1
|
Marin-Quilez A, García-Tuñón I, Benito R, Ordoñez JL, Díaz-Ajenjo L, Lama-Villanueva A, Guerrero C, Pérez-Losada J, González-Porras JR, Hernández-Rivas JM, del Rey M, Bastida JM. Examining the Effects of the RUNX1 p.Leu43Ser Variant on FPD/AML Phenotypes Using a CRISPR/Cas9-Generated Knock-In Murine Model. Biomolecules 2025; 15:708. [PMID: 40427601 PMCID: PMC12109519 DOI: 10.3390/biom15050708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Germline heterozygous variants in RUNX1 lead to Familial Platelet Disorder with Myeloid Leukemia Predisposition (FPD/AML). Cellular and/or animal models are helpful to uncovering the role of a variant in disease progression. Twenty-five mice per genotype (RUNX1WT/WT, RUNX1WT/L43S, RUNX1L43S/L43S), previously generated by CRISPR/Cas9, and nine sub-lethally irradiated mice per genotype were investigated. Peripheral blood (PB), bone marrow (BM), and spleen samples were analyzed by flow cytometry and histopathology. Deregulated genes were analyzed by RNA-seq in BM. An aberrant myeloid Mac1+Sca1+ckit- population in the PB, BM, and spleen of two homozygous and one heterozygous mouse was observed, as well as BM hypercellularity. No Mac1+Sca1+ckit- cells were detected in any RUNX1WT/WT mice. Moreover, the spleen of both homozygous mice showed destruction of the white/red pulp and the presence of apoptotic cells. The aberrant population was also detected in four irradiated mice, two heterozygous and two homozygous, in their PB, BM, and spleen. RNA-seq studies showed 698 genes significantly deregulated in the three non-irradiated Mac1+Sca1+ckit- mice vs. six healthy mice, highlighting the alteration of genes involved in apoptosis and DNA repair. These results indicate that the homozygous form of the variant p.Leu43Ser may contribute to the pathogenesis of aberrant cells.
Collapse
Affiliation(s)
- Ana Marin-Quilez
- Cancer Research Center-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; (A.M.-Q.); (I.G.-T.); (J.L.O.); (L.D.-A.); (A.L.-V.); (C.G.); (J.P.-L.); (J.M.H.-R.); (M.d.R.)
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, IMIB-Pascual Parrilla, CIBERER-U765, 30003 Murcia, Spain
| | - Ignacio García-Tuñón
- Cancer Research Center-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; (A.M.-Q.); (I.G.-T.); (J.L.O.); (L.D.-A.); (A.L.-V.); (C.G.); (J.P.-L.); (J.M.H.-R.); (M.d.R.)
- Departament of Biomedicine and Biotecnology, Universidad de Alcalá, 28801 Alcalá de Henares, Spain
| | - Rocío Benito
- Cancer Research Center-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; (A.M.-Q.); (I.G.-T.); (J.L.O.); (L.D.-A.); (A.L.-V.); (C.G.); (J.P.-L.); (J.M.H.-R.); (M.d.R.)
| | - José Luis Ordoñez
- Cancer Research Center-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; (A.M.-Q.); (I.G.-T.); (J.L.O.); (L.D.-A.); (A.L.-V.); (C.G.); (J.P.-L.); (J.M.H.-R.); (M.d.R.)
- Laboratory of Pharmacology, Department of Physiology and Pharmacology, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain
| | - Lorena Díaz-Ajenjo
- Cancer Research Center-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; (A.M.-Q.); (I.G.-T.); (J.L.O.); (L.D.-A.); (A.L.-V.); (C.G.); (J.P.-L.); (J.M.H.-R.); (M.d.R.)
| | - Ana Lama-Villanueva
- Cancer Research Center-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; (A.M.-Q.); (I.G.-T.); (J.L.O.); (L.D.-A.); (A.L.-V.); (C.G.); (J.P.-L.); (J.M.H.-R.); (M.d.R.)
| | - Carmen Guerrero
- Cancer Research Center-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; (A.M.-Q.); (I.G.-T.); (J.L.O.); (L.D.-A.); (A.L.-V.); (C.G.); (J.P.-L.); (J.M.H.-R.); (M.d.R.)
| | - Jesús Pérez-Losada
- Cancer Research Center-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; (A.M.-Q.); (I.G.-T.); (J.L.O.); (L.D.-A.); (A.L.-V.); (C.G.); (J.P.-L.); (J.M.H.-R.); (M.d.R.)
| | - José Ramón González-Porras
- Department of Hematology, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), 37007 Salamanca, Spain;
| | - Jesús María Hernández-Rivas
- Cancer Research Center-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; (A.M.-Q.); (I.G.-T.); (J.L.O.); (L.D.-A.); (A.L.-V.); (C.G.); (J.P.-L.); (J.M.H.-R.); (M.d.R.)
- Department of Hematology, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), 37007 Salamanca, Spain;
| | - Mónica del Rey
- Cancer Research Center-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; (A.M.-Q.); (I.G.-T.); (J.L.O.); (L.D.-A.); (A.L.-V.); (C.G.); (J.P.-L.); (J.M.H.-R.); (M.d.R.)
| | - José María Bastida
- Department of Hematology, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), 37007 Salamanca, Spain;
| |
Collapse
|
2
|
Burgos CF, Méndez D, Quintana S, Gonkowski S, Trostchansky A, Alarcón M. Acrylamide and bisphenol A: two plastic additives increase platelet activation, via oxidative stress. Front Pharmacol 2025; 16:1526374. [PMID: 40371341 PMCID: PMC12075958 DOI: 10.3389/fphar.2025.1526374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Background Since the mid-20th century, the widespread use of plastics has led to the buildup of harmful byproducts in the environment-most notably acrylamide (AA) and bisphenol A (BPA). These chemicals are now commonly detected in human tissues, raising concerns about their potential health effects. While their presence as environmental pollutants is well known, their specific impact on platelet function and the associated cardiovascular risks remains poorly understood. Methods To explore how AA and BPA affect platelet physiology, we performed in vitro assays to assess platelet activation and aggregation following exposure to these compounds. We also used bioinformatic tools to identify potential protein targets in human platelets and carried out molecular docking simulations to investigate how AA and BPA interact with key enzymes involved in platelet regulation. Results Both AA and BPA exposure led to a significant increase in platelet activation and aggregation, suggesting an elevated risk of thrombosis. Proteomic analysis identified around 1,230 potential protein targets, with 191 affected by AA and 429 by BPA. These proteins are primarily involved in oxidative stress, apoptosis, and signaling pathways regulated by protein kinase C (PKC), p38α-MAPK, and superoxide dismutase (SOD). Molecular modeling further revealed that AA and BPA form stable complexes with several of these enzymes, indicating direct interference with platelet function. Discussion and Conclusion Our study shows that AA and BPA can enhance platelet reactivity and aggregation, which are key factors in the development of cardiovascular disease (CVD). By identifying specific molecular pathways and targets affected by these pollutants, we provide new insights into their potential role in promoting thrombotic conditions. These findings highlight the urgent need for greater public health awareness and stronger regulatory efforts to reduce human exposure to AA and BPA.
Collapse
Affiliation(s)
- C. F. Burgos
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - D. Méndez
- Thrombosis Research Center and Healthy Aging, Universidad de Talca, Talca, Chile
| | - S. Quintana
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - S. Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - A. Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - M. Alarcón
- Thrombosis Research Center and Healthy Aging, Universidad de Talca, Talca, Chile
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| |
Collapse
|
3
|
Hergueta-Redondo M, Sánchez-Redondo S, Hurtado B, Santos V, Pérez-Martínez M, Ximénez-Embún P, McDowell SAC, Mazariegos MS, Mata G, Torres-Ruiz R, Rodríguez-Perales S, Martínez L, Graña-Castro O, Megias D, Quail D, Quintela-Fandino M, Peinado H. The impact of a high fat diet and platelet activation on pre-metastatic niche formation. Nat Commun 2025; 16:2897. [PMID: 40175356 PMCID: PMC11965330 DOI: 10.1038/s41467-025-57938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/07/2025] [Indexed: 04/04/2025] Open
Abstract
There is active crosstalk between tumor cells and the tumor microenvironment during metastatic progression, a process that is significantly affected by obesity, particularly in breast cancer. Here we analyze the impact of a high fat diet (HFD) on metastasis, focusing on the role of platelets in the formation of premetastatic niches (PMNs). We find that a HFD provokes pre-activation of platelets and endothelial cells, promoting the formation of PMNs in the lung. These niches are characterized by increased vascular leakiness, platelet activation and overexpression of fibronectin in both platelets and endothelial cells. A HFD promotes interactions between platelets, tumor cells and endothelial cells within PMNs, enhancing tumor cell homing and metastasis. Importantly, therapeutic interventions like anti-platelet antibody administration or a dietary switch reduce metastatic cell homing and outgrowth. Moreover, blocking fibronectin reduces the interaction of tumor cells with endothelial cells. Importantly, when coagulation parameters prior to neoadjuvant treatment are considered, triple negative breast cancer (TNBC) female patients with reduced Partial Thromboplastin time (aPTT) had a significantly shorter time to relapse. These findings highlight how diet and platelet activation in pre-metastatic niches affect tumor cell homing and metastasis, suggesting potential therapeutic interventions and prognostic markers for TNBC patients.
Collapse
Affiliation(s)
- Marta Hergueta-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sara Sánchez-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Begoña Hurtado
- Cancer Cell Cycle Group, Preclinical & Translational Research Department, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Vanesa Santos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Pérez-Martínez
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sheri A C McDowell
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Marina S Mazariegos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center (SCC), Lund University, Lund, Sweden
| | - Gadea Mata
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Department of Mathematics and Computer Science, University of La Rioja, La Rioja, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigacion Sanitaria Fundacion Jiménez Díaz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Lola Martínez
- Flow Cytometry Core Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA-Nemesio Díez), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, 28925, Alcorcón, Spain
| | - Diego Megias
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Advanced Optical Microscopy - ISCIII Madrid, Madrid, Spain
| | - Daniela Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Medical Oncology, Hospital de Fuenlabrada, Madrid, Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
4
|
Buitrago L, Menezes MR, Larson C, Li J, Kartika T, Banerjee P, Glickman F, Coller B. Unbiased high-throughput screening of drug-repurposing libraries identifies small-molecule inhibitors of clot retraction. Blood Adv 2025; 9:1049-1068. [PMID: 39374578 PMCID: PMC11909436 DOI: 10.1182/bloodadvances.2024013810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
ABSTRACT Platelet clot retraction, the ultimate phase of platelet thrombus formation, is critical for clot stabilization. It requires functional αIIbβ3 receptors, fibrin, and the integrated actions of the actin-myosin contractile and cytoskeletal systems. Disturbances in clot retraction have been associated with both bleeding and thrombosis. We recently demonstrated that platelets treated with the αIIbβ3 antagonist peptide Arg-Gly-Asp-Trp, which eliminates fibrinogen-mediated platelet aggregation, are still able to retract clots. We have exploited this observation to develop an unbiased, functional high-throughput assay to identify small-molecule inhibitors of fibrin-mediated clot retraction adapted for a 384-well plate format. We tested 9710 compounds from drug-repurposing libraries (DRLs). These libraries contain compounds that are either US Food and Drug Administration approved or have undergone preclinical/clinical development. We identified 27 compounds from the Library of Pharmacologically Active Compounds library as inhibitors of clot retraction, of which 14 are known inhibitors of platelet function. From the DRLs, we identified 135 compounds (1.6% hit rate). After extensive curation, these compounds were categorized based on the activity of their reported target. Multiple kinase and phosphodiesterase inhibitors with known antiplatelet effects were identified, along with multiple deubiquitination and receptor inhibitors, as well as compounds that have not previously been reported to have antiplatelet activity. Studies of 1 of the deubiquitination inhibitors (degrasyn) suggest that its effects are downstream of thrombin-induced platelet-fibrinogen interactions and thus may permit the separation of platelet thrombin-induced aggregation-mediated events from clot retraction. Additional studies of the identified compounds may lead to novel mechanisms of inhibiting thrombosis.
