. [PMID: 25482925 DOI: 10.5482/hamo-14-09-0047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/21/2014] [Indexed: 12/17/2022] Open
Abstract
Although platelets act as central players of haemostasis only their cross-talk with other blood cells, plasma factors and the vascular compartment enables the formation of a stable thrombus. Multiple activation processes and complex signalling networks are responsible for appropriate platelet function. Thus, a variety of platelet function tests are available for platelet research and diagnosis of platelet dysfunction. However, universal platelet function tests that are sensitive to all platelet function defects do not exist and therefore diagnostic algorithms for suspected platelet function disorders are still recommended in clinical practice. Based on the current knowledge of human platelet activation this review evaluates point-of-care related screening tests in comparison with specific platelet function assays and focuses on their diagnostic utility in relation to severity of platelet dysfunction. Further, systems biology-based platelet function methods that integrate global and specific analysis of platelet vessel wall interaction (advanced flow chamber devices) and post-translational modifications (platelet proteomics) are presented and their diagnostic potential is addressed.
Collapse
Affiliation(s)
- K Jurk
- Priv.-Doz. Dr. rer. nat. Kerstin Jurk, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany, E-mail:
| |
Collapse
|
43
|
Shaturnyĭ VI, Shakhidzhanov SS, Sveshnikova AN, Panteleev MA. [Activators, receptors and signal transduction pathways of blood platelets]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2014; 60:182-200. [PMID: 24837309 DOI: 10.18097/pbmc20146002182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Platelet participation in hemostatic plug formation requires transition into an activated state (or, rather, variety of states) upon action of agonists like ADP, thromboxane A , collagen, thrombin, and others. The mechanisms of action for different agonists, their receptors and signaling pathways associated with them, as well as the mechanisms of platelet response inhibition are the subject of the present review. Collagen exposed upon vessel wall damage induced initial platelet attachment and start of thrombus formation, which involves numerous processes such as aggregation, activation of integrins, granule secretion and increase of intracellular Ca2+. Thrombin, ADP, thromboxane A , and ATP activated platelets that were not initially in contact with the wall and induce additional secretion of activating substances. Vascular endothelium and secretory organs also affect platelet activation, producing both positive (adrenaline) an d negative (prostacyclin, nitric oxide) regulators, thereby determining the relation of activation and inhibition signals, which plays a significant role in the formation of platelet aggregate under normal and pathological conditions. The pathways of platelet signaling are still incompletely understood, and their exploration presents an important objective both for basic cell biology and for the development of new drugs, the methods of diagnostics and of treatment of hemostasis disorders.
Collapse
|
44
|
Magruder HT, Quinn JA, Schwartzbauer JE, Reichner J, Huang A, Filardo EJ. The G protein-coupled estrogen receptor-1, GPER-1, promotes fibrillogenesis via a Shc-dependent pathway resulting in anchorage-independent growth. Discov Oncol 2014; 5:390-404. [PMID: 25096985 DOI: 10.1007/s12672-014-0195-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/27/2014] [Indexed: 02/02/2023] Open
Abstract
The G protein-coupled estrogen receptor-1, GPER-1, coordinates fibronectin (FN) matrix assembly and release of heparan-bound epidermal growth factor (HB-EGF). This mechanism of action results in the recruitment of FN-engaged integrin α5β1 to fibrillar adhesions and the formation of integrin α5β1-Shc adaptor protein complexes. Here, we show that GPER-1 stimulation of murine 4 T1 or human SKBR3 breast cancer cells with 17β-estradiol (E2β) promotes the formation of focal adhesions and actin stress fibers and results in increased cellular adhesion and haptotaxis on FN, but not collagen. These actions are also induced by the xenoestrogen, bisphenol A, and the estrogen receptor (ER) antagonist, ICI 182, 780, but not the inactive stereoisomer, 17α-estradiol (E2α). In addition, we show that GPER-1 stimulation of breast cancer cells allows for FN-dependent, anchorage-independent growth and FN fibril formation in "hanging drop" assays, indicating that these GPER-1-mediated actions occur independently of adhesion to solid substrata. Stable expression of Shc mutant Y317F lacking its primary tyrosyl phosphorylation site disrupts E2β-induced focal adhesion and actin stress fiber formation and abolishes E2β-enhanced haptotaxis on FN and anchorage-dependent growth. Collectively, these data demonstrate that E2β action via GPER-1 enhances cellular adhesivity and FN matrix assembly and allows for anchorage-independent growth, cellular events that may allow for cellular survival, and tumor progression.
