1
|
Alexander C, Bishop MJ, Gilchrist RJ, Burton FL, Smith GL, Myles RC. Initiation of ventricular arrhythmia in the acquired long QT syndrome. Cardiovasc Res 2023; 119:465-476. [PMID: 35727943 PMCID: PMC10064840 DOI: 10.1093/cvr/cvac103] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 11/15/2022] Open
Abstract
AIMS Long QT syndrome (LQTS) carries a risk of life-threatening polymorphic ventricular tachycardia (Torsades de Pointes, TdP) and is a major cause of premature sudden cardiac death. TdP is induced by R-on-T premature ventricular complexes (PVCs), thought to be generated by cellular early-afterdepolarisations (EADs). However, EADs in tissue require cellular synchronisation, and their role in TdP induction remains unclear. We aimed to determine the mechanism of TdP induction in rabbit hearts with acquired LQTS (aLQTS). METHODS AND RESULTS Optical mapping of action potentials (APs) and intracellular Ca2+ was performed in Langendorff-perfused rabbit hearts (n = 17). TdP induced by R-on-T PVCs was observed during aLQTS (50% K+/Mg++ & E4031) conditions in all hearts (P < 0.0001 vs. control). Islands of AP prolongation bounded by steep voltage gradients (VGs) were consistently observed before arrhythmia and peak VGs were more closely related to the PVC upstroke than EADs, both temporally (7 ± 5 ms vs. 44 ± 27 ms, P < 0.0001) and spatially (1.0 ± 0.7 vs. 3.6 ± 0.9 mm, P < 0.0001). PVCs were initiated at estimated voltages of ∼ -40 mV and had upstroke dF/dtmax and Vm-Ca2+ dynamics compatible with ICaL activation. Computational simulations demonstrated that PVCs could arise directly from VGs, through electrotonic triggering of ICaL. In experiments and the model, sub-maximal L-type Ca2+ channel (LTCC) block (200 nM nifedipine and 90% gCaL, respectively) abolished both PVCs and TdP in the continued presence of aLQTS. CONCLUSION These data demonstrate that ICaL activation at sites displaying steep VGs generates the PVCs which induce TdP, providing a mechanism and rationale for LTCC blockers as a novel therapeutic approach in LQTS.
Collapse
Affiliation(s)
- Cherry Alexander
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Rebecca J Gilchrist
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Francis L Burton
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Rachel C Myles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
2
|
Yi D, Li L, Han M, Qiu R, Tao L, Liu L, Liu C. Case report: Mechanical-electric feedback and atrial fibrillation-Revelation from the treatment of a rare atrial fibrillation caused by annular constrictive pericarditis. Front Cardiovasc Med 2023; 10:1100425. [PMID: 36760571 PMCID: PMC9905231 DOI: 10.3389/fcvm.2023.1100425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Atrial fibrillation (AF) is one of the most common arrhythmias encountered in clinical practice. The pathophysiological mechanisms responsible for its development are complex, vary amongst individuals, and associated with predisposing factors. Here, we report a case of AF caused by annular constrictive pericarditis (ACP), which is extremely rare due to its unusual anatomical form. In our patient, AF was refractory to multiple antiarrhythmic medications; however, spontaneous conversion to sinus rhythm occurred when the ring encircling the right and left ventricular (RV and LV) cavities along the atrioventricular (AV) groove was severed. This suggests that atrial stretch due to atrial enlargement and increased left atrial (LA) pressure may contribute to the initiation and maintenance of AF. This report highlights the importance of the careful investigation of rare predisposing factors for AF using non-invasive diagnostic approaches and mechanical-electric feedback (MEF) as a pathophysiological mechanism for AF initiation and maintenance.
Collapse
Affiliation(s)
- Dong Yi
- Division of Cardiac Care Unit, Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan, Hubei, China
| | - Lei Li
- Division of Cardiac Care Unit, Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan, Hubei, China
| | - Min Han
- Division of Cardiac Care Unit, Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan, Hubei, China
| | - Rujie Qiu
- Division of Cardiac Care Unit, Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan, Hubei, China
| | - Liang Tao
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, Hubei, China
| | - Li Liu
- Division of Cardiac Care Unit, Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan, Hubei, China,*Correspondence: Li Liu,
| | - Chengwei Liu
- Division of Cardiac Care Unit, Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan, Hubei, China,Chengwei Liu,
| |
Collapse
|
3
|
Qu Z, Liu MB, Olcese R, Karagueuzian H, Garfinkel A, Chen PS, Weiss JN. R-on-T and the initiation of reentry revisited: Integrating old and new concepts. Heart Rhythm 2022; 19:1369-1383. [PMID: 35364332 PMCID: PMC11334931 DOI: 10.1016/j.hrthm.2022.03.1224] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
Abstract
Initiation of reentry requires 2 factors: (1) a triggering event, most commonly focal excitations such as premature ventricular complexes (PVCs); and (2) a vulnerable substrate with regional dispersion of refractoriness and/or excitability, such as occurs during the T wave of the electrocardiogram when some areas of the ventricle have repolarized and recovered excitability but others have not. When the R wave of a PVC coincides in time with the T wave of the previous beat, this timing can lead to unidirectional block and initiation of reentry, known as the R-on-T phenomenon. Classically, the PVC triggering reentry has been viewed as arising focally from 1 region and propagating into another region whose recovery is delayed, resulting in unidirectional conduction block and reentry initiation. However, more recent evidence indicates that PVCs also can arise from the T wave itself. In the latter case, the PVC initiating reentry is not a separate event from the T wave but rather is causally generated from the repolarization gradient that manifests as the T wave. We call the former an "R-to-T" mechanism and the latter an "R-from-T" mechanism, which are initiation mechanisms distinct from each other. Both are important components of the R-on-T phenomenon and need to be taken into account when designing antiarrhythmic strategies. Strategies targeting suppression of triggers alone or vulnerable substrate alone may be appropriate in some instances but not in others. Preventing R-from-T arrhythmias requires suppressing the underlying dynamic tissue instabilities responsible for producing both triggers and substrate vulnerability simultaneously. The same principles are likely to apply to supraventricular arrhythmias.
Collapse
Affiliation(s)
- Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, California.
| | - Michael B Liu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Hrayr Karagueuzian
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Alan Garfinkel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Integrative Biology and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Peng-Sheng Chen
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - James N Weiss
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
4
|
Reilly L, Alvarado FJ, Lang D, Abozeid S, Van Ert H, Spellman C, Warden J, Makielski JC, Glukhov AV, Eckhardt LL. Genetic Loss of IK1 Causes Adrenergic-Induced Phase 3 Early Afterdepolariz ations and Polymorphic and Bidirectional Ventricular Tachycardia. Circ Arrhythm Electrophysiol 2020; 13:e008638. [PMID: 32931337 PMCID: PMC7574954 DOI: 10.1161/circep.120.008638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Arrhythmia syndromes associated with KCNJ2 mutations have been described clinically; however, little is known of the underlying arrhythmia mechanism. We create the first patient inspired KCNJ2 transgenic mouse and study effects of this mutation on cardiac function, IK1, and Ca2+ handling, to determine the underlying cellular arrhythmic pathogenesis. METHODS A cardiac-specific KCNJ2-R67Q mouse was generated and bred for heterozygosity (R67Q+/-). Echocardiography was performed at rest, under anesthesia. In vivo ECG recording and whole heart optical mapping of intact hearts was performed before and after adrenergic stimulation in wild-type (WT) littermate controls and R67Q+/- mice. IK1 measurements, action potential characterization, and intracellular Ca2+ imaging from isolated ventricular myocytes at baseline and after adrenergic stimulation were performed in WT and R67Q+/- mice. RESULTS R67Q+/- mice (n=17) showed normal cardiac function, structure, and baseline electrical activity compared with WT (n=10). Following epinephrine and caffeine, only the R67Q+/- mice had bidirectional ventricular tachycardia, ventricular tachycardia, frequent ventricular ectopy, and/or bigeminy and optical mapping demonstrated high prevalence of spontaneous and sustained ventricular arrhythmia. Both R67Q+/- (n=8) and WT myocytes (n=9) demonstrated typical n-shaped IK1IV relationship; however, following isoproterenol, max outward IK1 increased by ≈20% in WT but decreased by ≈24% in R67Q+/- (P<0.01). R67Q+/- myocytes (n=5) demonstrated prolonged action potential duration at 90% repolarization and after 10 nmol/L isoproterenol compared with WT (n=7; P<0.05). Ca2+ transient amplitude, 50% decay rate, and sarcoplasmic reticulum Ca2+ content were not different between WT (n=18) and R67Q+/- (n=16) myocytes. R67Q+/- myocytes (n=10) under adrenergic stimulation showed frequent spontaneous development of early afterdepolarizations that occurred at phase 3 of action potential repolarization. CONCLUSIONS KCNJ2 mutation R67Q+/- causes adrenergic-dependent loss of IK1 during terminal repolarization and vulnerability to phase 3 early afterdepolarizations. This model clarifies a heretofore unknown arrhythmia mechanism and extends our understanding of treatment implications for patients with KCNJ2 mutation.