Collapse
Affiliation(s)
- Lorena Buitrago
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, NY
| | - Miriam-Rose Menezes
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, NY
| | - Chloe Larson
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, NY
| | - Jihong Li
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, NY
| | - Thomas Kartika
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, NY
| | - Priyam Banerjee
- Bio-Imaging Resource Center, The Rockefeller University, New York, NY
| | - Fraser Glickman
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, NY
| | - Barry Coller
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, NY
| |
Collapse
|
5
|
Zou J, Zhang P, Solari FA, Schönichen C, Provenzale I, Mattheij NJA, Kuijpers MJE, Rauch JS, Swieringa F, Sickmann A, Zieger B, Jurk K, Heemskerk JWM. Suppressed ORAI1-STIM1-dependent Ca 2+ entry by protein kinase C isoforms regulating platelet procoagulant activity. J Biol Chem 2024; 300:107899. [PMID: 39424145 PMCID: PMC11742345 DOI: 10.1016/j.jbc.2024.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
Agonist-induced rises in cytosolic Ca2+ control most platelet responses in thrombosis and hemostasis. In human platelets, we earlier demonstrated that the ORAI1-STIM1 pathway is a major component of extracellular Ca2+ entry, in particular when induced via the ITAM-linked collagen receptor, glycoprotein VI (GPVI). In the present article, using functionally defective platelets from patients with a loss-of-function mutation in ORAI1 or STIM1, we show that Ca2+ entry induced by the endoplasmic reticulum ATPase inhibitor, thapsigargin, fully relies on this pathway. We demonstrate that both the GPVI-induced and thapsigargin-induced Ca2+ entry are strongly suppressed by protein kinase C (PKC) activation while leaving intracellular Ca2+ mobilization unchanged. Comparing the effects of a PKC inhibitory panel pointed to redundant roles of beta and theta PKC isoforms in Ca2+-entry suppression. In contrast, tyrosine kinases positively regulated GPVI-induced Ca2+ entry and mobilization. Label-free and stable isotope phosphoproteome analysis of GPVI-stimulated platelets suggested a regulatory role of bridging integrator-2 (BIN2), known as an important mediator of the ORAI1-STIM1 pathway in mouse platelets. Identified were 25 to 45 regulated phospho-sites in BIN2 and 16 to 18 in STIM1. Five of these were characterized as direct substrates of the expressed PKC isoforms alpha, beta delta, and theta. Functional platelet testing indicated that the downregulation of Ca2+ entry by PKC resulted in suppressed phosphatidylserine exposure and plasmatic thrombin generation. Conclusively, our results indicate that in platelets multiple PKC isoforms constrain the store-regulated Ca2+ entry via ORAI1-BIN2-STIM1, and hence downregulate platelet-dependent coagulation.
Collapse
Affiliation(s)
- Jinmi Zou
- Synapse Research Institute Maastricht, Maastricht, The Netherlands; Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands
| | - Pengyu Zhang
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Claudia Schönichen
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Isabella Provenzale
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands
| | - Nadine J A Mattheij
- Department of Clinical Chemistry and Hematology, Maxima Medical Center Veldhoven, Veldhoven, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands
| | - Julia S Rauch
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Frauke Swieringa
- Synapse Research Institute Maastricht, Maastricht, The Netherlands
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany; Medizinische Fakultät, Medizinische Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johan W M Heemskerk
- Synapse Research Institute Maastricht, Maastricht, The Netherlands; Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
6
|
Liu X, Fan W, Lin S, Chen J, Zhang S, Li X, Jin M, He Q. Anti-Thrombotic Effect of Protoparaxotriol Saponins From Panax notoginseng Using Zebrafish Model. J Cardiovasc Pharmacol 2024; 84:528-538. [PMID: 39027983 DOI: 10.1097/fjc.0000000000001604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024]
Abstract
ABSTRACT Panax notoginseng has the effect of stimulating circulation to end stasis. Our study was designed to evaluate the anti-thrombotic effect of protoparaxotriol saponins (PTS) from P. notoginseng and the involved mechanisms. A thrombosis model was constructed, and the anti-thrombotic activity of PTS was determined by erythrocyte staining, heart rate, and blood flow velocity. In addition, quantitative real-time polymerase chain reaction was used to identify changes in the expression of genes related to coagulation, inflammation, and apoptosis. PTS alleviated arachidonic acid-induced caudal vein thrombosis, restored blood flow, and increased the area of cardiac erythrocyte staining, heart rate, and blood flow velocity. It reduced the ponatinib-induced cerebral thrombus area and decreased the intensity of erythrocyte staining. The quantitative polymerase chain reaction data showed that the anti-thrombotic effect of PTS was mediated by suppression of genes related to coagulation, inflammation, and apoptosis and also involved inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathways.
Collapse
Affiliation(s)
- Xin Liu
- Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Fernández-Infante C, Hernández-Cano L, Herranz Ó, Berrocal P, Sicilia-Navarro C, González-Porras JR, Bastida JM, Porras A, Guerrero C. Platelet C3G: a key player in vesicle exocytosis, spreading and clot retraction. Cell Mol Life Sci 2024; 81:84. [PMID: 38345631 PMCID: PMC10861696 DOI: 10.1007/s00018-023-05109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 02/15/2024]
Abstract
C3G is a Rap1 GEF that plays a pivotal role in platelet-mediated processes such as angiogenesis, tumor growth, and metastasis by modulating the platelet secretome. Here, we explore the mechanisms through which C3G governs platelet secretion. For this, we utilized animal models featuring either overexpression or deletion of C3G in platelets, as well as PC12 cell clones expressing C3G mutants. We found that C3G specifically regulates α-granule secretion via PKCδ, but it does not affect δ-granules or lysosomes. C3G activated RalA through a GEF-dependent mechanism, facilitating vesicle docking, while interfering with the formation of the trans-SNARE complex, thereby restricting vesicle fusion. Furthermore, C3G promotes the formation of lamellipodia during platelet spreading on specific substrates by enhancing actin polymerization via Src and Rac1-Arp2/3 pathways, but not Rap1. Consequently, C3G deletion in platelets favored kiss-and-run exocytosis. C3G also controlled granule secretion in PC12 cells, including pore formation. Additionally, C3G-deficient platelets exhibited reduced phosphatidylserine exposure, resulting in decreased thrombin generation, which along with defective actin polymerization and spreading, led to impaired clot retraction. In summary, platelet C3G plays a dual role by facilitating platelet spreading and clot retraction through the promotion of outside-in signaling while concurrently downregulating α-granule secretion by restricting granule fusion.
Collapse
Affiliation(s)
- Cristina Fernández-Infante
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Luis Hernández-Cano
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Óscar Herranz
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Pablo Berrocal
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Carmen Sicilia-Navarro
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - José Ramón González-Porras
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - José María Bastida
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
8
|
Kauskot A, Mallebranche C, Bruneel A, Fenaille F, Solarz J, Viellard T, Feng M, Repérant C, Bordet JC, Cholet S, Denis CV, McCluskey G, Latour S, Martin E, Pellier I, Lasne D, Borgel D, Kracker S, Ziegler A, Tuffigo M, Fournier B, Miot C, Adam F. MAGT1 deficiency in XMEN disease is associated with severe platelet dysfunction and impaired platelet glycoprotein N-glycosylation. J Thromb Haemost 2023; 21:3268-3278. [PMID: 37207862 DOI: 10.1016/j.jtha.2023.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia (XMEN) disease is a primary immunodeficiency due to loss-of-function mutations in the gene encoding for magnesium transporter 1 (MAGT1). Furthermore, as MAGT1 is involved in the N-glycosylation process, XMEN disease is classified as a congenital disorder of glycosylation. Although XMEN-associated immunodeficiency is well described, the mechanisms underlying platelet dysfunction and those responsible for life-threatening bleeding events have never been investigated. OBJECTIVES To assess platelet functions in patients with XMEN disease. METHODS Two unrelated young boys, including one before and after hematopoietic stem cell transplantation, were investigated for their platelet functions, glycoprotein expression, and serum and platelet-derived N-glycans. RESULTS Platelet analysis highlighted abnormal elongated cells and unusual barbell-shaped proplatelets. Platelet aggregation, integrin αIIbβ3 activation, calcium mobilization, and protein kinase C activity were impaired between both patients. Strikingly, platelet responses to protease-activated receptor 1 activating peptide were absent at both low and high concentrations. These defects were also associated with decreased molecular weights of glycoprotein Ibα, glycoprotein VI, and integrin αIIb due to partial impairment of N-glycosylation. All these defects were corrected after hematopoietic stem cell transplantation. CONCLUSION Our results highlight prominent platelet dysfunction related to MAGT1 deficiency and defective N-glycosylation in several platelet proteins that could explain the hemorrhages reported in patients with XMEN disease.
Collapse
Affiliation(s)
- Alexandre Kauskot
- INSERM U1176, Hemostasis, Inflammation & Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Coralie Mallebranche
- Université d'Angers, Université de Nantes, Inserm, CNRS, CRCI2NA, SFR ICAT, Angers, France; CHU Angers, Pediatric immuno-hemato-oncology Unit, Angers, France
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France; Université Paris-Saclay, INSERM UMR1193, Mécanismes cellulaires et moléculaires de l'adaptation au stress et cancérogenèse, Châtenay-Malabry, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France
| | - Jean Solarz
- INSERM U1176, Hemostasis, Inflammation & Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Toscane Viellard
- INSERM U1176, Hemostasis, Inflammation & Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Miao Feng
- INSERM U1176, Hemostasis, Inflammation & Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Christelle Repérant
- INSERM U1176, Hemostasis, Inflammation & Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Jean-Claude Bordet
- Laboratoire d'Hémostase, Centre de Biologie Est, Hospices Civils de Lyon, Bron, France
| | - Sophie Cholet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France
| | - Cécile V Denis
- INSERM U1176, Hemostasis, Inflammation & Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Geneviève McCluskey
- INSERM U1176, Hemostasis, Inflammation & Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Sylvain Latour
- INSERM UMR 1163, Laboratory of Lymphocyte Activation and Susceptibility to EBV, Imagine Institute, Université Paris Cité, Paris, France
| | - Emmanuel Martin
- INSERM UMR 1163, Laboratory of Lymphocyte Activation and Susceptibility to EBV, Imagine Institute, Université Paris Cité, Paris, France
| | - Isabelle Pellier
- Université d'Angers, Université de Nantes, Inserm, CNRS, CRCI2NA, SFR ICAT, Angers, France; CHU Angers, Pediatric immuno-hemato-oncology Unit, Angers, France
| | - Dominique Lasne
- INSERM U1176, Hemostasis, Inflammation & Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France; AP-HP, Laboratoire d'Hématologie, Hôpital Necker-Enfants Malades, Paris, France
| | - Delphine Borgel
- INSERM U1176, Hemostasis, Inflammation & Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France; AP-HP, Laboratoire d'Hématologie, Hôpital Necker-Enfants Malades, Paris, France
| | - Sven Kracker
- INSERM UMR1163, Université Paris Cité, Laboratory of Human Lymphohematopoiesis, Imagine Institute, Paris, France
| | | | - Marie Tuffigo
- CHU Angers, Laboratory of Hematology, Angers, France
| | - Benjamin Fournier
- INSERM UMR 1163, Laboratory of Lymphocyte Activation and Susceptibility to EBV, Imagine Institute, Université Paris Cité, Paris, France; AP-HP, Hôpital Necker-Enfants Malades Assistance Publique-Hôpitaux de Paris, Pediatric Hematology-Immunology-Rheumatology Unit, Paris, France
| | - Charline Miot
- Université d'Angers, Université de Nantes, Inserm, CNRS, CRCI2NA, SFR ICAT, Angers, France; CHU Angers, Pediatric immuno-hemato-oncology Unit, Angers, France; CHU Angers, Laboratory of Immunology and Allergology, Angers, France
| | - Frédéric Adam
- INSERM U1176, Hemostasis, Inflammation & Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France.
| |
Collapse
|
9
|
Striesow J, Wesche J, McKitterick N, Busch LM, von Woedtke T, Greinacher A, Bekeschus S, Wende K. Gas plasma-induced platelet activation corresponds to reactive species profiles and lipid oxidation. Free Radic Biol Med 2023; 207:212-225. [PMID: 37490986 DOI: 10.1016/j.freeradbiomed.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Surgical-induced hemostasis is a critical step in the closure of incisions, which is frequently achieved via electrocauterization and subsequent tissue necrotization. The latter is associated with postoperative complications. Recent in vivo work suggested reactive species-producing gas plasma technology as a pro-homeostatic agent acting via platelet activation. However, it remained elusive how platelet activation is linked to lipid and protein oxidation and the reactive species compositions. A direct relation between the reactive species composition and platelet activation was revealed by assessing the production of several reactive species and by using antioxidants. In addition, platelet lipidome and proteome analysis identified significantly regulated key lipids in the platelet activation pathway, such as diacylglycerols and phosphatidylinositol as well as oxylipins like thromboxanes. Lipid oxidation products mainly derived from phosphatidylethanolamine and phosphatidylserine species were observed at modest levels. In addition, oxidative post-translational modifications were identified on key proteins of the hemostasis machinery. This study provides new insights into oxidation-induced platelet activation in general and suggests a potential role of those processes in gas plasma-mediated hemostasis in particular.
Collapse
Affiliation(s)
- Johanna Striesow
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Jan Wesche
- Institute of Transfusion Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475, Greifswald, Germany
| | - Nicholas McKitterick
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Larissa M Busch
- Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Felix-Hausdorff-Str. 8, 17475, Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475, Greifswald, Germany
| | - Andreas Greinacher
- Institute of Transfusion Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
10
|
Krott KJ, Feige T, Elvers M. Flow Chamber Analyses in Cardiovascular Research: Impact of Platelets and the Intercellular Crosstalk with Endothelial Cells, Leukocytes, and Red Blood Cells. Hamostaseologie 2023; 43:338-347. [PMID: 37857296 DOI: 10.1055/a-2113-1134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Platelets are main drivers of thrombus formation. Besides platelet aggregate formation, platelets interact with different blood cells such as red blood and white blood cells (RBCs, WBCs) and endothelial cells (ECs), to promote thrombus formation and inflammation. In the past, the role of different proteins in platelet adhesion, activation, and aggregate formation has been analyzed using platelets/mice with a genetic loss of a certain protein. These knock-out mouse models have been investigated for changes in experimental arterial thrombosis or hemostasis. In this review, we focused on the Maastricht flow chamber, which is a very elegant tool to analyze thrombus formation under flow using whole blood or different blood cell components of genetically modified mice. Besides, the interaction of platelets with RBCs, WBCs, and ECs under flow conditions has been evaluated with regard to thrombus formation and platelet-mediated inflammation. Importantly, alterations in thrombus formation as emerged in the flow chamber frequently reflect arterial thrombosis in different mouse models. Thus, the results of flow chamber experiments in vitro are excellent indicators for differences in arterial thrombosis in vivo. Taken together, the Maastricht flow chamber can be used to (1) determine the severity of platelet alterations in different knock-out mice; (2) analyze differences in platelet adhesion, aggregation, and activation; (3) investigate collagen and non-collagen-dependent alterations of thrombus formation; and (4) highlight differences in the interaction of platelets with different blood/ECs. Thus, this experimental approach is a useful tool to increase our understanding of signaling mechanisms that drive arterial thrombosis and hemostasis.
