1
|
Picknell KJ, Poddar N, McCauley JI, Chaves AV, Ralph PJ. Whole cell microalgae: Potential to transform industry waste into sustainable ruminant feed. BIORESOURCE TECHNOLOGY 2025; 430:132547. [PMID: 40245992 DOI: 10.1016/j.biortech.2025.132547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Microalgae offer an innovative solution for utilizing industrial waste to produce sustainable ruminant feed. With strong carbon capture capabilities, they play a vital role in biological carbon capture and utilization. Advances in biotechnology enable the use of industrial waste streams, offering a pathway to reducing carbon emissions and cultivation costs. Extensive research highlights microalgae's nutritional and anti-methanogenic benefits for ruminants, yet they remain commercially unutilized in feed. To address cultivation limitations, this review explores advancements in algae carbon capture biotechnology and proposes brewery waste to support algae cultivation. In addition, the challenges and bottlenecks that remain to be overcome for future commercial translation of this strategy are presented. This review establishes a theoretical solution for integrating microalgae into high-emission industries like breweries and utilization of algae biomass to reduce agricultural emissions.
Collapse
Affiliation(s)
- Kira J Picknell
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2000, Australia.
| | - Nature Poddar
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2000, Australia.
| | - Janice I McCauley
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2002, Australia.
| | - Alexandre V Chaves
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2000, Australia.
| |
Collapse
|
2
|
Jothyswarupha KA, Venkataraman S, Rajendran DS, Shri SSS, Sivaprakasam S, Yamini T, Karthik P, Kumar VV. Immobilized enzymes: exploring its potential in food industry applications. Food Sci Biotechnol 2025; 34:1533-1555. [PMID: 40129709 PMCID: PMC11929668 DOI: 10.1007/s10068-024-01742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 03/26/2025] Open
Abstract
The global demand for nutritious, longer-lasting food has spurred the food industry to seek eco-friendly solutions. Enzymes play a vital role in enhancing food quality by improving flavor, texture, and nutritional content. However, challenges like rapid deactivation and non-recoverability of free enzymes are addressed by immobilized enzymes, which enhance efficiency, quality, and sustainability in food processing. Immobilization methods include adsorption, covalent binding, entrapment, encapsulation and cross-liked enzyme aggregates, which enhancing their stability, reusability, and catalytic efficiency. Immobilization of enzyme such as pectinase, amylase, naringinase, cellulase, lactase, glucoamylase, xylanase, invertase, lipase, phytase, and protease have been utilized in fruit, vegetable, baking, dairy, brewing, and feed process due to their high thermostability, improved shelf life, food quality and safety. The catalytic efficiency of immobilized enzymes in detecting and quantifying various food components, contaminants, and quality indicators, also developed functional foods with nutraceuticals benefits, include prebiotic juices, lactose-free dairy products, poly unsaturated fatty acids rich foods, low-calorie sweeteners, fortified food and bioactive peptides. Graphical abstract
Collapse
Affiliation(s)
- K. A. Jothyswarupha
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - S. S. Sakthi Shri
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Shivani Sivaprakasam
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Tholeti Yamini
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - P. Karthik
- Centre for Food Nanotechnology (CFN), Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021 India
- Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
3
|
Piornos JA, Balagiannis DP, Koussissi E, Bekkers A, Vissenaekens J, Brouwer E, Parker JK. Multi-response kinetic modelling of the formation of five Strecker aldehydes during kilning of barley malt. Food Chem 2025; 464:141532. [PMID: 39413594 DOI: 10.1016/j.foodchem.2024.141532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
Control of aroma formation during production of barley malt is critical to provide consistent and high-quality products for the brewing industry. Malt quality can be affected by the inherent variability of raw material and processing conditions, leading to inconsistent and/or undesirable profiles. Dried green malts were cured isothermally at 65, 78 and 90 °C for 8.4 h, and characteristic aroma compounds (Strecker aldehydes), precursors and intermediate compounds were analysed over time. By kinetic modelling of Strecker aldehydes, based on fundamental chemical pathways, we showed that degradation of Amadori rearrangement products and short-chain dicarbonyls was more sensitive to temperature change due to their higher activation energies compared to other kinetic steps. This study can help maltsters to manipulate formation of Strecker aldehydes, via raw material screening and process control, and hence optimise the organoleptic quality of malts and their products, such as non-alcoholic beers, where these aldehydes play a key role.
Collapse
Affiliation(s)
- José A Piornos
- Department of Food and Nutritional Sciences, University of Reading, RG6 6DZ, UK..
| | | | - Elisabeth Koussissi
- Heineken Supply Chain BV, Global Innovation & Research, Burgemeester Smeetsweg, 1, 2382, PH, Zoeterwoude, the Netherlands..
| | - August Bekkers
- Heineken Supply Chain BV, Global Innovation & Research, Burgemeester Smeetsweg, 1, 2382, PH, Zoeterwoude, the Netherlands..
| | | | - Eric Brouwer
- Heineken Supply Chain BV, Global Innovation & Research, Burgemeester Smeetsweg, 1, 2382, PH, Zoeterwoude, the Netherlands..
| | - Jane K Parker
- Department of Food and Nutritional Sciences, University of Reading, RG6 6DZ, UK..
| |
Collapse
|
4
|
Guo Y, Yuan Z, Han Y, Yang D, Yuan H, Zhang F. Effects of Algal-Derived β-Glucan on the Growth Performance, Intestinal Health, and Aeromonas veronii Resistance of Ricefield Eel ( Monopterus albus). AQUACULTURE NUTRITION 2025; 2025:8172810. [PMID: 39877687 PMCID: PMC11774572 DOI: 10.1155/anu/8172810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/10/2024] [Indexed: 01/31/2025]
Abstract
Ricefield eel is an important economic fish in China. However, large-scale intensive breeding has increased the incidence of diseases in eels. In this study, we conducted an 8-week feeding trial to investigate the effects of β-glucan on the growth performance, intestinal health, and Aeromonas veronii resistance of Monopterus albus (M. albus). Three hundred healthy fish (initial body weight: 12.38 ± 0.50 g) were randomly divided into five groups: A1 (basal diet) was considered the control group, whereas A2, A3, A4, and A5 were the experimental groups. The fish in the experimental groups were fed a basal diet supplemented with 250, 500, 1000, and 2000 mg/kg β-glucan, respectively. The addition of 0.025%-0.2% β-glucan resulted in a notable enhancement of eel growth performance, with the most significant improvement observed in eels supplemented with 0.1% β-glucan (p < 0.05). Furthermore, 0.025%-0.2% β-glucan could significantly enhance the antioxidant properties of the eel intestinal tract (p < 0.05), and the addition of 0.1% β-glucan significantly improved trypsin (TPS), amylase (AMS), and lipase (LPS) activities in the intestine (p < 0.05). In terms of intestinal histology, the A3, A4, and A5 groups exhibited significantly greater villus height compared to the control group (p < 0.05). Concentrations of β-glucan at 0.1% and 0.2% enhanced the composition of the intestinal flora; specifically, the relative abundance of Proteobacteria increased, while the relative abundance of Firmicutes decreased. Moreover, the addition of 0.05%-0.2% β-glucan significantly improved the relative survival rate (SR) of A. veronii-infected eels and significantly decreased the bacterial load of the liver, spleen, and kidney (p < 0.05). In comparison to eels that did not receive β-glucan supplementation, eels supplemented with 0.2% β-glucan exhibited decreased intestinal structural damage. In summary, the addition of 0.1%-0.2% β-glucan can promote eel growth, improve intestinal digestion and antioxidant capacity, regulate intestinal flora, and enhance intestinal physical function and anti-infection ability.
Collapse
Affiliation(s)
- Yu Guo
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Zijing Yuan
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Yueyun Han
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Daiqin Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Hanwen Yuan
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Fuxian Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
5
|
Kozłowski M, Szczypiński PM, Reiner J, Lampa P, Mrzygłód M, Szturo K, Zapotoczny P. Identifying defects and varieties of Malting Barley Kernels. Sci Rep 2024; 14:22143. [PMID: 39333255 PMCID: PMC11436987 DOI: 10.1038/s41598-024-73683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
This study introduces a comprehensive approach for classifying individual malting barley kernels, involving dual-sided kernel imaging, a specifically designed image processing algorithm, an optimized deep neural network architecture, and a mechanical sorting system. The proposed method achieves precise classification into multiple classes, aligning with quality standards for malting material assessment. Throughout the study, various image analysis techniques were assessed, including traditional feature engineering, established transfer learning deep neural network architectures, and our custom-designed convolutional neural network tailored for barley kernel image analysis. Comparative analysis underscores the superior performance of our network model. The study reveals that our proposed deep learning network achieves a 94% accuracy in classifying barley kernel defects and varieties, outperforming well-established transfer learning models to complex architectures that attain 93% accuracy. Additionally, it surpasses the traditional machine learning approach involving feature extraction and support vector machine classifiers, which achieve accuracy below 90% in detecting defective kernels and below 70% in varietal classification. However, we also noted the traditional approach's advantage in morphological feature recognition. This observation guides new research toward integrating morphological feature extraction techniques with modern convolutional networks. This paper presents a deep neural network designed specifically for the analysis of cereal kernel images in two applications: defect and variety classification. It emphasizes the importance of standardizing kernel orientation and merging images from both sides of the kernel, and introduces a device for image acquisition that fulfills this need.
Collapse
Affiliation(s)
- Michał Kozłowski
- University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 11, Olsztyn, 10-710, Poland.
| | | | - Jacek Reiner
- Wrocław University of Science and Technology, ul. Łukasiewicza 5, Wrocław, Poland
| | - Piotr Lampa
- Wrocław University of Science and Technology, ul. Łukasiewicza 5, Wrocław, Poland
| | - Mariusz Mrzygłód
- Wrocław University of Science and Technology, ul. Łukasiewicza 5, Wrocław, Poland
| | - Karolina Szturo
- University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 11, Olsztyn, 10-710, Poland
| | - Piotr Zapotoczny
- University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 11, Olsztyn, 10-710, Poland
| |
Collapse
|
6
|
Saburi W, Mori H. Comparisons of the amylolytic enzymes and malt starch hydrolysates of two barley cultivars, Hokudai 1 (the first cultivar developed in Japan) and Kitanohoshi (currently used cultivar for beer production). Biosci Biotechnol Biochem 2024; 88:1180-1187. [PMID: 38992276 DOI: 10.1093/bbb/zbae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Starch degradation in malted barley produces yeast-fermentable sugars. In this study, we compared the amylolytic enzymes and composition of the malt starch hydrolysates of two barley cultivars, Hokudai 1 (the first cultivar established in Japan) and Kitanohoshi (the currently used cultivar for beer production). Hokudai 1 malt contained lower activity of amylolytic enzymes than Kitanohoshi malt, although these cultivars contained α-amylase AMY2 and β-amylase Bmy1 as the predominant enzymes. Malt starch hydrolysate of Hokudai 1 contained more limit dextrin and less yeast-fermentable sugars than that of Kitanohoshi. In mixed malt saccharification, a high Hokudai 1 malt ratio increased the limit dextrin levels and decreased the maltotriose and maltose levels. Even though Kitanohoshi malt contained more amylolytic enzymes than Hokudai 1 malt, addition of Kitanohoshi extract containing the amylolytic enzymes did not enhance malt starch degradation of Hokudai 1. Hokudai 1 malt starch was less degradable than Kitanohoshi malt starch.