Collapse
Affiliation(s)
- Louise Reilly
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Francisco J Alvarado
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Di Lang
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Sara Abozeid
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Hannah Van Ert
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Cordell Spellman
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Jarrett Warden
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Jonathan C Makielski
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Alexey V Glukhov
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Lee L Eckhardt
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| |
Collapse
|
5
|
Specific Cell (Re-)Programming: Approaches and Perspectives. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:71-115. [PMID: 29071403 DOI: 10.1007/10_2017_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many disorders are manifested by dysfunction of key cell types or their disturbed integration in complex organs. Thereby, adult organ systems often bear restricted self-renewal potential and are incapable of achieving functional regeneration. This underlies the need for novel strategies in the field of cell (re-)programming-based regenerative medicine as well as for drug development in vitro. The regenerative field has been hampered by restricted availability of adult stem cells and the potentially hazardous features of pluripotent embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Moreover, ethical concerns and legal restrictions regarding the generation and use of ESCs still exist. The establishment of direct reprogramming protocols for various therapeutically valuable somatic cell types has overcome some of these limitations. Meanwhile, new perspectives for safe and efficient generation of different specified somatic cell types have emerged from numerous approaches relying on exogenous expression of lineage-specific transcription factors, coding and noncoding RNAs, and chemical compounds.It should be of highest priority to develop protocols for the production of mature and physiologically functional cells with properties ideally matching those of their endogenous counterparts. Their availability can bring together basic research, drug screening, safety testing, and ultimately clinical trials. Here, we highlight the remarkable successes in cellular (re-)programming, which have greatly advanced the field of regenerative medicine in recent years. In particular, we review recent progress on the generation of cardiomyocyte subtypes, with a focus on cardiac pacemaker cells. Graphical Abstract.
Collapse
|
6
|
Li GL, Saguner AM, Fontaine GH, Frank R. Fragmented endocardial signals and early afterdepolarizations during torsades de pointes tachycardia. Cardiol J 2018; 27:54-61. [PMID: 30009377 DOI: 10.5603/cj.a2018.0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/08/2018] [Accepted: 07/08/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Bradycardia-induced torsade de pointes (TdP) tachycardia in patients with spontaneous high-degree atrioventricular block (AVB) is common. The aim of this study was to analyze endocardial recordings during TdP in spontaneous high-degree AVB in humans to better understand the electrophysiological mechanisms underlying this phenomenon. METHODS The study group consisted of 5 patients with typical episodes of TdP during spontaneous high-degree AVB. A standard (USCI) temporary bipolar endocardial catheter positioned at the apex of the right ventricle (RV) and bipolar chest leads from two precordial leads V1 and V4 were used to record the tracings during TdP. RESULTS The presence of a wide spectrum of fragmentations was noted on endocardial electrograms (EGMs), which were invisible on the surface electrocardiogram (ECG) tracing. Endocardial signals indicated that TdP started in the proximity of the RV apex, since the local EGM began prior to the QRS complex on the surface ECG. Early afterdepolarizations (EADs) were observed in 2 out of 5 cases confirming a common opinion about the mechanism of TdP. However, this phenomenon was not observed in 3 other patients suggesting that the arrhythmia was the result of a different mechanism originating in proximity to the RV apex. CONCLUSIONS This work demonstrated early endocardial signals in the RV apex during TdP associated with high-degree AVB in humans, and exhibits a spectrum of fragmented signals in this area occurring on a single or multiple beats. These fragmentations indicate areas of poor conduction and various degrees of intramyocardial block, and therefore a new mechanism of TdP tachycardia in some patients with spontaneous high-degree AVB.
Collapse
Affiliation(s)
- Guo-Liang Li
- Arrhythmia Unit, Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China. .,Institut de Cardiologie, Unité de Rythmologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center Zurich, Switzerland
| | - Guy H Fontaine
- Institut de Cardiologie, Unité de Rythmologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Robert Frank
- Institut de Cardiologie, Unité de Rythmologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
7
|
Pezhouman A, Cao H, Fishbein MC, Belardinelli L, Weiss JN, Karagueuzian HS. Atrial Fibrillation Initiated by Early Afterdepolarization-Mediated Triggered Activity during Acute Oxidative Stress: Efficacy of Late Sodium Current Blockade. ACTA ACUST UNITED AC 2018; 4. [PMID: 30393761 PMCID: PMC6214459 DOI: 10.16966/2379-769x.146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background The mechanism of Atrial Fibrillation (AF) that emerges spontaneously during acute oxidative stress is poorly defined and its drug therapy remains suboptimal. We hypothesized that oxidative activation of Ca-calmodulin dependent protein kinase (CaMKII) promotes Early Afterdepolarization-(EAD)-mediated triggered AF in aged fibrotic atria that is sensitive to late Na current (INa-L) blockade. Method and Results High-resolution voltage optical mapping of the Left and Right Atrial (LA & RA) epicardial surfaces along with microelectrode recordings were performed in isolated-perfused male Fisher 344 rat hearts in Langendorff setting. Aged atria (23-24 months) manifested 10-fold increase in atrial tissue fibrosis compared to young/adult (2-4 months) atria (P<0001. Spontaneous AF arose in 39 out of 41 of the aged atria but in 0 out of 12 young/adult hearts (P<001) during arterial perfusion of with 0.1 mm of hydrogen peroxide (H2O2). Optical Action Potential (AP) activation maps showed that the AF was initiated by a focal mechanism in the LA suggestive of EAD-mediated triggered activity. Cellular AP recordings with glass microelectrodes from the LA epicardial sites showing focal activity confirmed optical AP recordings that the spontaneous AF was initiated by late phase 3 EAD-mediated triggered activity. Inhibition of CaMKII activity with KN-93 (1 μM) (N=6) or its downstream target, the enhanced INa-L with GS-967 (1 μM), a specific blocker of INa-L (N=6), potently suppressed the AF and prevented its initiation when perfused 15 min prior to H2O2 (n=6). Conclusions Increased atrial tissue fibrosis combined with acute oxidative activation of CaMK II Initiate AF by EAD-mediated triggered activity. Specific block of the INa-L with GS-967 effectively suppresses the AF. Drug therapy of oxidative AF in humans with traditional antiarrhythmic drugs remains suboptimal; suppressing INa-L offers a potential new strategy for effective suppression of oxidative human AF that remains suboptimal.
Collapse
Affiliation(s)
- Arash Pezhouman
- Translational Arrhythmia Section, UCLA Cardiovascular Research Laboratory, USA
| | - Hong Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PRC
| | | | | | - James N Weiss
- Translational Arrhythmia Section, UCLA Cardiovascular Research Laboratory, USA.,Departments of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hrayr S Karagueuzian
- Translational Arrhythmia Section, UCLA Cardiovascular Research Laboratory, USA.,Departments of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
8
|
Huang X, Kim TY, Koren G, Choi BR, Qu Z. Spontaneous initiation of premature ventricular complexes and arrhythmias in type 2 long QT syndrome. Am J Physiol Heart Circ Physiol 2016; 311:H1470-H1484. [PMID: 27765749 DOI: 10.1152/ajpheart.00500.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
Abstract
The occurrence of early afterdepolarizations (EADs) and increased dispersion of repolarization are two known factors for arrhythmogenesis in long QT syndrome. However, increased dispersion of repolarization tends to suppress EADs due to the source-sink effect, and thus how the two competing factors cause initiation of arrhythmias remains incompletely understood. Here we used optical mapping and computer simulation to investigate the mechanisms underlying spontaneous initiation of arrhythmias in type 2 long QT (LQT2) syndrome. In optical mapping experiments of transgenic LQT2 rabbit hearts under isoproterenol, premature ventricular complexes (PVCs) were observed to originate from the steep spatial repolarization gradient (RG) regions and propagated unidirectionally. The same PVC behaviors were demonstrated in computer simulations of tissue models of rabbits. Depending on the heterogeneities, these PVCs could lead to either repetitive focal excitations or reentry without requiring an additional vulnerable substrate. Systematic simulations showed that cellular phase 2 EADs were either suppressed or confined to the long action potential region due to the source-sink effect. Tissue-scale phase 3 EADs and PVCs occurred due to tissue-scale dynamical instabilities caused by RG and enhanced L-type calcium current (ICa,L), occurring under both large and small RG. Presence of cellular EADs was not required but potentiated PVCs when RG was small. We also investigated how other factors affect the dynamical instabilities causing PVCs. Our main conclusion is that tissue-scale dynamical instabilities caused by RG and enhanced ICa,L give rise to both the trigger and the vulnerable substrate simultaneously for spontaneous initiation of arrhythmias in LQT2 syndrome.