Collapse
Affiliation(s)
- Kim Jürgen Krott
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Feige
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
11
|
Mushtaq M, Mahmood M, Jabbar U, Kim UH. Essential role of CD38 in platelet aggregation through the PKC-mediated internalization and activation. BIOIMPACTS : BI 2023; 14:27780. [PMID: 38505670 PMCID: PMC10945299 DOI: 10.34172/bi.2023.27780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 03/21/2024]
Abstract
Introduction CD38 is a multifunctional enzyme with a potent Ca2+ mobilizing effect, cyclic ADP-ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP). Here, we aimed to demonstrate the role of CD38 in platelets via protein kinase C (PKC)-mediated internalization and activation. Methods Mouse platelets were used in this study. Thrombin, an agonist of platelet function, provoked a prompt and long-lasting increase in intracellular Ca2+ concentration ([Ca2+]i), resulting from an interplay of multifold Ca2+ mobilizing messengers.The signaling pathway was delineated using different inhibitors and techniques such as platelet aggregation assay, intracellular calcium measurements, immunoprecipitation, immunoblotting, and flow cytometry. Results We observed a sequential formation of cADPR and NAADP through CD38 activation by PKC of non-muscle myosin heavy chain IIA (MHCIIA), resulting in phospholipase C (PLC) activation in the thrombin-stimulated platelets. These findings reveal that PKC is fundamental in activating CD38 and elicits a physiological response in the murine platelets. Conclusion PKC is involved in many signaling pathways. Specifically, PKC is involved in the internalization of CD38 via MHCIIA in CD38+/+ wild-type (WT) and CD38-/- knockout mice (KO). CD38 generates calcium-mobilizing agents that act on specific receptors of the calcium stores. Calcium triggered platelet aggregation while serving as a secondary messenger.
Collapse
Affiliation(s)
- Mazhar Mushtaq
- Basic Medical Sciences, Sulaiman Al Rajhi University, Al-Qaseem, Kingdom of Saudi Arabia
| | - Maira Mahmood
- Department of Biochemistry, FMH College of Medicine and Dentistry, Lahore, Pakistan
| | - Uzma Jabbar
- Department of Biochemistry, Gujranwala Medical College, Gujranwala, Pakistan
| | - Uh-Hyun Kim
- Department of Biochemistry, Chonbuk National University, Chonbuk, South Korea
| |
Collapse
|
12
|
Khan MS, Liu C, Meng F, Yang M, Zhou K, Hu R, Wang X, Dai K. X-rays Stimulate Granular Secretions and Activate Protein Kinase C Signaling in Human Platelets. Curr Issues Mol Biol 2023; 45:6024-6039. [PMID: 37504296 PMCID: PMC10378519 DOI: 10.3390/cimb45070380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
X-rays can induce morphological as well as functional changes in cells. Platelets are anuclear cellular fragments originating from megakaryocytes and are the major regulators in hemostasis and thrombosis. Platelet products are irradiated to avoid medical complications associated with platelet transfusion. So far, gamma, UV, and laser radiation have been used for this purpose. However, scientists are divided about the effects of radiation on platelet quality. The present study was designed to explore the possible effects of X-rays in washed human platelets and understand the molecular mechanism behind them. In the present study, we exposed washed human platelets to 10 or 30 Gy X-rays at 0.25 Gy/min. Flow cytometry, aggregometry, and western blot were performed to investigate the effect of X-rays on platelet degranulation, integrin activation, platelet aggregation, and apoptosis. It was found that X-rays immediately induced granular secretions with no effect on GP IIb/IIIa activation. Not surprisingly, due to granule secretions in irradiated platelets, platelet aggregation was significantly reduced. In contrast to granular secretions and platelet aggregation, X-rays induced mitochondrial transmembrane potential depolarization in a time-dependent manner to induce apoptosis and activated protein kinase C (PKC) signaling. This study revealed and explained the molecular mechanism activated by X-rays in washed human platelets. Here we also introduced Gö 6983, a PKC inhibitor, as an agent that counteracts X-ray-induced changes and maintains the integrity of platelets.
Collapse
Affiliation(s)
- Muhammad Shoaib Khan
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Chunliang Liu
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Fanbi Meng
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Mengnan Yang
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Kangxi Zhou
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Renping Hu
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Xuexiang Wang
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| |
Collapse
|
13
|
Kokelj S, Östling J, Fromell K, Vanfleteren LEGW, Olsson HK, Nilsson Ekdahl K, Nilsson B, Olin AC. Activation of the Complement and Coagulation Systems in the Small Airways in Asthma. Respiration 2023; 102:621-631. [PMID: 37423212 DOI: 10.1159/000531374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Several studies have shown the importance of the complement and coagulation systems in the pathogenesis of asthma. OBJECTIVES We explored whether we could detect differentially abundant complement and coagulation proteins in the samples obtained from the small airway lining fluid by collection of exhaled particles in patients with asthma and whether these proteins are associated with small airway dysfunction and asthma control. METHOD Exhaled particles were obtained from 20 subjects with asthma and 10 healthy controls (HC) with the PExA method and analysed with the SOMAscan proteomics platform. Lung function was assessed by nitrogen multiple breath washout test and spirometry. RESULTS 53 proteins associated with the complement and coagulation systems were included in the analysis. Nine of those proteins were differentially abundant in subjects with asthma as compared to HC, and C3 was significantly higher in inadequately controlled asthma as compared to well-controlled asthma. Several proteins were associated with physiological tests assessing small airways. CONCLUSIONS The study highlights the role of the local activation of the complement and coagulation systems in the small airway lining fluid in asthma and their association with both asthma control and small airway dysfunction. The findings highlight the potential of complement factors as biomarkers to identify different sub-groups among patients with asthma that could potentially benefit from a therapeutic approach targeting the complement system.
Collapse
Affiliation(s)
- Spela Kokelj
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Karin Fromell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lowie E G W Vanfleteren
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henric K Olsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kristina Nilsson Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anna-Carin Olin
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Elgheznawy A, Öftering P, Englert M, Mott K, Kaiser F, Kusch C, Gbureck U, Bösl MR, Schulze H, Nieswandt B, Vögtle T, Hermanns HM. Loss of zinc transporters ZIP1 and ZIP3 augments platelet reactivity in response to thrombin and accelerates thrombus formation in vivo. Front Immunol 2023; 14:1197894. [PMID: 37359521 PMCID: PMC10285393 DOI: 10.3389/fimmu.2023.1197894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Zinc (Zn2+) is considered as important mediator of immune cell function, thrombosis and haemostasis. However, our understanding of the transport mechanisms that regulate Zn2+ homeostasis in platelets is limited. Zn2+ transporters, ZIPs and ZnTs, are widely expressed in eukaryotic cells. Using mice globally lacking ZIP1 and ZIP3 (ZIP1/3 DKO), our aim was to explore the potential role of these Zn2+ transporters in maintaining platelet Zn2+ homeostasis and in the regulation of platelet function. While ICP-MS measurements indicated unaltered overall Zn2+ concentrations in platelets of ZIP1/3 DKO mice, we observed a significantly increased content of FluoZin3-stainable free Zn2+, which, however, appears to be released less efficiently upon thrombin-stimulated platelet activation. On the functional level, ZIP1/3 DKO platelets exhibited a hyperactive response towards threshold concentrations of G protein-coupled receptor (GPCR) agonists, while immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptor agonist signalling was unaffected. This resulted in enhanced platelet aggregation towards thrombin, bigger thrombus volume under flow ex vivo and faster in vivo thrombus formation in ZIP1/3 DKO mice. Molecularly, augmented GPCR responses were accompanied by enhanced Ca2+ and PKC, CamKII and ERK1/2 signalling. The current study thereby identifies ZIP1 and ZIP3 as important regulators for the maintenance of platelet Zn2+ homeostasis and function.
Collapse
Affiliation(s)
- Amro Elgheznawy
- Medical Clinic II, Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| | - Patricia Öftering
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Maximilian Englert
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Kristina Mott
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Friederike Kaiser
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Michael R. Bösl
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Timo Vögtle
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Heike M. Hermanns
- Medical Clinic II, Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Reusswig F, Yilmaz M, Brechtenkamp M, Krueger I, Metz LM, Klöcker N, Lammert E, Elvers M. The NMDA receptor regulates integrin activation, ATP release and arterial thrombosis through store-operated Ca 2+ entry in platelets. Front Cardiovasc Med 2023; 10:1171831. [PMID: 37252113 PMCID: PMC10217778 DOI: 10.3389/fcvm.2023.1171831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Platelet activation and thrombus formation is crucial for hemostasis, but also trigger arterial thrombosis. Calcium mobilization plays an important role in platelet activation, because many cellular processes depend on the level of intracellular Ca2+ ([Ca2+](i)), such as integrin activation, degranulation, cytoskeletal reorganization. Different modulators of Ca2+ signaling have been implied, such as STIM1, Orai1, CyPA, SGK1, etc. Also, the N-methyl-D-aspartate receptor (NMDAR) was identified to contribute to Ca2+ signaling in platelets. However, the role of the NMDAR in thrombus formation is not well defined. Methods In vitro and in vivo analysis of platelet-specific NMDAR knock-out mice. Results In this study, we analyzed Grin1fl/fl-Pf4-Cre+ mice with a platelet-specific knock-out of the essential GluN1 subunit of the NMDAR. We found reduced store-operated Ca2+ entry (SOCE), but unaltered store release in GluN1-deficient platelets. Defective SOCE resulted in reduced Src and PKC substrate phosphorylation following stimulation of glycoprotein (GP)VI or the thrombin receptor PAR4 followed by decreased integrin activation but unaltered degranulation. Consequently, thrombus formation on collagen under flow conditions was reduced ex vivo, and Grin1fl/fl-Pf4-Cre+ mice were protected against arterial thrombosis. Results from human platelets treated with the NMDAR antagonist MK-801 revealed a crucial role of the NMDAR in integrin activation and Ca2+ homeostasis in human platelets as well. Conclusion NMDAR signaling is important for SOCE in platelets and contributes to platelet activation and arterial thrombosis. Thus, the NMDAR represents a novel target for anti-platelet therapy in cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Friedrich Reusswig
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Münteha Yilmaz
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Marius Brechtenkamp
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Irena Krueger
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Lisa Maria Metz
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Eckhard Lammert
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
16
|
Lorenzen L, Frank D, Schwan C, Grosse R. Spatiotemporal Regulation of FMNL2 by N-Terminal Myristoylation and C-Terminal Phosphorylation Drives Rapid Filopodia Formation. Biomolecules 2023; 13:biom13030548. [PMID: 36979484 PMCID: PMC10046779 DOI: 10.3390/biom13030548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The actin nucleating and polymerizing formin-like 2 (FMNL2) is upregulated in several cancers and has been shown to play important roles in cell migration, invasion, cell–cell adhesion and filopodia formation. Here, using structured illumination microscopy we show that FMNL2 promotes rapid and highly dynamic filopodia formation in epithelial cells while remaining on the tip of the growing filopodia. This filopodia tip localization depends fully on its N-terminal myristoylation. We further show that FMNL2-dependent filopodia formation requires its serine 1072 phosphorylation within the diaphanous-autoregulatory domain (DAD) by protein kinase C (PKC) α. Consistent with this, filopodia formation depends on PKC activity and PKCα localizes to the base of growing filopodia. Thus, a PKCα–FMNL2 signaling module spatiotemporally controls dynamic filopodia formation.
Collapse
Affiliation(s)
- Lina Lorenzen
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Dennis Frank
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
- Correspondence: (C.S.); (R.G.)