Collapse
Affiliation(s)
- Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Gutiérrez-Cortez E, Hernandez-Becerra E, Zubieta-Otero LF, Gaytán-Martínez M, Barrón-García OY, Rodriguez-Garcia ME. Physicochemical changes in Amaranthus spp grains, flour, isolated starch, and nanocrystals during germination and malting. Food Chem 2024; 451:139395. [PMID: 38703736 DOI: 10.1016/j.foodchem.2024.139395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/06/2024]
Abstract
Amaranth is a pseudocereal that contains between 50 and 60% starch, gluten-free protein, and essential amino acids. This study investigates the physicochemical changes in Amaranthus spp. grains, flour, isolated starch and nanocrystals during germination and malting. The moisture content increased from 8.9% to 41% over 2 h of soaking. The percentage of germination increased rapidly, reaching 96% after 60 h, a remarkable advantage over other cereals. The nutrient composition varied, including protein synthesis and lipid degradation. Lipid concentration decreased during malting, except for soaking, which increased by 62%. Scanning electron microscopy shows that germination does not cause morphological changes on the outer surface of the grains, while transmission electron microscopy indicates the presence of isolated nanocrystals with orthorhombic crystal structure confirmed by X-ray diffraction. The viscosity profile shows a decrease in peak viscosity. Therefore, amaranth is a potential pseudocereal that can be used as an additive in the production of fermented beverages.
Collapse
Affiliation(s)
- Elsa Gutiérrez-Cortez
- Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Laboratorio de Procesos en Ingeniería Agroalimentaria Universidad Nacional Autónoma de México, Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, Cuautitlán Izcalli, Edo de México 54714, Mexico
| | - Ezequiel Hernandez-Becerra
- Escuela de Bachilleres Plantel Norte, Universidad Autónoma de Querétaro, Av Somrereta s/n Colonia las Américas, 76121 Querétaro, Qro, Mexico; Ciencias de la Salud, Universidad del Valle de México campus Querétaro, Blvd Juriquilla No. 1000, Santa Rosa Jauregui, Querétaro, Qro 76230, Mexico
| | - Luis Fernando Zubieta-Otero
- Posgrado en Ciencia e Ingeniería de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, Qro 76230, Mexico
| | - Marcela Gaytán-Martínez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas S/N, Querétaro, Qro 76010, Mexico
| | - Oscar Yael Barrón-García
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro 76230, Mexico; División Industrial, Universidad Tecnológica de Querétaro, Av. Pie de la Cuesta 2501, Nacional, 76148 Santiago de Querétaro, Qro, Mexico.
| | - Mario Enrique Rodriguez-Garcia
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro 76230, Mexico.
| |
Collapse
|
8
|
Ijaz U, Zhao C, Shahbala S, Zhou M. Genome-Wide Association Study for Identification of Marker-Trait Associations Conferring Resistance to Scald from Globally Collected Barley Germplasm. PHYTOPATHOLOGY 2024; 114:1637-1645. [PMID: 38451589 DOI: 10.1094/phyto-01-24-0043-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Scald is one of the major economically important foliar diseases in barley, causing up to 40% yield loss in susceptible varieties. The identification of quantitative trait loci and elite alleles that confer resistance to scald is imperative in reducing the threats to barley production. In this study, genome-wide association studies were conducted using a panel of 697 barley genotypes to identify quantitative trait loci for scald resistance. Field experiments were conducted over three consecutive years. Among different models used for genome-wide association studies analysis, FarmCPU was shown to be the best-suited model. Nineteen significant marker-trait associations related to scald resistance were identified across six different chromosomes. Eleven of these marker-trait associations correspond to previously reported scald resistance genes Rrs1, Rrs4, and Rrs2, respectively. Eight novel marker-trait associations were identified in this study, with the candidate genes encoding a diverse class of proteins, including region leucine-rich repeats, AP2/ERF transcription factor, homeodomain-leucine zipper, and protein kinase family proteins. The combination of identified superior alleles significantly reduces disease severity scores. The results will be valuable for marker-assisted breeding for developing scald-resistant varieties.
Collapse
Affiliation(s)
- Usman Ijaz
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia
| | - Sergey Shahbala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia
| |
Collapse
|
9
|
Park J, Chung HJ, Park HY, Park HJ, Oh SK. Comparative analysis of malt quality and starch characteristics of three South Korean barley cultivars. Food Sci Biotechnol 2024; 33:1135-1145. [PMID: 38440675 PMCID: PMC10908982 DOI: 10.1007/s10068-023-01419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 03/06/2024] Open
Abstract
In this study, malt was produced in pilot-scale facilities and conditioned using three barley (Hordeum vulgare L.) cultivars in South Korea (Heugho, Hopum, and Kwangmaeg). Quality and starch characteristics were compared. The starch content was considerably reduced in all malts. Coleoptile elongation was higher in Heugho (HHM; 85.7% ± 12.6%) and Hopum (HPM; 83.9% ± 10.7%) than in Kwangmaeg (KMM; 78.1% ± 9.9%) malt. Malt yield ranged from 81.8 to 84.9%, with no significant difference. All samples presented type A crystallinity, and granules showed discoid shapes. After malting, the mono- and di-saccharide contents (not including sucrose) were increased. The fermentable sugar level was the highest in HHM, whereas non-fermentable sugar was the highest in KMM. These results suggest that HPM enables efficient scarification based on the rapid degradation of starch, while Heugho barley and HHM have a high potential for beer and malt production, respectively. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01419-6.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), 126 Suin-ro, Kwonseon-gu, Suwon, Gyeonggi 16429 Republic of Korea
| | - Hyun-Jung Chung
- Division of Food and Nutrition, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Hye Young Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), 126 Suin-ro, Kwonseon-gu, Suwon, Gyeonggi 16429 Republic of Korea
| | - Hyun-Jin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Sea-Kwan Oh
- National Institute of Crop Science (NICS), Rural Development Administration (RDA), 251 Chungyel-ro, Chuncheon, Gangwon 24219 Republic of Korea
| |
Collapse
|
10
|
Zhao Z, Li W, Tran TT, Loo SCJ. Bacillus subtilis SOM8 isolated from sesame oil meal for potential probiotic application in inhibiting human enteropathogens. BMC Microbiol 2024; 24:104. [PMID: 38539071 PMCID: PMC11312844 DOI: 10.1186/s12866-024-03263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/17/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND While particular strains within the Bacillus species, such as Bacillus subtilis, have been commercially utilised as probiotics, it is critical to implement screening assays and evaluate the safety to identify potential Bacillus probiotic strains before clinical trials. This is because some Bacillus species, including B. cereus and B. anthracis, can produce toxins that are harmful to humans. RESULTS In this study, we implemented a funnel-shaped approach to isolate and evaluate prospective probiotics from homogenised food waste - sesame oil meal (SOM). Of nine isolated strains with antipathogenic properties, B. subtilis SOM8 displayed the most promising activities against five listed human enteropathogens and was selected for further comprehensive assessment. B. subtilis SOM8 exhibited good tolerance when exposed to adverse stressors including acidity, bile salts, simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and heat treatment. Additionally, B. subtilis SOM8 possesses host-associated benefits such as antioxidant and bile salt hydrolase (BSH) activity. Furthermore, B. subtilis SOM8 contains only haemolysin toxin genes but has been proved to display partial haemolysis in the test and low cytotoxicity in Caco-2 cell models for in vitro evaluation. Moreover, B. subtilis SOM8 intrinsically resists only streptomycin and lacks plasmids or other mobile genetic elements. Bioinformatic analyses also predicted B. subtilis SOM8 encodes various bioactives compound like fengycin and lichendicin that could enable further biomedical applications. CONCLUSIONS Our comprehensive evaluation revealed the substantial potential of B. subtilis SOM8 as a probiotic for targeting human enteropathogens, attributable to its exceptional performance across selection assays. Furthermore, our safety assessment, encompassing both phenotypic and genotypic analyses, showed B. subtilis SOM8 has a favourable preclinical safety profile, without significant threats to human health. Collectively, these findings highlight the promising prospects of B. subtilis SOM8 as a potent probiotic candidate for additional clinical development.
Collapse
Affiliation(s)
- Zhongtian Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wenrui Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - The Thien Tran
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
11
|
Nye-Wood M, Colgrave ML. LC-MS/MS Reveals Hordeins Are Enriched in Brewers' Spent Grain. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:409-412. [PMID: 38385353 PMCID: PMC10921455 DOI: 10.1021/jasms.3c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Barley is commonly used in malting and brewing, and spent grain is repurposed for other foods. Barley contains gluten proteins called hordeins that cause intestinal damage and disease symptoms if eaten by people with celiac disease and related conditions. While the mashing process in brewing can partially hydrolyze immunogenic epitopes in hordeins, the immunogenic epitope load between the starting malt and spent grain has not been investigated. Herein, we quantified hordeins in commercially available spent grain and from matching malt. Liquid chromatography-mass spectrometry (LC-MS) and sandwich and competitive R5 ELISAs were used for quantification, revealing a higher abundance of gluten proteins in the spent grain product compared with the input malt. Certain hordein subtypes were enriched while others were depleted, and overall protein content was higher in spent grain. This suggests that the mashing process selectively extracts nonprotein components, leaving protein and hordein content elevated in spent grain. The spent grain products tested were not safe for consumers with celiac disease.