Collapse
Affiliation(s)
- Xiaodong Huang
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California.,Department of Physics, South China University of Technology, Guangzhou, China; and
| | - Tae Yun Kim
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Gideon Koren
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Bum-Rak Choi
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California; .,Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
9
|
Tse G, Tse V, Yeo JM, Sun B. Atrial Anti-Arrhythmic Effects of Heptanol in Langendorff-Perfused Mouse Hearts. PLoS One 2016; 11:e0148858. [PMID: 26872148 PMCID: PMC4752503 DOI: 10.1371/journal.pone.0148858] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/24/2016] [Indexed: 12/24/2022] Open
Abstract
Acute effects of heptanol (0.1 to 2 mM) on atrial electrophysiology were explored in Langendorff-perfused mouse hearts. Left atrial bipolar electrogram or monophasic action potential recordings were obtained during right atrial stimulation. Regular pacing at 8 Hz elicited atrial activity in 11 out of 11 hearts without inducing atrial arrhythmias. Programmed electrical stimulation using a S1S2 protocol provoked atrial tachy-arrhythmias in 9 of 17 hearts. In the initially arrhythmic group, 2 mM heptanol exerted anti-arrhythmic effects (Fisher’s exact test, P < 0.05) and increased atrial effective refractory period (ERP) from 26.0 ± 1.9 to 57.1 ± 2.5 ms (ANOVA, P < 0.001) despite increasing activation latency from 18.7 ± 1.1 to 28.9 ± 2.1 ms (P < 0.001) and leaving action potential duration at 90% repolarization (APD90) unaltered (25.6 ± 1.2 vs. 27.2 ± 1.2 ms; P > 0.05), which led to increases in ERP/latency ratio from 1.4 ± 0.1 to 2.1 ± 0.2 and ERP/APD90 ratio from 1.0 ± 0.1 to 2.1 ± 0.2 (P < 0.001). In contrast, in the initially non-arrhythmic group, heptanol did not alter arrhythmogenicity, increased AERP from 47.3 ± 5.3 to 54.5 ± 3.1 ms (P < 0.05) and activation latency from 23.7 ± 2.2 to 31.3 ± 2.5 ms and did not alter APD90 (24.1 ± 1.2 vs. 25.0 ± 2.3 ms; P > 0.05), leaving both AERP/latency ratio (2.1 ± 0.3 vs. 1.9 ± 0.2; P > 0.05) and ERP/APD90 ratio (2.0 ± 0.2 vs. 2.1 ± 0.1; P > 0.05) unaltered. Lower heptanol concentrations (0.1, 0.5 and 1 mM) did not alter arrhythmogenicity or the above parameters. The present findings contrast with known ventricular pro-arrhythmic effects of heptanol associated with decreased ERP/latency ratio, despite increased ERP/APD ratio observed in both the atria and ventricles.
Collapse
Affiliation(s)
- Gary Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China
| | - Vivian Tse
- Department of Physiology, McGill University, Montreal, Canada
| | - Jie Ming Yeo
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Bing Sun
- Department of Cardiology, Tongji University Affiliated Tongji Hospital, Shanghai, China
- * E-mail:
| |
Collapse
|
10
|
Tse G, Tse V, Yeo JM. Ventricular anti-arrhythmic effects of heptanol in hypokalaemic, Langendorff-perfused mouse hearts. Biomed Rep 2016; 4:313-324. [PMID: 26998268 PMCID: PMC4774402 DOI: 10.3892/br.2016.577] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/11/2015] [Indexed: 12/24/2022] Open
Abstract
Ventricular arrhythmic and electrophysiological properties were examined during normokalaemia (5.2 mM [K+]), hypokalaemia (3 mM [K+]) or hypokalaemia in the presence of 0.1 or 2 mM heptanol in Langendorff-perfused mouse hearts. Left ventricular epicardial or endocardial monophasic action potential recordings were obtained during right ventricular pacing. Hypokalaemia induced ventricular premature beats (VPBs) in 5 of 7 and ventricular tachycardia (VT) in 6 of 7 hearts (P<0.01), prolonged action potential durations (APD90) from 36.2±1.7 to 55.7±2.0 msec (P<0.01) and shortened ventricular effective refractory periods (VERPs) from 44.5±4.0 to 28.9±3.8 msec (P<0.01) without altering conduction velocities (CVs) (0.17±0.01 m/sec, P>0.05), reducing excitation wavelengths (λ, CV × VERP) from 7.9±1.1 to 5.1±0.3 mm (P<0.05) while increasing critical intervals (CI, APD90-VERP) from −8.3±4.3 to 26.9±2.0 msec (P>0.001). Heptanol (0.1 mM) prevented VT, restored effective refractory period (ERP) to 45.2±2.9 msec without altering CV or APD, returning λ to control values (P>0.05) and CI to 8.4±3.8 msec (P<0.05). Heptanol (2 mM) prevented VPBs and VT, increased ERP to 67.7±7.6 msec (P<0.05), and reduced CV to 0.11±0.1 m/sec (P<0.001) without altering APD (P>0.05), returning λ and CI to control values (P>0.05). Anti-arrhythmic effects of heptanol during hypokalaemia were explicable by ERP changes, scaling λ and CI.
Collapse
Affiliation(s)
- Gary Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Vivian Tse
- Department of Physiology, McGill University, Montreal, Quebec H3G 1YG, Canada
| | - Jie Ming Yeo
- School of Medicine, Imperial College London, SW7 2AZ London, UK
| |
Collapse
|
11
|
Abstract
Blood circulation is the result of the beating of the heart, which provides the mechanical force to pump oxygenated blood to, and deoxygenated blood away from, the peripheral tissues. This depends critically on the preceding electrical activation. Disruptions in the orderly pattern of this propagating cardiac excitation wave can lead to arrhythmias. Understanding of the mechanisms underlying their generation and maintenance requires knowledge of the ionic contributions to the cardiac action potential, which is discussed in the first part of this review. A brief outline of the different classification systems for arrhythmogenesis is then provided, followed by a detailed discussion for each mechanism in turn, highlighting recent advances in this area.
Collapse
|
12
|
Arrhythmogenic mechano-electric heterogeneity in the long-QT syndrome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:347-58. [DOI: 10.1016/j.pbiomolbio.2012.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 11/23/2022]
|
13
|
Chen PS, Ogawa M, Maruyama M, Chua SK, Chang PC, Rubart-von der Lohe M, Chen Z, Ai T, Lin SF. Imaging arrhythmogenic calcium signaling in intact hearts. Pediatr Cardiol 2012; 33:968-74. [PMID: 22349681 PMCID: PMC3586331 DOI: 10.1007/s00246-012-0236-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/17/2011] [Indexed: 10/28/2022]
Abstract
Protein complex of the cardiac junctional sarcoplasmic reticulum (SR) membrane formed by type 2 ryanodine receptor, junction, triadin, and calsequestrin is responsible for controlling SR calcium (Ca) release. Increased intracellular calcium (Ca(i)) activates the electrogenic sodium-Ca exchanger current, which is known to be important in afterdepolarization and triggered activities (TAs). Using optical-mapping techniques, it is possible to simultaneously map membrane potential (V (m)) and Ca(i) transient in Langendorff-perfused rabbit ventricles to better define the mechanisms by which V (m) and Ca(i) interactions cause early afterdepolarizations (EADs). Phase 3 EAD is dependent on heterogeneously prolonged action potential duration (APD). Electrotonic currents that flow between a persistently depolarized region and its recovered neighbors underlies the mechanisms of phase 3 EADs and TAs. In contrast, "late phase-3 EAD" is induced by APD shortening, not APD prolongation. In failing ventricles, upregulation of apamin-sensitive Ca-activated potassium (K) channels (I(KAS)) causes APD shortening after fibrillation-defibrillation episodes. Shortened APD in the presence of large Ca(i) transients generates late-phase 3 EADs and recurrent spontaneous ventricular fibrillation. The latter findings suggest that I (KAS) may be a novel antiarrhythmic targets in patients with heart failure and electrical storms.