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
- Centre for Integrative Biological Signalling Studies—CIBSS, 79104 Freiburg, Germany
- Correspondence: (C.S.); (R.G.)
| |
Collapse
|
17
|
Yamaguchi A, van Hoorebeke C, Tourdot BE, Perry S, Lee G, Rhoads N, Rickenberg A, Green A, Sorrentino J, Yeung J, Freedman JC, Holman TR, Holinstat M. Fatty acids negatively regulate platelet function through formation of noncanonical 15-lipoxygenase-derived eicosanoids. Pharmacol Res Perspect 2023; 11:e01056. [PMID: 36708179 PMCID: PMC9883682 DOI: 10.1002/prp2.1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/29/2023] Open
Abstract
The antiplatelet effect of polyunsaturated fatty acids is primarily attributed to its metabolism to bioactive metabolites by oxygenases, such as lipoxygenases (LOX). Platelets have demonstrated the ability to generate 15-LOX-derived metabolites (15-oxylipins); however, whether 15-LOX is in the platelet or is required for the formation of 15-oxylipins remains unclear. This study seeks to elucidate whether 15-LOX is required for the formation of 15-oxylipins in the platelet and determine their mechanistic effects on platelet reactivity. In this study, 15-HETrE, 15-HETE, and 15-HEPE attenuated collagen-induced platelet aggregation, and 15-HETrE inhibited platelet aggregation induced by different agonists. The observed anti-aggregatory effect was due to the inhibition of intracellular signaling including αIIbβ3 and protein kinase C activities, calcium mobilization, and granule secretion. While 15-HETrE inhibited platelets partially through activation of peroxisome proliferator-activated receptor β (PPARβ), 15-HETE also inhibited platelets partially through activation of PPARα. 15-HETrE, 15-HETE, or 15-HEPE inhibited 12-LOX in vitro, with arachidonic acid as the substrate. Additionally, a 15-oxylipin-dependent attenuation of 12-HETE level was observed in platelets following ex vivo treatment with 15-HETrE, 15-HETE, or 15-HEPE. Platelets treated with DGLA formed 15-HETrE and collagen-induced platelet aggregation was attenuated only in the presence of ML355 or aspirin, but not in the presence of 15-LOX-1 or 15-LOX-2 inhibitors. Expression of 15-LOX-1, but not 15-LOX-2, was decreased in leukocyte-depleted platelets compared to non-depleted platelets. Taken together, these findings suggest that 15-oxylipins regulate platelet reactivity; however, platelet expression of 15-LOX-1 is low, suggesting that 15-oxylipins may be formed in the platelet through a 15-LOX-independent pathway.
Collapse
Affiliation(s)
- Adriana Yamaguchi
- Department of PharmacologyUniversity of MichiganAnn ArborMichiganUSA
| | | | | | - Steven C. Perry
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Grace Lee
- Department of PharmacologyUniversity of MichiganAnn ArborMichiganUSA
| | - Nicole Rhoads
- Department of PharmacologyUniversity of MichiganAnn ArborMichiganUSA
| | - Andrew Rickenberg
- Department of PharmacologyUniversity of MichiganAnn ArborMichiganUSA
| | - Abigail R. Green
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - James Sorrentino
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Jennifer Yeung
- Department of PharmacologyUniversity of MichiganAnn ArborMichiganUSA
| | - J. Cody Freedman
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Theodore R. Holman
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Michael Holinstat
- Department of PharmacologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
18
|
De Silva E, Hong F, Falet H, Kim H. Filamin A in platelets: Bridging the (signaling) gap between the plasma membrane and the actin cytoskeleton. Front Mol Biosci 2022; 9:1060361. [PMID: 36605989 PMCID: PMC9808056 DOI: 10.3389/fmolb.2022.1060361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Platelets are anucleate cells that are essential for hemostasis and wound healing. Upon activation of the cell surface receptors by their corresponding extracellular ligands, platelets undergo rapid shape change driven by the actin cytoskeleton; this shape change reaction is modulated by a diverse array of actin-binding proteins. One actin-binding protein, filamin A (FLNA), cross-links and stabilizes subcortical actin filaments thus providing stability to the cell membrane. In addition, FLNA binds the intracellular portion of multiple cell surface receptors and acts as a critical intracellular signaling scaffold that integrates signals between the platelet's plasma membrane and the actin cytoskeleton. This mini-review summarizes how FLNA transduces critical cell signals to the platelet cytoskeleton.
Collapse
Affiliation(s)
- Enoli De Silva
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Felix Hong
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Hervé Falet
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Hernández-Cano L, Fernández-Infante C, Herranz Ó, Berrocal P, Lozano FS, Sánchez-Martín MA, Porras A, Guerrero C. New functions of C3G in platelet biology: Contribution to ischemia-induced angiogenesis, tumor metastasis and TPO clearance. Front Cell Dev Biol 2022; 10:1026287. [PMID: 36393850 PMCID: PMC9661425 DOI: 10.3389/fcell.2022.1026287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/06/2022] [Indexed: 07/10/2024] Open
Abstract
C3G is a Rap1 guanine nucleotide exchange factor that controls platelet activation, aggregation, and the release of α-granule content. Transgenic expression of C3G in platelets produces a net proangiogenic secretome through the retention of thrombospondin-1. In a physiological context, C3G also promotes megakaryocyte maturation and proplatelet formation, but without affecting mature platelet production. The aim of this work is to investigate whether C3G is involved in pathological megakaryopoiesis, as well as its specific role in platelet mediated angiogenesis and tumor metastasis. Using megakaryocyte-specific C3G knockout and transgenic mouse models, we found that both C3G overexpression and deletion promoted platelet-mediated angiogenesis, induced by tumor cell implantation or hindlimb ischemia, through differential release of proangiogenic and antiangiogenic factors. However, only C3G deletion resulted in a higher recruitment of hemangiocytes from the bone marrow. In addition, C3G null expression enhanced thrombopoietin (TPO)-induced platelet production, associated with reduced TPO plasma levels. Moreover, after 5-fluorouracil-induced platelet depletion and rebound, C3G knockout mice showed a defective return to homeostatic platelet levels, indicating impaired platelet turnover. Mechanistically, C3G promotes c-Mpl ubiquitination by inducing Src-mediated c-Cbl phosphorylation and participates in c-Mpl degradation via the proteasome and lysosome systems, affecting TPO internalization. We also unveiled a positive role of platelet C3G in tumor cell-induced platelet aggregation, which facilitated metastatic cell homing and adhesion. Overall, these findings revealed that C3G plays a crucial role in platelet-mediated angiogenesis and metastasis, as well as in platelet level modulation in response to pathogenic stimuli.
Collapse
Affiliation(s)
- Luis Hernández-Cano
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Cristina Fernández-Infante
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Óscar Herranz
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Pablo Berrocal
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Francisco S. Lozano
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Angiología y Cirugía Vascular, Hospital Universitario de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Manuel A. Sánchez-Martín
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Servicio de Transgénesis, Nucleus, Universidad of Salamanca, Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
20
|
Activation of Human Platelets by Staphylococcus aureus Secreted Protease Staphopain A. Pathogens 2022; 11:pathogens11111237. [DOI: 10.3390/pathogens11111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Infection by Staphylococcus aureus is the leading cause of infective endocarditis (IE). Activation of platelets by this pathogen results in their aggregation and thrombus formation which are considered to be important steps in the development and pathogenesis of IE. Here, we show that a secreted cysteine protease, staphopain A, activates human platelets and induces their aggregation. The culture supernatant of a scpA mutant deficient in staphopain A production was reduced in its ability to trigger platelet aggregation. The platelet agonist activity of purified staphopain A was inhibited by staphostatin A, a specific inhibitor, thus implicating its protease activity in the agonism. In whole blood, using concentrations of staphopain A that were otherwise insufficient to induce platelet aggregation, increased binding to collagen and thrombus formation was observed. Using antagonists specific to protease-activated receptors 1 and 4, we demonstrate their role in mediating staphopain A induced platelet activation.
Collapse
|
21
|
Reversible Platelet Integrin αIIbβ3 Activation and Thrombus Instability. Int J Mol Sci 2022; 23:ijms232012512. [PMID: 36293367 PMCID: PMC9604507 DOI: 10.3390/ijms232012512] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Integrin αIIbβ3 activation is essential for platelet aggregation and, accordingly, for hemostasis and arterial thrombosis. The αIIbβ3 integrin is highly expressed on platelets and requires an activation step for binding to fibrinogen, fibrin or von Willebrand factor (VWF). A current model assumes that the process of integrin activation relies on actomyosin force-dependent molecular changes from a bent-closed and extended-closed to an extended-open conformation. In this paper we review the pathways that point to a functional reversibility of platelet αIIbβ3 activation and transient aggregation. Furthermore, we refer to mouse models indicating that genetic defects that lead to reversible platelet aggregation can also cause instable thrombus formation. We discuss the platelet agonists and signaling pathways that lead to a transient binding of ligands to integrin αIIbβ3. Our analysis points to the (autocrine) ADP P2Y1 and P2Y12 receptor signaling via phosphoinositide 3-kinases and Akt as principal pathways linked to reversible integrin activation. Downstream signaling events by protein kinase C, CalDAG-GEFI and Rap1b have not been linked to transient integrin activation. Insight into the functional reversibility of integrin activation pathways will help to better understand the effects of antiplatelet agents.
Collapse
|
22
|
Chen Y, Fu W, Zheng Y, Yang J, Liu Y, Qi Z, Wu M, Fan Z, Yin K, Chen Y, Gao W, Ding Z, Dong J, Li Q, Zhang S, Hu L. Galectin 3 enhances platelet aggregation and thrombosis via Dectin-1 activation: a translational study. Eur Heart J 2022; 43:3556-3574. [PMID: 35165707 PMCID: PMC9989600 DOI: 10.1093/eurheartj/ehac034] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/25/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS Galectin-3, a β-galactoside-binding lectin, is abnormally increased in cardiovascular disease. Plasma Galectin-3 receives a Class II recommendation for heart failure management and has been extensively studied for multiple cellular functions. The direct effects of Galectin-3 on platelet activation remain unclear. This study explores the direct effects of Galectin-3 on platelet activation and thrombosis. METHODS AND RESULTS A strong positive correlation between plasma Galectin-3 concentration and platelet aggregation or whole blood thrombus formation was observed in patients with coronary artery disease (CAD). Multiple platelet function studies demonstrated that Galectin-3 directly potentiated platelet activation and in vivo thrombosis. Mechanistic studies using the Dectin-1 inhibitor, laminarin, and Dectin-1-/- mice revealed that Galectin-3 bound to and activated Dectin-1, a receptor not previously reported in platelets, to phosphorylate spleen tyrosine kinase and thus increased Ca2+ influx, protein kinase C activation, and reactive oxygen species production to regulate platelet hyperreactivity. TD139, a Galectin-3 inhibitor in a Phase II clinical trial, concentration dependently suppressed Galectin-3-potentiated platelet activation and inhibited occlusive thrombosis without exacerbating haemorrhage in ApoE-/- mice, which spontaneously developed increased plasma Galectin-3 levels. TD139 also suppressed microvascular thrombosis to protect the heart from myocardial ischaemia-reperfusion injury in ApoE-/- mice. CONCLUSION Galectin-3 is a novel positive regulator of platelet hyperreactivity and thrombus formation in CAD. As TD139 has potent antithrombotic effects without bleeding risk, Galectin-3 inhibitors may have therapeutic advantages as potential antiplatelet drugs for patients with high plasma Galectin-3 levels.
Collapse
Affiliation(s)
- Yufei Chen
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanrong Fu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunbo Zheng
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangyang Liu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiyong Qi
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Meiling Wu
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, USA
| | - Kanhua Yin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yunfeng Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen Gao
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongren Ding
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzeng Dong
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Li
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Si Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Zamani Rarani F, Zamani Rarani M, Hamblin MR, Rashidi B, Hashemian SMR, Mirzaei H. Comprehensive overview of COVID-19-related respiratory failure: focus on cellular interactions. Cell Mol Biol Lett 2022; 27:63. [PMID: 35907817 PMCID: PMC9338538 DOI: 10.1186/s11658-022-00363-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/06/2022] [Indexed: 01/08/2023] Open
Abstract
The pandemic outbreak of coronavirus disease 2019 (COVID-19) has created health challenges in all parts of the world. Understanding the entry mechanism of this virus into host cells is essential for effective treatment of COVID-19 disease. This virus can bind to various cell surface molecules or receptors, such as angiotensin-converting enzyme 2 (ACE2), to gain cell entry. Respiratory failure and pulmonary edema are the most important causes of mortality from COVID-19 infections. Cytokines, especially proinflammatory cytokines, are the main mediators of these complications. For normal respiratory function, a healthy air-blood barrier and sufficient blood flow to the lungs are required. In this review, we first discuss airway epithelial cells, airway stem cells, and the expression of COVID-19 receptors in the airway epithelium. Then, we discuss the suggested molecular mechanisms of endothelial dysfunction and blood vessel damage in COVID-19. Coagulopathy can be caused by platelet activation leading to clots, which restrict blood flow to the lungs and lead to respiratory failure. Finally, we present an overview of the effects of immune and non-immune cells and cytokines in COVID-19-related respiratory failure.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR Iran
| |
Collapse
|
24
|
The Role of Zinc and Copper in Platelet Activation and Pathophysiological Thrombus Formation in Patients with Pulmonary Embolism in the Course of SARS-CoV-2 Infection. BIOLOGY 2022; 11:biology11050752. [PMID: 35625480 PMCID: PMC9138256 DOI: 10.3390/biology11050752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 01/09/2023]
Abstract
To date, many studies have proved that COVID-19 increases the incidence of thrombus formation and coagulopathies but the exact mechanism behind such a disease outcome is not well known. In this review we collect the information and discuss the pathophysiology of thrombus formation in patients with pulmonary embolism in the course of COVID-19 disease and the role of zinc and copper in the process. Supplementation of zinc and copper may be beneficial for COVID-19 patients due to its anti-inflammatory and anti-oxidative properties. On the other hand, excess of those microelements in the organism may be harmful, that is why marking the level of those micronutrients should be done at first. We also propose further investigation of diagnostic and therapeutic options of zinc and copper in course of COVID-19 thrombus formation to their potential in patient care, with particular emphasis on the dosage and the duration of their misbalance.