Collapse
Affiliation(s)
- Hilary T Magruder
- Division of Hematology and Oncology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | | | | | | | | | | |
Collapse
|
45
|
Bachmair EM, Ostertag LM, Zhang X, de Roos B. Dietary manipulation of platelet function. Pharmacol Ther 2014; 144:97-113. [PMID: 24858060 DOI: 10.1016/j.pharmthera.2014.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/05/2014] [Indexed: 01/24/2023]
Abstract
Activated platelets contribute to plaque formation within blood vessels in the early and late stages of atherogenesis, and therefore they have been proposed as risk factor for cardiovascular disease. Anti-platelet drugs, such as aspirin, are now the most prescribed pharmacological treatment in Europe. Certain dietary bioactives also beneficially affect platelet function, and with less side effects, albeit that effects are generally more subtle. Therefore, consumption of dietary bioactives could play a role in the prevention of atherothrombotic vascular disease. Here we review the efficacy of dietary treatment strategies, especially those involving certain dietary fatty acids and polyphenols, to modulate platelet function in healthy subjects or in patients with cardiovascular disease. Variation in study populations, small study sizes and lack of comparability between methods to assess platelet function currently limit robust evidence on the efficacy of dietary bioactives in healthy subjects or specific patient groups. Also, limited knowledge of the metabolism of dietary bioactives, and therefore of the bioavailability of bioactive ingredients, restricts our ability to identify the most effective dietary regimes to improve platelet function. Implementation of uniform point-of-care tests to assess platelet function, and enhanced knowledge of the efficacy by which specific dietary compounds and their metabolites affect platelet function, may enable the identification of functional anti-platelet ingredients that are eligible for a health claim, or combined treatment strategies, including both pharmacological anti-platelet treatment as well as dietary intervention, to tackle atherothrombotic vascular disease.
Collapse
Affiliation(s)
- E M Bachmair
- University of Aberdeen, Rowett Institute of Nutrition & Health, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, United Kingdom
| | - L M Ostertag
- University of Aberdeen, Rowett Institute of Nutrition & Health, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, United Kingdom
| | - X Zhang
- University of Aberdeen, Rowett Institute of Nutrition & Health, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, United Kingdom
| | - B de Roos
- University of Aberdeen, Rowett Institute of Nutrition & Health, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, United Kingdom.
| |
Collapse
|
46
|
Murphy DD, Reddy EC, Moran N, O'Neill S. Regulation of platelet activity in a changing redox environment. Antioxid Redox Signal 2014; 20:2074-89. [PMID: 24206201 DOI: 10.1089/ars.2013.5698] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE The regulation of platelet function is finely tuned by a balance between the vasculature's redox environment and the oxidative processes that occur in it. The activation of platelets at sites of vascular damage is essential for the maintenance of normal hemostasis. In the extracellular milieu, a normal redox environment is maintained by thiol/disulfide redox couples, which include reduced and oxidized glutathione (GSH/GSSG) and cysteine (Cys/CySS). Oxidative changes in either of the plasma redox potentials are directly linked with risk factors for cardiovascular disease. RECENT ADVANCES Many proteins found on the surface of platelets contain cysteine residues that are targets for oxidation. These include platelet-specific integrins and thiol isomerase enzymes that respond to changes in the extracellular redox environment, thus influencing normal platelet responses. CRITICAL ISSUES The post-translational modification of critical cysteine thiol groups is linked to alterations in redox potentials and occurs both intracellularly and extracellularly in normal platelet activation. Platelet integrins, in particular, are prime targets for redox modification due to their high cysteine content. Although the role of thiol/disulfide bond exchange in platelet activation is established, the effects of a changing redox environment on platelet reactivity are unclear. FUTURE DIRECTIONS A thorough understanding of these mechanisms and how they interact with other platelet signaling events is of the utmost importance for the development of novel therapeutic targets so that we can protect against inappropriate thrombus formation.