Collapse
Affiliation(s)
- Peng-Sheng Chen
- Krannert Institute of Cardiology, Department of Medicine, Indiana University School of Medicine, 1800 N. Capitol Ave, E475, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Brugada P. On the Intriguing Phenotypic Manifestations of Brugada Syndrome and the Diagnostic Value of the Electrocardiogram. J Am Coll Cardiol 2011; 58:2299-300. [DOI: 10.1016/j.jacc.2011.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/05/2011] [Indexed: 10/15/2022]
|
15
|
Maruyama M, Lin SF, Xie Y, Chua SK, Joung B, Han S, Shinohara T, Shen MJ, Qu Z, Weiss JN, Chen PS. Genesis of phase 3 early afterdepolarizations and triggered activity in acquired long-QT syndrome. Circ Arrhythm Electrophysiol 2010; 4:103-11. [PMID: 21078812 DOI: 10.1161/circep.110.959064] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Both phase 2 and phase 3 early afterdepolarizations (EADs) occur in long-QT syndromes, but their respective roles in generating arrhythmias in intact cardiac tissue are incompletely understood. METHODS AND RESULTS Intracellular Ca (Ca(i)) and membrane voltage (V(m)) were optically mapped in a quasi 2-dimensional model of cryoablated Langendorff-perfused rabbit ventricles (n=16). E-4031 (an I(Kr) blocker) combined with reduced extracellular K ([K(+)](o)) and Mg ([Mg(2+)](o)) prolonged action potential duration heterogeneously and induced phase 2 and phase 3 EADs. Whereas phase 2 EADs were Ca(i)-dependent, phase 3 EADs were not. The origins of 47 triggered activity episodes were attributed to phase 2 EADs in 12 episodes (26%) and phase 3 EADs in 35 episodes (74%). When phase 2 EADs accompanied phase 3 EADs, they accentuated action potential duration heterogeneity, creating a large V(m) gradient across the boundary between long and short action potential duration regions from which triggered activity emerged. The amplitude of phase 3 EADs correlated with the V(m) gradient (r=0.898, P<0.001). Computer simulation studies showed that coupling of cells with heterogeneous repolarization could extrinsically generate phase 3 EADs via electrotonic current flow. Alternatively, reduced I(K1) caused by low [K(+)](o) could generate intrinsic phase 3 EADs capable of inducing triggered activity at the boundary zone. CONCLUSIONS Phase 3 EADs can be extrinsic as the result of electrotonic current across steep repolarization gradients or intrinsic as the result of low I(K1) and do not require spontaneous sarcoplasmic reticulum Ca release. Reduction of I(K1) by low [K(+)](o) strongly promotes ventricular arrhythmias mediated by phase 3 EADs in acquired long-QT syndrome caused by I(Kr) blockade.
Collapse
Affiliation(s)
- Mitsunori Maruyama
- Krannert Institute of Cardiology and the Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Cardiac rhythm disorders reflect failures of impulse generation and/or conduction. With the exception of ablation methods that yield selective endocardial destruction, present therapies are nonspecific and/or palliative. Progress in understanding the underlying biology opens up prospects for new alternatives. This article reviews the present state of the art in gene- and cell-based therapies to correct cardiac rhythm disturbances. We begin with the rationale for such approaches, briefly discuss efforts to address aspects of tachyarrhythmia, and review advances in creating a biological pacemaker to cure bradyarrhythmia. Insights gained bring the field closer to a paradigm shift away from devices and drugs, and toward biologics, in the treatment of rhythm disorders.
Collapse
Affiliation(s)
- Hee Cheol Cho
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| | | |
Collapse
|
17
|
Contribution of L-type Ca2+ channels to early afterdepolarizations induced by I Kr and I Ks channel suppression in guinea pig ventricular myocytes. J Membr Biol 2008; 222:151-66. [PMID: 18566732 DOI: 10.1007/s00232-008-9113-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 05/16/2008] [Indexed: 10/21/2022]
Abstract
Early afterdepolarizations (EADs) induced by suppression of cardiac delayed rectifier I (Kr) and/or I (Ks) channels cause fatal ventricular tachyarrhythmias. In guinea pig ventricular myocytes, partial block of one of the channels with complete block of the other reproducibly induced EADs. Complete block of both I (Kr) and I (Ks) channels depolarized the take-off potential and reduced the amplitude of EADs, which in some cases were not clearly separated from the preceding action potentials. A selective L-type Ca(2+) (I (Ca,L)) channel blocker, nifedipine, effectively suppressed EADs at submicromolar concentrations. As examined with the action potential-clamp method, I (Ca,L) channels mediated inward currents with a spike and dome shape during action potentials. I (Ca,L) currents decayed mainly due to inactivation in phase 2 and deactivation in phase 3 repolarization. When EADs were induced by complete block of I (Kr) channels with partial block of I (Ks) channels, repolarization of the action potential prior to EAD take-off failed to increase I (K1) currents and thus failed to completely deactivate I (Ca,L) channels, which reactivated and mediated inward currents during EADs. When both I (Kr) and I (Ks) channels were completely blocked, I (Ca,L) channels were not deactivated and mediated sustained inward currents until the end of EADs. Under this condition, the recovery and reactivation of I (Ca,L) channels were absent before EADs. Therefore, an essential mechanism underlying EADs caused by suppression of the delayed rectifiers is the failure to completely deactivate I (Ca,L) channels.
Collapse
|
18
|
Ravelli F. Mechano-electric feedback and atrial fibrillation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 82:137-49. [PMID: 12732274 DOI: 10.1016/s0079-6107(03)00011-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atrial fibrillation frequently occurs under conditions associated with atrial dilatation suggesting a role of mechano-electric feedback in atrial arrhythmogenesis. Although atrial arrhythmias may be due both to abnormal focal activity and reentrant mechanisms, the majority of sustained atrial arrhythmias have been ascribed to reentrant activity. Atrial stretch may contribute to focal arrhythmias by inducing afterdepolarizations and to reentrant arrhythmias by increasing the atrial surface, by shortening the refractory period and/or slowing the conduction velocity and by increasing their spatial dispersion. Experimental and clinical studies have demonstrated that changes in mechanical loading conditions may modulate the electrophysiological properties of the atria. These studies have, for the most part, involved the effects of acute stretch on atrial refractoriness. While studies in humans and intact animals yield divergent results due to the variety of loading conditions and neurohumoral influences, experimental studies in isolated preparations clearly show that atrial refractory period and action potential duration at early levels of repolarization shorten by acute atrial dilatation. Both experimental and human studies have shown that acute atrial stretch is arrhythmogenic and may induce triggered premature beats and atrial fibrillation.
Collapse
Affiliation(s)
- Flavia Ravelli
- Department of Physics, University of Trento and ITC-irst, Via Sommarive 14, 38050, Povo-Trento, Italy.
| |
Collapse
|
19
|
Brugada J, Brugada P, Brugada R. [Sudden death (VI). The Brugada syndrome and right myocardiopathies as a cause of sudden death. The differences and similarities]. Rev Esp Cardiol 2000; 53:275-85. [PMID: 10734758 DOI: 10.1016/s0300-8932(00)75090-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In 1992 we described a new syndrome characterized by syncopal or sudden death episodes in patients with a structurally normal heart and a characteristic electrocardiogram 9 showing a pattern of right bundle branch block and ST segment elevation in right precordial leads V1 to V3. The disease is genetically determined with and autosomic dominant pattern of transmission. Until now three mutations and one polymorphism in the sodium cardiac channel gene have been identified in two families and one sporadic patient. As in many other genetically determined diseases, the disease is heterogeneous, caused by more than one gene. The syndrome has been identified in almost all countries in the world. Its incidence is difficult to evaluate, but it seems to be responsible for 4 to 10 sudden deaths per year per 10,000 inhabitants in areas like Laos or Thailand, and it represents the most frequent cause of death in young male adults in these countries. Up to 50% of all sudden deaths in patients with structurally normal heart are caused by the disease. The diagnosis can be easily made thanks to the characteristic electrocardiographic pattern. In some patients, the presence of concealed and intermittent forms might make the diagnosis more difficult. The electrocardiogram can be modulated by autonomic changes and administration of antiarrhythmic drugs. Beta-adrenergic stimulation normalizes the electrocardiogram, whereas ajmaline, flecainide or procainamide administration increase ST segment elevation. These drugs allow the unmasking of concealed or intermittent forms of the disease. Prognosis of patients with the syndrome is poor without an implantable defibrillator and antiarrhythmic drugs like amiodarone or betablockers do not protect against sudden death. The poor prognosis is similar in patients with a history of aborted sudden death or syncope and in asymptomatic patients in whom the abnormal electrocardiogram characteristic of the syndrome, was identified during a routine examination.