Collapse
|
25
|
Pannexin-1 Activation by Phosphorylation Is Crucial for Platelet Aggregation and Thrombus Formation. Int J Mol Sci 2022; 23:ijms23095059. [PMID: 35563450 PMCID: PMC9100471 DOI: 10.3390/ijms23095059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Pannexin-1 (PANX1) is a transmembrane protein that forms ion channels as hexamers on the plasma membrane. Electrophysiological studies prove that PANX1 has a high conductance for adenosine triphosphate (ATP), which plays an important role as a signal molecule in platelet activation. Recently, it was shown that PANX1 channels modulate platelet functions. To date, it remains unclear how PANX1 channels are activated and which signaling mechanisms are responsible for impaired hemostasis and thrombosis. Analysis of PANX1 phosphorylation at Tyr198 and Tyr308, and the impact on platelet activation and thrombus formation using genetically modified platelets or pharmacological inhibitors. Platelet activation via immunoreceptor tyrosine-based activation motif (ITAM) coupled, G Protein-Coupled Receptors (GPCR) and thromboxane receptor (TP)-mediated signaling pathways led to increased PANX1 phosphorylation at Tyr198 and Tyr308. We identified the Src-GPVI signaling axes as the main pathway inducing PANX1 activation, while PKC and Akt play a minor role. PANX1 channels function as ATP release channels in platelets to support arterial thrombus formation. PANX1 activation is regulated by phosphorylation at Tyr198 and Tyr308 following platelet activation. These results suggest an important role of PANX1 in hemostasis and thrombosis by releasing extracellular ATP to support thrombus formation.
Collapse
|
26
|
Song HJ, Jeon IS, Kim SR, Park KS, Soh JW, Lee KY, Shin JC, Lee HK, Choi JK. PKC-β modulates Ca 2+ mobilization through Stim1 phosphorylation. Genes Genomics 2022; 44:571-582. [PMID: 35254656 PMCID: PMC9042968 DOI: 10.1007/s13258-022-01230-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/05/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Calcium ions play a pivotal role in cell proliferation, differentiation, and migration. Under basal conditions, the calcium level is tightly regulated; however, cellular activation by growth factors increase the ion level through calcium pumps in the plasma membrane and endoplasmic reticulum for calcium signaling. Orai1 is a major calcium channel in the cell membrane of non-excitable cells, and its activity depends on the stromal interaction molecule 1 (Stim1). Several groups reported that the store-operated calcium entry (SOCE) can be modulated through phosphorylation of Stim1 by protein kinases such as extracellular signal-regulated kinase (ERK), protein kinase A (PKA), and p21-activated kinase (PAK). PKC is a protein kinase that is activated by calcium and diacylglycerol (DAG), but it remains unclear what role activated PKC plays in controlling the intracellular calcium pool. OBJECTIVES Here, we investigated whether PKC-β controls intracellular calcium dynamics through Stim1. METHODS Several biochemical methods such as immune-precipitation, site directed mutagenesis, in vitro kinase assay were employed to investigate PKC interaction with and phosphorylation of Stim1. Intracellular calcium mobilization, via Stim1 mediated SOCE channel, were studied using in the presence of PKC activator or inhibitor under a confocal microscope. RESULTS Our data demonstrate that PKC interacts with and phosphorylates Stim1 in vitro. phosphorylation of Stim1 at its C-terminal end appears to be important in the regulation of SOCE activity in HEK293 and HeLa cells. Additionally, transient intracellular calcium mobilization assays demonstrate that the SOCE activity was inhibited by PKC activators or activated by PKC inhibitors. CONCLUSION In sum, our data suggest a repressive role of PKC in regulating calcium entry through SOCE.
Collapse
Affiliation(s)
- Hye-Jin Song
- Division of Biochemistry, College of Medicine, Chungbuk National University, Ch'ongju, 28644, Korea
| | - In-Sook Jeon
- Division of Biochemistry, College of Medicine, Chungbuk National University, Ch'ongju, 28644, Korea
| | - Seung Ryul Kim
- Division of Biochemistry, College of Medicine, Chungbuk National University, Ch'ongju, 28644, Korea
| | - Kwan Sik Park
- Division of Biochemistry, College of Medicine, Chungbuk National University, Ch'ongju, 28644, Korea
| | - Jae-Won Soh
- Biomedical Research Center for Signal Transduction Networks, Department of Chemistry, Inha University, Incheon, 402-751, Korea
| | - Kwang Youl Lee
- College of Pharmacy, Chonnam National University, Gwangju, 500-757, Korea
| | - Jae-Cheon Shin
- Pohang Center for Evaluation of Biomaterials, 394, Jigok-ro, Nam-gu, Pohang, Gyeongbuk, Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Chonju, 54896, Jeollabuk-do, Korea.
| | - Joong-Kook Choi
- Division of Biochemistry, College of Medicine, Chungbuk National University, Ch'ongju, 28644, Korea.
| |
Collapse
|
27
|
Medical Gas Plasma—A Potent ROS-Generating Technology for Managing Intraoperative Bleeding Complications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cold medical gas plasmas are under pre-clinical investigation concerning their hemostatic activity and could be applied for intra-operative bleeding control in the future. The technological leap innovation was their generation at body temperature, thereby causing no thermal harm to the tissue and ensuring tissue integrity. This directly contrasts with current techniques such as electrocautery, which induces hemostasis by carbonizing the tissue using a heated electrode. However, the necrotized tissue is prone to fall, raising the risk of post-operative complications such as secondary bleedings or infection. In recent years, various studies have reported on the ability of medical gas plasmas to induce blood coagulation, including several suggestions concerning their mode of action. As non-invasive and gentle hemostatic agents, medical gas plasmas could be particularly eligible for vulnerable tissues, e.g., colorectal surgery and neurosurgery. Further, their usage could be beneficial regarding the prevention of post-operative bleedings due to the absence or sloughing of eschar. However, no clinical trials or individual healing attempts for medical gas plasmas have been reported to pave the way for clinical approvement until now, despite promising results in experimental animal models. In this light, the present mini-review aims to emphasize the potential of medical gas plasmas to serve as a hemostatic agent in clinical procedures. Providing a detailed overview of the current state of knowledge, feasible application fields are discussed, and possible obstacles are addressed.
Collapse
|
28
|
Miao LN, Pan D, Shi J, Du JP, Chen PF, Gao J, Yu Y, Shi DZ, Guo M. Role and Mechanism of PKC-δ for Cardiovascular Disease: Current Status and Perspective. Front Cardiovasc Med 2022; 9:816369. [PMID: 35242825 PMCID: PMC8885814 DOI: 10.3389/fcvm.2022.816369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
Protein kinase C (PKC) is a protein kinase with important cellular functions. PKC-δ, a member of the novel PKC subfamily, has been well-documented over the years. Activation of PKC-δ plays an important regulatory role in myocardial ischemia/reperfusion (IRI) injury and myocardial fibrosis, and its activity and expression levels can regulate pathological cardiovascular diseases such as atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. This article aims to review the structure and function of PKC-δ, summarize the current research regarding its activation mechanism and its role in cardiovascular disease, and provide novel insight into further research on the role of PKC-δ in cardiovascular diseases.
Collapse
Affiliation(s)
- Li-na Miao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Deng Pan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Junhe Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-peng Du
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng-fei Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Da-Zhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Da-Zhuo Shi
| | - Ming Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Ming Guo
| |
Collapse
|
29
|
Rodríguez L, Mendez D, Montecino H, Carrasco B, Arevalo B, Palomo I, Fuentes E. Role of Phaseolus vulgaris L. in the Prevention of Cardiovascular Diseases-Cardioprotective Potential of Bioactive Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:186. [PMID: 35050073 PMCID: PMC8779353 DOI: 10.3390/plants11020186] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 05/07/2023]
Abstract
In terms of safe and healthy food, beans play a relevant role. This crop belongs to the species of Phaseolusvulgaris L., being the most consumed legume worldwide, both for poor and developed countries, the latter seek to direct their diet to healthy feeding, mainly low in fat. Phaseolus vulgaris L. stands out in this area-an important source of protein, vitamins, essential minerals, soluble fiber, starch, phytochemicals, and low in fat from foods. This species has been attributed many beneficial properties for health; it has effects on the circulatory system, immune system, digestive system, among others. It has been suggested that Phaseolus vulgaris L. has a relevant role in the prevention of cardiovascular events, the main cause of mortality and morbidity worldwide. Conversely, the decrease in the consumption of this legume has been related to an increase in the prevalence of cardiovascular diseases. This review will allow us to relate the nutritional level of this species with cardiovascular events, based on the correlation of the main bioactive compounds and their role as cardiovascular protectors, in addition to revealing the main mechanisms that explain the cardioprotective effects regulated by the bioactive components.
Collapse
Affiliation(s)
- Lyanne Rodríguez
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Diego Mendez
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Hector Montecino
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Basilio Carrasco
- Centro de Estudios en Alimentos Procesados, Talca 3460000, Chile; (B.C.); (B.A.)
| | - Barbara Arevalo
- Centro de Estudios en Alimentos Procesados, Talca 3460000, Chile; (B.C.); (B.A.)
| | - Iván Palomo
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Eduardo Fuentes
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| |
Collapse
|
30
|
Albadawi DAI, Ravishankar D, Vallance TM, Patel K, Osborn HMI, Vaiyapuri S. Impacts of Commonly Used Edible Plants on the Modulation of Platelet Function. Int J Mol Sci 2022; 23:605. [PMID: 35054793 PMCID: PMC8775512 DOI: 10.3390/ijms23020605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a primary cause of deaths worldwide. Thrombotic diseases, specifically stroke and coronary heart diseases, account for around 85% of CVDs-induced deaths. Platelets (small circulating blood cells) are responsible for the prevention of excessive bleeding upon vascular injury, through blood clotting (haemostasis). However, unnecessary activation of platelets under pathological conditions, such as upon the rupture of atherosclerotic plaques, results in thrombus formation (thrombosis), which can cause life threatening conditions such as stroke or heart attack. Therefore, antiplatelet medications are usually prescribed for people who are at a high risk of thrombotic diseases. The currently used antiplatelet drugs are associated with major side effects such as excessive bleeding, and some patients are resistant to these drugs. Therefore, numerous studies have been conducted to develop new antiplatelet agents and notably, to establish the relationship between edible plants, specifically fruits, vegetables and spices, and cardiovascular health. Indeed, healthy and balanced diets have proven to be effective for the prevention of CVDs in diverse settings. A high intake of fruits and vegetables in regular diet is associated with lower risks for stroke and coronary heart diseases because of their plethora of phytochemical constituents. In this review, we discuss the impacts of commonly used selected edible plants (specifically vegetables, fruits and spices) and/or their isolated compounds on the modulation of platelet function, haemostasis and thrombosis.
Collapse
Affiliation(s)
- Dina A. I. Albadawi
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Divyashree Ravishankar
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Thomas M. Vallance
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK;
| | - Helen M. I. Osborn
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| |
Collapse
|
31
|
Kifle ZD, Tadele M, Alemu E, Gedamu T, Ayele AG. A recent development of new therapeutic agents and novel drug targets for cancer treatment. SAGE Open Med 2021; 9:20503121211067083. [PMID: 34992782 PMCID: PMC8725032 DOI: 10.1177/20503121211067083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Despite recent advances in cancer diagnosis, prevention, detection, as well as management, the disease is expected to be the top cause of death globally. The chemotherapy approach for cancer has become more advanced in its design, yet no medication can cure enough against all types of cancer and its stage. Thus, this review aimed to summarize a recent development of new therapeutic agents and novel drug targets for the treatment of cancer. Several obstacles stand in the way of effective cancer treatment and drug development, including inaccessibility of tumor site by appropriate drug concentration, debilitating untoward effects caused by non-selective tissue distribution of chemotherapeutic agents, and occurrence of drug resistance, which leads to cross-resistance to a variety of drugs. Resistance to treatment with anticancer drugs results from multiple factors and the most common reason for acquiring drug resistance is marking and expelling drugs that prevent cancer cells to be targeted by chemotherapeutic agents. Moreover, insensitivity to drug-induced apoptosis, alteration, and mutation of drug target and interference/change of DNA replication are other main causes of treatment failure.
Collapse
Affiliation(s)
- Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Meklit Tadele
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Eyerusalem Alemu
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Tadele Gedamu
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Akeberegn Gorems Ayele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
32
|
Louadi Z, Elkjaer ML, Klug M, Lio CT, Fenn A, Illes Z, Bongiovanni D, Baumbach J, Kacprowski T, List M, Tsoy O. Functional enrichment of alternative splicing events with NEASE reveals insights into tissue identity and diseases. Genome Biol 2021; 22:327. [PMID: 34857024 PMCID: PMC8638120 DOI: 10.1186/s13059-021-02538-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023] Open
Abstract
Alternative splicing (AS) is an important aspect of gene regulation. Nevertheless, its role in molecular processes and pathobiology is far from understood. A roadblock is that tools for the functional analysis of AS-set events are lacking. To mitigate this, we developed NEASE, a tool integrating pathways with structural annotations of protein-protein interactions to functionally characterize AS events. We show in four application cases how NEASE can identify pathways contributing to tissue identity and cell type development, and how it highlights splicing-related biomarkers. With a unique view on AS, NEASE generates unique and meaningful biological insights complementary to classical pathways analysis.