Collapse
Affiliation(s)
- Mitchell
G. Nye-Wood
- School
of Science, Edith Cowan University, Perth, WA 6027, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Perth, WA 6027, Australia
| | - Michelle L. Colgrave
- School
of Science, Edith Cowan University, Perth, WA 6027, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Perth, WA 6027, Australia
- CSIRO Agriculture
and Food, St Lucia, QLD 4067, Australia
| |
Collapse
|
12
|
Vakati SR, Vanderlaan G, Gacura MD, Ji X, Chen L, Piovesan D. Synthesis of Poly-Lactic Acid by Ring Open Polymerization from Beer Spent Grain for Drug Delivery. Polymers (Basel) 2024; 16:483. [PMID: 38399861 PMCID: PMC10892441 DOI: 10.3390/polym16040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Poly-lactic acid (PLA) is a synthetic polymer that has gained popularity as a scaffold due to well-established manufacturing processes, predictable biomaterial properties, and sustained therapeutic release rates. However, its drawbacks include weak mechanical parameters and reduced medicinal delivery efficacy after PLA degradation. The development of synthetic polymers that can release antibiotics and other medicines remains a top research priority. This study proposes a novel approach to produce PLA by converting Brewer's spent grain (BSG) into lactic acid by bacterial fermentation followed by lactide ring polymerization with a metal catalyst. The elution properties of the PLA polymer are evaluated using modified Kirby-Bauer assays involving the antimicrobial chemotherapeutical, trimethoprim (TMP). Molded PLA polymer disks are impregnated with a known killing concentration of TMP, and the PLA is evaluated as a drug vehicle against TMP-sensitive Escherichia coli. This approach provides a practical means of assessing the polymer's ability to release antimicrobials, which could be beneficial in exploring new drug-eluting synthetic polymer strategies. Overall, this study highlights the potential of using BSG waste materials to produce valuable biomaterials of medical value with the promise of expanded versatility of synthetic PLA polymers in the field of drug-impregnated tissue grafts.
Collapse
Affiliation(s)
- Snehal R. Vakati
- Department of Bioengineering and Biomedical Engineering, Gannon University, Erie, PA 16541, USA; (S.R.V.); (X.J.); (L.C.)
| | - Gary Vanderlaan
- Department of Biology, Gannon University, Erie, PA 16541, USA (M.D.G.)
| | - Matthew D. Gacura
- Department of Biology, Gannon University, Erie, PA 16541, USA (M.D.G.)
| | - Xiaoxu Ji
- Department of Bioengineering and Biomedical Engineering, Gannon University, Erie, PA 16541, USA; (S.R.V.); (X.J.); (L.C.)
| | - Longyan Chen
- Department of Bioengineering and Biomedical Engineering, Gannon University, Erie, PA 16541, USA; (S.R.V.); (X.J.); (L.C.)
| | - Davide Piovesan
- Department of Bioengineering and Biomedical Engineering, Gannon University, Erie, PA 16541, USA; (S.R.V.); (X.J.); (L.C.)
| |
Collapse
|
13
|
Farooq MS, Ansari ZK, Alvi A, Rustam F, Díez IDLT, Mazón JLV, Rodríguez CL, Ashraf I. Blockchain based transparent and reliable framework for wheat crop supply chain. PLoS One 2024; 19:e0295036. [PMID: 38206967 PMCID: PMC10783778 DOI: 10.1371/journal.pone.0295036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
The wheat crop that fulfills 35% of human food demand is facing several problems due to a lack of transparency, security, reliability, and traceability in the existing agriculture supply chain. Many systems have been developed for the agriculture supply chain to overcome such issues, however, monopolistic centralized control is the biggest hurdle to realizing the use of such systems. It has eventually gained consumers' trust in branded products and rejected other products due to the lack of traceable supply chain information. This study proposes a blockchain-based framework for supply chain traceability which provides trustable, transparent, secure, and reliable services for the wheat crop. A crypto token called wheat coin (WC) has been introduced to keep track of transactions among the stakeholders of the wheat supply chain. Moreover, an initial coin offering (ICO) of WC, crypto wallets, and an economic model are proposed. Furthermore, a smart contract-based transaction system has been devised for the transparency of wheat crop transactions and conversion of WC to fiat and vice versa. We have developed the interplanetary file system (IPFS) to improve data availability, security, and transparency which stores encrypted private data of farmers, businesses, and merchants. Lastly, the results of the experiments show that the proposed framework shows better performance as compared to previous crop supply chain solutions in terms of latency to add-blocks, per-minute transactions, average gas charge for the transaction, and transaction verification time. Performance analysis with Bitcoin and Ethereum shows the superior performance of the proposed system.
Collapse
Affiliation(s)
- Muhammad Shoaib Farooq
- Department of Computer Science, University of Management and Technology, Lahore, Pakistan
| | - Zain Khalid Ansari
- Department of Computer Science, University of Management and Technology, Lahore, Pakistan
| | - Atif Alvi
- Department of Computer Science, University of Management and Technology, Lahore, Pakistan
| | - Furqan Rustam
- School of Computer Science, University College Dublin, Dublin, Ireland
| | - Isabel De La Torre Díez
- Department of Signal Theory and Communications and Telematic Engineering, University of Valladolid, Valladolid, Spain
| | - Juan Luis Vidal Mazón
- Universidad Europea del Atlántico, Santander, Spain
- Universidad Internacional Iberoamericana, Arecibo, Puerto Rico, United States of America
- Universidade Internacional do Cuanza, Cuito, Bié, Angola
| | - Carmen Lili Rodríguez
- Universidad Europea del Atlántico, Santander, Spain
- Universidad Internacional Iberoamericana, Campeche, México
| | - Imran Ashraf
- Information and Communication Engineering, Yeungnam University, Gyeongsan, Korea
| |
Collapse
|
14
|
Riseh RS, Vazvani MG, Kennedy JF. β-glucan-induced disease resistance in plants: A review. Int J Biol Macromol 2023; 253:127043. [PMID: 37742892 DOI: 10.1016/j.ijbiomac.2023.127043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are caused by various factors, including both pathogenic and non-pathogenic ones. β-glucan primarily originates from bacteria and fungi, some species of these organisms work as biological agents in causing diseases. When β-glucan enters plants, it triggers the defense system, leading to various reactions such as the production of proteins related to pathogenicity and defense enzymes. By extracting β-glucan from disturbed microorganisms and using it as an inducing agent, plant diseases can be effectively controlled by activating the plant's defense system. β-glucan plays a crucial role during the interaction between plants and pathogens. Therefore, modeling the plant-pathogen relationship and using the molecules involved in this interaction can help in controlling plant diseases, as pathogens have genes related to resistance against pathogenicity. Thus, it is reasonable to identify and use biological induction agents at a large scale by extracting these compounds.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
15
|
Isegawa Y. Activation of Immune and Antiviral Effects by Euglena Extracts: A Review. Foods 2023; 12:4438. [PMID: 38137241 PMCID: PMC10743201 DOI: 10.3390/foods12244438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza is an acute respiratory illness caused by influenza virus infection, which is managed using vaccines and antiviral drugs. Recently, the antiviral effects of plants and foods have gained attention. Euglena is a motile unicellular alga and eukaryotic photosynthetic microorganism. It has secondary chloroplasts and is a mixotroph able to feed by photosynthesis or phagocytosis. This review summarizes the influenza treatment effects of Euglena from the perspective of a functional food that is attracting attention. While it has been reported that Euglena contributes to suppressing blood sugar levels and ameliorates symptoms caused by stress by acting on the autonomic nervous system, the immunostimulatory and antiviral activities of Euglena have also been reported. In this review, I focused on the immunostimulation of antiviral activity via the intestinal environment and the suppression of viral replication in infected cells. The functions of specific components of Euglena, which also serves as the source of a wide range of nutrients such as vitamins, minerals, amino acids, unsaturated fatty acids, and β-1,3-glucan (paramylon), are also reviewed. Euglena has animal and plant properties and natural compounds with a wide range of functions, providing crucial information for improved antiviral strategies.
Collapse
Affiliation(s)
- Yuji Isegawa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
16
|
Bahmani M, Juhász A, Bose U, Nye-Wood MG, Blundell M, Howitt CA, Colgrave ML. Proteome Changes Resulting from Malting in Hordein-Reduced Barley Lines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14079-14091. [PMID: 37712129 PMCID: PMC10540200 DOI: 10.1021/acs.jafc.3c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Hordeum vulgare L., commonly known as barley, is primarily used for animal feed and malting. The major storage proteins in barley are hordeins, known triggers of celiac disease (CD). Here, sequential window acquisition of all theoretical mass spectra (SWATH)-MS proteomics was employed to investigate the proteome profile of grain and malt samples from the malting barley cultivar Sloop and single-, double-, and triple hordein-reduced lines bred in a Sloop background. Using a discovery proteomics approach, 2688 and 3034 proteins were detected from the grain and malt samples, respectively. By utilizing label-free relative quantitation through SWATH-MS, a total of 2654 proteins have been quantified from grain and malt. The comparative analyses between the barley grain and malt samples revealed that the C-hordein-reduced lines have a more significant impact on proteome level changes due to malting than B- and D-hordein-reduced lines. Upregulated proteins in C-hordein-reduced lines were primarily involved in the tricarboxylic acid cycle and fatty acid peroxidation processes to provide more energy for seed germination during malting. By applying proteomics approaches after malting in hordein-reduced barley lines, we uncovered additional changes in the proteome driven by the genetic background that were not apparent in the sound grain. Our findings offer valuable insights for barley breeders and maltsters seeking to understand and optimize the performance of gluten-free grains in malt products.
Collapse
Affiliation(s)
- Mahya Bahmani
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Angéla Juhász
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Utpal Bose
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
- CSIRO
Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Mitchell G. Nye-Wood
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | | | | | - Michelle L. Colgrave
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
- CSIRO
Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| |
Collapse
|
17
|
Visioni A, Basile B, Amri A, Sanchez-Garcia M, Corrado G. Advancing the Conservation and Utilization of Barley Genetic Resources: Insights into Germplasm Management and Breeding for Sustainable Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:3186. [PMID: 37765350 PMCID: PMC10535687 DOI: 10.3390/plants12183186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Barley is a very important crop particularly in marginal dry areas, where it often serves as the most viable option for farmers. Additionally, barley carries great significance in the Western world, serving not only as a fundamental crop for animal feed and malting but also as a nutritious food source. The broad adaptability of barley and its ability to withstand various biotic and abiotic stresses often make this species the sole cereal that can be cultivated in arid regions. The collection and utilization of barley genetic resources are crucial for identifying valuable traits to enhance productivity and mitigate the adverse effects of climate change. This review aims to provide an overview of the management and exploitation of barley genetic resources. Furthermore, the review explores the relationship between gene banks and participatory breeding, offering insights into the diversity and utilization of barley genetic resources through some examples such as the initiatives undertaken by ICARDA. Finally, this contribution highlights the importance of these resources for boosting barley productivity, addressing climate change impacts, and meeting the growing food demands in a rapidly changing agriculture. The understanding and utilizing the rich genetic diversity of barley can contribute to sustainable agriculture and ensure the success of this vital crop for future generations globally.