Collapse
Affiliation(s)
- J Brugada
- Hospital Clínic, Universitat de Barcelona, España.
| | | | | |
Collapse
|
20
|
Saiz J, Ferrero JM, Monserrat M, Ferrero JM, Thakor NV. Influence of electrical coupling on early afterdepolarizations in ventricular myocytes. IEEE Trans Biomed Eng 1999; 46:138-47. [PMID: 9932335 DOI: 10.1109/10.740876] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Computer modeling is used to study the effect of electrical coupling between a myocardial zone where early afterdepolarizations (EAD's) can develop and the normal neighboring tissue. The effects of such coupling on EAD development and on the likelihood of EAD propagation as an ectopic beat are studied. The influence on EAD formation is investigated by approximating two partially coupled myocardial zones modeled as two active elements coupled by a junctional resistance R. For R values lower than 800 omega cm2, the action potentials are transmitted to the coupled element, and for R values higher than 850 omega cm2 they are blocked. In both ranges of R, when the electrical coupling increases, the EAD's appear at more negative takeoff potentials with higher amplitudes and upstrokes. The EAD's are not elicited if the electrical coupling is too high. In a separate model of two one-dimensional cardiac fiber segments partially coupled by a resistance R, critical R values exist, between 42 and 54 omega cm2, that facilitate EAD propagation. These results demonstrate that in myocardial zones favorable to the formation of EAD, the electrical coupling dramatically affects initiation of EAD and its spread to the neighboring tissue.
Collapse
Affiliation(s)
- J Saiz
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
21
|
Robert E, Aya AG, de la Coussaye JE, Péray P, Juan JM, Brugada J, Davy JM, Eledjam JJ. Dispersion-based reentry: mechanism of initiation of ventricular tachycardia in isolated rabbit hearts. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H413-23. [PMID: 9950840 DOI: 10.1152/ajpheart.1999.276.2.h413] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the study was to determine whether facilitation of reentry by potassium-channel openers is related to dispersion of refractoriness and/or modification of anisotropic properties of ventricular myocardium. The dispersion of ventricular effective refractory period (VERP), longitudinal and transverse ventricular conduction velocities (thetaL and thetaT, respectively), and wavelength [lambda = VERP x theta(L or T)] were studied in Langendorff-perfused left ventricular epicardium in 20 rabbits during infusion of incremental doses of levcromakalim or nicorandil. Dispersion of refractoriness was assessed using standard deviation of VERP mean (SD-VERP), dispersion index (DI; SD-VERP/mean VERP), and maximum dispersion (Dmax = VERPmax - VERPmin). Ventricular conduction velocities and anisotropic ratio were not modified, whatever the dose used. VERP and lambda were significantly shortened at high concentrations of levcromakalim and nicorandil. At these doses, SD-VERP, DI, and Dmax were increased significantly. Analysis of ventricular tachycardia induction, performed using a high-resolution ventricular mapping system, confirmed that heterogeneity and shortening of VERP were factors inducing functional conduction block. Our data suggest that, in rabbit left ventricular epicardium, functional conduction block facilitating the occurrence of reentry could be initiated by shortening and, especially, by dispersion of refractoriness during infusion of potassium-channel openers.
Collapse
Affiliation(s)
- E Robert
- Laboratory of Anesthesiology and Cardiovascular Physiology, Medical School of Montpellier-Nîmes, 30907 Nîmes, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Krishnan SC, Galvin J, McGovern B, Garan H, Ruskin JN. Reproducible induction of "atypical" torsades de pointes by programmed electrical stimulation: a novel form of sotalol-induced proarrhythmia? J Cardiovasc Electrophysiol 1997; 8:1055-61. [PMID: 9300303 DOI: 10.1111/j.1540-8167.1997.tb00629.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We present a patient with sotalol-induced polymorphic ventricular tachycardia that was seen only with programmed ventricular stimulation. Electrophysiologic studies performed prior to initiation of sotalol therapy revealed inducible monomorphic ventricular tachycardia. Possible underlying electrophysiologic mechanisms are discussed.
Collapse
Affiliation(s)
- S C Krishnan
- Department of Medicine, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | | | |
Collapse
|
23
|
Brugada J, Brugada P. Further characterization of the syndrome of right bundle branch block, ST segment elevation, and sudden cardiac death. J Cardiovasc Electrophysiol 1997; 8:325-31. [PMID: 9083883 DOI: 10.1111/j.1540-8167.1997.tb00796.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We recently described a syndrome characterized by an ECG pattern of right bundle branch block and persistent ST segment elevation in leads V1 to V3 in patients suffering from aborted sudden cardiac death and not having demonstrable structural heart disease. We present new observations on this syndrome, especially those related to asymptomatic and intermittent forms. Forty-seven patients with the described ECG pattern were identified; 32 were symptomatic with syncope and sudden death aborted by cardiopulmonary resuscitation. Eleven patients received pharmacologic therapy, mainly amiodarone and/or beta-blocking agents, and 21 patients received an implantable defibrillator with or without pharmacologic therapy. Three of the 11 patients on pharmacologic therapy died suddenly during follow-up, while 9 of 21 patients with an implantable defibrillator used the device during follow-up. The remaining 15 patients were asymptomatic when first seen. Three patients died suddenly after 6 years, 3 months, and 2 months of follow-up without treatment. Another patient received an implantable defibrillator after syncope and had subsequent episodes of ventricular fibrillation terminated by the defibrillator. The other 11 patients remain asymptomatic without (6) or with (5) treatment with beta blockers. In 14 of the 47 patients, the ECG normalized momentarily during follow-up but later became abnormal again. During transient normalization of the ECG, administration of ajmaline or procainamide unmasked the described ECG pattern in six patients who received the drug. Long-term follow-up of survivors failed to show progression to any form of right or left ventricular cardiomyopathy.
Collapse
Affiliation(s)
- J Brugada
- Department of Cardiology, Hospital Clinic, University of Barcelona, Spain
| | | |
Collapse
|
24
|
Abstract
The term "idiopathic" ventricular fibrillation is used to describe those episodes of unexpected sudden arrhythmic death due to ventricular fibrillation in patients with no demonstrable structural heart disease. Idiopathic ventricular fibrillation has been reported to account for 5-100% of all sudden arrhythmic deaths. Post mortem analysis have shown that about 80% of patients might have some kind of structural anomalies, mainly atherosclerosis, myocarditis, or right ventricular dysplasia. Follow-up of patients with idiopathic ventricular fibrillation has shown a high incidence of recurrent episodes of malignant ventricular arrhythmias. The absence of structural heart disease generally implies an excellent long-term prognosis if ventricular fibrillation can be avoided. Patients with an implantable defibrillator should have a mortality rate similar to the general population. New subsets of patients are being recognized as belonging with those previously classified as idiopathic ventricular fibrillation. More than 60 patients have been identified in different centers around the world with the so-called "right bundle branch block, ST segment elevation, and sudden death syndrome." Recurrence rate of malignant ventricular arrhythmias is very high in these patients, despite antiarrhythmic therapy. An implantable cardioverter-defibrillator seems the treatment of choice. Asymptomatic forms of the syndrome have been described. Follow-up in these asymptomatic patients has shown that some of them might become symptomatic during follow-up. Also, intermittent forms of the syndrome have been described, with transient normalization of the electrocardiogram. Administration of class I drugs in these patients unmasks the typical electrocardiographic pattern. In some of the patients previously classified as having idiopathic ventricular fibrillation, ajmaline or procainamide administration unmasks the electrocardiographic pattern of the syndrome, suggesting that its incidence may be higher than previously suspected.