Collapse
Affiliation(s)
- Zakaria Louadi
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Melissa Klug
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Department of Internal Medicine I, School of Medicine, University hospital rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Chit Tong Lio
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Amit Fenn
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Dario Bongiovanni
- Department of Internal Medicine I, School of Medicine, University hospital rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center IRCCS and Humanitas University, Rozzano, Milan, Italy
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
- Institute of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5000, Odense, Denmark
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany.
| |
Collapse
|
33
|
Limami Y, Senhaji N, Zaid N, Khalki L, Naya A, Hajjaj-Hassouni N, Jalali F, Oudghiri M, Zaid Y. PKC-Delta-Dependent Pathways Contribute to the Exacerbation of the Platelet Activity in Crohn's Disease. Semin Thromb Hemost 2021; 48:246-250. [PMID: 34749401 DOI: 10.1055/s-0041-1736571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Youness Limami
- Department of Biology, Faculty of Sciences Ain Chock, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca.,Department of Medicine, Research Center of Abulcasis University of Health Sciences, Rabat, Morocco
| | - Nezha Senhaji
- Faculty of Medicine, Laboratory of Genetic and Molecular Pathology, Hassan II University, Casablanca, Morocco
| | - Nabil Zaid
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Loubna Khalki
- Faculty of Medicine, Research Center, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Abdallah Naya
- Department of Biology, Faculty of Sciences Ain Chock, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca
| | | | - Farid Jalali
- Department of Gastroenterology, Saddleback Medical Group, Laguna Hills, California
| | - Mounia Oudghiri
- Department of Biology, Faculty of Sciences Ain Chock, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca
| | - Younes Zaid
- Department of Biology, Faculty of Sciences Ain Chock, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca.,Department of Medicine, Research Center of Abulcasis University of Health Sciences, Rabat, Morocco.,Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
34
|
Wu B, Ye Y, Xie S, Li Y, Sun X, Lv M, Yang L, Cui N, Chen Q, Jensen LD, Cui D, Huang G, Zuo J, Zhang S, Liu W, Yang Y. Megakaryocytes Mediate Hyperglycemia-Induced Tumor Metastasis. Cancer Res 2021; 81:5506-5522. [PMID: 34535458 DOI: 10.1158/0008-5472.can-21-1180] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
High blood glucose has long been established as a risk factor for tumor metastasis, yet the molecular mechanisms underlying this association have not been elucidated. Here we describe that hyperglycemia promotes tumor metastasis via increased platelet activity. Administration of glucose, but not fructose, reprogrammed the metabolism of megakaryocytes to indirectly prime platelets into a prometastatic phenotype with increased adherence to tumor cells. In megakaryocytes, a glucose metabolism-related gene array identified the mitochondrial molecular chaperone glucose-regulated protein 75 (GRP75) as a trigger for platelet activation and aggregation by stimulating the Ca2+-PKCα pathway. Genetic depletion of Glut1 in megakaryocytes blocked MYC-induced GRP75 expression. Pharmacologic blockade of platelet GRP75 compromised tumor-induced platelet activation and reduced metastasis. Moreover, in a pilot clinical study, drinking a 5% glucose solution elevated platelet GRP75 expression and activated platelets in healthy volunteers. Platelets from these volunteers promoted tumor metastasis in a platelet-adoptive transfer mouse model. Together, under hyperglycemic conditions, MYC-induced upregulation of GRP75 in megakaryocytes increases platelet activation via the Ca2+-PKCα pathway to promote cancer metastasis, providing a potential new therapeutic target for preventing metastasis. SIGNIFICANCE: This study provides mechanistic insights into a glucose-megakaryocyte-platelet axis that promotes metastasis and proposes an antimetastatic therapeutic approach by targeting the mitochondrial protein GRP75.
Collapse
Affiliation(s)
- Biying Wu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Ye
- Department of Oral Implantology, School and Hospital of Stomatology, Tongji University; Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Sisi Xie
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yintao Li
- Phase I Clinical Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Xiaoting Sun
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengyuan Lv
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ling Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan Cui
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiying Chen
- Department of Cardiology, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Lasse D Jensen
- Department of Medicine, Health and Caring Science, Division of Diagnostics and Specialist Medicine, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Dongmei Cui
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Guichun Huang
- Medical Oncology Department of Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Wen Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Marín-Quílez A, García-Tuñón I, Fernández-Infante C, Hernández-Cano L, Palma-Barqueros V, Vuelta E, Sánchez-Martín M, González-Porras JR, Guerrero C, Benito R, Rivera J, Hernández-Rivas JM, Bastida JM. Characterization of the Platelet Phenotype Caused by a Germline RUNX1 Variant in a CRISPR/Cas9-Generated Murine Model. Thromb Haemost 2021; 121:1193-1205. [PMID: 33626581 DOI: 10.1055/s-0041-1723987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
RUNX1-related disorder (RUNX1-RD) is caused by germline variants affecting the RUNX1 gene. This rare, heterogeneous disorder has no specific clinical or laboratory phenotype, making genetic diagnosis necessary. Although international recommendations have been established to classify the pathogenicity of variants, identifying the causative alteration remains a challenge in RUNX1-RD. Murine models may be useful not only for definitively settling the controversy about the pathogenicity of certain RUNX1 variants, but also for elucidating the mechanisms of molecular pathogenesis. Therefore, we developed a knock-in murine model, using the CRISPR/Cas9 system, carrying the RUNX1 p.Leu43Ser variant (mimicking human p.Leu56Ser) to study its pathogenic potential and mechanisms of platelet dysfunction. A total number of 75 mice were generated; 25 per genotype (RUNX1WT/WT, RUNX1WT/L43S, and RUNX1L43S/L43S). Platelet phenotype was assessed by flow cytometry and confocal microscopy. On average, RUNX1L43S/L43S and RUNX1WT/L43S mice had a significantly longer tail-bleeding time than RUNX1WT/WT mice, indicating the variant's involvement in hemostasis. However, only homozygous mice displayed mild thrombocytopenia. RUNX1L43S/L43S and RUNX1WT/L43S displayed impaired agonist-induced spreading and α-granule release, with no differences in δ-granule secretion. Levels of integrin αIIbβ3 activation, fibrinogen binding, and aggregation were significantly lower in platelets from RUNX1L43S/L43S and RUNX1WT/L43S using phorbol 12-myristate 13-acetate (PMA), adenosine diphosphate (ADP), and high thrombin doses. Lower levels of PKC phosphorylation in RUNX1L43S/L43S and RUNX1WT/L43S suggested that the PKC-signaling pathway was impaired. Overall, we demonstrated the deleterious effect of the RUNX1 p.Leu56Ser variant in mice via the impairment of integrin αIIbβ3 activation, aggregation, α-granule secretion, and platelet spreading, mimicking the phenotype associated with RUNX1 variants in the clinical setting.
Collapse
Affiliation(s)
- Ana Marín-Quílez
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Ignacio García-Tuñón
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Cristina Fernández-Infante
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Luis Hernández-Cano
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Verónica Palma-Barqueros
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Murcia, Spain
| | - Elena Vuelta
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Transgenic Facility, Nucleus, University of Salamanca, Salamanca, Spain
| | - Manuel Sánchez-Martín
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Transgenic Facility, Nucleus, University of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - José Ramón González-Porras
- Department of Medicine, University of Salamanca, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca - IBSAL, Salamanca, Spain
| | - Carmen Guerrero
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Rocío Benito
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Murcia, Spain
- On behalf of the "Grupo Español de Alteraciones Plaquetarias Congénitas (GEAPC)", Hemorrhagic Diathesis Working Group, SETH
| | - Jesús María Hernández-Rivas
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca - IBSAL, Salamanca, Spain
| | - José María Bastida
- Department of Medicine, University of Salamanca, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca - IBSAL, Salamanca, Spain
- On behalf of the "Grupo Español de Alteraciones Plaquetarias Congénitas (GEAPC)", Hemorrhagic Diathesis Working Group, SETH
| |
Collapse
|
36
|
Gao Y, Zhang J, Chen H, Wang Z, Hou J, Wang L. Dimethylamine enhances platelet hyperactivity in chronic kidney disease model. J Bioenerg Biomembr 2021; 53:585-595. [PMID: 34327565 DOI: 10.1007/s10863-021-09913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Chronic kidney disease (CKD) remains a major health threat worldwide which is associated with elevated blood level of dimethylamine (DMA) and unbalanced platelet functions. Dimethylamine, a simple aliphatic amine, is abundantly found in human urine as well as other body fluids like plasma. However, the relation between dimethylamine and platelet activation is unclear. This study aims to unravel the mechanism of DMA and platelet function in chronic kidney disease. Through in vitro platelet characterization assay and in vivo CKD mouse model, the level of DMA, platelet activity and renal function were assessed by established methods. PKCδ and its downstream kinase MEK1/2 were examined by immunoblotting analysis of human platelet extract. Rescue experiments with PKCδ inhibitor or choline deficient diet were also conducted. DMA level in plasma of mouse CKD model was elevated along with enhanced platelet activation and comprised renal function. DMA can activate platelet in vitro and in vivo. Inhibition of PKCδ could antagonize the effect of DMA on platelet activation. When choline as the dietary source of DMA was deprived from CKD mouse, the level DMA was reduced and platelet activation was attenuated. Our results demonstrate that dimethylamine could enhance platelet activation in CKD model, potentially through activation of PKCδ.
Collapse
Affiliation(s)
- Yongning Gao
- Department of Hemodialysis, the Second Hospital of Hebei Medical University, No.215 Heping Western Road, Shijiazhuang, 053000, Hebei, China
| | - Jingyu Zhang
- Department of Hematology, the Second Hospital of Hebei Medical University, No.215 Heping Western Road, Shijiazhuang, 053000, Hebei, China.
| | - Hui Chen
- Department of Emergency, the Second Hospital of Hebei Medical University, No.215 Heping Western Road, Shijiazhuang, 053000, Hebei, China
| | - Zhu Wang
- Department of Gynaecology, the Second Hospital of Hebei Medical University, No.215 Heping Western Road, Shijiazhuang, 053000, Hebei, China
| | - Jingjing Hou
- Department of Hemodialysis, the Second Hospital of Hebei Medical University, No.215 Heping Western Road, Shijiazhuang, 053000, Hebei, China
| | - Lihua Wang
- Department of Hemodialysis, the Second Hospital of Hebei Medical University, No.215 Heping Western Road, Shijiazhuang, 053000, Hebei, China
| |
Collapse
|
37
|
Liu G, Yuan Z, Tian X, Xiong X, Guo F, Lin Z, Qin Z. Pimpinellin Inhibits Collagen-induced Platelet Aggregation and Activation Through Inhibiting Granule Secretion and PI3K/Akt Pathway. Front Pharmacol 2021; 12:706363. [PMID: 34366861 PMCID: PMC8339208 DOI: 10.3389/fphar.2021.706363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/07/2021] [Indexed: 01/21/2023] Open
Abstract
Pimpinellin is a coumarin-like compound extracted from the root of Toddalia asiatica. Its effects on platelet function has not been investigated. This study found that pimpinellin pretreatment effectively inhibited collagen-induced platelet aggregation, but did not alter ADP- and thrombin-induced aggregation. Platelets pretreated with pimpinellin showed reduced α granule (CD62) level and secretion of dense granule (ATP release). Pimpinellin-treated platelets also exhibited decreased clot reaction and TxB2 production. Pimpinellin pretreatment suppressed adhesion and spreading of human platelets on the fibrinogen coated surface. Analysis of tail bleeding time of mice administered with pimpinellin (40 mg/kg) revealed that pimpinellin did not change tail bleeding time significantly, number of blood cells, and APTT and PT levels. Pimpinellin inhibited collagen-induced ex vivo aggregation of mice platelets. Immunoblotting results showed that pimpinellin suppressed collagen-induced phosphorylation of PI3K-Akt-Gsk3β and PKC/MAPK in platelets.
Collapse
Affiliation(s)
- Gang Liu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Zhaowei Yuan
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiaoyun Tian
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiuqin Xiong
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Fang Guo
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Zihan Lin
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Zhen Qin
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
38
|
Severe Trauma and Hemorrhage Leads to Platelet Dysfunction and Changes in Cyclic Nucleotides in The Rat. Shock 2021; 53:468-475. [PMID: 31090681 DOI: 10.1097/shk.0000000000001379] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Rats subjected to polytrauma and hemorrhage develop a coagulopathy that is similar to acute coagulopathy of trauma in humans, and is associated with a rise in prothrombin time and a fall in clot strength. Because platelet aggregation accounts for a major proportion of clot strength, we set out to characterize the effects of polytrauma on platelet function. METHODS Sprague-Dawley rats were anesthetized with isoflurane. Polytrauma included laparotomy and damage to 10 cm of the small intestines, right and medial liver lobes, right leg skeletal muscle, femur fracture, and hemorrhage (40% of blood volume). No resuscitation was given. Blood samples were taken before and after trauma for the measurement of impedance electrode aggregometry, and intracellular levels of cyclic adenosine and guanosine monophosphate (cAMP, cGMP), inositol trisphosphate (IP3), and adenosine and guanosine triphosphates (ATP, GTP). RESULTS Polytrauma significantly increased the response of collagen (24%) and thrombin (12%) to stimulate platelet aggregation. However, aggregation to adenosine diphosphate (ADP) or arachidonic acid (AA) was significantly decreased at 2 (52% and 46%, respectively) and 4 h (45% and 39%). Polytrauma and hemorrhage also led to a significant early rise in cAMP (101 ± 11 to 202 ± 29 pg/mL per 1,000 platelets), mirrored by a decrease in cGMP (7.8 ± 0.9 to 0.6 ± 0.5). In addition, there was a late fall in ATP (8.1 ± 0.7 to 2.2 ± 0.6 ng/mL per 1,000 platelets) and GTP (1.5 ± 0.2 to 0.3 ± 0.1). IP3 rose initially, and then fell back to baseline. CONCLUSIONS Polytrauma and hemorrhage led to a deficit in the platelet aggregation response to ADP and AA after trauma, likely due to the early rise in cAMP, and a later fall in energy substrates, and may explain the decrease in clot strength and impaired hemostasis observed after severe trauma.