Collapse
Affiliation(s)
- Andrea Visioni
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10100, Morocco; (A.A.); (M.S.-G.)
| | - Boris Basile
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Ahmed Amri
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10100, Morocco; (A.A.); (M.S.-G.)
| | - Miguel Sanchez-Garcia
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10100, Morocco; (A.A.); (M.S.-G.)
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
18
|
Park J, Park HY, Chung HJ, Oh SK. Starch Structure of Raw Materials with Different Amylose Contents and the Brewing Quality Characteristics of Korean Rice Beer. Foods 2023; 12:2544. [PMID: 37444283 DOI: 10.3390/foods12132544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to explore suitable processing materials for rice beer (RB) production by analyzing the starch structure of the raw materials utilized for brewing beer and the quality characteristics of RB. We used malt, employing the Heugho cultivar as the main ingredient, and produced beer containing 30% rice. The regular amylose-containing cultivars Samgwang (SA) and Hangaru (HA) and the high-amylose-containing cultivar Dodamssal (DO) were used as adjuncts. Distribution of the short molecular chains of the starch amylopectin was the highest for SA and malt at 29.3% and 27.1%, respectively. Glucose content was the highest in the wort prepared with 100% malt and 30% SA + 70% malt. The alcohol content in SA RB and HA RB was higher than that in beer prepared with 100% malt. DO RB had the least bitterness and volatile components, such as acetaldehyde and ethyl acetate. The three rice cultivars tested in this study are suitable as starch adjuncts for RB production. The characteristics of RBs varied depending on the molecular structure of the ingredients, irrespective of their amylose contents. SA could be considered a craft beer with quality characteristics and rich flavor components, similar to 100% malt beer, compared to other RBs.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Suwon 16429, Republic of Korea
| | - Hye Young Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Suwon 16429, Republic of Korea
| | - Hyun-Jung Chung
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sea-Kwan Oh
- National Institute of Crop Science (NICS), Rural Development Administration (RDA), Chuncheon 24219, Republic of Korea
| |
Collapse
|
19
|
Pokorski P, Trząskowska M. In Situ Inactivation of Selected Bacillus Strains in Brewer's Spent Grain during Fermentation by Lactococcus lactis ATCC 11454-The Possibility of Post-Production Residues Management. Foods 2023; 12:2279. [PMID: 37372490 DOI: 10.3390/foods12122279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The safety and quality of post-production residues is essential before they can be reused. Both to explore the possibility of reuse as a fermentation medium and the context of pathogens' inactivation, the research aimed to characterize the fermentation system of L. lactis ATCC 11454 and brewer's spent grain, malt and barley, especially to in situ inactivation of selected Bacillus strains during the fermentation and storage. Barley products were milled, autoclaved, hydrated and fermented with L. lactis ATCC 11454. Then, the co-fermentation with Bacillus strains was carried out. The amount of polyphenols in the samples ranged from 483.5 to 718.4 ug GAE g-1 and increased after 24 h fermentation with L. lactis ATCC 11454. The high viability of LAB in the fermented samples and after 7 days of storage at 4 °C (8 log CFU g-1) indicates the high nutrients bioavailability during the storage. Also, this co-fermentation on different barley products indicated a high reduction level (2 to 4 logs) of Bacillus due to the biosuppression effect of the LAB strain in this fermentation system. Brewer's spent grain (BSG) fermented with L. lactis ATCC 25 11454 produces a highly effective cell-free supernatant (CFS) for suppressing Bacillus strains. This was evident in both the inhibition zone and fluorescence analysis of bacteria viability. In conclusion, the obtained results justify the use of brewer's spent grain in selected food products, increasing their safety and nutritional value. This finding is highly beneficial in the sustainable management of post-production residues when current waste material can still serve as a source of food.
Collapse
Affiliation(s)
- Patryk Pokorski
- Faculty of Human Nutrition, Warsaw University of Life Sciences (WULS), Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Monika Trząskowska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska 159C, 02-776 Warsaw, Poland
| |
Collapse
|
20
|
Nath PC, Ojha A, Debnath S, Sharma M, Nayak PK, Sridhar K, Inbaraj BS. Valorization of Food Waste as Animal Feed: A Step towards Sustainable Food Waste Management and Circular Bioeconomy. Animals (Basel) 2023; 13:1366. [PMID: 37106930 PMCID: PMC10134991 DOI: 10.3390/ani13081366] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The growing population and healthy food demands have led to a rise in food waste generation, causing severe environmental and economic impacts. However, food waste (FW) can be converted into sustainable animal feed, reducing waste disposal and providing an alternative protein source for animals. The utilization of FW as animal feed presents a solution that not only tackles challenges pertaining to FW management and food security but also lessens the demand for the development of traditional feed, which is an endeavour that is both resource and environmentally intensive in nature. Moreover, this approach can also contribute to the circular economy by creating a closed-loop system that reduces the use of natural resources and minimizes environmental pollution. Therefore, this review discusses the characteristics and types of FW, as well as advanced treatment methods that can be used to recycle FW into high-quality animal feed and its limitations, as well as the benefits and drawbacks of using FW as animal feed. Finally, the review concludes that utilization of FW as animal feed can provide a sustainable solution for FW management, food security, preserving resources, reducing environmental impacts, and contributing to the circular bioeconomy.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Amiya Ojha
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Shubhankar Debnath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology Meghalaya, Baridua 793101, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India;
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore 641021, India
| | | |
Collapse
|
21
|
Singh T, Garg NM, Iyengar SRS, Singh V. Near-infrared hyperspectral imaging for determination of protein content in barley samples using convolutional neural network. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
22
|
Wefing P, Trilling M, Gossen A, Neubauer P, Schneider J. A continuous mashing system controlled by mean residence time. JOURNAL OF THE INSTITUTE OF BREWING 2023. [DOI: 10.58430/jib.v129i1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Continuous processes offer more environmentally friendlier beer production compared to the batch production. However, the continuous production of mashing has not become state-of-the-art in the brewing industry. The controllability and flexibility of this process still has hurdles for practical implementation, but which are necessary to react to changing raw materials. Once overcome, a continuous mashing can be efficiently adapted to the raw materials. Both mean residence time and temperature were investigated as key parameters to influence the extract and fermentable sugar content of the wort. The continuous mashing process was implemented as continuous stirred tank reactor (CSTR) cascade consisting of mashing in (20°C), protein rest (50°C), β-amylase rest (62-64°C), saccharification rest (72°C) and mashing out (78°C). Two different temperature settings for the β-amylase rest were investigated with particular emphasis on fermentable sugars. Analysis of Variance (ANOVA) and a post-hoc analysis showed that the mean residence time and temperature settings were suitable control parameters for the fermentable sugars. In the experimental conditions, the most pronounced effect was with the β-amylase rest. These results broaden the understanding of heterogenous CSTR mashing systems about assembly and selection of process parameters
Collapse
|
23
|
Baiano A, la Gatta B, Rutigliano M, Fiore A. Functional Bread Produced in a Circular Economy Perspective: The Use of Brewers' Spent Grain. Foods 2023; 12:foods12040834. [PMID: 36832911 PMCID: PMC9957138 DOI: 10.3390/foods12040834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Brewers' spent grain (BSG) is the main by-product of the brewing industry, corresponding to ~85% of its solid residues. The attention of food technologists towards BSG is due to its content in nutraceutical compounds and its suitability to be dried, ground, and used for bakery products. This work was aimed to investigate the use of BSG as a functional ingredient in bread-making. BSGs were characterised for formulation (three mixtures of malted barley and unmalted durum (Da), soft (Ri), or emmer (Em) wheats) and origin (two cereal cultivation places). The breads enriched with two different percentages of each BSG flour and gluten were analysed to evaluate the effects of replacements on their overall quality and functional characteristics. Principal Component Analysis homogeneously grouped BSGs by type and origin and breads into three sets: the control bread, with high values of crumb development, a specific volume, a minimum and maximum height, and cohesiveness; Em breads, with high values of IDF, TPC, crispiness, porosity, fibrousness, and wheat smell; and the group of Ri and Da breads, which have high values of overall smell intensity, toasty smell, pore size, crust thickness, overall quality, a darker crumb colour, and intermediate TPC. Based on these results, Em breads had the highest concentrations of nutraceuticals but the lowest overall quality. Ri and Da breads were the best choice (intermediate phenolic and fibre contents and overall quality comparable to that of control bread). Practical applications: the transformation of breweries into biorefineries capable of turning BSG into high-value, low-perishable ingredients; the extensive use of BSGs to increase the production of food commodities; and the study of food formulations marketable with health claims.
Collapse
|
24
|
Thuraga V, Martinsson UD, Vetukuri RR, Chawade A. Delineation of Genotype X Environment Interaction for Grain Yield in Spring Barley under Untreated and Fungicide-Treated Environments. PLANTS (BASEL, SWITZERLAND) 2023; 12:715. [PMID: 36840063 PMCID: PMC9961658 DOI: 10.3390/plants12040715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Barley (Hordeul vulgare L.) is the fourth most important cereal crop based on production and cultivated area. Biotic stresses, especially fungal diseases in barley, are devastating, incurring high possibilities of absolute yield loss. Identifying superior and stable yielding genotypes is crucial for accompanying the increasing barley demand. However, the identification and recommendation of superior genotypes is challenging due to the interaction between genotype and environment. Hence, the present investigation was aimed at evaluating the grain yield of different sets of spring barley genotypes when undergoing one of two treatments (no treatment and fungicide treatment) laid out in an alpha lattice design in six to seven locations for five years, through additive main effects and multiplicative interaction (AMMI), GGE biplot (genotype + genotype X environment), and stability analysis. The combined analysis of variance indicated that the environment was the main factor that contributed to the variation in grain yield, followed by genotype X environment interaction (GEI) effects and genotypic effects. Ten mega environments (MEs) with five MEs from each of the treatments harboured well-adapted, stable yielding genotypes. Exploiting the stable yielding genotypes with discreet use of the representative and discriminative environments identified in the present study could aid in breeding for the improvement of grain yield in spring barley genotypes.