Collapse
Affiliation(s)
- J Brugada
- Department of Cardiology, Hospital Clinic, University of Barcelona, Spain
| | | |
Collapse
|
25
|
Locati EH, Maison-Blanche P, Dejode P, Cauchemez B, Coumel P. Spontaneous sequences of onset of torsade de pointes in patients with acquired prolonged repolarization: quantitative analysis of Holter recordings. J Am Coll Cardiol 1995; 25:1564-75. [PMID: 7539014 DOI: 10.1016/0735-1097(95)00100-i] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES This study investigated the cycle length changes preceding the spontaneous onset of torsade de pointes in patients with acquired prolonged ventricular repolarization. BACKGROUND Torsade de pointes is a polymorphic ventricular tachycardia generally associated with prolonged ventricular repolarization. Because torsade de pointes is not inducible by programmed electrical stimulation, quantitative analysis of Holter recordings of spontaneous episodes may clarify the mechanisms favoring the onset of torsade de pointes in actual clinical conditions. METHODS The digitized Holter recordings of 12 patients were analyzed by a computerized Holter system (ATREC). All arrhythmias were grouped according to three classes: 1) isolated premature ventricular beats (n = 47,147, mean/patient [+/- SD] 3,929 +/- 11,571); 2) salvos of 2 to 4 consecutive beats (n = 2,003, mean/patient 167 +/- 359); 3) torsade de pointes > or = 5 beats (n = 105, mean/patient 9 +/- 11). For each patient and class of arrhythmias, six variables were computed from the 10 min and the 10 cycles preceding the event onset. RESULTS A significant heart rate increase in the last minute (p < 0.01) and typical oscillatory short-long-short cycle length sequences preceded the onset of arrhythmias, with greater oscillation preceding torsade de pointes than salvos and premature ventricular beats. The cycle lengths preceding the onset were highly correlated with the class of arrhythmias (r = 0.65, p < 0.005) and allowed the correct classification of 69% of events by discriminant analysis (p < 0.0001). A significant negative correlation was observed between the duration of torsade de pointes and the mean length of the initial cycles (r = -0.62, p < 0.001), indicating that longer torsade de pointes had a faster rate than that at onset. CONCLUSIONS In patients with acquired prolonged repolarization, the spontaneous onset of ventricular arrhythmias was preceded by an increasing heart rate in the last minute and escalating oscillatory "short-long-short" cycle length patterns, with greater oscillations preceding torsade de pointes than salvos and isolated ventricular beats. These findings suggest that adrenergic- and pause-dependent mechanisms (possibly inducing afterdepolarizations and triggered activity) may have a synergetic role in the genesis of complex ventricular arrhythmias associated with delayed ventricular repolarization.
Collapse
Affiliation(s)
- E H Locati
- Istituto Clinica Medica Generale e Terapia Medica, University of Milan, Italy
| | | | | | | | | |
Collapse
|
26
|
Eisenberg SJ, Scheinman MM, Dullet NK, Finkbeiner WE, Griffin JC, Eldar M, Franz MR, Gonzalez R, Kadish AH, Lesh MD. Sudden cardiac death and polymorphous ventricular tachycardia in patients with normal QT intervals and normal systolic cardiac function. Am J Cardiol 1995; 75:687-92. [PMID: 7900661 DOI: 10.1016/s0002-9149(99)80654-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study delineates the clinical spectrum of 15 patients with polymorphic ventricular tachycardia and normal QT intervals in the absence of apparent structural heart disease, adverse drug effects, or electrolyte disturbances. Patients presented with either palpitations (n = 2), presyncope (n = 5), syncope (n = 4), no symptoms (n = 1), or aborted sudden death (n = 3). Mean age was 41 years (range 20 to 64), and mean follow-up 38 months (range 4 to 109). Left ventricular function was normal as determined by either echocardiogram (n = 9) or left ventriculography (n = 9). Episodes of polymorphic ventricular tachycardia (VT) were analyzed in terms of the preceding interval, and the relation of the initiating coupling interval to the QT interval (coupling interval/QT interval = polymorphic VT index). The mean QT for the group as a whole was 0.41 +/- 0.02 second. Patients could be separated into 3 distinct groups. Four patients had polymorphic VT reproducibly induced by exercise and initiated by late-coupled beats (mean polymorphic VT index 1.27 +/- 0.21). Isoproterenol induced polymorphic VT in 3 of 4 patients, and all 4 responded to chronic beta blockade. Two patients had polymorphic VT during episodes of coronary artery spasm, and both responded to calcium channel blockade. Polymorphic VT unrelated to exertion or coronary vasospasm occurred in 9 patients. Tachycardia onset was initiated by closely coupled beats (mean polymorphic VT index 0.95 +/- 0.16), and was preceded by a pause in 4 patients, and no pause in 5 patients. Sudden death occurred in 5 of 9 patients with the shortest polymorphic VT indexes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S J Eisenberg
- Department of Medicine, University of California, San Francisco 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tomaselli GF, Beuckelmann DJ, Calkins HG, Berger RD, Kessler PD, Lawrence JH, Kass D, Feldman AM, Marban E. Sudden cardiac death in heart failure. The role of abnormal repolarization. Circulation 1994; 90:2534-9. [PMID: 7955213 DOI: 10.1161/01.cir.90.5.2534] [Citation(s) in RCA: 256] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Congestive heart failure is a common, highly lethal cardiovascular disorder claiming over 200,000 lives a year in the United States alone. Some 50% of the deaths in heart failure patients are sudden, and most of these are probably the result of ventricular tachyarrhythmias. Methods designed to identify patients at risk have been remarkably unrewarding, as have attempts to intervene and prevent sudden death in these patients. The failure to impact favorably on the incidence of sudden death in heart failure patients stems largely from a lack of understanding of the underlying mechanisms of arrhythmogenesis. This article explores the role of abnormalities of ventricular repolarization in heart failure patients. We will examine evidence for the hypothesis that alteration of repolarizing K+ channel expression in failing myocardium predisposes to abnormalities in repolarization that are arrhythmogenic. The possible utility of novel electrophysiological and ECG measures of altered ventricular repolarization will be explored. Understanding the mechanism of sudden death in heart failure may lead to effective therapy and more accurate identification of patients at greatest risk.
Collapse
Affiliation(s)
- G F Tomaselli
- Johns Hopkins School of Medicine, Baltimore, MD 21205
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Di Diego JM, Antzelevitch C. High [Ca2+]o-induced electrical heterogeneity and extrasystolic activity in isolated canine ventricular epicardium. Phase 2 reentry. Circulation 1994; 89:1839-50. [PMID: 7511994 DOI: 10.1161/01.cir.89.4.1839] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Elevated intracellular calcium activity is thought to play an important role in arrhythmia induction, particularly during ischemia and reperfusion. Delayed after-depolarization-induced triggered activity and intracellular communication problems are thought to be responsible. METHODS AND RESULTS Increased extracellular calcium levels and rapid pacing are interventions known to elevate intracellular calcium activity. The present study, conducted using standard microelectrode techniques, was designed to compare the effects of increased [Ca2+]o (1.8 to 5.4 mmol/L) in isolated canine ventricular epicardial and endocardial tissues and to test the hypothesis that elevated intracellular calcium activity contributes to arrhythmogenesis in working ventricular myocardial tissues by promoting electrical heterogeneity. High [Ca2+]o caused a slight abbreviation of action potential duration (APD90) in endocardium but more dramatic rate-dependent and dynamic changes in epicardium. Under steady-state conditions, epicardium displayed a marked abbreviation of APD90 at fast rates but no significant changes at slow rates. A significant augmentation of phase 1 was evident at the faster stimulation rates. Vmax and conduction velocity were only slightly reduced. The marked abbreviation of the epicardial response at the factor rates was due to loss of the action potential dome. Recovery of the dome after deceleration was not synchronous throughout the preparation. As a consequence, a sudden slowing of rate caused marked dispersion of repolarization among neighboring epicardial sites, giving rise to ectopic activity via a phase 2 reentry mechanism. These effects of high [Ca2+]o were mimicked by exposure of the preparations to low [Na+]o. Electrical homogeneity was restored and arrhythmias were abolished after addition of the Ito blocker 4-aminopyridine 1 mmol/L. 4-Aminopyridine also eliminated the differential response of epicardium and endocardium to high [Ca2+]o. CONCLUSIONS Our data demonstrate the induction of marked electrical heterogeneity and reentrant activity by high [Ca2+]o and rapid stimulation, conditions known to elevate [Ca2+]i. The results suggest that increased intracellular calcium activity, as occurs during ischemia and reperfusion, may contribute to the development of electrical inhomogeneity in the ventricle and thus to the genesis of ventricular arrhythmias through a mechanism other than triggered activity, namely, phase 2 reentry. Our data point to an increase in net outward current as the underlying mechanism for the calcium-induced changes. Our results also suggest that the presence of a prominent transient outward current (Ito) in epicardium sensitizes that tissue to the effects of high calcium. Finally, the results suggest that Ito blockers can reverse high calcium-induced electrical heterogeneity and thus can exert antiarrhythmic actions.