Collapse
|
39
|
Chung J, Jeong D, Kim GH, Go S, Song J, Moon E, Huh YH, Kim D. Super-resolution imaging of platelet-activation process and its quantitative analysis. Sci Rep 2021; 11:10511. [PMID: 34006947 PMCID: PMC8131365 DOI: 10.1038/s41598-021-89799-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/29/2021] [Indexed: 01/02/2023] Open
Abstract
Understanding the platelet activation molecular pathways by characterizing specific protein clusters within platelets is essential to identify the platelet activation state and improve the existing therapies for hemostatic disorders. Here, we employed various state-of-the-art super-resolution imaging and quantification methods to characterize the platelet spatiotemporal ultrastructural change during the activation process due to phorbol 12-myristate 13-acetate (PMA) stimuli by observing the cytoskeletal elements and various organelles at nanoscale, which cannot be done using conventional microscopy. Platelets could be spread out with the guidance of actin and microtubules, and most organelles were centralized probably due to the limited space of the peripheral thin regions or the close association with the open canalicular system (OCS). Among the centralized organelles, we provided evidence that granules are fused with the OCS to release their cargo through enlarged OCS. These findings highlight the concerted ultrastructural reorganization and relative arrangements of various organelles upon activation and call for a reassessment of previously unresolved complex and multi-factorial activation processes.
Collapse
Affiliation(s)
- Jinkyoung Chung
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dokyung Jeong
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Geun-Ho Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seokran Go
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jaewoo Song
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Eunyoung Moon
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Doory Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
40
|
Wang L, Liu G, Wu N, Dai B, Han S, Liu Q, Huang F, Chen Z, Xu W, Xia D, Gao C. mTOR regulates GPVI-mediated platelet activation. J Transl Med 2021; 19:201. [PMID: 33971888 PMCID: PMC8111939 DOI: 10.1186/s12967-021-02756-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Due to mTOR (mammalian/mechanistic target of rapamycin) gene-loss mice die during embryonic development, the role of mTOR in platelets has not been evaluated using gene knockout technology. Methods A mouse model with megakaryocyte/platelet-specific deletion of mTOR was established, and be used to evaluate the role of mTOR in platelet activation and thrombus formation. Results mTOR−/− platelets were deficient in thrombus formation when grown on low-concentration collagen-coated surfaces; however, no deficiency in thrombus formation was observed when mTOR−/− platelets were perfused on higher concentration collagen-coated surfaces. In FeCl3-induced mouse mesenteric arteriole thrombosis models, wild-type (WT) and mTOR−/− mice displayed significantly different responses to low-extent injury with respect to the ratio of occluded mice, especially within the first 40 min. Additionally, mTOR−/− platelets displayed reduced aggregation and dense granule secretion (ATP release) in response to low doses of the glycoprotein VI (GPVI) agonist collagen related peptide (CRP) and the protease-activated receptor-4 (PAR4) agonist GYPGKF-NH2; these deficiencies were overcame by stimulation with higher concentration agonists, suggesting dose dependence of the response. At low doses of GPVI or PAR agonist, the activation of αIIbβ3 in mTOR−/− platelets was reduced. Moreover, stimulation of mTOR−/− platelets with low-dose CRP attenuated the phosphorylation of S6K1, S6 and Akt Ser473, and increased the phosphorylation of PKCδ Thr505 and PKCε Ser729. Using isoform-specific inhibitors of PKCs (δ, ɛ, and α/β), we established that PKCδ/ɛ, and especially PKCδ but not PKCα/β or PKCθ, may be involved in low-dose GPVI-mediated/mTOR-dependent signaling. Conclusion These observations indicate that mTOR plays an important role in GPVI-dependent platelet activation and thrombus formation.
Collapse
Affiliation(s)
- Longsheng Wang
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Gang Liu
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China.,Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Nannan Wu
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Baiyun Dai
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Shuang Han
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Qiaoyun Liu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Fang Huang
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Zhihua Chen
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Weihong Xu
- Zhejiang Hospital, 12 Lingyin Road, Hangzhou, 310013, China
| | - Dajing Xia
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Cunji Gao
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China. .,Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Milwaukee, WI, 53201, USA.
| |
Collapse
|
41
|
Kostyak JC, Mauri B, Patel A, Dangelmaier C, Reddy H, Kunapuli SP. Phosphorylation of protein kinase Cδ Tyr311 positively regulates thromboxane generation in platelets. J Biol Chem 2021; 296:100720. [PMID: 33932405 PMCID: PMC8164046 DOI: 10.1016/j.jbc.2021.100720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 11/19/2022] Open
Abstract
Platelets are key mediators of physiological hemostasis and pathological thrombosis, whose function must be carefully balanced by signaling downstream of receptors such as protease-activated receptor (PAR)4. Protein kinase C (PKC) is known to regulate various aspects of platelet function. For instance, PKCδ is known to regulate dense granule secretion, which is important for platelet activation. However, the mechanism by which PKCδ regulates this process as well as other facets of platelet activity is unknown. We speculated that the way PKCδ regulates platelet function may be because of the phosphorylation of tyrosine residues on PKCδ. We investigated phosphorylation of PKCδ following glycoprotein VI-mediated and PAR4-mediated platelet activation and found that Y311 is selectively phosphorylated when PAR4 is activated in human platelets. Therefore, we generated PKCδ Y311F knock-in mice, which are viable and have no gross abnormalities. However, PKCδY311F mice have significantly enhanced tail-bleeding times compared with WT littermate controls, which means hemostasis is interrupted. Furthermore, PKCδY311F mice exhibit longer time to carotid artery occlusion compared with WT control using a ferric chloride in vivo thrombosis model, indicating that the phosphorylation of PKCδ Y311 is prothrombotic. Washed platelets from PKCδY311F mice have reduced reactivity after stimulation with a PAR-4 agonist indicating its importance in platelet signaling. The phenotype observed in Y311F mouse platelets is because of reduced thromboxane generation, as an inhibitor of thromboxane generation equalizes the PKCδY311F platelet response to that of WT. Therefore, phosphorylation of PKCδ on Y311 is important for regulation of platelet function and specifically thromboxane generation, which reinforces platelet activation.
Collapse
Affiliation(s)
- John C Kostyak
- Sol Sherry Thrombosis Research Center, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Benjamin Mauri
- Sol Sherry Thrombosis Research Center, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Akruti Patel
- Sol Sherry Thrombosis Research Center, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Carol Dangelmaier
- Sol Sherry Thrombosis Research Center, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Haritha Reddy
- Sol Sherry Thrombosis Research Center, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA; Department of Physiology, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA; Department of Pharmacology, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
42
|
Zhang L, Li Z, Ye X, Chen Z, Chen ZS. Mechanisms of thrombosis and research progress on targeted antithrombotic drugs. Drug Discov Today 2021; 26:2282-2302. [PMID: 33895314 DOI: 10.1016/j.drudis.2021.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022]
Abstract
Globally, the incidence of thromboembolic diseases has increased in recent years, accompanied by an increase in patient mortality. Currently, several targeting delivery strategies have been developed to treat thromboembolic diseases. In this review, we discuss the mechanisms of thrombolysis and current anticoagulant drugs, particularly those with targeting capability, highlighting advances in the accurate treatment of thrombolysis with fewer adverse effects. Such approaches include magnetic drug-loading systems combined with molecular imaging to recanalize blood vessels and systems based on chimeric Arg-Gly-Asp (RGD) sequences that can target platelet glycoprotein receptor. With such progress in targeted antithrombotic drugs, targeted thrombolysis treatment shows significant potential benefit for patients.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Li
- Fujian Cancer Hospital, Fujian Provincial Cancer Hospital of Fujian Medical University, Fuzhou 350014, China
| | - Xianren Ye
- Fujian Cancer Hospital, Fujian Provincial Cancer Hospital of Fujian Medical University, Fuzhou 350014, China.
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, NY 11439, USA.
| |
Collapse
|
43
|
Tsai HJ, Cheng JC, Kao ML, Chiu HP, Chiang YH, Chen DP, Rau KM, Liao HR, Tseng CP. Integrin αIIbβ3 outside-in signaling activates human platelets through serine 24 phosphorylation of Disabled-2. Cell Biosci 2021; 11:32. [PMID: 33557943 PMCID: PMC7869483 DOI: 10.1186/s13578-021-00532-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
Background Bidirectional integrin αIIbβ3 signaling is essential for platelet activation. The platelet adaptor protein Disabled-2 (Dab2) is a key regulator of integrin signaling and is phosphorylated at serine 24 in eukaryotic cells. However, the mechanistic insight and function of Dab2-serine 24 phosphorylation (Dab2-pSer24) in platelet biology are barely understood. This study aimed to define whether and how Dab2 is phosphorylated at Ser24 during platelet activation and to investigate the effect of Dab2-pSer24 on platelet function. Results An antibody with confirmed specificity for Dab2-pSer24 was generated. By using this antibody as a tool, we showed that protein kinase C (PKC)-mediated Dab2-pSer24 was a conservative signaling event when human platelets were activated by the platelet agonists such as thrombin, collagen, ADP, 12-O-tetradecanoylphorbol-13-acetate, and the thromboxane A2 activator U46619. The agonists-stimulated Dab2-pSer24 was attenuated by pretreatment of platelets with the RGDS peptide which inhibits integrin outside-in signaling by competitive binding of integrin αIIb with fibrinogen. Direct activation of platelet integrin outside-in signaling by combined treatment of platelets with manganese dichloride and fibrinogen or by spreading of platelets on fibrinogen also resulted in Dab2-pSer24. These findings implicate that Dab2-pSer24 was associated with the outside-in signaling of integrin. Further analysis revealed that Dab2-pSer24 was downstream of Src-PKC-axis and phospholipase D1 underlying the integrin αIIbβ3 outside-in signaling. A membrane penetrating peptide R11-Ser24 which contained 11 repeats of arginine linked to the Dab2-Ser24 phosphorylation site and its flanking sequences (RRRRRRRRRRR19APKAPSKKEKK29) and the R11-S24A peptide with Ser24Ala mutation were designed to elucidate the functions of Dab2-pSer24. R11-Ser24 but not R11-S24A inhibited agonists-stimulated Dab2-pSer24 and consequently suppressed platelet spreading on fibrinogen, with no effect on platelet aggregation and fibrinogen binding. Notably, Ser24 and the previously reported Ser723 phosphorylation (Dab2-pSer723) occurred exclusively in a single Dab2 molecule and resulted in distinctive subcellular distribution and function of Dab2. Dab2-pSer723 was mainly distributed in the cytosol of activated platelets and associated with integrin inside-out signaling, while Dab2-pSer24 was mainly distributed in the membrane fraction of activated platelets and associated with integrin outside-in signaling. Conclusions These findings demonstrate for the first time that Dab2-pSer24 is conservative in integrin αIIbβ3 outside-in signaling during platelet activation and plays a novel role in the control of cytoskeleton reorganization and platelet spreading on fibrinogen.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 404, Taiwan, Republic of China
| | - Man-Leng Kao
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Hung-Pin Chiu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Yi-Hsuan Chiang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ding-Ping Chen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.,Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
| | - Kun-Ming Rau
- Department of Hematology-Oncology, E-Da Cancer Hospital, Kaohsiung, 824, Taiwan, Republic of China.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 824, Taiwan, Republic of China
| | - Hsiang-Ruei Liao
- Graduate institute of Natural Products, College of Medicine, Chang-Gung University, Taoyuan, 333, Taiwan, Republic of China.,Graduate institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China. .,Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China. .,Graduate institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China. .,Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.
| |
Collapse
|
44
|
Moerman AM, Visscher M, Slijkhuis N, Van Gaalen K, Heijs B, Klein T, Burgers PC, De Rijke YB, Van Beusekom HMM, Luider TM, Verhagen HJM, Van der Steen AFW, Gijsen FJH, Van der Heiden K, Van Soest G. Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging. J Lipid Res 2021; 62:100020. [PMID: 33581415 PMCID: PMC7881220 DOI: 10.1194/jlr.ra120000974] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/09/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Carotid atherosclerosis is a risk factor for ischemic stroke, one of the main causes of mortality and disability worldwide. The disease is characterized by plaques, heterogeneous deposits of lipids, and necrotic debris in the vascular wall, which grow gradually and may remain asymptomatic for decades. However, at some point a plaque can evolve to a high-risk plaque phenotype, which may trigger a cerebrovascular event. Lipids play a key role in the development and progression of atherosclerosis, but the nature of their involvement is not fully understood. Using matrix-assisted laser desorption/ionization mass spectrometry imaging, we visualized the distribution of approximately 200 different lipid signals, originating of >90 uniquely assigned species, in 106 tissue sections of 12 human carotid atherosclerotic plaques. We performed unsupervised classification of the mass spectrometry dataset, as well as a histology-directed multivariate analysis. These data allowed us to extract the spatial lipid patterns associated with morphological plaque features in advanced plaques from a symptomatic population, revealing spatial lipid patterns in atherosclerosis and their relation to histological tissue type. The abundances of sphingomyelin and oxidized cholesteryl ester species were elevated specifically in necrotic intima areas, whereas diacylglycerols and triacylglycerols were spatially correlated to areas containing the coagulation protein fibrin. These results demonstrate a clear colocalization between plaque features and specific lipid classes, as well as individual lipid species in high-risk atherosclerotic plaques.