Collapse
Affiliation(s)
- Vishnukiran Thuraga
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422 Lomma, Sweden
| | | | - Ramesh R. Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422 Lomma, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422 Lomma, Sweden
| |
Collapse
|
25
|
Xu N, Ma F, Yin H, Yu W, Zhang C, Zhan S, Huang T. Impacts of malt protein removal on yeast fermentation efficiency. J Texture Stud 2023; 54:146-152. [PMID: 36175379 DOI: 10.1111/jtxs.12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
Abstract
The effects of malt protein removal by Neutrase using Canadian and French commercial malts (Malt 1 and Malt 2) on mashing efficiency, and production of violate compounds during fermentation were determined using high performance liquid chromatography (HPLC), headspace-solid-phase microextraction coupled with gas chromatography-mass spectrometry analysis (HS-SMPE-GC-MS). HPLC results showed that for Malt 1 containing lower free- and total-β-amylase but higher α-amylase enzyme activity, Neutrase significantly increased the content of maltose, glucose and maltotriose, whereas for Malt 2, only glucose content increased. For Malt 1, the increased glucose/maltose ratio after Neutrase addition led to higher ethanol concentration than that with no Neutrase (4.06% vs. 2.09%), whereas for Malt 2, no significant differences were observed (2.92% vs. 3.09%). HS-SPME-GC-MS showed that for Malt 1 and Malt 2, Neutrase not influenced the violate compounds composition, whereas reduced their contents. This suggests that malt protein removal by Neutrase impairs the production of volatile compounds.
Collapse
Affiliation(s)
- Nan Xu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao, China
| | - Fuhao Ma
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao, China
| | - Wenwen Yu
- Department of Food Science and Engineering, Jinan University, Guangzhou City, Guangdong, China
| | - Cui Zhang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao, China
| | - Shengnan Zhan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
26
|
Romano G, Tufariello M, Calabriso N, Del Coco L, Fanizzi FP, Blanco A, Carluccio MA, Grieco F, Laddomada B. Pigmented cereals and legume grains as healthier alternatives for brewing beers. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
He T, Angessa TT, Li C. Pleiotropy Structures Plant Height and Seed Weight Scaling in Barley despite Long History of Domestication and Breeding Selection. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0015. [PMID: 37040291 PMCID: PMC10076058 DOI: 10.34133/plantphenomics.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/27/2022] [Indexed: 06/19/2023]
Abstract
Size scaling describes the relative growth rates of different body parts of an organism following a positive correlation. Domestication and crop breeding often target the scaling traits in the opposite directions. The genetic mechanism of the size scaling influencing the pattern of size scaling remains unexplored. Here, we revisited a diverse barley (Hordeum vulgare L.) panel with genome-wide single-nucleotide polymorphisms (SNPs) profile and the measurement of their plant height and seed weight to explore the possible genetic mechanisms that may lead to a correlation of the two traits and the influence of domestication and breeding selection on the size scaling. Plant height and seed weight are heritable and remain positively correlated in domesticated barley regardless of growth type and habit. Genomic structural equation modeling systematically evaluated the pleiotropic effect of individual SNP on the plant height and seed weight within a trait correlation network. We discovered seventeen novel SNPs (quantitative trait locus) conferring pleiotropic effect on plant height and seed weight, involving genes with function in diverse traits related to plant growth and development. Linkage disequilibrium decay analysis revealed that a considerable proportion of genetic markers associated with either plant height or seed weight are closely linked in the chromosome. We conclude that pleiotropy and genetic linkage likely form the genetic bases of plant height and seed weight scaling in barley. Our findings contribute to understanding the heritability and genetic basis of size scaling and open a new venue for seeking the underlying mechanism of allometric scaling in plants.
Collapse
Affiliation(s)
- Tianhua He
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Tefera Tolera Angessa
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| |
Collapse
|
28
|
Amylolytic lactic acid bacteria as starter cultures for malt quality improvement. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Díaz AB, Durán-Guerrero E, Lasanta C, Castro R. From the Raw Materials to the Bottled Product: Influence of the Entire Production Process on the Organoleptic Profile of Industrial Beers. Foods 2022; 11:3215. [PMID: 37430968 PMCID: PMC9601789 DOI: 10.3390/foods11203215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
In the past few years, there has been a growing demand by consumers for more complex beers with distinctive organoleptic profiles. The yeast, raw material (barley or other cereals), hops, and water used add to the major processing stages involved in the brewing process, including malting, mashing, boiling, fermentation, and aging, to significantly determine the sensory profile of the final product. Recent literature on this subject has paid special attention to the impact attributable to the processing conditions and to the fermentation yeast strains used on the aromatic compounds that are found in consumer-ready beers. However, no review papers are available on the specific influence of each of the factors that may affect beer organoleptic characteristics. This review, therefore, focuses on the effect that raw material, as well as the rest of the processes other than alcoholic fermentation, have on the organoleptic profile of beers. Such effect may alter beer aromatic compounds, foaming head, taste, or mouthfeel, among other things. Moreover, the presence of spoilage microorganisms that might lead to consumers' rejection because of their impact on the beers' sensory properties has also been investigated.
Collapse
Affiliation(s)
- Ana Belén Díaz
- Chemical Engineering and Food Technology Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, 11510 Puerto Real, Cadiz, Spain
| | - Enrique Durán-Guerrero
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, 11510 Puerto Real, Cadiz, Spain
| | - Cristina Lasanta
- Chemical Engineering and Food Technology Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, 11510 Puerto Real, Cadiz, Spain
| | - Remedios Castro
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
30
|
Akpoghelie PO, Edo GI, Akhayere E. Proximate and nutritional composition of beer produced from malted sorghum blended with yellow cassava. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Alptekin B, Erfatpour M, Mangel D, Pauli D, Blake T, Turner H, Lachowiec J, Sherman J, Fischer A. Selection of favorable alleles of genes controlling flowering and senescence improves malt barley quality. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:59. [PMID: 37313013 PMCID: PMC10248683 DOI: 10.1007/s11032-022-01331-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Malt barley (Hordeum vulgare L.) is an important cash crop with stringent grain quality standards. Timing of the switch from vegetative to reproductive growth and timing of whole-plant senescence and nutrient remobilization are critical for cereal grain yield and quality. Understanding the genetic variation in genes associated with these developmental traits can streamline genotypic selection of superior malt barley germplasm. Here, we determined the effects of allelic variation in three genes encoding a glycine-rich RNA-binding protein (HvGR-RBP1) and two NAC transcription factors (HvNAM1 and HvNAM2) on malt barley agronomics and quality using previously developed markers for HvGR-RBP1 and HvNAM1 and a novel marker for HvNAM2. Based on a single-nucleotide polymorphism (SNP) in the first intron, the utilized marker differentiates NAM2 alleles of low-grain protein variety 'Karl' and of higher protein variety 'Lewis'. We demonstrate that the selection of favorable alleles for each gene impacts heading date, senescence timing, grain size, grain protein concentration, and malt quality. Specifically, combining 'Karl' alleles for the two NAC genes with the 'Lewis' HvGR-RBP1 allele extends grain fill duration, increases the percentage of plump kernels, decreases grain protein, and provides malt quality stability. Molecular markers for these genes are therefore highly useful tools in malt barley breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01331-7.
Collapse
Affiliation(s)
- Burcu Alptekin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 USA
- Present Address: Department of Bacteriology, University of Wisconsin, Madison, WI 53706 USA
| | - Mohammad Erfatpour
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 USA
- Present Address: Department of Plant Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - Dylan Mangel
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 USA
- Present Address: Department of Plant Pathology, Kansas State University, Manhattan, KS 66506 USA
| | - Duke Pauli
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 USA
- Present Address: School of Plant Sciences, University of Arizona, Tucson, AZ 85721 USA
| | - Tom Blake
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 USA
| | - Hannah Turner
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 USA
| | - Jennifer Lachowiec
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 USA
| | - Jamie Sherman
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 USA
| | - Andreas Fischer
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 USA
| |
Collapse
|
32
|
Sharanagat VS, Singh L, Nema PK. Approaches for development of functional and low gluten bread from sorghum: A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vijay Singh Sharanagat
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat Haryana India
| | - Lochan Singh
- Contract research organization National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat Haryana India
| | - Prabhat K. Nema
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat Haryana India
| |
Collapse
|
33
|
Torbica A, Radosavljević M, Belović M, Tamilselvan T, Prabhasankar P. Biotechnological tools for cereal and pseudocereal dietary fibre modification in the bakery products creation – Advantages, disadvantages and challenges. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
34
|
Knudsen S, Wendt T, Dockter C, Thomsen HC, Rasmussen M, Egevang Jørgensen M, Lu Q, Voss C, Murozuka E, Østerberg JT, Harholt J, Braumann I, Cuesta-Seijo JA, Kale SM, Bodevin S, Tang Petersen L, Carciofi M, Pedas PR, Opstrup Husum J, Nielsen MTS, Nielsen K, Jensen MK, Møller LA, Gojkovic Z, Striebeck A, Lengeler K, Fennessy RT, Katz M, Garcia Sanchez R, Solodovnikova N, Förster J, Olsen O, Møller BL, Fincher GB, Skadhauge B. FIND-IT: Accelerated trait development for a green evolution. SCIENCE ADVANCES 2022; 8:eabq2266. [PMID: 36001660 PMCID: PMC9401622 DOI: 10.1126/sciadv.abq2266] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Improved agricultural and industrial production organisms are required to meet the future global food demands and minimize the effects of climate change. A new resource for crop and microbe improvement, designated FIND-IT (Fast Identification of Nucleotide variants by droplet DigITal PCR), provides ultrafast identification and isolation of predetermined, targeted genetic variants in a screening cycle of less than 10 days. Using large-scale sample pooling in combination with droplet digital PCR (ddPCR) greatly increases the size of low-mutation density and screenable variant libraries and the probability of identifying the variant of interest. The method is validated by screening variant libraries totaling 500,000 barley (Hordeum vulgare) individuals and isolating more than 125 targeted barley gene knockout lines and miRNA or promoter variants enabling functional gene analysis. FIND-IT variants are directly applicable to elite breeding pipelines and minimize time-consuming technical steps to accelerate the evolution of germplasm.