Collapse
Affiliation(s)
- Desmond D Murphy
- 1 Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland , Dublin, Ireland
| | | | | | | |
Collapse
|
47
|
Polkinghorne VR, Standeven KF, Schroeder V, Carter AM. Role of proteomic technologies in understanding risk of arterial thrombosis. Expert Rev Proteomics 2014; 6:539-50. [DOI: 10.1586/epr.09.75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Xiang K, Liu G, Zhou YJ, Hao HZ, Yin Z, He AD, Da XW, Xiang JZ, Wang JL, Ming ZY. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) attenuates human platelet aggregation, secretion and spreading in vitro. Thromb Res 2013; 133:211-7. [PMID: 24332167 DOI: 10.1016/j.thromres.2013.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/07/2013] [Accepted: 11/07/2013] [Indexed: 01/11/2023]
Abstract
INTRODUCTION 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside(THSG) is a water-soluble component of the rhizome extract from the traditional Chinese herb Polygonum multiflorum. Recent studies have demonstrated that THSG has potent anti-oxidative and anti-inflammatory effects. In this study, we investigated the anti-platelet aggregation, secretion and spreading of THSG with different methods. The purpose was to explore the anti-platelet effect of THSG and the underlying mechanism. MATERIALS AND METHODS We investigated the anti-platelet activity of THSG on platelet aggregation induced by collagen (2 μg/mL), thrombin(0.04U/mL), U46619 (3 μM) and ADP (2 μM). ATP secretion induced by collagen (2 μg/mL) was also investigated. P-selectin expression and PAC-1 binding were measured by flow cytometry. In addition, human platelet spreading on immobilized fibrinogen and immunoblotting were also tested. RESULTS THSG dose-dependently inhibited platelet aggregation and ATP secretion induced by collagen. It inhibited platelet P-selectin expression and PAC-1 binding induced by thrombin(0.1U/mL). THSG also inhibited human platelet spreading on immobilized fibrinogen, a process mediated by platelet outside-in signaling. Western blot analysis showed that THSG could inhibit platelet Fc γ RIIa, Akt(Ser473)and GSK3β(Ser9) phosphorylation. CONCLUSIONS Our study indicates that THSG has potent anti-platelet activity to collagen induced aggregation. THSG is likely to exert protective effects in platelet-associated thromboembolic disorders by modulating human platelet.
Collapse
Affiliation(s)
- Ke Xiang
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Gang Liu
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Ya-Jun Zhou
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Hong-Zhen Hao
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Zhao Yin
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Ao-Di He
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Xing-Wen Da
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Ji-Zhou Xiang
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Jia-Ling Wang
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Zhang-Yin Ming
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China.