Collapse
Affiliation(s)
- Astrid M Moerman
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mirjam Visscher
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nuria Slijkhuis
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kim Van Gaalen
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Theo Klein
- Department of Clinical Chemistry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter C Burgers
- Department of Neurology, Laboratory of Neuro-Oncology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yolanda B De Rijke
- Department of Clinical Chemistry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Heleen M M Van Beusekom
- Department of Experimental Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Laboratory of Neuro-Oncology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hence J M Verhagen
- Department of Vascular and Endovascular Surgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Antonius F W Van der Steen
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Frank J H Gijsen
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kim Van der Heiden
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gijs Van Soest
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
45
|
Lescano CH, Freitas de Lima F, Cardoso CAL, Vieira SCH, Mónica FZ, Pires de Oliveira I. Rutin present in Alibertia edulis extract acts on human platelet aggregation through inhibition of cyclooxygenase/thromboxane. Food Funct 2021; 12:802-814. [PMID: 33393955 DOI: 10.1039/d0fo02276d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alibertia edulis leaf extract is commonly used in folk medicine, with rutin caffeic and vanillic acids being its major compounds. The Alibertia edulis leaf extract was investigated for its pharmacological effects via platelet aggregation, calcium mobilization, cyclic nucleotides levels, vasodilator-stimulated phosphoprotein Ser157 and Ser239 and protein kinase Cβ2 phosphorylation, thromboxane B2, cyclooxygenases 1 and 2, docking and molecular dynamics. Alibertia edulis leaf extract significantly inhibited (100-1000 μg mL-1) platelet aggregation induced by different agonists. Arachidonic acid increased levels of calcium and thromboxane B2, phosphorylation of vasodilator-stimulated phosphoprotein Ser157 and Ser239, and protein kinase Cβ, which were significantly reduced by Alibertia edulis leaf extract, rutin, and caffeic acid as well mixtures of rutin/caffeic acid. Cyclooxygenase 1 activity was inhibited for Alibertia edulis leaf extract, rutin and caffeic acid. These inhibitions were firsrtly explored by specific stabilization of rutin and caffeic acid compared to diclofenac at the catalytic site from docking score and free-energy dissociation profiles. Then, simulations detailed the rutin interactions close to the heme group and Tyr385, responsible for catalyzing the conversion of arachidonic acid to its products. Our results reveal the antiplatelet aggregation properties of Alibertia edulis leaf extract, rutin and caffeic acid providing pharmacological information about its origin from cyclooxygenase 1 inhibition and its downstream pathway.
Collapse
|
46
|
Méndez D, Donoso-Bustamante V, Pablo Millas-Vargas J, Pessoa-Mahana H, Araya-Maturana R, Fuentes E. Synthesis and pharmacological evaluation of acylhydroquinone derivatives as potent antiplatelet agents. Biochem Pharmacol 2020; 183:114341. [PMID: 33197432 DOI: 10.1016/j.bcp.2020.114341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
Platelets are the smallest blood cells, and their activation (platelet cohesion or aggregation) at sites of vascular injury is essential for thrombus formation. Since the use of antiplatelet therapy is an unsolved problem, there are now focused and innovative efforts to develop novel antiplatelet compounds. In this context, we assessed the antiplatelet effect of an acylhydroquinone series, synthesized by Fries rearrangement under microwave irradiation, evaluating the effect of diverse acyl chain lengths, their chlorinated derivatives, and their dimethylated derivatives both in the aromatic ring and also the effect of the introduction of a bromine atom at the terminus of the acyl chain. Findings from a primary screening of cytotoxic activity on platelets by lactate dehydrogenase assay identified 19 non-toxic compounds from the 27 acylhydroquinones evaluated. A large number of them showed IC50 values less than 10 µM acting against specific pathways of platelet aggregation. The highest activity was obtained with compound 38, it exhibited sub-micromolar IC50 of 0.98 ± 0.40, 1.10 ± 0.26, 3.98 ± 0.46, 6.79 ± 3.02 and 42.01 ± 3.48 µM against convulxin-, collagen-, TRAP-6-, PMA- and arachidonic acid-induced platelet aggregation, respectively. It also inhibited P-selectin and granulophysin expression. We demonstrated that the antiplatelet mechanism of compound 38 was through a decrease in a central target in human platelet activation as in mitochondrial function, and this could modulate a lower response of platelets to activating agonists. The results of this study show that the chemical space around ortho-carbonyl hydroquinone moiety is a rich source of biologically active compounds, signaling that the acylhydroquinone scaffold has a promising role in antiplatelet drug research.
Collapse
Affiliation(s)
- Diego Méndez
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | | | | | - Hernán Pessoa-Mahana
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile
| | | | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
47
|
Barrachina MN, Hermida-Nogueira L, Moran LA, Casas V, Hicks SM, Sueiro AM, Di Y, Andrews RK, Watson SP, Gardiner EE, Abian J, Carrascal M, Pardo M, García Á. Phosphoproteomic Analysis of Platelets in Severe Obesity Uncovers Platelet Reactivity and Signaling Pathways Alterations. Arterioscler Thromb Vasc Biol 2020; 41:478-490. [PMID: 33147989 DOI: 10.1161/atvbaha.120.314485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Obesity is associated with a proinflammatory and prothrombotic state that supports atherosclerosis progression. The goal of this study was to gain insights into the phosphorylation events related to platelet reactivity in obesity and identify platelet biomarkers and altered activation pathways in this clinical condition. Approach and Results: We performed a comparative phosphoproteomic analysis of resting platelets from obese patients and their age- and gender-matched lean controls. The phosphoproteomic data were validated by mechanistic, functional, and biochemical assays. We identified 220 differentially regulated phosphopeptides, from at least 175 proteins; interestingly, all were up-regulated in obesity. Most of the altered phosphoproteins are involved in SFKs (Src-family kinases)-related signaling pathways, cytoskeleton reorganization, and vesicle transport, some of them validated by targeted mass spectrometry. To confirm platelet dysfunction, flow cytometry assays were performed in whole blood indicating higher surface levels of GP (glycoprotein) VI and CLEC (C-type lectin-like receptor) 2 in platelets from obese patients correlating positively with body mass index. Receiver operator characteristics curves analysis suggested a much higher sensitivity for GPVI to discriminate between obese and lean individuals. Indeed, we also found that obese platelets displayed more adhesion to collagen-coated plates. In line with the above data, soluble GPVI levels-indicative of higher GPVI signaling activation-were almost double in plasma from obese patients. CONCLUSIONS Our results provide novel information on platelet phosphorylation changes related to obesity, revealing the impact of this chronic pathology on platelet reactivity and pointing towards the main signaling pathways dysregulated.
Collapse
Affiliation(s)
- María N Barrachina
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade Santiago de Compostela (M.N.B., L.H.-N., L.A.M., Á.G.).,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain (M.N.B., L.H.-N., L.A.M., Á.G.)
| | - Lidia Hermida-Nogueira
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade Santiago de Compostela (M.N.B., L.H.-N., L.A.M., Á.G.).,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain (M.N.B., L.H.-N., L.A.M., Á.G.)
| | - Luis A Moran
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade Santiago de Compostela (M.N.B., L.H.-N., L.A.M., Á.G.).,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain (M.N.B., L.H.-N., L.A.M., Á.G.)
| | - Vanessa Casas
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC-IDIBAPS, Barcelona, Spain (V.C., J.A., M.C.)
| | - Sarah M Hicks
- ACRF Department Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, Australia (S.M.H., R.K.A., E.E.G.)
| | - Aurelio M Sueiro
- Grupo de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Servicio de Endocrinología, Xerencia de Xestión Integrada de Santiago (XXS), Santiago de Compostela, Spain (A.M.S.)
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (Y.D., S.P.W.)
| | - Robert K Andrews
- ACRF Department Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, Australia (S.M.H., R.K.A., E.E.G.)
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (Y.D., S.P.W.)
| | - Elizabeth E Gardiner
- ACRF Department Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, Australia (S.M.H., R.K.A., E.E.G.)
| | - Joaquin Abian
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC-IDIBAPS, Barcelona, Spain (V.C., J.A., M.C.)
| | - Montserrat Carrascal
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC-IDIBAPS, Barcelona, Spain (V.C., J.A., M.C.)
| | - María Pardo
- Grupo Obesidómica, CIBEROBN de Fisiopatología de Obesidad y Nutrición, and Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXS), Santiago de Compostela, Spain (M.P.)
| | - Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade Santiago de Compostela (M.N.B., L.H.-N., L.A.M., Á.G.).,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain (M.N.B., L.H.-N., L.A.M., Á.G.)
| |
Collapse
|
48
|
Ether lipid metabolism by AADACL1 regulates platelet function and thrombosis. Blood Adv 2020; 3:3818-3828. [PMID: 31770438 DOI: 10.1182/bloodadvances.2018030767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 09/28/2019] [Indexed: 12/25/2022] Open
Abstract
We previously reported the discovery of a novel lipid deacetylase in platelets, arylacetamide deacetylase-like 1 (AADACL1/NCEH1), and that its inhibition impairs agonist-induced platelet aggregation, Rap1 GTP loading, protein kinase C (PKC) activation, and ex vivo thrombus growth. However, precise mechanisms by which AADACL1 impacts platelet signaling and function in vivo are currently unknown. Here, we demonstrate that AADACL1 regulates the accumulation of ether lipids that impact PKC signaling networks crucial for platelet activation in vitro and in vivo. Human platelets treated with the AADACL1 inhibitor JW480 or the AADACL1 substrate 1-O-hexadecyl-2-acetyl-sn-glycerol (HAG) exhibited decreased platelet aggregation, granule secretion, Ca2+ flux, and PKC phosphorylation. Decreased aggregation and secretion were rescued by exogenous adenosine 5'-diphosphate, indicating that AADACL1 likely functions to induce dense granule secretion. Experiments with P2Y12-/- and CalDAG GEFI-/- mice revealed that the P2Y12 pathway is the predominate target of HAG-mediated inhibition of platelet aggregation. HAG itself displayed weak agonist properties and likely mediates its inhibitory effects via conversion to a phosphorylated metabolite, HAGP, which directly interacted with the C1a domains of 2 distinct PKC isoforms and blocked PKC kinase activity in vitro. Finally, AADACL1 inhibition in rats reduced platelet aggregation, protected against FeCl3-induced arterial thrombosis, and delayed tail bleeding time. In summary, our data support a model whereby AADACL1 inhibition shifts the platelet ether lipidome to an inhibitory axis of HAGP accumulation that impairs PKC activation, granule secretion, and recruitment of platelets to sites of vascular damage.
Collapse
|
49
|
Lebas H, Yahiaoui K, Martos R, Boulaftali Y. Platelets Are at the Nexus of Vascular Diseases. Front Cardiovasc Med 2019; 6:132. [PMID: 31572732 PMCID: PMC6749018 DOI: 10.3389/fcvm.2019.00132] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
Platelets are important actors of cardiovascular diseases (CVD). Current antiplatelet drugs that inhibit platelet aggregation have been shown to be effective in CVD treatment. However, the management of bleeding complications is still an issue in vascular diseases. While platelets can act individually, they interact with vascular cells and leukocytes at sites of vascular injury and inflammation. The main goal remains to better understand platelet mechanisms in thrombo-inflammatory diseases and provide new lines of safe treatments. Beyond their role in hemostasis and thrombosis, recent studies have reported the role of several aspects of platelet functions in CVD progression. In this review, we will provide a comprehensive overview of platelet mechanisms involved in several vascular diseases.
Collapse
Affiliation(s)
- Héloïse Lebas
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cite, Univ Paris Diderot, Paris, France
| | - Katia Yahiaoui
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cite, Univ Paris Diderot, Paris, France
| | - Raphaël Martos
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cite, Univ Paris Diderot, Paris, France
| | - Yacine Boulaftali
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cite, Univ Paris Diderot, Paris, France
| |
Collapse
|
50
|
Hernández B, Fuentes E, Palomo I, Alarcón M. Increased platelet function during frailty. Exp Hematol 2019; 77:12-25.e2. [DOI: 10.1016/j.exphem.2019.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
|