Collapse
Affiliation(s)
- J M Di Diego
- Masonic Medical Research Laboratory, Utica, NY 13504
| | | |
Collapse
|
29
|
Antzelevitch C, Sicouri S. Clinical relevance of cardiac arrhythmias generated by afterdepolarizations. Role of M cells in the generation of U waves, triggered activity and torsade de pointes. J Am Coll Cardiol 1994; 23:259-77. [PMID: 8277090 DOI: 10.1016/0735-1097(94)90529-0] [Citation(s) in RCA: 320] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent findings point to an important heterogeneity in the electrical behavior of cells spanning the ventricular wall as well as important differences in the response of the various cell types to cardioactive drugs and pathophysiologic states. These observations have permitted a fine tuning and, in some cases, a reevaluation of basic concepts of arrhythmia mechanisms. This brief review examines the implications of some of these new findings within the scope of what is already known about early and delayed afterdepolarizations and triggered activity and discusses the possible relevance of these mechanisms to clinical arrhythmias.
Collapse
Affiliation(s)
- C Antzelevitch
- Masonic Medical Research Laboratory, Utica, New York 13504
| | | |
Collapse
|
30
|
Di Diego JM, Antzelevitch C. Pinacidil-induced electrical heterogeneity and extrasystolic activity in canine ventricular tissues. Does activation of ATP-regulated potassium current promote phase 2 reentry? Circulation 1993; 88:1177-89. [PMID: 7689041 DOI: 10.1161/01.cir.88.3.1177] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Pinacidil is known to augment a time-independent outward current in cardiac tissues by activating the ATP-regulated potassium channels. Activation of this current, IK-ATP, is thought to be responsible for increased potassium permeability in ischemia. The contribution of IK-ATP activation to arrhythmogenesis and the role of activation of this current in suppression of arrhythmias are areas of great interest and debate. Because electrical depression attending myocardial ischemia is more accentuated in ventricular epicardium than in endocardium, we endeavored to contrast the effects of pinacidil-induced IK-ATP activation on the electrophysiology of canine ventricular epicardium and endocardium. METHODS AND RESULTS Standard microelectrode techniques were used. Pinacidil (1 to 5 mumol/L) produced a marked dispersion of repolarization and refractoriness in isolated canine ventricular epicardium as well as between epicardium and endocardium. In endocardium, pinacidil abbreviated action potential duration (APD90) and refractoriness by 8.0 +/- 2.3%. In epicardium, the effects of pinacidil were nonhomogeneous. At some sites, pinacidil induced an all-or-none repolarization at the end of phase 1 of the action potential, resulting in 55.5 +/- 8.7% abbreviation of APD90 and refractoriness. Adjacent to these were sites at which the dome was maintained with only minor changes in APD and refractoriness. Extrasystolic activity displaying features of reentry was observed in isolated sheets of epicardium (63.2%) after exposure to pinacidil (1 to 5 mumol/L) but never in its absence. Dispersion of repolarization and ectopic activity was most readily induced in epicardium by a slowing of the stimulation rate in the presence of pinacidil. Electrical homogeneity was restored and arrhythmias abolished after washout of pinacidil or addition of either a transient outward current blocker, 4-aminopyridine, or a blocker of the ATP-regulated potassium channels, glybenclamide. CONCLUSIONS Our data suggest that the activation of IK-ATP can produce a marked dispersion of repolarization and refractoriness in epicardium as well as between epicardium and endocardium, leading to the development of extrasystolic activity via a mechanism that we have called phase 2 reentry. The available data also suggest that blockade of the transient outward current and/or the ATP-regulated potassium channels may be useful antiarrhythmic interventions under ischemic or "ATP depleted" conditions.
Collapse
Affiliation(s)
- J M Di Diego
- Masonic Medical Research Laboratory, Utica, NY 13504
| | | |
Collapse
|
31
|
Abstract
BACKGROUND We recently reported that sodium channel block can produce opposite effects on action potential duration (APD) and refractoriness in epicardial versus endocardial tissues of the canine ventricle. In addition, strong sodium channel current inhibition was found to cause loss of the action potential dome in epicardium but not endocardium, thus inducing a marked dispersion of repolarization and refractoriness between epicardium and endocardium as well as among neighboring epicardial sites. The marked heterogeneity that evolves under these conditions provides a substrate for the development of arrhythmias. Flecainide was found to induce extrasystolic activity more readily than other sodium blockers. The present study contrasts the electrophysiological actions of flecainide in canine ventricular epicardium and endocardium and examines the characteristics of flecainide-induced arrhythmias in epicardial sheets of canine ventricle. METHODS AND RESULTS Standard microelectrode techniques were used. Flecainide (10-20 microM) produced either prolongation or marked abbreviation of APD in epicardium but only minor changes in the APD of endocardium. Marked abbreviation of APD in epicardium was due to loss of the action potential dome (plateau phase). Arrhythmias displaying characteristics of reentry could be readily induced in flecainide-treated preparations either by increasing the stimulation rate or by introduction of extrastimuli. Flecainide-induced slowing of conduction, more accentuated at the faster stimulation rates, appeared to act synergistically with the drug-induced dispersion of repolarization to generate reentry in these relatively small sheets of epicardium. 4-Aminopyridine, a transient outward current (Ito) blocker, reversed the flecainide-induced marked abbreviation of APD in epicardium and abolished reentrant activity in all cases. Flecainide failed to induce reentry in preparations pretreated with 4-aminopyridine. CONCLUSIONS Our data suggest that the presence of a prominent Ito in epicardium contributes the development of marked electrical heterogeneity in the ventricle after exposure to flecainide. Flecainide-induced dispersion of repolarization, especially when accompanied by prominent conduction delays, results in extrasystolic activity via a mechanism that we have termed "phase 2 reentry." Our results also suggest a role for Ito blockers in the treatment of reentrant arrhythmias.
Collapse
Affiliation(s)
- S C Krishnan
- Masonic Medical Research Laboratory, Utica, N.Y. 13504
| | | |
Collapse
|
32
|
Carlsson L, Abrahamsson C, Drews L, Duker G. Antiarrhythmic effects of potassium channel openers in rhythm abnormalities related to delayed repolarization. Circulation 1992; 85:1491-500. [PMID: 1555289 DOI: 10.1161/01.cir.85.4.1491] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Earlier observations have indicated that repolarization-delaying agents may, under certain circumstances, have the propensity to induce polymorphous ventricular tachyarrhythmias (PVTs) (i.e., torsade de pointes). We have studied whether the potassium channel opener pinacidil and two of its pyridylcyanoguanidine analogues (P1075 and P1188) have any antiarrhythmic effects on clofilium-induced PVTs and triggered responses in rabbits in vivo and in vitro. METHODS AND RESULTS Anesthetized rabbits were pretreated with propranolol (2 mumol/kg i.v.) and subsequently given a concomitant intravenous infusion of clofilium (63 nmol/kg/min for maximally 15 minutes) and the alpha 1-agonist methoxamine (70 nmol/kg/min). In vehicle-pretreated rabbits (n = 19), clofilium invariably induced PVTs, which closely resembled torsade de pointes and were preceded by a marked prolongation of the QTU interval (27 +/- 2.4%, p less than 0.001). In a separate group of seven rabbits in which monophasic action potentials were recorded from the left ventricular endocardium, the tachyarrhythmia was preceded by deflections consistent with early afterdepolarizations (EADs) of the plateau repolarization phase of the monophasic action potentials. Intravenous administration of the pyridylcyanoguanidines in doses reducing mean arterial blood pressure by 25 or 50 mm Hg, respectively, was associated with a dose-dependent attenuation in the occurrence of clofilium-induced PVTs. In the pinacidil-pretreated rabbits (0.41 mumol/kg or 1.86 mumol/kg i.v.), the occurrence of PVTs was reduced from seven of seven rabbits to five of six and to three of seven rabbits (p = 0.035 versus vehicle-pretreated controls), respectively. In rabbits pretreated with the low dose of P1075 (0.01 mumol/kg i.v.), PVT occurrence was reduced from six of six rabbits to two of six rabbits (p = 0.030), whereas in six rabbits given the high dose of P1075 (0.13 mumol/kg), no PVTs appeared (p = 0.001). When the sulfonylurea glibenclamide (10 mumol/kg i.v.) was administered to rabbits before P1075 (0.13 mumol/kg) was infused, clofilium induced PVTs in five of six rabbits (not significantly different from the incidence in the vehicle-pretreated rabbits). Pretreatment with P1188 (4.36 mumol/kg or 11.88 mumol/kg i.v.) caused a reduction in the occurrence of PVT from six of six rabbits to five of six and to none of six rabbits (p = 0.001), respectively. In the six animals pretreated with the high dose of P1188 in which no clofilium-induced arrhythmias were elicited, glibenclamide (20 mumol/kg i.v.) was injected after the entire dose of clofilium had been administered. In these rabbits, premature ventricular systoles and PVTs appeared within a few minutes in five and four of the animals, respectively. In contrast to the pyridylcyanoguanidines, diltiazem pretreatment (0.9 mumol/kg i.v., decreasing arterial pressure by 50 mm Hg) did not attenuate PVT occurrence (five of six rabbits). Acute administration of P1075 (0.13 mumol/kg) during recurrent attacks of PVTs abruptly regularized the rhythm in 12 of 13 animals and diminished EADs observed in monophasic action potentials recorded from the left ventricular endocardium. In in vitro experiments, action potentials were simultaneously recorded from rabbit Purkinje fibers and ventricular muscle cells. Clofilium markedly prolonged action potential duration in Purkinje fibers but not in ventricular muscle cells, and eventually, bradycardia-dependent EADs and triggered activity were elicited. P1075 completely abolished EADs and triggered activity in all (six of six) experiments. Glibenclamide antagonized the suppressive effect of P1075; hence, EADs and triggered responses reappeared and resembled those present before P1075. CONCLUSIONS These results suggest that ATP-sensitive potassium channel activat BACKGROUND Earlier observations have indicated that repolarization-delaying agents may, under certain circumstances, have the propensity to induce polymorp
Collapse
Affiliation(s)
- L Carlsson
- Department of Cardiovascular Pharmacology, Astra Hässle AB, Mölndal, Sweden
| | | | | | | |
Collapse
|
33
|
|
34
|
|
35
|
Priori SG, Napolitano C, Schwartz PJ. Electrophysiologic mechanisms involved in the development of torsades de pointes. Cardiovasc Drugs Ther 1991; 5:203-12. [PMID: 2036341 DOI: 10.1007/bf03029822] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Torsades de pointes (TDP) is a polymorphic ventricular tachycardia with a peculiar electrocardiographic pattern of continuously changing morphology of the QRS complex twisting around an imaginary baseline. The clinical setting under which TDP develops covers many clinico-pathologic conditions, including the long QT syndrome (LQTS). In the present review, we analyze the evolution of the hypotheses for the mechanisms underlying TDP and we discuss some of the experimental models used and their related clinico-pathologic counterparts. Together with the hypothesis that TDP represents a form of reentrant arrhythmia, recent evidence has suggested the possibility that triggered activity may indeed be responsible for TDP. Data collected in vitro are presented that demonstrate a role for catecholamines in the development of afterpotentials in ventricular tissue. Whether adrenergic-mediated afterdepolarizations are the mechanism responsible for TDP in the clinical setting of LQTS has not yet been proven and remains an important area of investigation.