Collapse
Affiliation(s)
- Søren Knudsen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Toni Wendt
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Magnus Rasmussen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Qiongxian Lu
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Cynthia Voss
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Emiko Murozuka
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Jesper Harholt
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Ilka Braumann
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Jose A. Cuesta-Seijo
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Sandip M. Kale
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Sabrina Bodevin
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Lise Tang Petersen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Pai Rosager Pedas
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Jeppe Opstrup Husum
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Kasper Nielsen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Mikkel K. Jensen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Lillian Ambus Møller
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Zoran Gojkovic
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Alexander Striebeck
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Klaus Lengeler
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Ross T. Fennessy
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Michael Katz
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Rosa Garcia Sanchez
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Jochen Förster
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Ole Olsen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Centre for Synthetic Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Geoffrey B. Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Birgitte Skadhauge
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| |
Collapse
|
35
|
Reid JESJ, Yakubov GE, Lawrence SJ. Non-starch polysaccharides in beer and brewing: A review of their occurrence and significance. Crit Rev Food Sci Nutr 2022; 64:837-851. [PMID: 36004513 DOI: 10.1080/10408398.2022.2109585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It has become apparent that beer (both alcoholic and nonalcoholic) contains appreciable amounts of non-starch polysaccharides, a broad subgroup of dietary fiber. It is worth noting that the occurrence of non-starch polysaccharides in alcoholic beer does not imply this should be consumed as a source of nutrition. But the popularity of nonalcoholic beer is growing, and the lessons learnt from non-starch polysaccharides in brewing can be largely translated to nonalcoholic beer. For context, we briefly review the origins of dietary fiber, its importance within the human diet and the significance of water-soluble dietary fiber in beverages. We review the relationship between non-starch polysaccharides and brewing, giving focus to the techniques used to quantify non-starch polysaccharides in beer, how they affect the physicochemical properties of beer and their influence on the brewing process. The content of non-starch polysaccharides in both regular and low/nonalcoholic beer ranges between 0.5 - 4.0 g/L and are predominantly composed of arabinoxylans and β-glucans. The process of malting, wort production and filtration significantly affect the soluble non-starch polysaccharide content in the final beer. Beer viscosity and turbidity are strongly associated with the content of non-starch polysaccharides.
Collapse
Affiliation(s)
- Joshua E S J Reid
- International Centre for Brewing Science, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Gleb E Yakubov
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stephen J Lawrence
- International Centre for Brewing Science, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
36
|
Chang Y, Shi X, He F, Wu T, Jiang L, Normakhamatov N, Sharipov A, Wang T, Wen M, Aisa HA. Valorization of Food Processing Waste to Produce Valuable Polyphenolics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8855-8870. [PMID: 35833703 DOI: 10.1021/acs.jafc.2c02655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditional incineration and landfill of food processing waste (FPW) have polluted the environment and underutilized valuable bioactive compounds, including polyphenols in food waste. As one of the most widely occurring compounds in the FPW, polyphenols possess high utilization value in many fields such as human health, energy, and environmental protection. Extracting polyphenols directly from FPW can maximize the value of polyphenols and avoid waste of resources. However, traditional polyphenol extraction methods mostly use the Soxhlet extraction, infiltration, and impregnation method, consuming a large amount of organic solvent and suffering from long extraction time and low extraction efficiency. Emerging green extraction methods such as supercritical fluid extraction, ultrasonic-assisted extraction, microwave-assisted extraction, and other methods can shorten the extraction time and improve the solvent extraction efficacy, resulting in the green and safe recovery of polyphenols from FPW. In this paper, the traditional treatment methods of FPW waste and the application of polyphenols in FPW are briefly reviewed, and the traditional extraction methods and emerging green extraction methods of polyphenols in FPW are compared to obtain insight into the start-of-the-art extraction approaches.
Collapse
Affiliation(s)
- Yuyin Chang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, P.R. China
| | - Xiaoyu Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 201306, P.R. China
| | - Fei He
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| | - Tao Wu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, P.R. China
| | - Nodirali Normakhamatov
- Tashkent Pharmaceutical Institute, Ministry of the Health of Uzbekistan, Aybek Strasse 45, Tashkent 100015, Uzbekistan
| | - Avez Sharipov
- Tashkent Pharmaceutical Institute, Ministry of the Health of Uzbekistan, Aybek Strasse 45, Tashkent 100015, Uzbekistan
| | - Tianfu Wang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, P.R. China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 201306, P.R. China
| | - Mingzhang Wen
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P.R. China
| | - Haji Akber Aisa
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| |
Collapse
|
37
|
Adetokunboh AH, Obilana AO, Jideani VA. Physicochemical Characteristics of Bambara Groundnut Speciality Malts and Extract. Molecules 2022; 27:4332. [PMID: 35889203 PMCID: PMC9323462 DOI: 10.3390/molecules27144332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Speciality malts and their extracts have physicochemical characteristics such as colour, flavour, and aroma sorted for in food production. Speciality malts used in food production are mostly produced from cereal grains. Hence, this study aimed to produce speciality malts from Bambara groundnut (BGN) seeds and analyse their physicochemical characteristics and metabolites. The base, toasted, caramel, and roasted malt were produced by drying at different temperatures and times. Syrups were produced isothermally from the speciality malts. The speciality malts and syrups were assessed for colour, pH, protein, α and β-amylases, total polyphenols, antioxidants, and metabolite profiling. The BGN speciality malts were assayed for fatty acid methyl esters (FAME), hydrocarbons, sugar alcohols, sugars, acids, amino acids, and volatile components using capillary gas chromatography-mass spectrometry (GC-MS) and gas chromatography with flame ionisation detection (GC-FID). The colours of the speciality malts and syrups were significantly (p = 0.000) different. The protein content of the BGN speciality malts was significantly different (p = 0.000), while the protein content of the syrups was not significantly different. The amylase activities of the BGN speciality malt decreased with the change in kilning temperatures and time. The α- and β-amylase activities for the specialty malts were 1.01, 0.21, 0.29, 0.15 CU/g and 0.11, 0.10, 0.10, 0.06 BU/g. The total polyphenols and antioxidant activities differed for all BGN speciality malts. There were twenty-nine volatiles detected in the BGN speciality malts. Fifteen amino acids consisted of seven essential amino acids, and eight non-essential amino acids were detected in the speciality malts. Fatty acid methyl esters (FAME) identified were palmitoleic, oleic, linolelaidic, linoleic, and arachidic acid. The sugars, organic acids, and sugar alcohols consisted of lactic acid, fructose, sucrose, and myo-inositol. The BGN speciality malts exhibited good physicochemical characteristics and metabolites that can make them useful as household and industrial ingredients for food production, which could be beneficial to consumers.
Collapse
Affiliation(s)
| | | | - Victoria A. Jideani
- Department of Food Science and Technology, Cape Peninsula University of Technology, Bellville 7535, South Africa; (A.H.A.); (A.O.O.)
| |
Collapse
|
38
|
Kowalska H, Masiarz E, Ignaczak A, Marzec A, Hać-Szymańczuk E, Salamon A, Cegiełka A, Żbikowska A, Kowalska J, Galus S. Advances in Multigrain Snack Bar Technology and Consumer Expectations: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2094402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Hanna Kowalska
- Department of Food Engineering and Process Management, Warsaw University of Life Sciences (WULS), Warsaw, Poland
| | - Ewelina Masiarz
- Department of Food Engineering and Process Management, Warsaw University of Life Sciences (WULS), Warsaw, Poland
| | - Anna Ignaczak
- Department of Food Engineering and Process Management, Warsaw University of Life Sciences (WULS), Warsaw, Poland
| | - Agata Marzec
- Department of Food Engineering and Process Management, Warsaw University of Life Sciences (WULS), Warsaw, Poland
| | - Elżbieta Hać-Szymańczuk
- Department of Biotechnology and Microbiology of Food, Warsaw University of Life Sciences (WULS), Warsaw, Poland
| | - Agnieszka Salamon
- Department of Grain Processing and Bakery, Institute of Agriculture and Food Biotechnology – State Research Institute, Warsaw, Poland
| | - Aneta Cegiełka
- Department of Food Technology and Assessment, Warsaw University of Life Sciences (WULS), Warsaw, Poland
| | - Anna Żbikowska
- Department of Food Technology and Assessment, Warsaw University of Life Sciences (WULS), Warsaw, Poland
| | - Jolanta Kowalska
- Department of Food Engineering and Process Management, Warsaw University of Life Sciences (WULS), Warsaw, Poland
| | - Sabina Galus
- Department of Food Engineering and Process Management, Warsaw University of Life Sciences (WULS), Warsaw, Poland
| |
Collapse
|
39
|
Optimisation of Malting Parameters for Quinoa and Barley: Application of Response Surface Methodology. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5279177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Quinoa (Chenopodium quinoa Willd) is a nutritious pseudocereal that is more stress-tolerant compared with traditional cereals. It is an excellent example of a climate-smart crop that is more resilient to climate change compared with barley. The purpose of the study was to investigate the optimum malting conditions required to produce quinoa malt using barley as a control. Response surface methodology (RSM) was used to investigate the influence of the two malting parameters steeping time and germination time on Brix (wort extract), diastatic power (DP), and free amino nitrogen (FAN) of the malt. The temperature was set at 15°C during the steeping process. Steeping time ranging from 12 to 48 hours and germination time ranging from 24 to 96 hours were designed using a central composite design (CCD). The kilning temperature for all malts was 65°C. For quinoa malt, there was a notable weak positive correlation between germination time and Brix (r = +0.119). However, there was a strong positive correlation between steeping time and diastatic power (r = +0.893). A similar trend was noted for barley with a weak positive correlation between germination time and Brix (r = +0.142). A strong positive correlation was also recorded between steeping time and diastatic power (r = +0.897) during the malting of barley. There was a relatively stronger correlation between steeping time and FAN (r = +0.895) than germination time and FAN (r = +0.275) in quinoa malt. The optimum values for the malting of barley were 47.68 hrs steeping time and 82.55 hrs germination time with a desirability value of 1.00. The responses for the optimised barley malt were 8.25°Bx, 162.28 mg/L, and 271.69°L for Brix, FAN, and diastatic power, respectively. To produce quinoa malt with Brix, FAN, and diastatic power of 8.37°Bx, 165.60 mg/L, and 275.86°L, respectively, malting conditions of 47.69 hrs steeping time and 95.81 hrs germination time are required. It was noted that quinoa is a very good candidate for producing high-quality malt for the brewing process.
Collapse
|
40
|
Zeko-Pivač A, Tišma M, Žnidaršič-Plazl P, Kulisic B, Sakellaris G, Hao J, Planinić M. The Potential of Brewer’s Spent Grain in the Circular Bioeconomy: State of the Art and Future Perspectives. Front Bioeng Biotechnol 2022; 10:870744. [PMID: 35782493 PMCID: PMC9247607 DOI: 10.3389/fbioe.2022.870744] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/17/2022] [Indexed: 12/30/2022] Open
Abstract
Brewer’s spent grain (BSG) accounts for approximately 85% of the total mass of solid by-products in the brewing industry and represents an important secondary raw material of future biorefineries. Currently, the main application of BSG is limited to the feed and food industry. There is a strong need to develop sustainable pretreatment and fractionation processes to obtain BSG hydrolysates that enable efficient biotransformation into biofuels, biomaterials, or biochemicals. This paper aims to provide a comprehensive insight into the availability of BSG, chemical properties, and current and potential applications juxtaposed with the existing and emerging markets of the pyramid of bio-based products in the context of sustainable and circular bioeconomy. An economic evaluation of BSG for the production of highly valuable products is presented in the context of sustainable and circular bioeconomy targeting the market of Central and Eastern European countries (BIOEAST region).