| |
Collapse
|
49
|
Cosemans JMEM, Angelillo-Scherrer A, Mattheij NJA, Heemskerk JWM. The effects of arterial flow on platelet activation, thrombus growth, and stabilization. Cardiovasc Res 2013; 99:342-52. [PMID: 23667186 DOI: 10.1093/cvr/cvt110] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Injury of an arterial vessel wall acutely triggers a multifaceted process of thrombus formation, which is dictated by the high-shear flow conditions in the artery. In this overview, we describe how the classical concept of arterial thrombus formation and vascular occlusion, driven by platelet activation and fibrin formation, can be extended and fine-tuned. This has become possible because of recent insight into the mechanisms of: (i) platelet-vessel wall and platelet-platelet communication, (ii) autocrine platelet activation, and (iii) platelet-coagulation interactions, in relation to blood flow dynamics. We list over 40 studies with genetically modified mice showing a role of platelet and plasma proteins in the control of thrombus stability after vascular injury. These include multiple platelet adhesive receptors and other junctional molecules, components of the ADP receptor signalling cascade to integrin activation, proteins controlling platelet shape, and autocrine activation processes, as well as multiple plasma proteins binding to platelets and proteins of the intrinsic coagulation cascade. Regulatory roles herein of the endothelium and other blood cells are recapitulated as well. Patient studies support the contribution of platelet- and coagulation activation in the regulation of thrombus stability. Analysis of the factors determining flow-dependent thrombus stabilization and embolus formation in mice will help to understand the regulation of this process in human arterial disease.
Collapse
Affiliation(s)
- Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht , Maastricht University, PO Box 616, Maastricht 6200 MD, The Netherlands
| | | | | | | |
Collapse
|
50
|
Mattheij NJA, Gilio K, van Kruchten R, Jobe SM, Wieschhaus AJ, Chishti AH, Collins P, Heemskerk JWM, Cosemans JMEM. Dual mechanism of integrin αIIbβ3 closure in procoagulant platelets. J Biol Chem 2013; 288:13325-36. [PMID: 23519467 PMCID: PMC3650371 DOI: 10.1074/jbc.m112.428359] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 03/20/2013] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Inactivation of integrin αIIbβ3 reverses platelet aggregate formation upon coagulation. RESULTS AND CONCLUSION Platelets from patient (Scott) and mouse (Capn1(-/-) and Ppif(-/-)) blood reveal a dual mechanism of αIIbβ3 inactivation: by calpain-2 cleavage of integrin-associated proteins and by cyclophilin D/TMEM16F-dependent phospholipid scrambling. SIGNIFICANCE These data provide novel insight into the switch mechanisms from aggregating to procoagulant platelets. Aggregation of platelets via activated integrin αIIbβ3 is a prerequisite for thrombus formation. Phosphatidylserine-exposing platelets with a key role in the coagulation process disconnect from a thrombus by integrin inactivation via an unknown mechanism. Here we show that αIIbβ3 inactivation in procoagulant platelets relies on a sustained high intracellular Ca(2+), stimulating intracellular cleavage of the β3 chain, talin, and Src kinase. Inhibition of calpain activity abolished protein cleavage, but only partly suppressed αIIbβ3 inactivation. Integrin αIIbβ3 inactivation was unchanged in platelets from Capn1(-/-) mice, suggesting a role of the calpain-2 isoform. Scott syndrome platelets, lacking the transmembrane protein TMEM16F and having low phosphatidylserine exposure, displayed reduced αIIbβ3 inactivation with the remaining activity fully dependent on calpain. In platelets from Ppif(-/-) mice, lacking mitochondrial permeability transition pore (mPTP) formation, agonist-induced phosphatidylserine exposure and αIIbβ3 inactivation were reduced. Treatment of human platelets with cyclosporin A gave a similar phenotype. Together, these data point to a dual mechanism of αIIbβ3 inactivation via calpain(-2) cleavage of integrin-associated proteins and via TMEM16F-dependent phospholipid scrambling with an assistant role of mPTP formation.
Collapse
Affiliation(s)
- Nadine J. A. Mattheij
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Karen Gilio
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Roger van Kruchten
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Shawn M. Jobe
- the Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| | - Adam J. Wieschhaus
- the Department of Pharmacology, University of Illinois, Chicago, Illinois 60607
- the Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Athar H. Chishti
- the Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Peter Collins
- the Arthur Bloom Haemophilia Centre, Department of Haematology, Medical School of Cardiff University, Cardiff CF14 4YU, United Kingdom
| | - Johan W. M. Heemskerk
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Judith M. E. M. Cosemans
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|