Collapse
Affiliation(s)
- S G Priori
- Centro di Fisiologia Clinica e Ipertensione, Università degli Studi di Milano, Italy
| | | | | |
Collapse
|
36
|
Sasyniuk BI, Valois M, Toy W. Recent advances in understanding the mechanisms of drug-induced torsades de pointes arrhythmias. Am J Cardiol 1989; 64:29J-32J. [PMID: 2596410 DOI: 10.1016/0002-9149(89)91194-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
QTU prolongation and polymorphic ventricular tachycardia "torsades de pointes" have occurred in association with electrolyte abnormalities and during therapy with class IA and III antiarrhythmic drugs. Several recent studies have suggested that the arrhythmia may be due to bradycardia-dependent early afterdepolarizations and triggered activity. These drugs produce 2 types of triggered activity, each with a different frequency profile. The possible role of each type in arrhythmia generation is discussed. The existing evidence suggest that drug-induced triggered activity may originate in the Purkinje system. Triggered activity can be abolished or prevented by various interventions that are also effective clinically. The results of studies at the cellular level, when compared with recordings of monophasic action potentials in vivo, suggest a role for early afterdepolarizations in torsades de pointes arrhythmias.
Collapse
Affiliation(s)
- B I Sasyniuk
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | | |
Collapse
|
37
|
Abstract
Despite major advances in the understanding of mechanisms, better diagnostic methods and a wide array of new modes of therapy, management of cardiac arrhythmias continues to be a challenge. Because of possible deleterious effects of antiarrhythmic therapy, the decision about when and how to treat should be weighed carefully with emphasis on symptoms and the prognostic significance of the arrhythmia. When possible, the high risk patient should be referred to a center where expertise and diagnostic and therapeutic possibilities allow optimal treatment.
Collapse
Affiliation(s)
- H J Wellens
- Department of Cardiology, Academic Hospital Maastricht, The Netherlands
| | | |
Collapse
|
38
|
Twidale N, Gallagher AW, Tonkin AM. Echocardiographic study of U wave inversion in the electrocardiograms of hypertensive patients. J Electrocardiol 1989; 22:365-71. [PMID: 2529338 DOI: 10.1016/0022-0736(89)90013-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The prevalence of U wave inversion was evaluated in 58 adult patients with hypertension, and a possible mechanism for it was examined using M-mode echocardiographic indices. U wave inversion was the most common electrocardiographic abnormality, occurring in 34% of patients; voltage criteria for left ventricular hypertrophy were present in only 14% of patients, and ventricular strain pattern was not detected in any patient. Nonetheless, on echocardiography left ventricular posterior wall thickness was increased in 58% of patients. However, neither U wave inversion nor conventional voltage criteria for left ventricular hypertrophy was strongly predictive for this finding. The authors conclude that U wave inversion is a frequent finding in patients with hypertension, often occurring alone. Although it does not appear to be closely linked to the presence of left ventricular hypertrophy, it may relate to other, perhaps subtle, abnormalities of diastolic ventricular relaxation.
Collapse
Affiliation(s)
- N Twidale
- Department of Medicine, Flinders Medical Centre, Bedford Park, South Australia
| | | | | |
Collapse
|
39
|
Greenspon AJ, Kidwell GA, Barrasse LD, Hessen SE, Giudici M. Hereditary long QT syndrome associated with cardiac conduction system disease. Pacing Clin Electrophysiol 1989; 12:479-85. [PMID: 2466273 DOI: 10.1111/j.1540-8159.1989.tb02685.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This report describes the cardiac conduction abnormalities, detected by invasive electrophysiological study, in two identical siblings with symptomatic congenital long QT syndrome. Both patients had evidence of intra-Hisian conduction delay in response to programmed atrial stimulation and pacing induced infranodal block was seen in one of the two patients. The response of the observed conduction delay to autonomic interventions is described. The observed electrophysiologic abnormalities are consistent with previously reported pathological findings and document the association of functional conduction system disease with congenital QT prolongation.
Collapse
Affiliation(s)
- A J Greenspon
- Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
40
|
Van Hemel NM, Swenne CA, De Bakker JM, Defauw JJ, Guiraudon GM. Epicardial reflection as a cause of incessant ventricular bigeminy. Pacing Clin Electrophysiol 1988; 11:1036-44. [PMID: 2457882 DOI: 10.1111/j.1540-8159.1988.tb03949.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Incessant monomorphic ventricular bigeminy was studied in a young patient with no organic heart disease. The arrhythmia could not be controlled by drug therapy. Spontaneous and artificial variation of the heart rate showed that reentry was the most likely arrhythmogenic mechanism. Peroperative epicardial and transmural mapping revealed an epicardial focal origin which was cryoablated. Reflected reentry occurring in a small area of working myocardial cells appeared to be the most likely explanation for this arrhythmia.
Collapse
Affiliation(s)
- N M Van Hemel
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Cranefield PF, Aronson RS. Torsade de pointes and other pause-induced ventricular tachycardias: the short-long-short sequence and early afterdepolarizations. Pacing Clin Electrophysiol 1988; 11:670-8. [PMID: 2456546 DOI: 10.1111/j.1540-8159.1988.tb06016.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The early afterdepolarization, which is an interruption of repolarization, can evoke a second upstroke or a salvo of action potentials. It is suggested that the electrophysiological characteristics of the early afterdepolarization can produce a lengthening of the QT interval and that the second upstroke and salvo of activity that may follow, it can explain many features of torsade de pointes and of certain other ventricular tachycardias. The early afterdepolarization, torsade de pointes, and repetitive monomorphic idiopathic ventricular tachycardia are all induced by bradycardia or by a preceding long RR interal. The R-on-T phenomenon is also discussed.
Collapse
Affiliation(s)
- P F Cranefield
- Laboratory of Cardiac Physiology, Rockefeller University, New York, N.Y
| | | |
Collapse
|
42
|
Scheinman MM. Polymorphous ventricular tachycardia and early afterdepolarizations: clinical presentation and therapeutic implications. Pacing Clin Electrophysiol 1988; 11:667-9. [PMID: 2456545 DOI: 10.1111/j.1540-8159.1988.tb06015.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- M M Scheinman
- Department of Medicine, University of California, San Francisco 94143-0214
| |
Collapse
|