Collapse
Affiliation(s)
- Anđela Zeko-Pivač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marina Tišma
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- *Correspondence: Marina Tišma,
| | - Polona Žnidaršič-Plazl
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Jian Hao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Pudong, China
| | - Mirela Planinić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
41
|
Ofoedu CE, Iwouno JO, Ojimba NC, Chacha JS, Okafor DC, Anwaegbu OM. Effect of malting regimen on diastatic power, cold and hot water extracts of malts from sorghum. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chigozie E. Ofoedu
- Department of Food Science and Technology School of Engineering and Engineering Technology Federal University of Technology 460114 Owerri Imo Nigeria
| | - Jude O. Iwouno
- Department of Food Science and Technology School of Engineering and Engineering Technology Federal University of Technology 460114 Owerri Imo Nigeria
| | - Nnamdi C. Ojimba
- Department of Food Science and Technology School of Engineering and Engineering Technology Federal University of Technology 460114 Owerri Imo Nigeria
| | - James S. Chacha
- Department of Food Technology, Nutrition and Consumer Sciences Sokoine University of Agriculture P.O. Box 3006 Chuo Kikuu Morogoro Tanzania
| | - Damaris C. Okafor
- Department of Food Science and Technology School of Engineering and Engineering Technology Federal University of Technology 460114 Owerri Imo Nigeria
- Department of Agricultural, Food and Nutritional Science University of Alberta T6G 2P5 Edmonton Canada
| | - Ogechukwu M. Anwaegbu
- Department of Food Science and Technology School of Engineering and Engineering Technology Federal University of Technology 460114 Owerri Imo Nigeria
| |
Collapse
|
42
|
Guo X, Jahoor A, Jensen J, Sarup P. Metabolomic spectra for phenotypic prediction of malting quality in spring barley. Sci Rep 2022; 12:7881. [PMID: 35551263 PMCID: PMC9098465 DOI: 10.1038/s41598-022-12028-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
We investigated prediction of malting quality (MQ) phenotypes in different locations using metabolomic spectra, and compared the prediction ability of different models, and training population (TP) sizes. Data of five MQ traits was measured on 2667 individual plots of 564 malting spring barley lines from three years and two locations. A total of 24,018 metabolomic features (MFs) were measured on each wort sample. Two statistical models were used, a metabolomic best linear unbiased prediction (MBLUP) and a partial least squares regression (PLSR). Predictive ability within location and across locations were compared using cross-validation methods. For all traits, more than 90% of the total variance in MQ traits could be explained by MFs. The prediction accuracy increased with increasing TP size and stabilized when the TP size reached 1000. The optimal number of components considered in the PLSR models was 20. The accuracy using leave-one-line-out cross-validation ranged from 0.722 to 0.865 and using leave-one-location-out cross-validation from 0.517 to 0.817. In conclusion, the prediction accuracy of metabolomic prediction of MQ traits using MFs was high and MBLUP is better than PLSR if the training population is larger than 100. The results have significant implications for practical barley breeding for malting quality.
Collapse
Affiliation(s)
- Xiangyu Guo
- Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark. .,Danish Pig Research Centre, Danish Agriculture and Food Council, 1609, Copenhagen V, Denmark.
| | - Ahmed Jahoor
- Nordic Seed A/S, 8300, Odder, Denmark.,Department of Plant Breeding, The Swedish University of Agricultural Sciences, 2353, Alnarp, Sweden
| | - Just Jensen
- Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark
| | | |
Collapse
|
43
|
Bugoni M, Takiya CS, Grigoletto NTS, Nunes AT, Vittorazzi Júnior PC, Chesini RG, da Silva GG, de Alcantara LVB, Rennó LN, Rennó FP. Dry malt extract from barley partially replacing ground corn in diets of dairy cows: Nutrient digestibility, ruminal fermentation, and milk composition. J Dairy Sci 2022; 105:5714-5722. [PMID: 35525616 DOI: 10.3168/jds.2021-21682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/10/2022] [Indexed: 11/19/2022]
Abstract
Dry malt extract (DME) has been used in animal nutrition as an alternative source of rapidly fermentable carbohydrate. An experiment was conducted to evaluate the partial replacement of ground corn with DME in diets of dairy cows on apparent digestibility, ruminal fermentation, predicted rumen microbial protein supply, N excretion, serum urea-N concentration, and milk yield and composition. Twenty-eight Holstein cows (35.3 ± 5.88 kg/d milk yield and 148 ± 78 d in milk), 4 of which were rumen cannulated, were blocked according to the presence of rumen cannulas, parity, milk yield, and days in milk and enrolled into a crossover design experiment. Experimental periods lasted 21 d, of which the first 14 d were allowed for treatment adaptation and 7 d were used for data collection and sampling. Treatment sequences were composed of control (CON) or DME from barley (Liotécnica Tecnologia em Alimentos) replacing ground corn at 7.62% diet dry matter (∼2 kg/d). Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc.) modeling the fixed effects of treatment, period, and their interaction, in addition to the random effect of animal. Ruminal fermentation data were analyzed as repeated measures including time and its interaction with treatment in the previous model as fixed effects. Treatments did not affect nutrient intake or feed sorting. Dry malt extract increased apparent digestibility of CP. Feeding DME decreased ruminal pH and molar percentage of butyrate and increased molar percentage of acetate. No treatment effects were detected for predicted rumen microbial protein supply or N excretion. Cows fed DME had lower serum urea-N concentration than CON cows. Dry malt extract increased yields of actual milk, 3.5% fat-corrected milk, fat, and protein, and improved feed efficiency (fat-corrected milk ÷ dry matter intake). Cows fed DME had lower milk urea nitrogen content in comparison with CON cows. Dry malt extract can partially replace ground corn in the diet while improving milk yield and feed efficiency.
Collapse
Affiliation(s)
- Milena Bugoni
- Department of Animal Production and Animal Nutrition, University of São Paulo, Pirassununga, Brazil, 13635-900
| | - Caio S Takiya
- Department of Animal Production and Animal Nutrition, University of São Paulo, Pirassununga, Brazil, 13635-900
| | - Nathalia T S Grigoletto
- Department of Animal Production and Animal Nutrition, University of São Paulo, Pirassununga, Brazil, 13635-900
| | - Alanne T Nunes
- Department of Animal Production and Animal Nutrition, University of São Paulo, Pirassununga, Brazil, 13635-900
| | | | - Rodrigo G Chesini
- Department of Animal Production and Animal Nutrition, University of São Paulo, Pirassununga, Brazil, 13635-900
| | - Guilherme G da Silva
- Department of Animal Production and Animal Nutrition, University of São Paulo, Pirassununga, Brazil, 13635-900
| | - Luis V B de Alcantara
- Department of Animal Production and Animal Nutrition, University of São Paulo, Pirassununga, Brazil, 13635-900
| | - Luciana N Rennó
- Department of Animal Science, Federal University of Viçosa, Viçosa, Brazil, 36570-900
| | - Francisco P Rennó
- Department of Animal Production and Animal Nutrition, University of São Paulo, Pirassununga, Brazil, 13635-900.
| |
Collapse
|
44
|
Killerby MA, Almeida STR, Hollandsworth R, Guimaraes BC, Leon-Tinoco A, Perkins LB, Henry D, Schwartz TJ, Romero JJ. Effect of chemical and biological preservatives and ensiling stage on the dry matter loss, nutritional value, microbial counts, and ruminal in vitro gas production kinetics of wet brewer's grain silage. J Anim Sci 2022; 100:6555706. [PMID: 35350073 PMCID: PMC9109006 DOI: 10.1093/jas/skac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the effects of chemical and biological preservatives and ensiling stage on spoilage, ruminal in vitro fermentation, and methane production of wet brewer's grain (WBG) silage. Treatments (TRT) were sodium lignosulfonate at 10 g/kg fresh WBG (NaL1) and 20 g/kg (NaL2), propionic acid at 5 g/kg fresh WBG (PRP, 99%), a combination inoculant (INO; Lactococcus lactis and Lactobacillus buchneri each at 4.9 log cfu/fresh WBG g), and untreated WBG (CON). Fresh WBG was treated and then ensiled for 60 d, after which mini silos were opened and aerobically exposed (AES) for 10 d. Data were analyzed as a RCBD (5 blocks) with a 5 TRT × 3 stages (STG; Fresh, Ensiled, and AES) factorial arrangement. Results showed that Ensiled PRP-treated WBG markedly preserved more water-soluble carbohydrates and starch than all other Ensiled TRT (P<0.001). Dry matter losses of Ensiled PRP-treated WBG were 48% lower than all other Ensiled TRT (P=0.009) but were not different than CON in AES (P=0.350). Due to its greater concentration of digestible nutrients, PRP-treated AES was less aerobically stable than CON (P=0.03). Preservation was not improved by INO, NaL1 or NaL2 but the latter prevented the increase of neutral detergent fiber across STG (P=0.392). Apparent in vitro DM digestibility (IVDMD) decreased only in Ensiled CON, INO and NaL1 relative to Fresh WBG and AES NaL2 had greater IVDMD than all other AES TRT (P≤0.032). In vitro ruminal fermentation of Fresh WBG resulted in a greater methane concentration and yield than the other STG (P<0.033). In conclusion, PRP was the most effective at preserving WBG during ensiling but failed to improve aerobic stability under the conditions tested.
Collapse
Affiliation(s)
- Marjorie A Killerby
- Animal and Veterinary Sciences, School of Food and Agriculture, University of Maine, Orono, ME, USA
| | - Saulo T R Almeida
- Department of Animal Sciences, Federal University of Lavras, Lavras, MG, Brazil
| | - Rachel Hollandsworth
- Animal and Veterinary Sciences, School of Food and Agriculture, University of Maine, Orono, ME, USA
| | - Bianca C Guimaraes
- Department of Animal Sciences, Federal University of Lavras, Lavras, MG, Brazil
| | - Angela Leon-Tinoco
- Animal and Veterinary Sciences, School of Food and Agriculture, University of Maine, Orono, ME, USA
| | - Lewis B Perkins
- Food Science and Human Nutrition, School of Food and Agriculture, University of Maine, Orono, ME, USA
| | - Darren Henry
- College of Agricultural and Environmental Sciences, University of Georgia Tifton Campus, Tifton, GA, USA
| | - Thomas J Schwartz
- Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Juan J Romero
- Animal and Veterinary Sciences, School of Food and Agriculture, University of Maine, Orono, ME, USA
| |
Collapse
|
45
|
Jukić M, Nakov G, Komlenić DK, Vasileva N, Šumanovac F, Lukinac J. Quality Assessment of Cookies Made from Composite Flours Containing Malted Barley Flour and Wheat Flour. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060761. [PMID: 35336642 PMCID: PMC8948820 DOI: 10.3390/plants11060761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 05/27/2023]
Abstract
Wheat-based short-dough cookies are considered low nutritional value foods because their recipes are high in fat and sugar. The aim of this study was to investigate the effects of replacing part of the wheat flour (WF) with different types of malted barley flour (MBF), while reducing sucrose in the recipe, in order to produce cookies with increased nutritional value, enhanced functional properties, and acceptable technological and sensory characteristics. Three types of brewer's MBF (Pilsen, Amber, and Black) were used to replace WF in amounts of 20, 40, and 60%, while simultaneously reducing the addition of sucrose. Sucrose was added at levels of 66.6, 33.3, and 0% of the original standard recipe. MBF mitigated the effects of the reduced sucrose addition, likely due to its own high sugar content derived from barley malt. Snapping force determined with a texture analyzer decreased proportionally to sucrose reduction and MBF addition, indicating a softer texture of the cookies. MBF significantly increased the total phenolic content (TPC) and antioxidant activity (AOA) of the cookies. The results of the sensory analysis showed that cookies with Pilsen MBF and Amber MBF had a pleasantly sweet and rich flavor, while the addition of Black MBF produced an exaggerated bitter flavor and a nutty roasted aroma. The results suggest that different types of brewer's MBF can be successfully used to produce functional cookies with reduced sucrose addition.
Collapse
Affiliation(s)
- Marko Jukić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (D.K.K.); (F.Š.); (J.L.)
| | - Gjore Nakov
- Institute of Cryobiology and Food Technologies, Agricultural Academy—Sofia, 53 Cherni Vrah Blvd., 1407 Sofia, Bulgaria;
| | - Daliborka Koceva Komlenić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (D.K.K.); (F.Š.); (J.L.)
| | - Nastia Vasileva
- College of Sliven, Technical University of Sofia, 59 Bourgasko Shaussee Blvd., 8800 Sliven, Bulgaria;
| | - Franjo Šumanovac
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (D.K.K.); (F.Š.); (J.L.)
| | - Jasmina Lukinac
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (D.K.K.); (F.Š.); (J.L.)
| |
Collapse
|
46
|
Adetokunboh AH, Obilana AO, Jideani VA. Enzyme and Antioxidant Activities of Malted Bambara Groundnut as Affected by Steeping and Sprouting Times. Foods 2022; 11:783. [PMID: 35327205 PMCID: PMC8947651 DOI: 10.3390/foods11060783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Bambara groundnut (BGN) is termed a complete food due to its nutritional composition and has been researched often for its nutritional constituents. Malting BGN seeds have shown improved nutritional and functional characteristics, which can be used to produce an amylase-rich product as a functional ingredient for food and beverage production in homes and industries. The aim of this study was to investigate the enzyme and antioxidant activities of malted BGN affected by steeping and sprouting times. BGN was malted by steeping in distilled water at 25-30 °C for 36 and 48 h and then sprouted for 144 h at 30 °C. Samples were drawn every 24 h for drying to study the effect of steeping and sprouting times on the moisture, sprout length, pH, colour, protein content, amylase, total polyphenols, and antioxidant activities of the BGN seeds. The steeping and sprouting times significantly affected the BGN malt colour quality and pH. The protein content of the malted BGN seeds was not significantly different based on steeping and sprouting times. Steeping and sprouting times significantly affected the α- and β-amylase activities of the BGN seeds. The activity of amylases for 36 and 48 h steeping times were 0.16 and 0.15 CU/g for α-amylase and were 0.22 and 0.23 BU/g for β-amylase, respectively. Amylase-rich BGN malt was produced by steeping for 36 h and sprouting for 96 h. Amylase-rich BGN malt can be useful as a functional food ingredient in food and beverage formulations.
Collapse
Affiliation(s)
| | | | - Victoria A. Jideani
- Department of Food Science and Technology, Cape Peninsula University of Technology, Bellville 7535, South Africa; (A.H.A.); (A.O.O.)
| |
Collapse
|
47
|
Zhang Y, Liu X, Zhao J, Wang J, Song Q, Zhao C. The phagocytic receptors of β-glucan. Int J Biol Macromol 2022; 205:430-441. [PMID: 35202631 DOI: 10.1016/j.ijbiomac.2022.02.111] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
Phagocytosis is a cellular process maintaining tissue balance and plays an essential role in initiating the innate immune response. The process of phagocytosis was triggered by the binding of pathogen-associated molecular patterns (PAMP) with their cell surface receptors on the phagocytes. These receptors not only perform phagocytic functions, but also bridge the gap between extracellular and intracellular communication, leading to signal transduction and the production of inflammatory mediators, which are crucial for clearing the invading pathogens and maintaining cell homeostasis. For the past few years, the application of β-glucan comes down to immunoregulation and anti-tumor territory. As a well-known PAMP, β-glucan is one of the most abundant polysaccharides in nature. By binding to specific receptors on immune cells and activating intracellular signal transduction pathways, it causes phagocytosis and promotes the release of cytokines. Further retrieval and straightening out literature related to β-glucan phagocytic receptors will help better elucidate their immunomodulatory functions. This review attempts to summarize physicochemical properties and specific processes involved in β-glucan induced phagocytosis, its phagocytic receptors, and cascade events triggered by β-glucan at the cellular and molecular levels.
Collapse
Affiliation(s)
- Yazhuo Zhang
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China
| | - Xinning Liu
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China
| | - Jun Zhao
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China
| | - Jie Wang
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China
| | - Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China.
| |
Collapse
|
48
|
Kitaw G, Faji M, Terefe G. Nutritional and fungal load dynamics of fresh brewers' grain stored under aerobic conditions. AMB Express 2022; 12:10. [PMID: 35103893 PMCID: PMC8807820 DOI: 10.1186/s13568-022-01356-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Brewers' spent grain (BSG) is the amplest by-product of the brewing process. The fresh BSG is currently used as low-cost cattle feed due to its microbiological instability and high perishability. While recent research looked at the effects of storage time and temperature on the characteristics of wet brewers grains (WBG) as ruminant feeds. Three storage temperatures (15, 20, and 25 °C) and periods (2, 4 and 6 days) were arranged in a 3 × 3 factorial design. Surface spoilage was not apparent at 15 °C throughout the storage periods. Deterioration was not also observed at 20 °C until the fourth day of storage where slight mold growth was apparent. Extensive mold growth was detected late in the sixth day at 20 °C and continued manifestations up until the last day of storage at 25 °C. Changes in major nutrients, DM losses, and yeast and mold colony count were significantly affected by the interaction of storage temperatures and durations (P < 0.05). Except for samples stored at 15 °C, nutrients contents decreased concomitantly (exceptions are ADF, lignin, and loss in DM) with prolonged storage times (p < 0.05) and increasing temperatures (p < 0.05). Contrast analysis indicated that it would be safe to store under aerobic storage conditions and feed the WBG for dairy cattle.
Collapse
|
49
|
Garcia-Gimenez G, Schreiber M, Dimitroff G, Little A, Singh R, Fincher GB, Burton RA, Waugh R, Tucker MR, Houston K. Identification of candidate MYB transcription factors that influence CslF6 expression in barley grain. FRONTIERS IN PLANT SCIENCE 2022; 13:883139. [PMID: 36160970 PMCID: PMC9493323 DOI: 10.3389/fpls.2022.883139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/17/2022] [Indexed: 05/13/2023]
Abstract
(1,3;1,4)-β-Glucan is a non-cellulosic polysaccharide required for correct barley grain fill and plant development, with industrial relevance in the brewing and the functional food sector. Barley grains contain higher levels of (1,3;1,4)-β-glucan compared to other small grain cereals and this influences their end use, having undesirable effects on brewing and distilling and beneficial effects linked to human health. HvCslF6 is the main gene contributing to (1,3;1,4)-β-glucan biosynthesis in the grain. Here, the transcriptional regulation of HvCslF6 was investigated using an in-silico analysis of transcription factor binding sites (TFBS) in its putative promoter, and functional characterization in a barley protoplast transient expression system. Based on TFBS predictions, TF classes AP2/ERF, MYB, and basic helix-loop-helix (bHLH) were over-represented within a 1,000 bp proximal HvCslF6 promoter region. Dual luciferase assays based on multiple HvCslF6 deletion constructs revealed the promoter fragment driving HvCslF6 expression. Highest HvCslF6 promoter activity was narrowed down to a 51 bp region located -331 bp to -382 bp upstream of the start codon. We combined this with TFBS predictions to identify two MYB TFs: HvMYB61 and HvMYB46/83 as putative activators of HvCslF6 expression. Gene network analyses assigned HvMYB61 to the same co-expression module as HvCslF6 and other primary cellulose synthases (HvCesA1, HvCesA2, and HvCesA6), whereas HvMYB46/83 was assigned to a different module. Based on RNA-seq expression during grain development, HvMYB61 was cloned and tested in the protoplast system. The transient over-expression of HvMYB61 in barley protoplasts suggested a positive regulatory effect on HvCslF6 expression.
Collapse
Affiliation(s)
| | - Miriam Schreiber
- Plant Sciences Division, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - George Dimitroff
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Alan Little
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Rohan Singh
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Geoffrey B. Fincher
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Rachel A. Burton
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Robbie Waugh
- The James Hutton Institute, Dundee, United Kingdom
- Plant Sciences Division, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Matthew R. Tucker
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Kelly Houston
- The James Hutton Institute, Dundee, United Kingdom
- *Correspondence: Kelly Houston,
| |
Collapse
|
50
|
Wang X, Gong P, Liu M, wang M, wang S, guo Y, chang X, yang W, Chen X, Chen F. Hypoglycemic effect of a novel polysaccharide from Lentinus edodes on STZ-induced diabetic mice via metabolomics study and Nrf2/HO-1 pathways. Food Funct 2022; 13:3036-3049. [DOI: 10.1039/d1fo03487a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the increased worldwide prevalence of diabetes, more and more attentions are focused on the natural drug candidate who could treat diabetes with high efficacy but without undesired side effect....
Collapse
|